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Abstract
Continuous-time approximation of Stochastic Gradient Descent (SGD) is a crucial tool to study
its escaping behaviors from stationary points. However, existing stochastic differential equation
(SDE) models fail to fully capture these behaviors, even for simple quadratic objectives. Built on
a novel stochastic backward error analysis framework, we derive the Hessian-Aware Stochastic
Modified Equation (HA-SME), an SDE that incorporates Hessian information of the objective
function into both its drift and diffusion terms. Our analysis shows that HA-SME matches the order-
best approximation error guarantee among existing SDE models in the literature, while achieving
a significantly reduced dependence on the smoothness parameter of the objective. Further, for
quadratic objectives, under mild conditions, HA-SME is proved to be the first SDE model that
recovers exactly the SGD dynamics in the distributional sense. Consequently, when the local
landscape near a stationary point can be approximated by quadratics, HA-SME is expected to
accurately predict the local escaping behaviors of SGD.

1. Introduction

We consider unconstrained stochastic minimization problems of the form

min
x

f(x) := Eξ [F (x; ξ)] , (1)

where f : Rd → R is a smooth function and ξ is a random vector. In this work, we study Stochastic
Gradient Descent (SGD) [52], the most popular approach for solving such problems, which updates
iteratively as follows:

xk+1 = xk − ηk∇F (xk; ξk), (2)

where ηk > 0 is the stepsize and ∇F (xk; ξk) is an unbiased stochastic gradient at xk. We focus on
the constant stepsize regime where ηk ≡ η for all k = 0, 1, . . . , and try to explore the dynamics of
SGD through the lens of Stochastic Differential Equations (SDEs). The primary aim of this paper is
to derive an accurate SDE representation of SGD.

Our contributions. We develop a new Stochastic Backward Error Analysis (SBEA) to approxi-
mate the dynamics of constant-stepsize SGD. Our analysis yields an SDE, termed “Hessian-Aware
Stochastic Modified Equation” (HA-SME), that integrates Hessian information into both its drift and
diffusion terms. By incorporating local curvature information, HA-SME effectively tracks the escape
phenomena of SGD. The well-posedness of HA-SME is assured under mild regularity assumptions.
Moreover, under similar assumptions, the distribution evolution of HA-SME exactly matches that of
SGD on quadratic functions. Our contributions are summarized as follows:
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• Failure modes of existing SDE proxies. In this study, we identify several shortcomings of
current SDE approximations in capturing the escaping behaviors of SGD. We present concrete
examples of optimization problems, where SGD exhibits escaping behavior, while existing
SDE approximations tend to stabilize around the stationary points. We further pinpoint that
this failure mode stems from the negligence of higher-order terms involving Hessians in their
derivations.

• A new Hessian-aware SDE proxy. We propose the SBEA framework, which enables us to
design HA-SME capable of encompassing more error terms involving gradients and Hessians
than existing SDEs in the error analysis. Specifically, the drift term and diffusion coefficient
of HA-SME are defined by two power series, respectively. Utilizing a generating function
approach, we demonstrate that these power series converge when the stepsize is below a certain
constant threshold, and their limits possess analytical expressions. We provide sufficient
conditions to ensure HA-SME is well-posed.

• Approximation guarantees on general functions. We establish that HA-SME adheres to
an order-2 weak approximation error guarantee, aligning with the best-known results among
existing SDE approximations. To further differentiate HA-SME from existing Stochastic
Modified Equations (summarized in Table 1), we conduct a fine-grained analysis of the weak
approximation error, taking into account of the smoothness parameter of the objective, which
we denote as λ. For convex functions, our findings indicate that HA-SME admits a uniform-
in-time approximation error of order O

(
η2
)
. In stark contrast, the error for SME-1 model

is O (ηλ), and for SME-2, it is O
(
η2λ2

)
. Our results mark a notable improvement over the

dependence on the smoothness parameter compared to existing SDE approximations.

• Exact recovery on quadratic functions. We then examine the quadratic functions, a common
simplification used to approximate the local landscapes of non-linear objectives. We show
that accurately mirroring the SGD dynamics (linear in this setting) with a linear SDE (OU
process) is fundamentally impossible, due to a potential mismatch between the ranks of their
covariance matrices. Nonetheless, we establish that under certain mild conditions, i.e., when
eigenvectors of the Hessian and the noise covariance matrices align or a small stepsize is used,
the extension of our proposed HA-SME into the complex domain is well-founded, and this
extension exactly replicates the constant-stepsize SGD dynamics in a distributional sense. This
marks the first work, to the best of our knowledge, in achieving exact recovery of SGD using
continuous-time models.

We defer a detailed discussion of our motivation and related work to Appendix A. In Appendix B,
we introduce the preliminaries, and then in Appendix C, we present our proposed SBEA framework,
which serves as the key technique for deriving HA-SME.

2. Hessian-Aware Stochastic Modified Equation (HA-SME)

In this section, we introduce HA-SME, our proposed SDE proxy for SGD. The detailed construction
of HA-SME is deferred to Appendix D, where we extend the concept of classical Backward Error
Analysis to a noisy setting. Additionally, we adapt the term selection approach from Principle
Flow [53], an ODE designed to approximate GD.
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Referred Name Stochastic Differential Equations
Weak Approximation

Error

Stochastic Modified Equation (SME-1)
[32, 36, 37]

dXt = −∇f(Xt)dt+
√
ηΣ(Xt)dWt O (η)

Second-Order SME (SME-2)
[32]

dXt =−
(
∇f(Xt) +

η

2
∇2f(Xt)∇f(Xt)

)
dt

+
√
ηΣ(Xt)dWt

O
(
η2
)

HA-SME (this work) Definition 1 O
(
η2
)

Table 1: SDE proxies for SGD referred in this paper.

