
Effects of Safety State Augmentation on
Safe Exploration

Aivar Sootla
Byju’s Lab

aivar.sootla@gmail.com

Alexander I. Cowen-Rivers
Technische Universität Darmstadt

mc rivers@icloud.com

Jun Wang
University College London
jun.wang@cs.ucl.ac.uk

Haitham Bou Ammar
Huawei R&D

haitham.ammar@huawei.com

Abstract

Safe exploration is a challenging and important problem in model-free reinforce-
ment learning (RL). Often the safety cost is sparse and unknown, which unavoidably
leads to constraint violations — a phenomenon ideally to be avoided in safety-
critical applications. We tackle this problem by augmenting the state-space with a
safety state, which is nonnegative if and only if the constraint is satisfied. The value
of this state also serves as a distance toward constraint violation, while its initial
value indicates the available safety budget. This idea allows us to derive policies
for scheduling the safety budget during training. We call our approach Simmer
(Safe policy IMproveMEnt for RL) to reflect the careful nature of these schedules.
We apply this idea to two safe RL problems: RL with constraints imposed on an
average cost, and RL with constraints imposed on a cost with probability one. Our
experiments suggest that “simmering” a safe algorithm can improve safety during
training for both settings. We further show that Simmer can stabilize training and
improve the performance of safe RL with average constraints.

1 Introduction

Reinforcement learning (RL) is a framework for sequential decision-making that makes minimal
prior assumptions about the environment where the agent has to act or make the decisions [45]. The
policy for taking actions is learned through interactions with the environment over time. RL has seen
recent successes in playing video games with a computer [32], board games with a human [41] and
is on a path toward real-life applications such as video compression [46], and plasma control [20].
There are still, however, some unsolved challenges for a successful deployment of RL such as
efficient learning of constrained or safe Markov Decision Processes (MDPs) [4]. The constraints
are typically modeled by a discounted sum of nonnegative costs that have to be smaller than some
pre-defined value we call the safety budget.

Exploration is a crucial component of RL and is still an active area of research [25, 40, 34]. In the
context of safe RL, while exploring, we do not want to incur the safety cost and constraint violations,
making exploration a harder task. We can distinguish two main research directions for minimizing
constraint violation in safe RL: a model-based approach (which includes partially and fully known en-
vironments) and a model-free approach. In the model-free case, which we focus on, the agent would al-
most certainly visit unsafe regions to learn the safe policy, and therefore it is next to impossible to avoid
constraint violations completely. The general goal, in this case, is to minimize the number of violations
during training. For example, [10] use a conservative safety critic and rejection sampling to choose

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



a “safer” action, [48] design a curriculum learning approach, where the teacher resets the student
violating safety constraints, and [21] learns to reset the policy if the safety constraint is violated [21].

In this work, we aim to improve model-free safe reinforcement learning by augmenting the state-space
with one state encapsulating the safety information. This safety state is initialized with the safety
budget and the value of the safety state can serve as a measure of distance to the unsafe region. This
form of the safety state was proposed in [18] and introduced in RL in [43], where a safe RL algorithm
with probability one constraints was derived. In this paper, we take a closer look at the purposes of the
safety state in a broader context. First, we claim that safety state augmentation is often crucial for the
averaged constrained problem as well and provide examples of such occurrences. In some particular
problems, the use of safety state augmentation may potentially be avoided, however, this can be said
about any state in the environment. Second, our main suggestion is that scheduling the safety budget
at different training epochs can improve the algorithm’s performance. Our claim extends equally
over averaged and almost surely constrained reinforcement learning problems. In particular, we
achieve state-of-the-art performance in some environments in the safety gym benchmark. Further, we
claim that scheduling the initial safety budget can lead to reducing safety constraint violations during
training for safe RL with probability one constraints. We design two algorithms that automatically
tune the safety budget, one is based on a classical control engineering PI controller, while the other
uses Q learning to decide on the safety budget.

Related work. Many of the current safe RL methods are extensions of the most successful RL
algorithms: Trust region policy optimization (TRPO) [38], proximal policy optimization (PPO) [39],
soft actor-critic (SAC) [23] etc. Safe versions of TRPO, PPO, and SAC with a Lagrangian approach
were first presented in [37], which is still considered to be one of the major baselines. A direct
extension of TRPO by adding constraints to the trust region update was proposed in [2]. Model-based
approaches were also considered cf. [36, 16, 27, 30] and most of them took a Bayesian approach
to model one-step transitions. To our best knowledge, the most successful approaches for safe
reinforcement learning to date are PID-Lagrangian [44] and LAMBDA [5]. The former views the
Lagrangian multiplier update as another control problem and employs a PID controller to solve it
(cf. [6]). Specifically, the authors link the multiplier update to integral control and add proportional
and derivative controllers to achieve a superior behavior. On the other hand, [5] is a model-based
approach that uses Bayesian world models to enhance safety. A recent work [29] formulated safe RL
as inference resulting in a sample efficient off-policy approach.

Other formulations of safe RL were considered in the literature. For example, [14, 16, 51] proposed
to use conditional-value-at risk (CVaR) constraints, while [43, 12] proposed to enforce constraints
with probability one. Further, as we discussed above eliminating the number of constraint violations
typically requires strong assumptions, e.g., finite state space [47], [50] [42], knowledge of a partial
model [28] or initial safe policy [8]. These results are in the spirit of safe RL with control-theoretic
notions [15, 9, 33, 13, 3, 19, 22], which make significant prior assumptions to guarantee safety.
Finally, the closest algorithm in the literature to our method is the curriculum learning approach
to Safe RL from [48]. Due to space limitations we discuss this approach in detail in Appendix. We
finally mention that [31] proposed a two-player framework with the cooperating task agent and
safety agents, [17] proposed a safety layer that would be applied after the action is computed using
a classical policy, [24] defined a probabilistic shield for safety. We also note [52, 26] that considered
safe deployment of RL policies in real-life settings.

