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Abstract

Machine learning models exhibit strong performance on datasets with abundant
labeled samples. However, for tabular datasets with extremely high d-dimensional
features but limited n samples (i.e. d ≫ n), machine learning models struggle to
achieve strong performance due to the risk of overfitting. Here, our key insight is
that there is often abundant, auxiliary domain information describing input features
which can be structured as a heterogeneous knowledge graph (KG). We propose
PLATO, a method that achieves strong performance on tabular data with d ≫ n
by using an auxiliary KG describing input features to regularize a multilayer
perceptron (MLP). In PLATO, each input feature corresponds to a node in the
auxiliary KG. In the MLP’s first layer, each input feature also corresponds to
a weight vector. PLATO is based on the inductive bias that two input features
corresponding to similar nodes in the auxiliary KG should have similar weight
vectors in the MLP’s first layer. PLATO captures this inductive bias by inferring the
weight vector for each input feature from its corresponding node in the KG via a
trainable message-passing function. Across 6 d ≫ n datasets, PLATO outperforms
13 state-of-the-art baselines by up to 10.19%.

1 Introduction

Machine learning models have reached state-of-the-art performance in domains with abundant labeled
data like computer vision [76, 10] and natural language processing [70, 12, 52]. However, for tabular
datasets in which the number d of features vastly exceeds the number n of samples, machine learning
models struggle to achieve strong performance [24, 41]. Crucially, many tabular datasets from
scientific domains [21, 30, 79, 17, 16, 33] have high-dimensional features but limited labeled samples
due to the high time and labor costs of experiments. For these and other tabular datasets with d ≫ n,
the performance of machine learning models is currently limited.

The key challenge for machine learning models when d ≫ n is the risk of overfitting. Indeed, deep
models can have a large number of trainable weights, yet training is limited by the comparatively
small number of labeled samples. As a result, tabular deep learning approaches so far have focused on
data-rich regimes with far more samples than features (n ≫ d) [19, 18, 59]. In the low-data regime
with far more features than samples (d ≫ n), the dominant approaches for single tabular datasets
are still statistical methods [24]. These statistical methods reduce the dimensionality of the input
space [1, 41, 66, 67], select features [64, 8, 14, 46], impose regularization penalties on parameter
magnitudes [45], or use ensembles of weak tree-based models [15, 7, 34, 42, 51].

Here, we present a novel problem setting and framework that enables tabular deep learning when
d ≫ n (Figure 1). Our key insight is that there is often abundant, auxiliary domain information
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Figure 1: PLATO is a method that uses auxiliary domain information describing input features
to regularize a multilayer perceptron (MLP) and achieve strong performance on tabular data
with d ≫ n. (a) In PLATO, each input feature j corresponds to a node in an auxiliary KG of domain
information. (b) In the first layer of a MLP with h hidden units, each input feature j corresponds to a
vector of weights Θ[1]

j ∈ Rh such that the weight vectors of all d features compose the weight matrix
Θ[1] ∈ Rd×h. PLATO is based on the inductive bias that, if two input features j and k correspond to
similar nodes in the auxiliary KG, they should have similar weight vectors Θ[1]

j and Θ
[1]
k in the MLP.

(c,d) PLATO captures this inductive bias by inferring the weight vector for each input feature j from
its corresponding node in the KG. A trainable message-passing function Q creates a low-dimensional
embedding Qj ∈ Rc for each input feature j. A neural network B that is shared across all input
features then infers the weight vector Θ[1]

j corresponding to input feature j from Qj . Input features
with similar embeddings produce similar weight vectors, regularizing the MLP.

describing input features which can be structured as a heterogeneous knowledge graph (KG). We
propose a novel problem setting in which each input feature of a tabular dataset corresponds to a
node in an auxiliary KG (Figure 1a). To represent diverse domain information describing the input
features, the KG contains feature and non-feature nodes as well as multiple node and edge types. For
example, consider a tabular medical dataset in which each row is a cancer patient, each column is a
gene, and each value is the amount of a gene in the patient’s tumor. For this tabular dataset, there
exists an auxiliary KG with each gene (i.e. input feature) as a node. Each gene node has edges to
other gene nodes (i.e. other feature nodes) with diverse edge types like “activates” or “inhibits.” Each
gene node also has edges to other nodes (i.e. non-feature nodes) representing the gene’s function in
the body like “heart rate”. Finally, the function nodes (i.e. non-feature nodes) have edges to each
other representing their anatomical relationships like “heart rate”-“part of”-”cardiac system”. Note
that the KG does not capture the relationships between input data samples but instead captures the
relationships between input features and other domain information.

Within our novel problem setting, we propose PLATO, a method that enables deep learning for tabular
data with d ≫ n by using an auxiliary KG describing input features (Figure 1). PLATO achieves
strong performance by using the auxiliary KG to regularize a multilayer perceptron (MLP). In PLATO,
each input feature corresponds to a node in the auxiliary KG (Figure 1a). In the first layer of the MLP,
each input feature also corresponds to a weight vector such that the weight vectors of all features
collectively compose the weight matrix (Figure 1b). PLATO is based on the inductive bias that two
input features which correspond to similar nodes in the KG should have similar weight vectors in
the first layer of the MLP. PLATO captures this inductive bias by inferring the weight vector for a
feature from its corresponding node in the auxiliary KG with a trainable message-passing function
(Figure 1c,d). Inferring the weights in the MLP’s first layer also leads to a drastic reduction in the
number of trainable weights, since most weights in a MLP are usually in the first layer when d ≫ n.
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We exhibit PLATO’s performance on 6 d ≫ n tabular datasets with 13 state-of-the-art baselines
spanning dimensionality reduction, feature selection, statistical models, graph regularization, weight-
inference, and tabular deep learning. Following a rigorous evaluation protocol from the tabular deep
learning literature [19, 18], PLATO outperforms the prior state-of-the-art on all 6 datasets by up to
10.19%. Ablation studies demonstrate the importance of PLATO’s trainable message-passing, the
importance of non-feature nodes in the KG, and PLATO’s robustness to missing edges in the KG.
Ultimately, PLATO enables deep learning for tabular data with d ≫ n by using an auxiliary KG
describing the input features.