Definition 1. We denote the following SDE as the Hessian-Aware Stochastic Modified Equa-
tion (HA-SME):

dXt = b(Xt)dt+D(Xt)dWt, (3)

with b(x) := U(x)
log(I − ηΛ(x))

ηΛ(x)
U(x)

⊺∇f(x), and

D(x) :=
√

U(x)S(x)U(x)⊤, such that [S(x)]i,j :=

[
U

⊺
ΣU
]
i,j

log(1− ηλi)(1− ηλj)

ηλiλj − (λi + λj)
,

where U(x) and Λ(x) are defined through the eigen-decomposition ∇2f(x) = U(x)Λ(x)U(x)
⊺,

and Σ(x) is the covariance matrix of the stochastic gradient. The diagonal elements of Λ(x)
are denoted by λi(x). For conciseness, we omit the dependence of λi, U and Σ on x.

Remark 2 (Comparison with existing SMEs). Comparing with SME-1 and SME-2 (see in Table 1),
both the drift term and the diffusion coefficient of HA-SME incorporate the Hessian information,
hence the name. By integrating Hessian into its diffusion coefficient, HA-SME provides a nuanced
correction to the SDE noise. This adjustment is crucial for capturing the true dynamics of SGD,
even when considering additive, state-independent noise models, such as ∇F (x, ξ) = ∇f(x) + ξ,
where ξ ∼ N (0,Σ). While discrete-time models treat noise as state-independent, in continuous time,
noise is introduced at infinitesimal time intervals subject to immediate transformation by the drift
term, which includes Hessian information. The necessity of incorporating the Hessian matrix into
the diffusion term for corrections is also underscored by the failure cases of existing SDE models
discussed in Appendix F.1.

In Lemma 14 and theorem 18 in the appendix, we provide sufficient conditions for the existence of
the matrix D(x) and the well-posedness of HA-SME. These conditions are either that the Hessian
matrix ∇2f(x) and the covariance Σ(x) commute with a stepsize η < 1/∥∇2f(x)∥, or if they do
not commute, that a smaller stepsize is used.

3. Approximation Error Analysis for HA-SME

In this section, we discuss theoretical approximation error guarantees for HA-SME. First, we demon-
strate that for general convex functions, HA-SME achieves an order-2 weak approximation error,
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improving upon existing SDEs by reducing dependence on the smoothness parameter of the objective
function. Next, we examine quadratic objectives with additive Gaussian noise. In this scenario, we
show that under mild conditions, HA-SME exactly recovers the dynamics of SGD.

3.1. Weak Approximation Error Analysis

Existing literature has provided weak approximation error guarantees (Definition 8) for SME-1 [32]
and SME-2 [12, 22, 31, 32]. They demonstrated that the error is of order η for SME-1 and η2 for
SME-2. In this work, we show in Theorem 20 in the appendix that HA-SME also has an order η2

weak approximation guarantee, achieving the best possible order, the same as SME-2. While prior
work solely emphasizes the dependence on the stepsize, we further provide a more fine-grained
analysis that explicitly accounts for problem-dependent parameters.

We define the Lipschitz parameter as s := supx∈Rd ∥∇f(x)∥ and the smoothness parameter as
λ := supx∈Rd ∥∇2f(x)∥. HA-SME enjoys the following approximation error guarantee.

Theorem 3. Fixing T > 0, assume that the test function satisfies u ∈ C8
b

(
Rd
)
, F (·; ξ) ∈ C9

b

(
Rd
)

is
convex for any ξ, and for any 0 ≤ i, j ≤ d, [Σ(·)]i,j ∈ C6

b

(
Rd
)
. Let X(t) be the stochastic process

described by HA-SME and {xk} be the sequence generated by SGD. There exists a constant η0 > 0
such that for any η < η0, it holds that for all x ∈ Rd,

sup
k=1,...,⌊T/η⌋

|E[u (xk) |x0 = x]− E[u (X(kη)) |X(0) = x]| ≤ O
(
η2s3

)
.

Remark 4. Using a similar proof technique, we can establish that the upper bound for SME-2 is
O
(
η2
(
s3 + sλ2

))
. It is evident that HA-SME improves the dependency on the smoothness parameter

λ. Specifically, there is no λ in the leading order term η2.

Remark 5. Since the above theorem addresses the global point-wise approximation, the dependence
on the global gradient norm of f appears unavoidable and cannot be neglected. However, to study
the escaping behavior of SGD near a critical point, we believe that the global gradient norm s
can be relaxed to its local version. This would be an interesting result because, in the vicinity of a
critical point of a smooth function, the local gradient norm can be regarded as a negligible constant.
Consequently, the leading term in Theorem 3 would be independent of both s and λ (whereas errors
of existing SDE proxies always depend on λ).

3.2. Exact Recovery of SGD on Quadratics

The quadratic objective, despite its simplicity, is significant for studying the behavior of SGD.
However, existing SDEs may fail to capture the behavior of SGD even for this basic model. We
demonstrate such failures of SME-1 and SME-2 through both experiments and theoretical analysis in
Appendix F.1.

In contrast, under mild conditions, HA-SME can exactly match SGD dynamics in this case.
Specifically, an SDE is said to match the iterates of the SGD if the distributions of Xt matches those
of the SGD iterates at all corresponding time stamps, i.e. t = kη where k is the iteration index of
SGD.