2 Simmer: Safe policy improvement for reinforcement learning

2.1 MDP with safety state augmentation

We consider a constrained reinforcement learning setting defined for a Markov Decision Process
(MDP) M = ⟨S,A,P, r, γr⟩ with transition probability P : S × A × S → [0, 1] acting on state
S and A spaces, with the reward r : S ×A× S → R and the discount factor γr ∈ (0, 1]. The MDP
is endowed with the following optimization problem

max
π(·|s)

E
T−1∑
t=0

γt
rr(st,at, st+1), subject to: g

(
d−

T−1∑
t=0

γt
l l(st,at, st+1)

)
≥ 0, (1)

with the time horizon T > 0, the safety discount factor γl ∈ (0, 1], the safety cost
l : S ×A×S → [0,+∞). The statistic g(·) : R → R is a design choice (e.g., Mean, CVaR, chance

2



constraints etc [14]). In this paper, we consider two most relevant options, from our point of view: a) a
constraint with probability one, i.e., gpo(z) = P(z ≥ 0)− 1, b) a constraint on average gav(z) = Ez.

Similarly to [43], we augment the safety state information into the state-space by introducing
the state zt = γ−t(d −

∑t−1
k=0 γ

k
l l(sk,ak, sk+1)), which has the following update zt+1 = (zt −

l(st,at, st+1))/γl, with z0 = d. Noting that the update is Markovian this state can be easily
augmented into the MDP. The variable zt has the interpretation of the remaining safety budget, and by
definition enforcing the constraint on zT is equivalent to enforcing the constraint on the accumulated
cost. Now we can rewrite the safe RL problem as follows:

max
π(·|s,z)

E
T−1∑
t=0

γt
rr(st,at, st+1), subject to: g(zT ) ≥ 0. (2)

While [43] considered only the case gpo(z), we argue that the case of gav(z) deserves additional
attention in the context of safety state augmentation. For completeness, we review the main points of
the approach [43] in Appendix. Note that the policy now also depends on the safety state z and this
feature deserves a more thorough discussion.

2.2 Do we need the safety state?

As a simple demonstration consider the cartoon in Figure 1. A robot needs to reach the goal while
crossing the hazard region, which is marked by the red circle, and the safety cost is acquired for every
time unit spent in the region. Both green and blue paths are safe, i.e., satisfy the constraint. However,
at the crossing of these paths robot needs to know which path it took to this state. Switching from
the green path to the blue one will lead to a constraint violation. Standard safe RL algorithms will
have trouble with such scenarios while adding the safety state solves the issue. We confirm this
observation in our experiments.

Figure 1: A robot needs to reach the goal while crossing the hazards region (marked by the red circle)
and the safety cost is acquired for every time unit spent in the region. Both green and blue paths are
safe, i.e., satisfy the constraint. However, at the path crossing robot needs to know which path it took
to this state. Switching from the green path to the blue one will lead to constraint violations.

Let us now discuss how this logic can be mathematically formalized. In the deterministic case, this
problem is well studied in the optimal control literature in the context of problems with known
dynamics and with terminal or end-point constraints [49]. Further, the authors [43] showed that the
policy dependence on the remaining safety budget is crucial for safe reinforcement learning with
probability one constraints. The problem was also studied in the context of stochastic diffusions [35],
where the authors derived the representation of the optimal value function. In both cases, it was
shown that the optimal policy depends on the whole state including the safety state z. While in some
cases one may not need to augment the safety state, in many situations it is critical.

2.3 Simmering Safe Reinforcement Learning

In this paper, we propose to use the initial safety budget d as another tuning dial for the algorithms.
Specifically, we will exploit the link between the safety budget d with the initial state of the safety
state. We argue that adjustment of d during training from some initial value dstart to the target value
dtarget can lead to improved exploration in terms of safety and performance.

Let us now present the mathematical formulation. At every epoch k we pick a test safety budget dk,
collect the data set Dk, compute the returns EDk

∑T−1
t=0 γt

rr(st,at) and the costs ĝDk
(zT ), where

the function ĝDk
(·) is the empirical mean or the maximum for the averaged and the probability one

3



constrained problems, respectively. Using this information we aim at solving the following problem
at every epoch (but we only apply a pre-determined number of gradient steps):

max
π(·|s,z)

EDk

T−1∑
t=0

γt
rr(st,at), subject to: ĝDk

(zT ) ≥ 0, z0 = dk (3)

where s0 ∈ S0 and z0 = dk are the initial states of the augmented MDP. Note that for off-policy
algorithms the data set Dk can potentially grow with epochs, while for on-policy algorithms the
data set Dk will be emptied on every epoch.

The key assumptions of our approach are as follows:

• There is a finite number of test safety budgets, i.e., we assume that dk can take the values
{drefk } with dref0 ≤ · · · ≤ drefK−1 with dstart = dref0 and dtarget = drefK−1;

• We assume that the values {drefk } are such that the task can be solved;
• At for every k we perform only one epoch of optimization solving Problem 3.