2 Related Work

Tabular deep learning methods. In contrast to PLATO’s setting, tabular deep learning methods
have primarily been developed for settings with far more samples than features (i.e. n ≫ d). Indeed,
recent tabular deep learning benchmarks ignore datasets with a large number of features and a
small number of samples [19, 18, 59]. In the n ≫ d setting, various categories of deep tabular
models exist. First, decision tree models like NODE [50] make decision trees differentiable to enable
gradient-based optimization [25, 36, 80]. Second, multilayer perceptrons (MLPs) apply sequential,
non-linear transformations to input features [32, 31]. Third, tabular transformer architectures use an
attention mechanism to select and learn interactions among features. Examples include TabNet [3],
TabTransformer [29], FT-Transformer [18], TabPFN [26], SAINT [61], Non-Parametric Transform-
ers [37], and AutoInt [62]. Finally, although PLATO focuses on single tabular datasets, transfer
learning architectures can learn across multiple tabular datasets [39, 84, 73]. Ultimately, we compare
PLATO to several benchmarked, state-of-the-art models for single, tabular datasets [19, 18, 59].

d ≫ n methods. For PLATO’s setting in which d ≫ n, various tabular machine learning approaches
exist [24]. First, dimensionality reduction techniques like PCA [1] aim to reduce the dimensionality
of the input data while preserving as much of the the variance in the data as possible [41, 66, 67].
Second, feature selection approaches select a parsimonious set of features, leading to a smaller
feature space. Feature selection approaches include LASSO [64] and its variants [8, 14, 46]. For
feature selection with deep learning, Stochastic Gates [77] are among the best performing of many
variants [4, 43]. Finally, tree-based models like XGBoost learn ensembles of weak decision trees
models to make an overall prediction [15, 7, 34, 51].

Weight inference. Using one network to infer the weights of another has been studied extensively [11,
58, 6]. For example, [22] infers the weights in all layers of a sequential model (i.e. RNN, LSTM) by
using information about the weights’ structure. Diet Networks [54] infer weights by hand-crafting
prior information about the input features or using random projections. By contrast, PLATO infers the
weights in a MLP from prior information describing the input features in an auxiliary KG. PLATO’s
weight inference uniquely captures the inductive bias that two input features corresponding to similar
nodes in a KG should have similar corresponding weight vectors in the first layer of a MLP (Figure 1).

Graph regularization. Graph regularization approaches regularize the weights of a linear model
based on a simple graph between input features. The graph is typically constructed from the tabular
data based on covariance relationships. Approaches then add a regularization penalty to the loss
function which forces the weights of the linear model to vary smoothly over the corresponding
feature nodes in the graph. State-of-the-art methods include GraphNet [20] and Network-Constrained
LASSO [40] which are based on a Laplacian regularization [60, 2] as well as Network LASSO [23]
which generalizes the Group LASSO [83] to a network setting. PLATO differs from graph regulariza-
tion approaches in two key ways. First, PLATO’s KG includes both feature and non-feature nodes and
multiple edge types, thereby modeling diverse, prior domain information that is missing in graph
regularization approaches. Second, PLATO infers the weights of a deep non-linear model (i.e. a MLP)
rather than adding a regularization penalty to a loss, representing a distinct regularization mechanism.

Knowledge graph methods. Existing KG approaches are designed for tasks directly on the graph
like link prediction or node classification [71, 65, 72, 78, 13]. By contrast, PLATO does not make any
predictions on the KG. Instead, PLATO makes predictions on a separate, tabular dataset by using the
KG as a prior. Graph classification methods also do not apply (Appendix B).
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3 PLATO

PLATO is a machine learning method for tabular datasets with d ≫ n and an auxiliary knowledge
graph (KG) with input features as nodes (Section 3.1). PLATO’s key insight is that there often exists
abundant domain information describing input features which can be structured as an auxiliary KG G
(Figure 1a). PLATO uses the auxiliary KG to regularize a multilayer perceptron (MLP) and achieve
strong performance on tabular data when d ≫ n.

3.1 Problem setting

Consider a tabular dataset X ∈ Rn×d with labels y ∈ Rn and far more d features than n samples
such that d ≫ n. The goal is to train a model F to predict labels ŷ from the input X. PLATO assumes
the existence of an auxiliary knowledge graph G = (V,E) with |V | nodes and |E| edges such that
each input feature j corresponds to a node in G. Formally, ∀j ∈ {1, . . . , d}, ∃v ∈ V s.t. j 7→ v, as
shown in Figure 1a. G also contains additional nodes which represent broader knowledge describing
the domain. The edges in G are (head node, relation type, tail node) triplets.

3.2 PLATO’s inductive bias

In PLATO, each input feature j corresponds to a node in the auxiliary KG (Figure 1a). In the first layer
of a MLP with h hidden units, each input feature j also corresponds to a weight vector Θ[1]

j ∈ Rh

such that the weight vectors of all features collectively compose the weight matrix Θ[1] ∈ Rd×h

(Figure 1b). PLATO is based on the inductive bias that two input features j and k which correspond
to similar nodes in the KG should have similar weight vectors Θ

[1]
j and Θ

[1]
k in the first layer of

the MLP. PLATO captures this inductive bias by inferring the weight vector for a feature from its
corresponding node in the auxiliary KG with a trainable message-passing function (Figure 1c,d).

3.3 PLATO overview

PLATO has four key steps. First, PLATO uses a self-supervised objective on the auxiliary KG to
pretrain an embedding for each input feature (Section 3.4). Second, PLATO updates each feature
embedding with a trainable message-passing function that is trained on the supervised loss objective
for the tabular data (Section 3.5, Figure 1c). Third, PLATO infers the weights in the first layer of the
MLP from the feature embeddings with a small neural network that is shared across input features
(Section 3.6, Figure 1d). Finally, the MLP predicts the label for the input sample.

3.4 Pretraining feature embeddings with self-supervision on the knowledge graph

First, PLATO learns general prior information about each input feature j from the auxiliary KG G.
PLATO represents the general prior information about each input feature j as a low-dimensional
embedding Mj ∈ Rc. Since each input feature j corresponds to a node in G, PLATO can learn
Mj by learning an embedding for the corresponding feature node in G. Any self-supervised node
embedding method on G can be used within PLATO’s framework.

Formal notation. Formally, PLATO uses self-supervision on G to pretrain an embedding for each
input feature according to

M = H(G). (1)

M ∈ Rd×c is the matrix of all feature embeddings. H is a self-supervised node embedding method.
We refer to Eq. (1) as pretraining since only the auxiliary KG G is used but the tabular data X, y is
ignored. After pretraining, the feature embeddings M are fixed.

For H, we choose ComplEx as it is a prominent and highly scalable KG node embedding method [65].
ComplEx uses a self-supervised objective which learns an embedding for each node in G by classi-
fying whether a proposed edge exists in G. ComplEx’s proposed edges include both feature nodes
and other nodes in G, thereby integrating prior information about the input features and the broader
domain. We also test KG embedding methods DistMult [78] and TransE [72] in Appendix C.
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3.5 Updating feature embeddings with a message-passing function trained on tabular data

PLATO next updates each feature embedding with a trainable message-passing function that is trained
on the supervised loss for the tabular data (Figure 1c). During message-passing, PLATO updates the
embedding of each input feature to be a weighted aggregation of it’s neighbors’ embeddings.