Theorem 6. Assuming the objective function f is defined as f(x) = 1
2x

⊺
Ax, with A ∈ Rd×d, and

the stochastic gradients satisfies ∇F (x, ξ) = ∇f(x) + ξ, where ξ ∼ N (0,Σ) with Σ ∈ Rd×d
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independent of x. The solution of HA-SME exactly matches the iterates of SGD if either of the
following two conditions holds:

1. A and Σ commute, and ηλi ̸= 1 for all eigenvalues λi of A.

2. Σ is positive definite, and η ≤ 1
∥A∥ min

{
1−

√
1− λmin(Σ)√

dλmax(Σ)
, 1−

√
2
2

}
,

where λmax(·) and λmin(·) denote the maximum and minimum eigenvalues of a matrix.

To the best of our knowledge, this marks the first instance of an SDE that precisely mirrors the
distribution of SGD, albeit restricted to quadratic functions.

In the theorem above, we require either that A and Σ commute or that Σ is positive definite.
Indeed, we can construct a counterexample where A and Σ do not commute and Σ is only positive
semi-definite, demonstrating that no OU process can exactly approximate SGD under these conditions.
We restrict our discussion to OU process because the corresponding transition kernel is Gaussian,
which matches the transition kernel of SGD (when viewed as a Markov chain) when the objective is
quadratic and the gradient noise is additive state-independent Gaussian. This negative result holds
even if we extend our discussion to the complex plane.

Theorem 7. Under the same setting as Theorem 6, consider complex OU process defined as follows:

dXt = BXtdt+DdWt,

where B ∈ Cd×d, D ∈ Cd×m and Wt represents an m-dimensional standard Wiener process. One
can construct real matrices A and Σ such that, for any given stepsize η > 0, there exists no complex
OU process that matches the iterates of SGD.

The distributional mismatch of the SDE and SGD in this case can be intuitively understood
through the following argument: Starting from a deterministic initialization, after one SGD step, the
covariance of the iterates is η2Σ, which is rank-deficient; In contrast, in continuous-time dynamics,
the noise injected is rotated by the misaligned linear transformations from the drift term and the
covariance matrix quickly becomes full-rank.

4. Conclusion and Future Work

In this work, we present HA-SME, an advancement over existing SDEs for approximating the
dynamics of SGD. Specifically, HA-SME offers improved theoretical approximation guarantees
for general smooth objectives over current SDEs in terms of the dependence on the smoothness
parameter of the objective. For quadratic objectives, HA-SME exactly recovers the dynamics of SGD
under mild conditions. The primary innovation lies in integrating Hessian information into both the
drift and diffusion terms of the SDE, achieved by extending backward error analysis to the stochastic
setting. This integration preserves the interplay of noise and local curvature in approximating SGD,
allowing to better capture its escaping behaviors.

In the future, it would be interesting to further analyze the escaping behaviors of HA-SME. We
anticipate that this will provide a more accurate characterization of SGD’s exit time of a local region
with respect to the dependence on the Hessian. Second, applying our SBEA to other optimization
algorithms, such as momentum and adaptive gradient methods would be intriguing directions for
further research.
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Appendix A. Motivation and Related Work

We study the behaviors of SGD in the context of nonconvex optimization. Existing non-convex
optimization theory have established the non-asymptotic convergence of SGD towards a stationary
point using a diminishing stepsize; see e.g., Drori and Shamir [10], Fang et al. [11], Ghadimi and
Lan [18], Khaled and Richtárik [28], Li and Orabona [33], Sebbouh et al. [57] and Yang et al. [67],
to list just a few. Intuitively, the diminishing stepsize reduces the fluctuation caused by SGD’s
inherent randomness, ensuring the objective descends in expectation. On the other hand, in practice
a constant stepsize, i.e. ηk ≡ η, is often preferred and yields better performance. This presents a
challenge to classical theory, as it fails to capture the non-diminishing role of noise in SGD dynamics.
Additionally, it falls short in differentiating between saddle points and local minima, as well as in
identifying favorable stationary points — those that not only are local minima but also exhibit good
generalization.

The above limitations underscore the need to understand a critical aspect of SGD in nonconvex
optimization: the transitions between different stationary points, beyond the traditional focus on
convergence towards a stationary point. The selection of stepsize plays a crucial role in SGD’s
transition behaviors:

• Escaping from stationary points. At a stationary point, either a saddle point or a local
minimum, increasing the stepsize raises the likelihood of SGD to escape from it.

• Minima selection. Given a constant stepsize, SGD can rapidly exit local minima with a large
Hessian norm, also known as sharp minima, but dwell longer at flat minima where the norm is
small.

The latter relates to the notable generalization capabilities of SGD, which in prevailing belief, tends to
favor flat minima over sharp ones [27, 43, 44]. These phenomena have been empirically verified [68]
and theoretically investigated [5, 35, 38, 50]. Indeed, analyzing the link between stepsize and
the escaping dynamics of SGD has emerged as an important topic in non-convex optimization.
In particular, there is growing interest in using continuous-time dynamics, specifically Stochastic
Differential Equations (SDEs), to understand the mechanisms behind escaping from saddle points
and minima selection [22, 66]. This involves quantifying the interplay between escaping speed,
stepsizes, and local sharpness [22, 23, 45, 65, 69]. A more detailed discussion of these works is
provided in Appendix A.1.