The intuition behind our formulation is based on our empirical observations, where lower safety
budgets usually caused lower bursts in accumulated safety costs. We hypothesize that the policy can
quickly learn “extremely unsafe” actions thus providing low safety cost bursts for low safety budgets.
Therefore if we start with a very strict safety budget dstart, then by gradually increasing the safety bud-
get d from dstart to dtarget, we can reduce the number of constraint violations during training. We will
show that the problem of safety during training can be formalized as a two-level decision-making prob-
lem, however, even a naı̈ve approach of scheduling dk can lead to improvement in performance and
safety. We see this formulation as the first step toward eliminating safety violations during training.

2.4 Application: Simmering for safety during training

Exploration can often lead to constraint violation during training due to the inherent stochasticity of
exploration. While there is a significant effort in research for safe exploration it typically requires
significant prior assumptions on MDPs. We propose to embrace the philosophy of classical reinforce-
ment learning and proceed with minimal assumptions. We propose to choose the test safety budget
dk using another decision-making problem:

max
uk∈[−δd,δd]

−
∑
k

ReLU
(
−ĝDk

(zkT (d
target))

)
,

dk+1 = clip
(
dk + uk, d

start, dtarget
)
, d0 = dstart,

(4)

where zkT (d
target) is the violation of the target constraint obtained as a result of solving one epoch of

Problem 3, the action set is [−δd, δd] and δd is pre-determined, clip(x, y, z) clips the value x to a
lower bound y and an upper bound z, i.e., the function returns y if x ≤ y, z if z ≤ x and x otherwise.

We formalized our problem as reinforcement learning over a partially observable process with the
non-stationary observations of the learning process. This two-level RL problem allows us to use
a broad spectrum of tools available in sequential decision-making differing our approach from the
existing in the literature. However, solving Problem 4 appears to be a daunting task, especially in
the online setting as we intend. Hence, we will employ heuristic solutions, which may prove more
effective than the quest to find an optimal solution. Intuitively, a gradual increase in dk by assigning
scheduling increasing reference values (denoted by drefk ) would less likely lead to constraint violation
due to stricter exploration constraints. However, fixing the schedule a priori limits the ability of
the algorithm to react to constraint violations. To alleviate this issue we propose two approaches:
PI Simmer (PI-controlled safety budget) and Q Simmer (Online Q-learning with non-stationary
rewards). In both algorithms the intuition is again is based on our empirical observations that
lower safety budgets cause lower bursts in accumulated safety costs. In particular, if the current
accumulated costs are well below the safety budget drefk , then we are very safe and the safety budget
can be further increased. If the accumulated costs are around the safety budget, then we could stay
at the same level or increase the safety budget. If the current accumulated costs are well above the
safety budget drefk , then the safety budget should be decreased.

PI Simmer. The idea for the PI controller is quite intuitive it takes the error term e = dref − c and
uses it for action computation. P stands for proportional control and links the error terms with actions

4



by multiplying the error term by the gain K. The proportional part delivers brute force control by
having a large control magnitude for large errors, but it is not effective if the instantaneous error
values become small. Proportional control cannot achieve zero error e tracking. This happens since
zero error results in a zero proportional action and hence the control over the error is lost. To deliver
zero error, integral control is typically used, which sums up previous error terms and uses this sum to
determine actions instead of the error. The integral term can be seen as an “action acceleration” (or
“momentum”) term which is large if the past errors are large. This can potentially cause unwanted
behaviors (such as oscillations) if the corresponding gain Ki is too large. Both gains K, and Ki

are usually chosen by tuning, but there are rules of thumb for tuning and choosing the gains, which
we discuss in Appendix. PI controller can solve many hard control problems, but there are some
implementation and engineering tricks and improvements. We introduce a simplified version in
Algorithm 1 and provide a full version of the algorithm and our ablation studies in Appendix.

Algorithm 1: PI SIMMER (basic version)

Inputs: {drefk }N−1
k=0 - safety budget schedule, hyper-parameters - Kp, Ki, δd.

Set d0 = dref0 ;
for k = 0, . . . , N − 1 do

Perform one epoch of learning for the safe policy with dk and get the statistic ĝ (zT (dk));
Compute the error term ek = drefk − ĝ (zT (dk));

Compute action uraw
k = Kpek︸ ︷︷ ︸

P-Part

+Ki

∑k

i=k−Ti

ei︸ ︷︷ ︸
I-Part

;

Set dk+1 = clip(uraw
k ,−δd, δd) + dk;

end

Q Simmer. Consider an MDP with the states {dref0 , . . . , drefK−1}, which for simplicity of notation
we denote {0, . . . ,K − 1}, with the actions {a−1, a0, a+1}, where the action a+1 moves the state
s = i to the state s = i+ 1, a−1 moves the state s = i to the state s = i− 1 and the action a0 does
not transfer the state. Note that the action a+1 is defined for all i < K − 1 and the action a−1 is
defined for all i > 0. Our design for the rewards of this MDP is guided by the following intuition.

We are not safe We are borderline safe We are very safe
if s− o ≤ −δ : if |s− o| ≤ δ : if s− o ≥ δ :

r =


2 a = −1,

−1 a = 0,

−1 a = 1,

r =


−1 a = −1,

1 a = 0,

1 a = 1,

r =


−1 a = −1,

1 a = 0,

2 a = 1.

(5)

where o = ĝ (zT (dk)) is a safety violation statistic (over an epoch) of the safe RL algorithm, δ is a
significance violation threshold. We use a Q-learning update to learn the Q function:

Q(st, at) = (1− lr)Q(st, at) + lr(rt +max
b

Q(st+1, b)) (6)

where lr is the learning rate and get the action with ε-greedy exploration strategy:

at =

{
argmaxb Q(st, b) with probability ε,

random with probability 1− ε.
(7)

We summarize the approach as Algorithm 2.