Formal notation. Formally, PLATO uses a message-passing function Q on the KG to update each
pre-trained feature embedding Mj ∈ Rc to feature embedding Qj ∈ Rc according to

Q = Q(M, G,Xi;Π). (2)

As input, the message-passing function considers the pre-trained feature embeddings M, the knowl-
edge graph G, and the sample value Xi. Q uses an attention mechanism which considers the sample
value Xi. The only trainable weights in Q are in the attention mechanism and are Π.

The message passing network Q. Let Q[r]
j be the embedding of input feature j after round

r ∈ {1, ..., R} of message passing. For each input feature j, Q first initializes the updated feature
embedding to the pretrained feature embedding.

Q
[0]
j = Mj . (2a)

Q then conducts R rounds of message passing. In each round of message passing, the feature
embedding Q

[r]
j is updated from the feature embedding of each neighbor k in the prior round Q

[r−1]
k

and its own feature embedding in the prior round Q
[r−1]
j . The “message” being passed is the

embedding of each feature from the prior round.

Q
[r]
j = σ

[Weighted messages from neighbors︷ ︸︸ ︷
β(

∑
k∈Nj

αijkQ
[r−1]
k ) + (1− β)Q

[r−1]
j︸ ︷︷ ︸

Weighted message from self

]
. (2b)

σ is an optional nonlinearity. Nj are the neighbors of feature node j in G.

During message-passing, Q uses two scalar values β ∈ R and αijk ∈ R to control the weights of
messages. First, Q uses hyperparameter β ∈ R to control the weight of the messages aggregated
from the feature node’s neighbors vs. from the feature node itself. Second, Q calculates an attention
coefficient αijk ∈ R to allow distinct nodes in the same neighborhood to have distinct weights. The
coefficient αijk specifies the weight of the message between feature j and neighbor k for sample i.

After R rounds of message-passing, the updated feature embeddings Qj are set.

Qj = Q
[R]
j . (2c)

The attention coefficient. PLATO’s attention coefficient αijk is inspired by [68] in which node
attributes are used to calculate the weight of a message between neighboring nodes. For a sample
i in PLATO, the node attributes for features j and k are their sample values Xij ∈ R and Xik ∈ R.
PLATO thus uses the sample values Xij and Xik to calculate the attention coefficient. The attention
coefficient eijk indicates the importance of node j to node k for sample i.

eijk = A(Xij ,Xik;Π). (2d)

A is a shallow neural network parameterized by Π that is shared across samples and features. The
number of trainable weights in Π is small since the input of A is R2 and the output of A is a scalar R.

To make the attention coefficients comparable across different nodes, PLATO normalizes the attention
coefficients with a softmax function across the neighbors Nj of node j.

αijk = softmaxk(eijk) =
exp (eijk)∑

t∈Nj
exp (eijt)

. (2e)
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Algorithm 1: The PLATO Algorithm.

Input: A data sample Xi ∈ Rd, a knowledge graph G containing each input feature in X as a
node, a matrix of input feature embeddings M ∈ Rd×c pre-trained over G.

Output: A predicted label ŷi ∈ R.

1 Use a trainable message-passing function Q to update the pre-trained feature embeddings:
Q = Q(M, G,Xi;Π), Qj ∈ Rc, Q ∈ Rd×c

2 Infer the weight vector in the first layer of a MLP that corresponds to an input feature j with a
neural network B:
Θ̂

[1]
j = B(Qj |Xi;Φ), Θ̂[1]

j ∈ Rh

3 Repeat to infer the weight vectors corresponding to all input features by sharing the neural
network B:
Θ̂[1] ∈ Rd×h

4 Concatenate the first layer inferred weights with the trainable weights in the rest of the MLP
layers:
Θ̂ = {Θ̂[1]|Xi} ∪ {Θ[2], . . . ,Θ[L]}.

5 Predict the label with a MLP F that is parameterized by Θ̂

ŷi = F(Xi; Θ̂|Xi), ŷi ∈ R
Trainable weights: Π,Φ, Θ[2], . . . ,Θ[L].

3.6 Inferring the first layer of weights in F from the updated feature embeddings

Finally, PLATO infers the weights in the first layer of a MLP F from the updated feature embeddings
(Figure 1d). In the first layer of a MLP with h hidden units, each input feature j corresponds to a
weight vector Θ[1]

j ∈ Rh (Figure 1b). The weight matrix in the first layer of the MLP, Θ[1] ∈ Rd×h,
is simply the concatenation of d weight vectors, one corresponding to each input feature. For each
input feature j, PLATO infers the weight vector Θ̂[1]

j ∈ Rh from the feature embedding Qj ∈ Rc

by using a shallow neural network shared across input features. Input features with similar feature
embeddings will produce similar weight vectors. Thus, PLATO captures the inductive bias that input
features corresponding to similar nodes in the KG should have similar corresponding weight vectors
in the MLP’s first layer.

Formal notation. PLATO infers the weight vector associated with each input feature j in the first
layer of F with

Θ̂
[1]
j = B(Qj |Xi;Φ). (3)

B is a shallow neural network with trainable weights Φ. Qj is the updated feature embedding of j
which is conditioned on the specific input sample Xi since the input sample is used as an input in its
calculation (Section 3.5, Equation 2). Φ are the weights of B. B and its weights Φ are shared across
each feature j ∈ {1, . . . , d}.

PLATO drastically reduces the number of trainable weights compared to a standard MLP. The
sharing of B and Φ across all input features drastically reduces the number of trainable weights
compared to a standard MLP. For a high-dimensional tabular dataset (i.e. d ≫ n), a standard MLP T
with h hidden units has a large number of trainable weights in the first layer since Θ[1] ∈ Rd×h. A
standard MLP T must learn all dh of these trainable weights by backpropagation. By contrast, B
uses a shared set of trainable weights Φ to infer Θ̂j from Qj for every j ∈ {1, . . . , d}. The number
of trainable weights in Φ is small compared to dh since B need only transform every Qj ∈ Rc to
Θ̂[1] ∈ Rh. Thus, |Φ| = ch (assuming B is a single layer neural network). c, the dimensionality of
the feature embedding, is much less than d the number of input features. As a result, |Φ| = ch ≪ dh
and PLATO drastically reduces the number of trainable weights in the first layer of a MLP.