Existing continuous-time approximations of SGD and their failure modes. Previous study on
the escaping behavior of constant-stepsize SGD through its continuous-time approximation typically
entails two steps: (1) Proposing a proxy SDE model that approximately tracks the distributional
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Figure 1: Escaping behaviors of SGD and SDEs on quadratic functions. The left sub-figure demon-
strates the trajectories around a saddle point (0, 0), while the right sub-figure represents the evolution
of the function value around a minimum. We set η = 2.1, the initial point to (1, 1), and the covariance
of the additive noise to I for both cases. We conducted the experiments 1000 times to estimate the
expectation. For the right sub-figure, we evaluated the SDEs at time stamps corresponding to η times
the number of SGD updates. In these two cases, the proposed HA-SME behaves similarly as SGD.
However, SME-2 fails to escape the saddle point in case (a), and both SME-1 and SME-2 fail to escape
the minimum in case (b). We further provide in Appendix F.1 mathematical proofs for the failure
cases of these two SMEs in approximating SGD.

evolution of the SGD dynamics; (2) Analyzing the escaping behavior of the proposed SDE model to
predict or interpret the behavior of SGD. Evidently, whether the behavior of SGD can be precisely
captured hinges on the accuracy of the proxy models. Among existing SDE models, the second-order
stochastic modified equation (SME-2) [32] provides the order-best approximation guarantee:

dXt = −∇
(
f(Xt) +

η

4
∥∇f(Xt)∥2

)
dt+

√
ηΣ(Xt)dWt, (4)

where Σ(Xt) denotes the covariance matrix of the stochastic gradient at Xt, Wt represents the
standard Wiener process, and η denotes the constant stepsize of SGD. However, we note that even for
simple quadratic objectives, SME-2 and SGD show different behaviors in escaping from saddle points
and minima: SME-2 exhibits locally stabilizing behavior while SGD with constant stepsize quickly
escapes from the same local region, as illustrated in Figure 1. Our study also identifies similar failure
modes for other existing SDE models, detailed in Appendix F.1. This disparity in behavior suggests
the inadequacy of existing SDEs in modeling the escaping dynamics of SGD, even with high-order
approximation such as SME-2. Consequently, this brings us to a central question:

How to accurately model SGD in continuous time while preserving its escaping behav-
iors?

A.1. Related Work

Continuous-time approximation of GD and SGD. The connection between differential equations
and gradient-based methods has been extensively studied previously, such as in [2, 4, 6, 14, 20, 30,
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41, 42, 56, 60, 62]. For GD, the most straightforward continuous-time approximation is the gradient
flow

dXt = −∇f(Xt)dt. (5)

While this flow approximates GD accurately as the stepsize approaches zero, the approximation
error becomes critical when the stepsize is large. Barrett and Dherin [3] took a step further by
employing backward error analysis (detailed in Appendix B.2) to derive a second-order continuous-
time approximation for GD, as given by:

dXt = −∇
(
f(Xt) +

η

4
∥∇f(Xt)∥2

)
dt. (6)

However, this second-order model still has limitations, particularly in capturing certain critical
behaviors of GD in discrete-time, such as overshooting, i.e., the iterates oscillate around the minimum
or even diverge because of large stepsize. To tackle this issue, Rosca et al. [53] introduced the
Principle Flow (PF), a continuous-time approximation for GD that operates in complex space and
can exactly match the discrete-time dynamics of GD on quadratics. This work is closely related to
ours, and we will dive deeper in Appendix B.3.

When taking noises into account, Mandt et al. [36, 37] introduced the following SDE dynamics
for approximating SGD (SME-1):

dXt = −∇f(Xt)dt+
√
ηΣ(Xt)dWt. (7)

Later, Li et al. [32] introduced SME-2 (described in Equation (4)) and established rigorous weak
approximation for these SDEs. These SDEs are named according to the order of their weak ap-
proximation accuracy (see precise definition in Definition 8). Additional contributions by Orvieto
and Lucchi [46] and Fontaine et al. [15] examined SDEs where the drift and diffusion terms are
scaled by varying stepsizes. Their SDEs reduce to SMEs when adopting constant stepsizes. Another
line of work has considered Homogenized SGD, which replaces the diffusion term in SME-1 with√
ηf(Xt)∇2f(Xt)/B [48, 49] or

√
ηf(Xt)∇2f(X∗)/B [40], where B denotes the batch size

and X∗ the local minimum. However, their analyses are limited to the least square loss, lacking
approximation guarantees for general non-convex objectives.

Escaping Behaviors Analysis Back in the 90s, Pemantle [50] and Brandière and Duflo [5] showed
that SGD with a small stepsize can avoid hyperbolic saddle points, i.e., λmin

(
∇2f(x)

)
< 0 and

det
(
∇2f(x)

)
̸= 0. Recent studies [35, 38] extended this understanding by showing SGD can escape

strict saddle points (λmin

(
∇2f(x)

)
< 0). Additionally, with slight modifications to the algorithm,

such as adding artificial noises when certain conditions are met, Ge et al. [16] and Jin et al. [26]
established convergence of noisy SGD to approximate local minima.