3 Experiments

3.1 Baselines, environments and code base

Environments: We use the safe pendulum environment defined in [16], and we also use the
custom-made safety gym environment with deterministic constraints, which we call static point
goal [51]. In this environment with 46 states and 2 actions, a large hazard circle is placed before
the goal and forces the agent to go around it to reach the goal similarly to our cartoon in Figure 1.

5



Algorithm 2: Q-SIMMER

Input: {drefk }K−1
k=0 - an a priori chosen state space; hyper-parameters - N , τ , lr, δ, ε;

Initialize d0 = dref0
for k = 0, . . . , N − 1 do

Perform one epoch of learning for the safe policy with dk and get the statistic ĝ (zT (dk));
Update the Q function as in Equation 6 while computing the reward r as in Equation 5;
Compute an action ak as in Equation 7 and compute dk+1 accordingly;

end

(a) Safe pendulum
swing-up. (b) Custom Safety gym (c) Point Goal (d) Point Button (e) Point Push

Figure 2: (a): the safe pendulum environment ([16]). θ - is the angle from the upright position, a is the
action, and the angle δ defines the unsafe region position where the safety cost is the angle difference
to δ and is incurred only in the red area. (b): the custom safety gym environment ([51]): robot needs to
reach the goal while avoiding the unsafe region. (c)-(e): Safety Gym Goal, Button and Push tasks for
the robot Point. Car robot environments are depicted in Appendix. The illustrations are from [43, 37].

We provide additional details in Figure 2 and Appendix. The rest of our tests are performed on the
safety gym benchmarks [37].

Code base: Our code is based on two repositories: safety starter agents [37], and PID Lagrangian [44].
The code for PI Simmer and Q Simmer is available at https://github.com/huawei-noah/HEBO/
tree/master/SIMMER. We use default parameters for both code bases unless stated otherwise.

Computational resources: We performed all computations on a PC equipped with 512GB of RAM,
two Intel Xeon E5 CPUs, and four 16GB NVIDIA Tesla V100 GPUs.

Baselines (•) and our algorithms (■):
• CPO, Lagrangian PPO (L-PPO), and TRPO (L-TRPO); Standard baselines from [37];
• PID-Lagrangian. An algorithm stabilizing L-PPO learning [44];
• LAMBDA. A model-based method showing great performance on Safety Gym [5];
• PO-PPO PPO-based algorithm with probability one constraints from [43];
■ PI-Simmer - Scheduling safety budget using PI controller for PO-PPO;
■ Q-Simmer - Scheduling safety budget using Q learning for PO-PPO;
■ L-PPO (PID-L) w SA - L-PPO (PID-L) solving Problem 2 with safety state augmentation;
■ Simmer L-PPO (PID-L) - L-PPO (PID-L) w SA and safety budget scheduling.

3.2 Improving Safety During Training for Pendulum Swing-Up

Improving safety during training is more suited for almost surely safe RL and we will take PO PPO as
our baseline. In this setting, we can aim to reduce the number of individual trajectories that violate the
constraints, and thus we can avoid estimating the statistic g. For PI Simmer we chose the following
hyper-parameters K = 0.01, Ki = 0.005, Kaw = 0.01 and τ = 0.995. The parameter Kaw resets
the integral term avoiding the accumulation of error - the higher the value the more aggressive is reset.
The parameter τ is the Polyak update for the error term, which pre-processes the error term for the PI
controller. We discuss these parameters in detail in Appendix. We also note that except for an initial
burst of violations both our approaches manage to keep the number of violations quite low. Overall we
found that low values for K and Ki are beneficial to avoid overreaction to constraint violations. In this
case, keeping the value of Kaw low is advisable as the action saturation does not occur too often. Fi-
nally, keeping τ close to one will force the controller to react to most of the constraint violations. For Q
Simmer we chose δ = 1, τ = 0.995, lr = 0.05, and ε = 0.95. It appears that a fast learning rate here

6

https://github.com/huawei-noah/HEBO/tree/master/SIMMER
https://github.com/huawei-noah/HEBO/tree/master/SIMMER


can allow for learning, sufficiently fast forgetting of past rewards, but also to avoid catastrophic forget-
ting. As we consider a finite state MDP we can avoid using sophisticated techniques for online learning
and use the simplest one — tuning learning rate. We chose δ and τ to avoid frequent state transitions.

0 200 400 600 800
epoch

100

120

140

160

180

200
Task return

PO PPO
PI-Simmer PO PPO
Q-Simmer PO PPO

(a) Returns

0 200 400 600 800
epoch

0

20

40

60

80

Number of violations

(b) Number of violations

0 200 400 600 800
epoch

20

25

30

35

Safety budget schedule

(c) Safety budgets

Figure 3: Reducing safety violations during training for Safe RL with constraints almost surely.

We compare our algorithm to PO PPO in terms of the number of trajectories with constraint violations,
and returns, and compare the progression of the schedule dtestk . Naturally, some individual trajectories
still violate the constraint, but the number can be significantly reduced using Simmer RL as Figure 3
suggests. While PI Simmer outperforms Q Simmer in these runs, it is worth mentioning that PI
Simmer uses more prior information than Q Simmer. Indeed, while composing a schedule is not hard,
we still have to identify the switch points, which are learned by Q Simmer. We perform ablation
studies on the parameters and discuss their choice in more detail in Appendix.