3.7 The PLATO algorithm

PLATO is outlined in Algorithm 1.
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Table 1: PLATO outperforms statistical and deep baselines when d ≫ n. For every dataset, the
best overall model is in bold and the second best model is underlined.

Dataset MNSCLC CM PDAC BRCA CRC CH

# of features d 15,390 13,183 12,932 12,693 18,206 19,902

# of samples n 295 286 321 476 562 924

d/n 52.2 46.1 40.3 28.2 22.6 19.7

Classic Stat ML Ridge 0.153±0.000 0.390±0.000 0.344±0.000 0.538±0.000 0.376±0.000 0.546±0.000

Dim. Reduct. PCA 0.156±0.113 0.070±0.000 0.232±0.121 0.452±0.000 0.193±0.163 0.237±0.232

Feat. Select. LASSO 0.168±0.000 0.431±0.000 0.346±0.000 0.470±0.000 0.400±0.000 0.547±0.000

STG 0.132±0.130 0.366±0.043 0.258±0.055 0.485±0.037 0.301±0.010 0.262±0.076

Decision Tree XGBoost -0.02±0.000 0.225±0.000 0.363±0.000 0.347±0.000 0.354±0.000 0.728±0.000

Graph Reg.
GraphNet 0.169±0.030 0.277±0.099 0.249±0.018 0.350±0.069 0.125±0.061 0.646±0.051

NC LASSO 0.210±0.014 0.339±0.044 0.327±0.053 0.458±0.083 0.220±0.030 0.415±0.083

Network LASSO 0.212±0.046 0.243±0.058 0.136±0.027 0.348±0.033 0.171±0.040 0.212±0.091

Param. Infer. Diet -0.04±0.205 0.054±0.149 0.309±0.096 0.213±0.036 0.087±0.112 0.148±0.008

Tabular DL

MLP 0.128±0.126 0.322±0.043 0.289±0.047 0.240±0.067 0.355±0.022 0.044±0.039

NODE 0.003±0.000 0.150±0.000 0.190±0.000 0.512±0.000 0.344±0.000 0.181±0.000

TabTransformer 0.265±0.000 0.072±0.000 0.029±0.000 0.202±0.000 0.238±0.000 0.020±0.000

TabNet 0.085±0.028 0.010±0.068 0.088±0.037 0.055±0.037 0.018±0.016 0.039±0.026

Ours PLATO 0.272±0.130 0.435±0.022 0.400±0.021 0.583±0.019 0.401±0.019 0.770±0.003

Table 2: PLATO’s performance depends on updat-
ing feature embeddings with a trainable message-
passing (MP) function.

Weight Infer. B Input Feature Trainable PearsonRInfo. MP

Updated feat. embed. Q " " 0.583±0.019

General feat. embed M " ✗ 0.522±0.030

None ✗ ✗ 0.240±0.067

Table 3: PLATO’s performance depends on
both feature nodes in G and other nodes
representing broader domain information.

Auxiliary KG Feature Broader PearsonRInfo. Info.

Full KG " " 0.583±0.019

Feature-only KG " ✗ 0.539±0.038

No KG ✗ ✗ 0.240±0.067

4 Experiments

We evaluate PLATO against 13 baselines on 10 tabular datasets (6 with d ≫ n, 4 with d ∼ n).

Datasets. We use 6 tabular d ≫ n datasets, 4 d ∼ n datasets [16, 17, 30, 79], and a KG from prior
studies [44, 35, 38, 56, 63, 74, 75] (Appendix G, H). The KG contains 108,447 nodes, 3,066,156
edges, and 99 relation types. All datasets include features which map to a subset of knowledge graph
nodes. Code, data, and the KG are available at https://github.com/snap-stanford/plato.

Baselines. We compare PLATO to 13 state-of-the art statistical and deep baselines. We consider
regularization with Ridge Regression [45], dimensionality reduction with PCA [1] followed by linear
regression, feature selection with LASSO [64], deep feature selection with Stochastic Gates [77],
and gradient boosted decision trees with XGBoost [7]. We consider tabular deep learning with a
standard MLP, self-attention-based methods with TabTransformer [29] and TabNet [3], differentiable
decision trees with NODE [50], and weight inference with Diet Networks [54]. We also attempted FT-
Transformer [18], but it experienced out of memory issues on all datasets due to the large number of
features. Finally, we consider graph regularization methods which also have access to the knowledge
graph including GraphNet [20], NC LASSO [40], and Network LASSO [23] (Appendix E).

Fair Comparison of PLATO with Baselines. To ensure a fair comparison with baselines, we
follow evaluation protocols in recent tabular benchmarks [19, 18]. We conduct a random search
with 500 configurations of every model (including PLATO) on every dataset across a broad range
of hyperparameters (Appendix A). We split data with a 60/20/20 training, validation, test split. All
results are computed across 3 data splits and 3 runs of each model in each data split. We report the
mean and standard deviation of the Pearson correlation (PearsonR) between y and ŷ across runs and
splits on the test set. Each model is run on a GeForce RTX 2080 TI GPU.
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Table 4: PLATO’s performance with an incom-
plete knowledge graph.

Fraction of edges in KG PearsonR

100% 0.583± 0.019
90% 0.570± 0.017
70% 0.537± 0.044
50% 0.412± 0.011

Table 5: PLATO’s MLP layers 2, . . . , L with
trainable weights are useful for performance.

Model Description PearsonR

PLATO MLP with first layer
weights inferred

0.583± 0.019

PLATO-LR Linear regression
with weights inferred

0.550± 0.020

Table 6: PLATO’s performance is competitive with baselines when d ∼ n. For every dataset, the
best overall model is in bold and the second best model is underlined.