In terms of minima escaping, leveraging continuous-time frameworks, Jastrzebski et al. [25]
highlighted three crucial factors that influence the minima found by SGD: step-size, batchsize, and
gradient covariance. Zhu et al. [69] focused on the role of anisotropic noise and concluded that
such noise enables SGD to evade sharp minima more effectively. Quantitatively, the time required
for escaping has been theoretically shown to exponentially depend on the inverse of the stepsize,
using theory for random perturbations of dynamical systems [22]. Subsequent work expanded on
these ideas, considering heavy-tail noise and utilizing Lévy-driven SDEs to examine SGD’s stability
around minima [45]. While the aforementioned research largely focused on parameter-independent
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gradient noise, Xie et al. [65] analyzed parameter-dependent anisotropic noise. Using the analysis for
the classic Kramers’ escape problem, they showed that compared to Stochastic Gradient Langevin
Dynamics, SGD can quickly escape sharp minima, with escape speed exponentially depending
on the determinant of the Hessian. Their analysis assumes that the system first forms a stationary
distribution around a basin before escaping. However, SGD typically selects minima dynamically.
New insights into the exponential escape time have been developed by employing Large Deviation
Theory in non-stationary settings [23].

Appendix B. Preliminaries

In this section, we first introduce the notations used throughout our analysis, and then review the
Backward Error Analysis (BEA), a technique instrumental to the development of our stochastic
backward error analysis. Additionally, we discuss the Principle Flow (PF) introduced by Rosca et al.
[53], which inspires the derivation of our HA-SME model.

B.1. Notations

Uppercase variables, such as X , denote continuous-time variables, while lowercase variables like x
represent discrete-time variables. The function X(x0, t) indicates the solution of a continuous-time
process starting from the initial point x0 after a time duration t. For matrix notation, we use [A]i,j to
specify the element at the (i, j)-th position in matrix A. For two matrices, A and B, of the same size,
we denote A :B = tr

(
A⊤B

)
. Applying the logarithmic function to a matrix and dividing between

two matrices are by default element-wise. We use the notation I to represent the identity matrix and
⊙ to denote the Hadamard product between matrices. The square root of a matrix, i.e.,

√
A, is the

matrix B such that BB
⊺
= A. In the context of functions, ∥f∥Cm is defined as

∑
|α|≤m |Dαf |∞,

and we define the set Cm
b

(
Rd
)
= {f ∈ Cm

(
Rd
)
| ∥f∥Cm < ∞}, where Cm

(
Rd
)

is the set of all
m-th differentiable functions on Rd. For complex number x, Re(x) and Im(x) extract the real and
imaginary parts, respectively, and x denotes the complex conjugate of x. For random variables x and
y, the covariance is represented as Cov [x, y] = E

[
(x− E(x)) (y − E(y))⊺

]
. Lastly, we use Wt to

represent the standard Wiener process.

B.2. Backward Error Analysis (BEA)

Consider the GD dynamics1

xk+1 = xk − η∇f(xk), (8)

with constant stepsize η. Let X̃ : [0,∞) → Rd be a continuous trajectory. The idea of BEA is
to identify a series of functions, denoted as gi : Rd → Rd for i ∈ {0, 1, . . .}, which constitute a
modified equation as:

d

dt
X̃ = G̃η(X̃) :=

∞∑
p=0

ηpgp(X̃), (9)

1. Similar arguments can be made for other discrete-time dynamics.
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such that X̃((k + 1)η) closely approximates xk+1, given X̃(kη) = xk. To achieve this goal, we
consider the Taylor expansion of the above continuous-time process at time kη,

X̃((k + 1)η) =

∞∑
j=0

ηj

j!

djX̃

(dt)j

∣∣∣∣∣
X̃=xk

= xk + η

∞∑
p=0

ηpgp(xk) +
η2

2

∞∑
p=0

ηp∇gp(xk)

∞∑
p=0

ηpgp(xk) + · · · .

(10)

By matching the powers of η in Equation (8) and Equation (10) up to the (p+ 1)-order, we solve
for gi for i = 0, ..., p. This procedure ensures that the leading error term between the continuous-
time variable X̃((k + 1)η) and the discrete-time variable xk+1, given X̃(kη) = xk, is of the order
O
(
ηp+2

)
. For a more comprehensive exploration of BEA, please refer to Section IX of Hairer et al.

[19].
When p = 0, the system reduces to gradient flow (Equation (5)) and then p = 1, we recover

Equation (6). Increasing the order p in the above BEA procedure improves the accuracy of the
approximation. The higher order modified flows generated by BEA involve higher-order gradients
of the objective function f . For example, for p = 2, according to BEA, we obtain the third-order
Gradient Flow [53]:

dXt/dt = −∇f(Xt)−
η

2
∇2f(Xt)∇f(Xt)− η2

(
1

3
∇2f(Xt)∇f(Xt) +

1

12
∇f(Xt)

⊺∇3f(Xt)∇f(Xt)

)
.

B.3. Principle Flow

While theoretically, one could solve for all component function gi’s to achieve an arbitrary target
error order, the resulting modified flow quickly becomes cumbersome due to the involvement of
higher-order gradients. Moreover, the resulting power series (w.r.t. the exponent of η) may not even
be convergent [19]. In light of this limitation of BEA, Rosca et al. [53] suggested the following term
selection strategy:

Principle 1 (Term selection of PF, BEA). In BEA, when solving gi’s in Equation (9), derivatives of
f(x) up to the second order, i.e., terms containing ∇pf(x) for p ≥ 3, are omitted.

With this term selection scheme, the resulting power series not only converges (with convergence
radius η∥∇2f(x)∥ = 1) but admits a concise form. The corresponding modified equation is:

dXt = U(Xt)
log(I − ηΛ(Xt))

ηΛ(Xt)
U(Xt)

⊺∇f(Xt)dt, (11)

where for any fixed x, we denote ∇2f(x) = U(x)Λ(x)U(x)
⊺ the eigen-decomposition of ∇2f(x).