3.3 Guiding Exploration by Scheduling Safety Constraints

0 200 400 600 800
epoch

100

120

140

160

180

200
Task return

L-PPO
L-PPO w SA
Simmer L-PPO

(a) Returns

0 200 400 600 800
epoch

2000

4000

6000

8000

10000
Number of violations

(b) Number of violations

0 200 400 600 800
epoch

0

10

20

30

40

50

60
Safety cost

(c) Safety costs

Figure 4: Comparison of Simmer L-PPO, L-PPO with and without safety state augmentation. Mean
returns and cost are computed over a hundred different trajectories obtained for three different seeds.
Shaded areas represent standard deviations.

We now turn our attention to safe RL with constraints imposed on average costs. We test the
performance of Simmer L-PPO and L-PPO w SA on the swing-up pendulum environment and present
training results in Figure 4. Here we use safety starter agents as a base learner for all algorithms.
The major observations are that L-PPO w SA delivers almost no constraint violations with respect
to the mean cost estimate, and therefore using Q Simmer and PI Simmer is not necessary. In the
meantime, L-PPO has even trouble converging. Note that we have used the same hyper-parameters
for all algorithms, which are default parameters in safety starter agents and the learning rate 0.03.
While the behavior of the L-PPO algorithm can certainly be improved with tuning, we note that
simply augmenting the safety state leads to improved performance as well as stability of the algorithm.
Further, we observe that Simmer L-PPO leads to a fewer number of violations, however, the rate of
violations for the safety budget of 35 is fairly similar to L-PPO w SA.

Interestingly, a similar picture occurs with more advanced baselines such as PID Lagrangian [44] and
more complicated environments. Here, we used the static point goal environment designed in [51],
where a large static hazard region is placed in front of the goal, which is similar to our motivational
example in Figure 1. The results for PID-L and PID-L with state augmentation are depicted in Fig-
ures 5a and 5b, respectively, suggest that the presence of the safety state stabilizes training and leads

7



0 100 200 300
epoch

0

1

2

3

4
Return for PID-Lagrangian

d=1.0
d=10.0
d=20.0

0 100 200 300
epoch

0

10

20

30

40

50
Safety cost for PID-Lagrangian

d=1.0
d=10.0
d=20.0

(a) PID-L.

0 100 200 300
epoch

0

1

2

3

4
Return for PID-Lagrangian w SA

d=1.0
d=10.0
d=20.0

0 100 200 300
epoch

0

10

20

30

40

50
Safety cost for PID-Lagrangian w SA

d=1.0
d=10.0
d=20.0

(b) PID-L w SA.

0 200 400 600
epoch

0

1

2

3

4
Return

PID-L
PID-L w SA

0 200 400 600
epoch

0

10

20

30

40

50
Safety cost

PID-L
PID-L w SA
Safety budget

(c) Simmer RL.

Figure 5: PID-L with and without safety state augmentation. d is the safety budget used in training.
The curves are means and shaded areas are standard deviations computed over 3 runs. These results
suggest that safety state augmentation can stabilize training and deliver safer solutions.

to a more consistent constraint satisfaction for different safety budgets d. Note that hyper-parameters
for all the runs are the same for both algorithms. We further apply the naı̈ve simmer approach to both
baselines with results depicted in Figure 5c. In both cases, the safety budget takes values of 1, 5, 10,
15, and 20, and increased after equal time intervals. Note that in both cases now training curves are
quite stable, although state augmentation delivers an extra boost. In all our experiments we used the
same hyper-parameters for all versions of PID-L, i.e., K = 0.1, Ki = 0.01, γl = 0.99.

Overall, our experiments suggest that safety during training with constraints imposed on average
costs becomes a much easier problem with safety state augmentation. Indeed, even intuitively every
outlier trajectory with a large constraint violation should bias the average cost and should instruct
the algorithm not to follow this path. We note that in both cases above we have sparse costs, i.e.,
the agent encounters unsafe regions and incurs costs while navigating toward the goal. While an
algorithm without the safety state will receive information on constraint violation after an episode,
the safety state would constantly inform the algorithm of the distance toward a violation. This is
one of the reasons why safety state augmentation can learn the task better. Note that simmering
additionally offers fewer constraint violations while training. These results suggest that simmering
safe RL together with state augmentation delivers overall safer solutions with stable training curves.

3.4 Tests on safety gym benchmarks

We finally test our approach on more challenging environments from the safety gym benchmark:
PointPush1, PointGoal1, PointButton1 in Figures 6a, 6b, and 6c, respectively, and CarPush1,
CarGoal1 and CarButton1 in Figures 7a, 7b, and 7c, respectively. The hyper-parameters and the
tuning specifics can be found in Appendix. Again we use a naı̈ve schedule increasing the safety
budget from 10 to 25 in 5 unit increments. We observe that Simmer PID-L and PID-L outperform
other baselines significantly in terms of the return while delivering safe policies. Simmer PID-L does
perform very similarly to PID-L in terms of returns but generally outperforms PID-L in terms of safety
costs and cost rates. We note that our results for PointGoal1 are consistent with the results from [44].