Dataset ME BC SCLC NSCLC

# of features d 19,902 18,261 18,437 18,308

# of samples n 10,064 10,101 10,712 16,730

d/n 2.0 1.8 1.7 1.1

Classic Stat ML Ridge 0.566±0.008 0.483±0.008 0.604±0.057 0.679±0.008

Dim. Reduct. PCA 0.239±0.310 0.233±0.294 0.284±0.274 0.645±0.000

Feat. Select. LASSO 0.667±0.000 0.633±0.000 0.669±0.000 0.637±0.000

STG 0.676±0.000 0.643±0.000 0.668±0.000 0.646±0.000

Decision Tree XGBoost 0.875±0.000 0.826±0.000 0.878±0.000 0.843±0.000

Graph Reg.
GraphNet 0.675±0.047 0.723±0.026 0.742±0.039 0.627±0.042

NC LASSO 0.733±0.016 0.730±0.027 0.793±0.009 0.746±0.023

Network LASSO 0.401±0.034 0.451±0.022 0.417±0.074 0.465±0.034

Param. Infer. Diet 0.105±0.000 0.037±0.000 -0.050±0.000 0.002±0.000

Tabular DL

MLP 0.487±0.131 0.508±0.061 0.537±0.061 0.573±0.005

NODE 0.870±0.000 0.420±0.169 0.801±0.102 0.487±0.197

TabTransformer 0.305±0.028 0.010±0.000 0.288±0.203 0.503±0.187

TabNet 0.667±0.002 0.624±0.001 0.657±0.004 0.647±0.000

Ours PLATO 0.875±0.004 0.844±0.003 0.883±0.002 0.839±0.000

4.1 Results

PLATO outperforms statistical and deep baselines when d ≫ n. PLATO outperforms all baselines
across all 6 datasets with d ≫ n (Table 1). PLATO achieves the largest improvement on the PDAC
dataset, improving by 10.19% vs. XGBoost, the best baseline for PDAC (0.400 vs. 0.363). While
PLATO achieves the strongest performance across all 6 datasets, the best performing baseline varies
across datasets. Ridge Regression is the strongest baseline for BRCA, LASSO for CM and CRC,
XGBoost for PDAC and CH, and TabTransformer for MNSCLC. The remaining baselines are not the
strongest baseline for any dataset. We also find that the performance of a specific baseline depends
largely on the dataset. TabTransformer, for example, is the best baseline for the MNSCLC dataset but
the worst baseline for the CH dataset. The rank order of all models on all datasets is Appendix D.

PLATO’s performance depends on updating feature embeddings with a trainable message-
passing function. PLATO infers the weights Θ̂[1] in the first layer of a MLP F by using feature
embeddings which contain prior information about the input features. PLATO first pretrains general
feature embeddings M ∈ Rd×c. PLATO then updates the feature embeddings to Q ∈ Rd×c with
a trainable message-passing function. We test whether updating the feature embeddings based
on the trainable message-passing function is necessary by evaluating PLATO’s performance on
the BRCA dataset in three configurations (Table 2). The default configuration uses the updated
feature embeddings Q generated by the message-passing function to infer Θ̂[1] according to Θ̂

[1]
j =

B(Qj |Xi). The second configuration uses the general feature embeddings M instead of Q to infer
Θ̂[1] according to Θ̂

[1]
j = B(Mj). The third configuration does not use feature embeddings and thus

ablates to a standard MLP. Using general feature embeddings M improves over not using feature
embeddings at all (0.522 vs. 0.240). Using feature embeddings Q that are generated by the trainable
message-passing function further improves performance (0.583 vs. 0.522). Thus, updating the feature
embeddings to Q based on the trainable message-passing function is key to PLATO’s performance.

8



PLATO’s performance depends on both feature nodes and broader knowledge nodes in the
auxiliary KG. PLATO relies on an auxiliary KG G which contains information describing input
features and the broader domain. Information describing input features is represented as feature nodes
while information describing the broader domain is represented as other nodes in G (Methods 3.1).
To test the relative importance of the feature information in G vs. the broader domain information, we
measured the performance of PLATO on the BRCA dataset in two KG configurations: PLATO with the
full KG (i.e. both the feature nodes and the broader domain nodes) and PLATO with a “feature-only
KG” (i.e. an induced subgraph on only the feature nodes) (Table 3). We also compare to a “No
KG” configuration in which PLATO does not have access to the KG. Without auxiliary information
describing the input features or the broader domain, PLATO is ablated to a standard MLP.

We find that both the feature nodes and the broader knowledge nodes are important for PLATO’s
performance. Using the “feature-only KG” configuration of PLATO improves performance vs the “no
KG” configuration (0.539 vs 0.240). Using the “full KG” configuration further improves performance
vs the “feature-only KG” configuration (0.583 vs 0.539). PLATO’s performance thus relies on both
the feature information and the broader domain information in the KG.

PLATO’s performance with an incomplete knowledge graph. All KGs are incomplete since there
is undiscovered knowledge. PLATO thus uses low-dimensional embeddings from KG embedding
approaches [72, 78, 65] which are designed to account for missing information, enabling predictive
performance even with missing edges. We conduct an ablation study to assess PLATO’s robustness to
missing edges in the KG. We randomly remove edges from the KG and measure PLATO’s performance
on the BRCA dataset. We observe that with only 50% of the KG’s edges, PLATO still has 71% of the
performance as PLATO with 100% of the KG’s edges (0.412 vs. 0.583) (Table 4).

The importance of MLP layers 2, . . . , L, the layers with trainable weights, for PLATO. PLATO
is a MLP in which the weights in the first layer are inferred from the knowledge graph (KG) but
the weights in the remaining layers 2, . . . , L are trained normally. We conduct an ablation study
to determine whether MLP layers 2, ..., L are necessary for PLATO’s performance or whether the
first layer of inferred weights are sufficient. Note that a single layer of inferred weights in PLATO is
equivalent to a linear regression in which the weights are inferred from the KG. We thus compare
PLATO to PLATO-LR, a linear regression in which the weights are inferred from the KG (Table 5).
PLATO ’s standard configuration outperforms PLATO-LR on the BRCA dataset (0.583 vs. 0.550).
Therefore, layers 2, . . . , L of the MLP are important for PLATO’s performance.

For datasets with d ∼ n, PLATO is competitive with baselines. Finally, we test PLATO’s perfor-
mance for datasets with d ∼ n. We test 4 datasets with d ∼ n ranging from d

n = 1.1 to 2.0 (Table
6). We find that on 4 datasets with d ∼ n, PLATO is competitive with the best baseline, XGBoost,
but does not improve performance substantially. PLATO’s stronger performance for datasets with
d ≫ n than for datasets with d ∼ n is justified. PLATO’s key idea is to include auxiliary information
describing the input features. Auxiliary information is likely to help performance the most in settings
with the least labeled data (i.e. d ≫ n). When d ∼ n, auxiliary information is less helpful since the
tabular dataset may already have enough information to train a strong predictive model. We further
find that XGBoost is the strongest baseline for all datasets with d ∼ n, in contrast to XGBoost’s
varied performance on the datasets with d ≫ n (Table 1).