When the stepsize is large, the logarithmic function could result in complex numbers, as elements of
I − ηΛ might be negative. Operating in the complex space is beneficial for modeling the divergent
and oscillatory behaviors of gradient descent Rosca et al. [53]. As only higher-order gradients
are omitted in Principle 1, PF provides an exact characterization of the discrete GD dynamics on
quadratic objectives.
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Appendix C. Stochastic Backward Error Analysis

We extend the BEA approach to the stochastic domain, termed Stochastic Backward Error Analysis
(SBEA), providing a systematic approach for constructing SDEs that approximate stochastic discrete-
time processes. While we focus on the analysis for SGD, similar argument can be generalized to
other dynamics.

C.1. Differences between BEA and SBEA

Compared with BEA, there are two major modifications in SBEA. First, SBEA includes an addi-
tional Brownian motion term in its ansatz, compared to the one in Equation (9), with the diffusion
coefficients to be determined; Second, to evaluate the quality of the approximation, SBEA adopts the
weak approximation error (see Definition 8) as a metric in the distributional sense.

(1) Ansatz with Brownian motion. In BEA, we define the modified equation with a series of
functions {gi}i∈N. To further model the randomness in SGD, we introduce another series {hi}i∈N>0 ,
hi : Rd → Rd×d, to represent the diffusion coefficients of the Brownian motion. Specifically, we
consider a hypothesis continuous-time dynamics as follows:

dX =
(
g0(X) + ηg1(X) + η2g2(X) + · · ·

)
dt+

√
ηh1(X) + η2h2(X) + · · ·dWt. (12)

The rationale stems from the observation that the noise introduced in the ansatz undergoes contin-
uous modification by the drift term. Consequently, it is natural to employ a similar power series
representation for the diffusion coefficient2. While one can truncate the series {hi}i∈N to simplify
the analysis, as we illustrate in Figure 2 and theoretically justify in Appendix F.1, such truncation
can compromise the approximation quality and lead to misaligned escaping behaviors.

(2) Weak approximation error as quality metric. Our goal is to solve for the functions gi’s and
hi’s so that the ansatz in Equation (12) approximates the SGD dynamics with high quality. Instead of
seeking a path-wise alignment like BEA, we focus on aligning the continuous-time and discrete-time
dynamics in a distributional sense, characterized by the following weak approximation error.

Definition 8 (Weak Approximation Error). Fixing T > 0, we say a continuous-time process
X(t)t∈[0,T ] is an order p weak approximation to the sequence {xk} if for any u ∈ C

2(p+1)
b

(
Rd
)
,

there exists C > 0 and η0 > 0 that are independent of η (but may depend on T , u and its derivatives)
such that for all x ∈ Rd,∣∣∣E[u (xk) |x0 = x]− E[u (X(kη)) |X(0) = x]

∣∣∣ ≤ Cηp, (13)

for all k = 1, . . . , ⌊T/η⌋ and all 0 < η < η0.

This metric is commonly used for analyzing discretization errors of SDE, as referenced in
textbooks [29, 39] and various studies on modeling SGD behavior with SDEs [13, 22, 31, 32].

Remark 9. We highlight the difference between SBEA and the weak backward error analysis
introduced by Debussche and Faou [8]. The latter provides a framework for constructing a sequence
of modified Kolmogorov generators with increasing orders to approximate discrete-time processes.

2. We do not include h0 in the ansatz as SGD degenerates to gradient flow when η → 0, which implies h0 ≡ 0.
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However, since the high-order Kolmogorov generators involve high-order gradients, it does not
yield an equivalent SDE representation (recall that the Kolmogorov generator corresponding to an
Itô SDE contains only second-order gradients). Consequently, their framework is fundamentally
different from our approach in terms of the final outcome.

C.2. Procedures in SBEA

We determine the components {hi}i∈N and {gi}i∈N by first calculating the semi-group expansions of
the two conditional expectations involved in Equation (13) after one step, i.e. k = 1, and then match
the resulting terms according to the power of η. Such a one-step approximation analysis can be
translated to the weak approximation error guarantee via a martingale argument, as we will elaborate
in Appendix E.

Semi-group expansions. We expand the conditional expectation of the test function u after one
SGD step as:

E[u (x− η∇F (x; ξ)) | x] = u(x) + η
∞∑
p=0

ηpΦp(x), (14)

where we use Φp to denote the aggregation of terms with ηp+1 in the expansion. Simple calculation
shows

Φ0(x) = −∇f(x)
⊺∇u(x), Φ1(x) =

1

2
∇2u(x) :

(
∇f(x)∇f(x)

⊺
+Σ(x)

)
, · · · (15)

where Σ(x) denotes the covariance matrix of the stochastic gradient at x, defined as

Σ(x) = E
[
(∇F (x; ξ)− E[∇F (x; ξ)]) (∇F (x; ξ)− E[∇F (x; ξ)])

⊺
]
. (16)

For the continuous-time system, by the semi-group expansion [21], the conditional expectation
of a test function u under the SDE model yields:

E[u (X(η)) | X(0) = x] =
(
eηLu

)
(x) = u(x) + ηLu(x) + 1

2
η2L2u(x) +

1

6
η3L3u(x) + · · · ,

(17)

where L is corresponding the infinitesimal generator [55]. For the SDE described in Equation (12),
the generator is given explicitly by

L = (g0 + ηg1 + · · · ) · ∇+
1

2
(ηh1 + · · · ) : ∇2 = g0 · ∇+

+∞∑
i=1

ηi
(
gi · ∇+

1

2
hi : ∇2

)
=

+∞∑
i=0

ηiLi,

where for the ease of notation, we denote

L0 := g0 · ∇ and Li := gi · ∇+
1

2
hi : ∇2 for i ≥ 1.