4 Conclusion

We augment the safety information into the state space and show how we can effectively use it to
improve safe exploration. The safety state is nonnegative if and only if the constraint is satisfied and
therefore it can serve as a distance toward constraint violations. We argue that the optimal policy
must depend on this information to achieve safe performance. We validate this argument using

8



0 1 2 3 4
steps 1e7

0

5

10

15

 

Returns

0 1 2 3 4
steps 1e7

0

20

40

60

 

Safety costs

0 1 2 3 4
steps 1e7

0.00

0.02

0.04

0.06

 

Cost Rates

(a) PointPush1

L-PPO
L-TRPO
CPO
Lambda

Simmer PID-L

Safety budget

PID-L

0 1 2 3 4
steps 1e7

0

10

20

30

 

Returns

0 1 2 3 4
steps 1e7

0

20

40

60

 

Safety costs

0 1 2 3 4
steps 1e7

0.00

0.02

0.04

0.06

 

Cost Rates

(b) PointGoal1

L-PPO
L-TRPO
CPO
Lambda

Simmer PID-L

Safety budget

PID-L

0 1 2 3 4
steps 1e7

0

5

10

15

 

Returns

0 1 2 3 4
steps 1e7

0

20

40

60

 

Safety costs

0 1 2 3 4
steps 1e7

0.00

0.02

0.04

0.06

 

Cost Rates

(c) PointButton1

L-PPO
L-TRPO
CPO
Lambda

Simmer PID-L

Safety budget

PID-L

Figure 6: Results for the point robot in the goal, button, and push environments. Simmer PID-L
outperforms all baselines in terms of the cost rate, which is a measure of safety during training. At
the same time, Simmer PID-L is competitive with PID-L in terms of the returns or safety costs, while
significantly outperforming other baselines. The curves are means and shaded areas are variances
computed over 5 runs with random seeds.

intuitive examples, references to theoretical results, and experiments. We do not doubt that safety
state augmentation is needed for effective safe RL.

Safety state augmentation and simmering show superior performance on pendulum swing-up and
static point goal tasks for average constrained problems. We further tuned PID Lagrangian to
show very strong performance on safety gym benchmarks, which has not been previously reported.
Simmer PID Lagrangian shows competitive performance in terms of returns to PID Lagrangian and
outperforms all baselines (including PID Lagrangian) in terms of the cost rate and the costs. Further,
using state augmentation for the average constrained problems appears to be quite beneficial as well.
Scheduling the safety budget can stabilize safe algorithms without state augmentation, but using both
state augmentation and simmering improves performance and safety. We achieve this performance
and safety boost at the expense of sample efficiency since we effectively learn a series of safe policies.

Simmering RL algorithms with probability one constraints can significantly reduce safety violations
during training. We illustrate this feature by developing two algorithms for safe learning. The first
one is based on a PI controller and allows for the adjustment of a pre-defined learning schedule
depending on the estimated training cost. The second one is based on online Q learning and learns
to adjust the safety budget automatically. Both approaches have some advantages and limitations.
PI simmering is more effective if there is a reasonable safety budget schedule, while Q simmering
requires less prior knowledge to learn. We have tested PI-Simmer and Q-Simmer on a rather simple
in terms of the state and action spaces environments. We foresee that in a more complex setting
the main problem would be learning the agent’s behavior, but our algorithmic development would
remain valid. Nevertheless, it would be interesting to extend this approach to a more complex setting.

Our algorithmic development is focused on probability one constraints for two reasons. First, since
probability one constraints have to be imposed on all trajectories the empirical estimate of violations

9



0 1 2 3 4
steps 1e7

0

2

4

6

8

10

 

Returns

0 1 2 3 4
steps 1e7

0

20

40

60

 

Safety costs

0 1 2 3 4
steps 1e7

0.00

0.02

0.04

0.06

 

Cost Rates

(a) CarPush1

Simmer PID-L

Safety budget

PID-L

0 1 2 3 4
steps 1e7

0

10

20

30

 

Returns

0 1 2 3 4
steps 1e7

0

20

40

60

 

Safety costs

0 1 2 3 4
steps 1e7

0.00

0.02

0.04

0.06

 

Cost Rates

(b) CarGoal1

L-PPO
L-TRPO
CPO
Lambda

Simmer PID-L

Safety budget

PID-L

0 1 2 3 4
steps 1e7

2

0

2

4

 

Returns

0 1 2 3 4
steps 1e7

0

20

40

60

 

Safety costs

0 1 2 3 4
steps 1e7

0.00

0.02

0.04

0.06

 

Cost Rates

(c) CarButton1

Simmer PID-L

Safety budget

PID-L

Figure 7: Results for the car robot in the goal, point and push environments. Simmer PID-L
outperforms all baselines in terms of the cost rate, which is a measure of safety during training. At
the same time, Simmer PID-L is competitive with PID-L in terms of the returns or safety costs, while
significantly outperforming other baselines. The curves are means and shaded areas are variances
computed over five runs with random seeds. Note that we have baseline results only for the CarGoal1
environment.

is simpler than in the average constrained case (i.e., maximum vs empirical average). Second, it
appears that in the average constrained case with “simple” environments (such as pendulum swing-up
and static point goal), we can track the constraint quite efficiently after the initial (and unavoidable)
burst in constraint violations. Our experiments suggest that PI Simmer and Q Simmer can be
redundant for the average constrained RL.

Augmenting the safety state and scheduling the safety budget does not solve all the problems in
safe exploration. First, an initial burst of constraint violations is an inevitable reality of using our
model-free approach. It appears that lowering the initial safety budget lowers the initial burst of
constraint violations, but does not completely solve the problem. We do not see how to address this
limitation without making further assumptions about the environment. Second, it is noticeable that
the performance on the PointPush1 environment is quite noisy for both PID-L and Simmer PID-L.
This is because some seeds achieve very good performance (return of 15) and some seeds do not
(return of 5), while the learning curves appear to be stable. This suggests that the learning procedure
finds local maxima. In our point of view, this calls for a more sophisticated algorithm for exploration
maximizing return, which may help achieve stable performance in this environment. Beyond these
limitations, one can also list safety violations caused by variance and disturbances, lack of provable
safety guarantees, etc. Studying these limitations is outside of the scope of this paper.