5 Discussion

PLATO achieves strong performance on tabular data when d ≫ n by using an auxiliary KG describing
input features to regularize a multilayer perceptron (MLP) . Across 6 datasets, PLATO outperforms
13 state-of-the-art baselines by up to 10.19%. Ablations demonstrate the importance of PLATO’s
trainable message-passing function, of including nodes in the KG that don’t represent input features
but instead represent domain information, and of the layers in the MLP whose weights are trained
directly rather than inferred. We also test PLATO’s robustness to missing information in the KG.
PLATO has several limitations. First, PLATO matches but does not improve the performance of
baselines for high-dimensional datasets with more samples (i.e. d ∼ n). Second, PLATO depends
on the existence of an auxiliary KG of domain information. Overall, PLATO enables tabular deep
learning when d ≫ n by using an auxiliary KG of domain information describing input features.
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A Evaluation protocol and hyperparameter ranges

To ensure a fair comparison with baselines, we follow evaluation protocols outlined in tabular
benchmarks [19, 18]. We conduct a random search with 500 configurations of every model (including
PLATO) on every dataset across a broad range of hyperparameters. We base the hyperparameter
ranges on the ranges used in prior tabular learning benchmarks [19, 18] and the ranges mentioned
in the original papers of the methods. Hyperparameter ranges for PLATO are given in Table 7.
Hyperparameter ranges for baseline methods are given in Table 8.

Module in PLATO Hyperparameter Range

General
Learning rate LogUniform(1e-4, 5e-3)
Batch size [16, 32, 64]
L2 0, LogUniform(1e-5, 1e-2)

KG H Embedding dimension c 200
Embedding model ComplEx

Message Passing (MP) Q
# Rounds R 2
β LogUniform(1e-4, 1e-1)
Hidden dimension in A UniformInt(16, 512)

Weight Inference B # Layers UniformInt(2, 6)
Hidden dimension UniformInt(16, 512)

Layers 2, . . . , L in MLP F # Layers L UniformInt(2, 6)
Hidden dimension UniformInt(16, 512)

Table 7: Hyperparameter ranges used for PLATO.
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Model Hyperparameter Range

LASSO L1 LogUniform(1E-4, 10)

Ridge L2 LogUniform(1E-4, 10)

XGBoost

n-estimators UniformInt(1,2000)
Max depth UniformInt(3, 10)
Min weight LogUniform(1E-8,1E5)
Subsample Uniform(0.5, 1)
Learning rate LogUniform(1E-5,1)
Col sample by level Uniform(0.5, 1)
Col sample by tree Uniform(0.5, 1)
Gamma 0, LogUniform(1E-8, 1E2)
Lambda 0, LogUniform(1E-8, 1E2)
Alpha 0, LogUniform(1E-8, 1E2)
Booster "gbtree"
Early-stopping-rounds 50
Iterations 100

PCA Number of PCA Components UniformInt(2,1000)

STG

Hidden dimension UniformInt(10, 500)
Number of layers UniformInt(1, 5)
Activation [Tanh, Relu, Sigmoid]
Learning rate LogUniform(1e-4, 1e-1)
Sigma Uniform(0.001, 2)
Lambda LogUniform(1e-3, 10)

MLP

Number of layers UniformInt(1, 8)
Hidden dimension UniformInt(1, 512)
Dropout 0, Uniform([0,0.5])
Learning rate LogUniform(1e-5, 1e-2)
L2 0, LogUniform(1e-6, 1e-3)

TabNet

Decision Steps UniformInt(3, 10)
Layer size 2, 4, 8, 16, 32, 64
Relaxation factor Uniform[1, 2]
Sparsity loss weight LogUniform[1e-6, 1e-1]
Decay rate Uniform[0.4, 0.95]
Decay steps 100, 500, 2000
Learning rate Uniform(1e-3, 1e-2)
Iterations 100

TabTransformer

Embedding dimension 4, 8, 16, 32, 64, 128
Number of heads UniformInt(1, 10)
Number of attention blocks UniformInt(1, 12)
Attention dropout rate Uniform(0, 0.5)
Add norm dropout Uniform(0, 0.5)
Transformation activation [Tanh, Relu, LeakyReLU]
L2 LogUniform(1e-6, 1e-1)
Learning rate LogUniform(1e-6, 1e-3)
FF dropout Uniform(0, 0.5)
FF hidden multiplier 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Out FF activation [Tanh, Relu, LeakyReLU]
Out FF dropout Uniform(0, 0.5)

NODE

Learning rate LogUniform(1e-5, 1)
Number of layers UniformInt(1, 10)
Number of trees UniformInt(2, 2048)
Depth UniformInt(1, 10)

Diet Network

Embedding choice XT , random
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Number of layers UniformInt(1, 8)
Hidden dimension UniformInt(1, 512)
Dropout 0, Uniform([0,0.5])
Learning rate LogUniform(1e-5, 1e-2)
L2 0, LogUniform(1e-6, 1e-3)

GraphNet

Hidden dimension UniformInt(1, 512)
Learning rate LogUniform(1e-5, 1e-2)
λ 0, LogUniform(1e-5, 1e2)
L1 coefficient 0, LogUniform(1e-5, 1e2)

NC Lasso

Hidden dimension UniformInt(1, 512)
Learning rate LogUniform(1e-5, 1e-2)
λ 0, LogUniform(1e-5, 1e2)
L1 coefficient 0, LogUniform(1e-5, 1e2)

Network Lasso

Hidden dimension UniformInt(1, 512)
Learning rate LogUniform(1e-5, 1e-2)
λ 0, LogUniform(1e-5, 1e2)
L1 coefficient 0, LogUniform(1e-5, 1e2)

Table 8: Hyperparameter range for all baselines.
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B Graph classification approaches

Graph classification models are not appropriate for PLATO’s setting. In graph classification models,
every input sample is a graph with node attributes, and a model must make a prediction for that graph.
The PLATO problem setting breaks key assumptions made by typical graph classification models. First,
graph classification models assume that different samples correspond to different graphs [81, 28, 27].
However, in PLATO every sample corresponds to the exact same graph. There is a single background
knowledge graph for all samples, and every sample has input features that correspond to the exact
same nodes within the knowledge graph. Second, graph classification approaches typically assume
that every node in an input graph has a node attribute [81, 28, 27]. However, in PLATO only a small
subset of the nodes in the knowledge graph have measured feature values. Finally, graph classification
approaches typically assume small graphs: the largest graph classification task in the Open Graph
Benchmark has only 244 nodes [27]. However in PLATO, the knowledge graph contains 108,447 and
the smallest dataset has 12,932 features corresponding to nodes.