Gathering terms with power ηp in Equation (17) leads to the following lemma:

18



A HESSIAN-AWARE SDE FOR MODELLING SGD

Lemma 10. Define the function

Ψp(x) =

p+1∑
n=1

1

n!

∑
{lni ≥0}ni=1:

∑n
i=1 l

n
i =p+1−n

Lln1
Lln2

· · · Llnnu(x), (18)

where Llnj
Llnj+1

denotes the composition of the operators Llnj
and Llnj+1

. We have that

(
eηLu

)
(x) = u(x) + η

∞∑
p=0

ηpΨp(x). (19)

In the following, we determine the components gp’s and hp’s in an iterative manner.

Identify components by iteratively matching terms. Our aim is to determine gi’s and hi’s by
aligning the terms from the discrete-time expansion (Equation (14)) with those from continuous time
(Equation (19)), according to the order of η. Note that every application of the generator L on a
function generates terms with all orders of η. Consequently, p-th order terms in the continuous-time
expansion become complicated as p grows, as evident in Lemma 10. Fortunately, we can identify
gp’s and hp’s in an iterative manner. In the following discussion, gi and hi for i = 0, 1, . . . , p− 1 are
treated as known from our iterative construction, and we solve the unknowns gp and hp by matching
Φp and Ψp. We make the following two observations:

[Ψp(x) (Equation (18)) is linear on gp and hp.] Recall that gp and hp are only contained
linearly in Lpu, which appears only once in Ψp(x) by choosing n = 1 and l11 = p.

[Terms in Ψp(x) with n > 1 contains only known terms.] For n > 1, the terms in Equation (18)
will only include gi and hi for i ≤ p− 1, since for any choice of the indices {ln+1

j }nj=1, we
must have lnj ≤ p− 1 if n > 1. These terms are already determined by our iterative strategy.

Following Rosca et al. [53], we also explore various term selection strategies, starting with the
exact matching case.

Principle 2 (Term selection of exact-matching, SBEA). When determining the component functions
gp and hp, all terms in Φp from Equation (14) must match the ones in Ψp from Equation (19). In
particular, given the arbitrariness of the test function, the coefficients of ∇pu (p ≥ 1) should all be
matched.

With the above principle, we can identify the unknowns, gp and hp, for p ≤ 1.

Remark 11 (Recovering SME-2 by SBEA). By matching Ψ0 and Φ0, we deduce that g0(x) =
−∇f(x). By matching Ψ1 with Φ1, we solve that g1(x) = −1

2∇2f(x)∇f(x) and h1(x) = Σ(x).
This leads to the formulation of the SME-2 (Equation (4)).

C.3. Exact Matching Fails for Order η3 in SBEA

We have shown that for p = 0, 1, it is possible to exactly solve gp and hp. However, for p ≥ 2,
adhering to Principle 2 can be infeasible. Specifically, following Principle 2 leads to an over-
determined system when determining the unknown component functions gp and hp for p ≥ 2. Recall
that the test function u is chosen arbitrarily and let us consider all the possible occurrence of ∇qu(x),
q = 1, 2, . . ., in Φp and Ψp.
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• For the continous-time dynamics, the term Ψp in Equation (18) can contain terms with factors
∇qu(x) for q ranging from 1 to p + 1. For example, the term ∇p+1u(x) can be generated
from Equation (18) with the choice of n = p+ 1 and lnj = 0 for all j ∈ {1, . . . , n}; the term
∇u(x) can be generated with the choice n = 1 and l11 = 0.

• For discrete-time expansion as per Equation (14), the term Φp involves only ∇pu(x).

For exact matching, the coefficient of ∇pu in Ψp must match that in Φp; besides, for any q ̸= p,
the coefficient of ∇qu in Ψp must be zero. This leads to an over-determined system comprising
p + 1 conditions for 2 free variables (gp and hp) when p ≥ 2. In other words, the above iterative
construction of the components gp and hp fails for p ≥ 2. The infeasibility result highlights a drastic
difference between SBEA and BEA. Shardlow [59] also noted such infeasibility when attempting to
find stochastic modified flows to achieve higher orders of weak approximation guarantees.

Inspired by PF, we introduce a relaxed term selection scheme, compared to Principle 2, so that
only a subset of terms in Ψp (the continuous-time dynamics) and Φp (the discrete-time dynamics)
match. Importantly, this term selection scheme should ensure that the resulting continuous-time
dynamics still preserve the favorable escaping behaviors of the discrete-time dynamics of interest.
This will be the focus of the following section.

Appendix D. Derivation of Hessian-Aware Stochastic Modified Equation

In this section, we first derive the proposed SDE, HA-SME, to model SGD using the idea of SBEA.
Then we discuss sufficient conditions for its well-posedness.

Due to the lack of degree of freedom, exactly matching all terms in Φp and Ψp for p ≥ 2 is in
general infeasible. Instead, we adopt the following term selection principle.

Principle 3 (Term selection in HA-SME, SBEA). When determining the components gp and hp in
SBEA, ignore the terms that involve ∇(r)f(x),∇(s)u(x) and ∇(m)Σ(x) for r, s ≥ 3 and m ≥ 1.

Under this principle of term selection, we obtain the following result.