5 Acknowledgement

This work was performed while the first two authors were with Huawei R&D UK. The authors
thank Dr. Zimmer from Huawei R&D UK for helpful discussions and suggestions, as well as, the
anonymous referees whose suggestions and comments significantly improved the paper.

10



References
[1] Anti-windup control using a PID controller, 2022. https://www.mathworks.com/help/

simulink/slref/anti-windup-control-using-a-pid-controller.html. (p. a3)

[2] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization.
In International Conference on Machine Learning, pages 22–31, 2017. (p. 2)

[3] Anayo K Akametalu, Jaime F Fisac, Jeremy H Gillula, Shahab Kaynama, Melanie N Zeilinger,
and Claire J Tomlin. Reachability-based safe learning with Gaussian processes. In IEEE
Conference on Decision and Control, pages 1424–1431, 2014. (p. 2)

[4] Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999. (p. 1)

[5] Yarden As, Ilnura Usmanova, Sebastian Curi, and Andreas Krause. Constrained policy opti-
mization via bayesian world models. In International Conference on Learning Representations,
2022. (p. 2), (p. 6)

[6] Karl Johan Åström. Advanced PID control, volume 461. The Instrumentation, Systems, and
Automation Society, 2006. (p. 2), (p. a3)

[7] Karl Johan Åström and Richard M Murray. Feedback systems. In Feedback Systems. Princeton
university press, 2010. (p. a3)

[8] Felix Berkenkamp, Riccardo Moriconi, Angela P Schoellig, and Andreas Krause. Safe learning
of regions of attraction for uncertain, nonlinear systems with Gaussian processes. In 2016 IEEE
55th Conference on Decision and Control (CDC), pages 4661–4666. IEEE, 2016. (p. 2)

[9] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. In Advances in Neural Information Processing
Systems, pages 908–918, 2017. (p. 2)

[10] Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and
Animesh Garg. Conservative safety critics for exploration. In International Conference on
Learning Representations, 2021. (p. 1)

[11] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI gym. arXiv preprint arXiv:1606.01540, 2016. (p. a5)

[12] Agustin Castellano, Hancheng Min, Enrique Mallada, and Juan Andrés Bazerque. Reinforce-
ment learning with almost sure constraints. In Learning for Dynamics and Control Conference,
pages 559–570. PMLR, 2022. (p. 2)

[13] Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-to-end safe
reinforcement learning through barrier functions for safety-critical continuous control tasks. In
AAAI, 2019. (p. 2)

[14] Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained
reinforcement learning with percentile risk criteria. The Journal of Machine Learning Research,
18(1):6070–6120, 2017. (p. 2), (p. 3)

[15] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A
Lyapunov-based approach to safe reinforcement learning. In Advances in Neural Information
Processing Systems, pages 8092–8101, 2018. (p. 2)

[16] Alexander I Cowen-Rivers, Daniel Palenicek, Vincent Moens, Mohammed Amin Abdullah,
Aivar Sootla, Jun Wang, and Haitham Bou-Ammar. SAMBA: Safe model-based & active
reinforcement learning. Machine Learning, pages 1–31, 2022. (p. 2), (p. 5), (p. 6), (p. a5), (p.
a6)

[17] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.
(p. 2)

11

https://www.mathworks.com/help/simulink/slref/anti-windup-control-using-a-pid-controller.html
https://www.mathworks.com/help/simulink/slref/anti-windup-control-using-a-pid-controller.html


[18] AN Daryin and AB Kurzhanski. Nonlinear control synthesis under double constraints. IFAC
Proceedings Volumes, 38(1):247–252, 2005. (p. 2)

[19] S. Dean, S. Tu, N. Matni, and B. Recht. Safely learning to control the constrained linear
quadratic regulator. In American Control Conference, pages 5582–5588, 2019. (p. 2)

[20] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Mag-
netic control of tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–
419, 2022. (p. 1)

[21] Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, and Sergey Levine. Leave no trace: Learning to
reset for safe and autonomous reinforcement learning. In International Conference on Learning
Representations, 2018. (p. 2), (p. a2)

[22] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tomlin.
A general safety framework for learning-based control in uncertain robotic systems. IEEE
Transactions on Automatic Control, 64(7):2737–2752, 2019. (p. 2)

[23] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870, 2018. (p. 2)

[24] Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex Serban, and Roderick Bloem. Safe
reinforcement learning using probabilistic shields. In 31st International Conference on Con-
currency Theory, pages 31–316. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik GmbH,
Dagstuhl Publishing, 2020. (p. 2)

[25] Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration
for reinforcement learning. In International Conference on Machine Learning, pages 4870–4879.
PMLR, 2020. (p. 1)

[26] Gregory Kahn, Adam Villaflor, Vitchyr Pong, Pieter Abbeel, and Sergey Levine. Uncertainty-
aware reinforcement learning for collision avoidance. arXiv preprint arXiv:1702.01182, 2017.
(p. 2)

[27] Sanket Kamthe and Marc Deisenroth. Data-efficient reinforcement learning with probabilistic
model predictive control. In International Conference on Artificial Intelligence and Statistics,
pages 1701–1710. PMLR, 2018. (p. 2)