C PLATO’s performance across node embedding methods for pre-training the
feature embeddings

We conduct an ablation study to assess how PLATO’s performance depends on the node embedding
method used to pre-train the feature embeddings (Methods 3.4). We test three shallow node embedding
methods for knowledge graphs which are scalable and prominent: TransE [72], DistMult [78], and
ComplEx [65]. We find that PLATO’s performance is similar across TransE, DistMult, and ComplEx
(Table 9). More generally, PLATO makes no assumption about what type of self-supervised node
embedding method is used to pre-train the feature embeddings. The self-supervised embedding step
is simply a module that pre-trains feature embeddings which are then passed to the message passing
and weight inference modules of PLATO.

KG Node Embedding Method PearsonR (Test) on BRCA Dataset

TransE 0.582± 0.025
DistMult 0.575± 0.011
ComplEx 0.583± 0.019

Table 9: PLATO’s performance is consistent across knowledge graph node embedding methods.

D Rank ordering of methods for datasets with d ≫ n

In Table 10, we show the rank order performance of all models on all d ≫ n datasets. We find that
PLATO exhibits consistent and strong performance while the performance of the baselines depends on
the specific d ≫ n dataset. For example, TabTransformer is the second best performing of all models
on the MNSCLC dataset but the worst performing of all models on the PDAC and CH datasets.
Similarly, XGBoost is the second best performing of all models on PDAC but only the tenth best
performing of all models on BRCA. The baselines with the most stable performance are LASSO and
Ridge Regression which rank consistently between the second and eighth best of all models.
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Table 10: For datasets with d ≫ n, PLATO exhibits consistent and strong performance. By
contrast, the performance of the baselines varies with each dataset. For every dataset, the rank order
of performance from Table 1 is shown. The best overall model is in bold and the second best model
is underlined.

Dataset MNSCLC CM PDAC BRCA CRC CH

# of features d / # of samples n 52.2 46.1 40.3 28.2 22.6 19.7

Classic Stat ML Ridge 8 3 4 2 3 5

Dim. Reduct. PCA 7 12 10 7 10 8

Feat. Select. LASSO 6 2 3 5 2 4
STG 9 4 8 4 7 7

Decision Tree XGBoost 14 9 2 10 5 2

Graph Reg.
GraphNet 5 7 9 8 12 3
NC LASSO 4 5 5 6 9 6
Network LASSO 3 8 12 9 11 9

Param. Infer. Diet 13 13 6 12 13 11

Tabular DL

MLP 10 6 7 11 4 12
NODE 12 10 11 3 6 10
TabTransformer 2 11 14 13 8 14
TabNet 11 14 13 14 14 13

Ours PLATO 1 1 1 1 1 1

Table 11: For datasets with d ∼ n, PLATO is competitive with baselines. For XGBoost is
consistently the strongest baseline. For every dataset, the rank order of performance from Table 11 is
shown. The best overall model is in bold and the second best model is underlined.

Dataset ME BC SCLC NSCLC

# of features d / # of samples n 2.0 1.8 1.7 1.1

Classic Stat ML Ridge 9 9 9 4

Dim. Reduct. PCA 13 12 13 7

Feat. Select. LASSO 7.5 6 6 8
STG 5 5 7 6

Decision Tree XGBoost 1.5 2 2 1

Graph Reg.
GraphNet 6 4 5 9
NC LASSO 4 3 4 3
Network LASSO 11 10 11 13

Param. Infer. Diet 14 13 14 14

Tabular DL

MLP 10 8 10 10
NODE 3 11 3 12
TabTransformer 12 14 12 11
TabNet 7.5 7 8 5

Ours PLATO 1.5 1 1 2
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E Graph regularization baselines

We test the state-of-the-art graph regularization baselines GraphNet [20], Network-Constrained
LASSO [40], and Network LASSO [23]. The graph regularization baselines can only consider a
homogeneous graph with only features as nodes and a single edge type. For the graph regularization
baselines, we thus induce a subgraph between feature nodes from the knowledge graph and collapse
all edge types between feature nodes into a single edge type. In this context, GraphNet, Network-
constrained LASSO, and Network LASSO correspond to a LASSO model with a mean-squared error
loss and a graph regularization penalty. Let λ be the graph regularization coefficient, j and k be
two input features, let E be the set of edges in the graph, let Θ ∈ Rd be the weights of the linear
regression for d input features, and let Dj be the degree of feature node j. The graph regularization
penalty for GraphNet is λ

∑
j,k∈E(Θj − Θk)

2, the penalty for Network-constrained LASSO is

λ
∑

j,k∈E(
Θj√
Dj

− Θk√
Dk

)2, and the penalty for Network LASSO is
∑

j,k∈E |Θj −Θk|.

F Number of trainable weights in PLATO vs. a multilayer perceptron

Table 12: PLATO drastically reduces the number of trainable weights compared to a multilayer
perceptron (MLP) across all of the datasets. The number of trainable weights in the best model
from the hyperparameter sweep is shown for each dataset.

Model MNSCLC CM PDAC BRCA CRC CH ME BC SCLC NSCLC

MLP 429665 416961 820097 425217 200529 589761 586945 296113 298929 594209

PLATO 17154 42498 32066 17154 28386 61890 17154 28386 32066 17154

G Dataset Details

We use 6 datasets with d ≫ n and 4 datasets with d ∼ n [16, 17, 30, 79]. In all datasets, a machine
learning model must predict the response of a cell line or a mouse tumor model to a drug. As input,
the model considers a tabular dataset. In the tabular dataset, every row corresponds to a specific cell
line or mouse tumor model. Every column corresponds to a gene name. Every value corresponds
to the amount of that gene in the cell line or in the mouse tumor (i.e. gene expression). In practice,
the number of genes is large for all tasks and the number of cell lines or mouse tumor models is
comparatively small (i.e. d ≫ n). For every row, the model also takes as input a fixed feature vector
corresponding to the drug (i.e. a 200-dimensional ComplEx [65] embedding of the drug node in
the knowledge graph). The output label is the response of the cell line (i.e. ln-ic50) [30, 79, 17] or
mouse tumor model (i.e. minimum average percent tumor growth “min-avg-pct-tumor-growth”) to
the drug [16]. Data is available at https://github.com/snap-stanford/plato.

Gene expression datasets were pre-processed following a standard process in [48]. Briefly, gene
expression values underwent TMM normalization and log transformation (i.e. log(x+ 1)). Values
were made to have zero mean and unit standard deviation. Dataset abbreviations are breast carcinoma
(BC) [30, 79, 17], breast carcinoma (BRCA) [16], chondrosarcoma (CH) [30, 79, 17], colorectal
cancer (CRC) [16], cutaneous melanoma (CM) [16], melanoma (ME) [30, 79, 17], non-small cell
lung carcinoma (MNSCLC) [16], non-small cell lung carcinoma (NSCLC) [30, 79, 17], pancreatic
ductal carcinoma (PDAC) [16], and small cell lung carcinoma (SCLC) [30, 79, 17].
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H Knowledge Graph Details

We compile a general biomedical knowledge graph from prior studies [44, 35, 38, 56, 63, 74, 75]
to use across all datasets. A schematic of the KG is in Supplementary Figure 2. A detailed
breakdown of relation types is in Supplementary Table 13. The knowledge graph is available at
https://github.com/snap-stanford/plato.

The knowledge graph contains 108,447 total nodes, including 7,975 drugs, 18,370 diseases, 11,447
phenotypes, 22,319 genes, 11,153 molecular functions, 28,748 biological processes, and 4,184 cellular
components. Every gene and every drug in every dataset is present as a node in the knowledge graph.
The knowledge graph also contains 3,066,156 edges with 99 distinct relation types. The remaining
node types and their relationships serve as broader domain knowledge.

Edges between drug nodes and gene/protein nodes were derived from Drugbank [75], Gao [16], and
the Genomics of Drug Sensitivity in Cancer [79, 30, 17]. Edges between diseases and genes/proteins
were derived from DisGeNet [5]. Edges between diseases and phenotypes were derived from
the Human Phenotype Ontology [35]. Edges between drugs and diseases were derived from the
Multiscale Interactome [56]. Edges between drugs and side effects were derived from SIDER [38].
Edges between genes/proteins and other genes/proteins were derived from BioGRID [49], [55], the
Database of Interacting Proteins [57], [44], [47], [53], [82], [69], and STRING [63]. Finally, edges
from genes/proteins to molecular functions, biological processes, and cellular components as well as
edges between molecular functions, biological processes, and cellular components were derived from
the Gene Ontology [9].
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Figure 2: Knowledge graph as a unified knowledge backbone. We constructed a knowledge graph
as a unified knowledge backbone across all 6 datasets. (a) Legend. For each node type, the number of
nodes is given in parentheses. Between node types, the number of edges and the number of relation
types are given. (b) Number of total nodes and edges across entire knowledge graph. (c) Visual
schematic of knowledge graph across each node type.
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Head type Relation Tail type #
edges

BiologicalProcess EndsDuring BiologicalProcess 1
BiologicalProcess HappensDuring BiologicalProcess 8
BiologicalProcess HasPart BiologicalProcess 229
BiologicalProcess IsA BiologicalProcess 53015
BiologicalProcess NegativelyRegulates BiologicalProcess 2768
BiologicalProcess PartOf BiologicalProcess 5193
BiologicalProcess PositivelyRegulates BiologicalProcess 2756
BiologicalProcess Regulates BiologicalProcess 3216
BiologicalProcess OccursIn CellularComponent 149
BiologicalProcess HasPart MolecularFunction 173
BiologicalProcess NegativelyRegulates MolecularFunction 269
BiologicalProcess PositivelyRegulates MolecularFunction 274
BiologicalProcess Regulates MolecularFunction 301

CellularComponent HasPart CellularComponent 179
CellularComponent IsA CellularComponent 4863
CellularComponent PartOf CellularComponent 1990

Disease AlteredExpression Gene 7157
Disease Biomarker Gene 107160
Disease ChromosomalRearrangement Gene 162
Disease FusionGene Gene 166
Disease GeneticVariation Gene 15076
Disease GermlineCausalMutation Gene 4677
Disease ModifyingMutation Gene 10
Disease SomaticCausalMutation Gene 130
Disease SusceptibilityMutation Gene 441
Disease Therapeutic Gene 1793
Disease Has Phenotype 195402

Drug Treats Disease 5926
Drug Carries Gene 866
Drug Enzymes Gene 5382
Drug Targets Gene 19817
Drug Transports Gene 3124
Drug Has Phenotype 140764

Gene Associates BiologicalProcess 43857
Gene NotAssociates BiologicalProcess 470
Gene Associates CellularComponent 35306
Gene Colocalizes CellularComponent 914
Gene NotAssociates CellularComponent 160
Gene NotColocalizes CellularComponent 11
Gene Acetylation Gene 9
Gene Activation Gene 58502
Gene AdpRibosylation Gene 2
Gene Ampylation Gene 5
Gene Association Gene 18
Gene Binary Gene 56565
Gene Binding Gene 287641
Gene Catalysis Gene 344801
Gene Cleavage Gene 22
Gene Complexes Gene 62552
Gene CovalentBinding Gene 52
Gene Deacetylation Gene 8
Gene Demethylation Gene 6
Gene Dephosphorylation Gene 26
Gene Deubiquitination Gene 18
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Gene DirectInteraction Gene 2904
Gene DisulfideBond Gene 5
Gene DosageGrowthDefect Gene 9
Gene DosageLethality Gene 112
Gene DosageRescue Gene 63
Gene Enzymatic Gene 2
Gene Expression Gene 188
Gene GeneticInterference Gene 32
Gene Hydroxylation Gene 26
Gene Inhibition Gene 20108
Gene Kinase Gene 11960
Gene Literature Gene 174162
Gene Metabolic Gene 10646
Gene Methylation Gene 25
Gene NegativeGenetic Gene 3449
Gene OxidoreductaseActivityElectronTransferAssay Gene 2
Gene PhenotypicEnhancement Gene 209
Gene PhenotypicSuppression Gene 214
Gene Phosphorylation Gene 166
Gene Phosphotransfer Gene 1
Gene PhysicalAssociation Gene 824164
Gene PositiveGenetic Gene 2331
Gene PostTranslationalModification Gene 5306
Gene ProteinCleavage Gene 48
Gene PutativeSelfInteraction Gene 3
Gene Reaction Gene 400658
Gene Regulation Gene 2650
Gene Signaling Gene 65412
Gene SyntheticGrowthDefect Gene 407
Gene SyntheticLethality Gene 816
Gene SyntheticRescue Gene 91
Gene Associates MolecularFunction 35012
Gene Contributes MolecularFunction 596
Gene NotAssociates MolecularFunction 285
Gene NotContributes MolecularFunction 4

MolecularFunction PartOf BiologicalProcess 1068
MolecularFunction Regulates BiologicalProcess 2
MolecularFunction OccursIn CellularComponent 43
MolecularFunction HasPart MolecularFunction 204
MolecularFunction IsA MolecularFunction 13631
MolecularFunction NegativelyRegulates MolecularFunction 42
MolecularFunction PartOf MolecularFunction 11
MolecularFunction PositivelyRegulates MolecularFunction 27
MolecularFunction Regulates MolecularFunction 30

Phenotype IsA Phenotype 14650
Table 13: Knowledge graph relations between node types.
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