[28] Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause. Learning-based
model predictive control for safe exploration. In IEEE Conference on Decision and Control,
pages 6059–6066, 2018. (p. 2)

[29] Zuxin Liu, Zhepeng Cen, Vladislav Isenbaev, Wei Liu, Steven Wu, Bo Li, and Ding Zhao.
Constrained variational policy optimization for safe reinforcement learning. In International
Conference on Machine Learning, pages 13644–13668. PMLR, 2022. (p. 2)

[30] Yecheng Jason Ma, Andrew Shen, Osbert Bastani, and Jayaraman Dinesh. Conservative and
adaptive penalty for model-based safe reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 5404–5412, 2022. (p. 2)

[31] David Mguni, Joel Jennings, Taher Jafferjee, Aivar Sootla, Yaodong Yang, Changmin Yu,
Usman Islam, Ziyan Wang, and Jun Wang. DESTA: A framework for safe reinforcement
learning with markov games of intervention. arXiv preprint arXiv:2110.14468, 2021. (p. 2)

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013. (p. 1)

[33] Motoya Ohnishi, Li Wang, Gennaro Notomista, and Magnus Egerstedt. Barrier-certified
adaptive reinforcement learning with applications to brushbot navigation. IEEE Transactions
on Robotics, 35(5):1186–1205, 2019. (p. 2)

12



[34] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning (ICML), pages
2778–2787, 2017. (p. 1)

[35] Laurent Pfeiffer. Two approaches to stochastic optimal control problems with a final-time
expectation constraint. Applied Mathematics & Optimization, 77(2):377–404, 2018. (p. 3)

[36] Kyriakos Polymenakos, Nikitas Rontsis, Alessandro Abate, and Stephen Roberts. SafePILCO:
A software tool for safe and data-efficient policy synthesis. In Marco Gribaudo, David N.
Jansen, and Anne Remke, editors, Quantitative Evaluation of Systems, pages 18–26. Springer
International Publishing, 2020. (p. 2)

[37] Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep rein-
forcement learning, 2019. (p. 2), (p. 6), (p. 14), (p. a5), (p. a9)

[38] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pages 1889–1897, 2015.
(p. 2)

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. (p. 2)

[40] Philipp Schwartenbeck, Thomas FitzGerald, Ray Dolan, and Karl Friston. Exploration, novelty,
surprise, and free energy minimization. Frontiers in psychology, 4:710, 2013. (p. 1)

[41] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489,
2016. (p. 1)

[42] Thiago D Simão, Nils Jansen, and Matthijs TJ Spaan. Alwayssafe: Reinforcement learning
without safety constraint violations during training. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems. International Foundation for
Autonomous Agents and Multiagent Systems, 2021. (p. 2)

[43] Aivar Sootla, Alexander I Cowen-Rivers, Taher Jafferjee, Ziyan Wang, David H Mguni, Jun
Wang, and Haitham Ammar. Sauté rl: Almost surely safe reinforcement learning using state
augmentation. In International Conference on Machine Learning, pages 20423–20443. PMLR,
2022. (p. 2), (p. 3), (p. 6), (p. a3), (p. a5), (p. a9)

[44] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
by pid lagrangian methods. In International Conference on Machine Learning, pages 9133–9143.
PMLR, 2020. (p. 2), (p. 6), (p. 7), (p. 8), (p. 14), (p. a5)

[45] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018. (p. 1)

[46] MuZero Applied Team. Muzero’s first step from research into the real world. In DeepMind
blog. Deepmind, Feb 2022. https://www.youtube.com/watch?v=ZTnySFuJGiM. (p. 1)

[47] Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe exploration in finite Markov
decision processes with Gaussian processes. In Advances in Neural Information Processing
Systems, pages 4312–4320, 2016. (p. 2)

[48] Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh Agarwal. Safe
reinforcement learning via curriculum induction. Advances in Neural Information Processing
Systems, 33:12151–12162, 2020. (p. 2), (p. a1), (p. a2)

[49] Richard B Vinter. Optimal control. Springer, 2010. (p. 3)

[50] Akifumi Wachi, Yanan Sui, Yisong Yue, and Masahiro Ono. Safe exploration and optimization
of constrained MDPs using Gaussian processes. In AAAI Conference on Artificial Intelligence,
2018. (p. 2)

13



[51] Qisong Yang, Thiago D Simão, Simon H Tindemans, and Matthijs TJ Spaan. WCSAC: Worst-
case soft actor critic for safety-constrained reinforcement learning. In AAAI Conference on
Artificial Intelligence., 2021. (p. 2), (p. 5), (p. 6), (p. 7), (p. a5), (p. a6)

[52] Jesse Zhang, Brian Cheung, Chelsea Finn, Sergey Levine, and Dinesh Jayaraman. Cautious
adaptation for reinforcement learning in safety-critical settings. In International Conference on
Machine Learning, pages 11055–11065. PMLR, 2020. (p. 2)

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] We reported the error bars over all the runs across
different seeds

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We use a PC equipped with 512GB
of RAM, two Intel Xeon E5 CPUs, and four 16GB NVIDIA Tesla V100 GPUs

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We use the code from
safety starter agents, safety gym by open AI [37], PID Lagrangian method [44].

(b) Did you mention the license of the assets? [No] All the libraries are under MIT Licence.
(c) Did you include any new assets either in the supplemental material or as a URL?

[Yes] We published the code at https://github.com/huawei-noah/HEBO/tree/
master/SIMMER

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

https://github.com/huawei-noah/HEBO/tree/master/SIMMER
https://github.com/huawei-noah/HEBO/tree/master/SIMMER