Lemma 12. Under Principle 3, when applying SBEA on SGD, we have the following results:

1. The component functions gp and hp in Equation (12) are uniquely determined;

2. The component functions gp and hp in Equation (12) admit the form

gp(x) = cp ·
(
∇2f(x)

)p∇f(x), (20)

hp(x) =

p−1∑
k=0

ak,p−1−k ·
(
∇2f(x)

)k
Σ(x)

(
∇2f(x)

)p−1−k
; (21)

3. The coefficients {as,m} and {cs} in {gp} and {hp} satisfy

log(1− x)

x
=

+∞∑
s=0

csx
s and

log(1− x)(1− y)

xy − (x+ y)
=

+∞∑
s,m≥0

as,mxsym.

We now derive the limit of the power series defined in Equation (12).
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Theorem 13. Let the components {gp} and {hp} be determined by the SBEA framework applied on
SGD under Principle 3. Denote the limits

b(x) =
∑
p≥0

ηpgp(x) and D(x) =
∑
p≥1

ηphp(x). (22)

Under the assumption that η < 1/
∥∥∇2f(x)

∥∥, we have that the limits b(x) and D(x) exist with

b(x) = U(x)
log(I − ηΛ(x))

ηΛ(x)
U(x)

⊺∇f(x), (23)

D(x) = U(x)S(x)U(x)⊤, such that [S(x)]i,j =

[
U

⊺
ΣU
]
i,j

log(1− ηλi)(1− ηλj)

ηλiλj − (λi + λj)
, (24)

where U(x) and Λ(x) are defined through the eigen-decomposition ∇2f(x) = U(x)Λ(x)U(x)
⊺.

The diagonal elements of Λ(x) are denoted by λi(x). For conciseness, we omit the dependence of λi,
U and Σ on x.

The derivation of the above theorem is highly nontrivial, and represents one of the major
contributions of our paper. Its proof includes several critical steps: (1) Identifying the structure of the
components gp and hp in the SBEA ansatz; (2) Determining the coefficient of the components gp and
hp; (3) Computing the limit of the resulting power series, which we defer to Appendix G.1.

The following lemma provides sufficient conditions for the existence of the diffusion coefficient√
D(x).

Lemma 14. D(x) is positive semi-definite at point x if either of the following two conditions holds:

1. The Hessian ∇2f(x) and covariance matrix Σ(x) commute, and η < 1/
∥∥∇2f(x)

∥∥.

2. The covariance matrix Σ(x) is positive definite, and η satisfies

η ≤ 1

∥∇2f(x)∥ min

{
1−

√
1− λmin (Σ(x))√

dλmax (Σ(x))
, 1−

√
2

2

}
, (25)

where λmax(·) and λmin(·) denote the maximum and minimum eigenvalues of a matrix.

The validity of the above two conditions is discussed at the end of this subsection. With
Theorem 13 and Lemma 14, we now present the proposed SDE model:

Definition 15. Let the assumptions in Theorem 13 and Lemma 14 hold for any x, then the drift
term b(x) and diffusion coefficient D(x) :=

√
D(x) in Equation (22) are well-defined. We

denote the SDE as the Hessian-Aware Stochastic Modified Equation (HA-SME):

dXt = b(Xt)dt+D(Xt)dWt. (26)

Comparing with SME-1 in Equation (7) and SME-2 in Equation (4), both the drift term and the
diffusion coefficient of HA-SME incorporate the Hessian information, hence the name.

Notice that the drift term b(x) of HA-SME exactly corresponds to PF defined in Equation (11). A
naive idea would be to combine PF with the conventional diffusion coefficient

√
ηΣ as in SME-1 and

SME-2. The following remark comments on the drawback of such a construction.
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Figure 2: The illustration depicts the failure case for SPF, a naive stochastic extension of PF. The
objective function is defined as f(x) = 1

2x
2 for x < 1; −1

2(x − 2)2 + 1 for 1 ≤ x < 3; and
1
4(x− 5)2 − 1

2 for x ≥ 3. We use dashed lines to indicate the two minima. The initial point is set to
0, and we set η = 0.999 and the noise variance to 1 for all methods. We run the simulation 100 times
to estimate the expectation. SGD and HA-SME escape the initial minimum and arrive near the global
minimum, while SPF stays around the initial one. A theoretical justification for the failure of SPF is
presented in Appendix F.1.

Remark 16 (A naive SDE derived from PF). Adding the diffusion coefficient
√
ηΣ to the PF in

Equation (11) gives rise to the following SDE:

dXt = U(Xt)
log(I − ηΛ(Xt))

ηΛ(Xt)
U(Xt)

⊺∇f(Xt)dt+
√

ηΣ(Xt)dWt, (27)

which we refer to as Stochastic Principle Flow (SPF). Such a straightforward combination could lead
to escaping behaviors different from SGD. For example, when considering a multi-mode function, as
illustrated in Figure 2, SGD and our proposed HA-SME can easily escape the local minimum and find
the global one, whereas SPF remains trapped in the valley of the initial local minimum. A theoretical
comparison of HA-SME and SPF on general objective functions is provided in Appendix E.2.

Remark 17 (Discussion on conditions of Lemma 14). The first condition states that the eigenvectors
of ∇2f(x) and Σ(x) are aligned. In the vicinity of minima, this condition finds support from
both theoretical analysis and empirical evidence, even in deep learning. Theoretically, Jastrzebski
et al. [25] showed that Σ(x∗) ≈ ∇2f(x∗) when the model fits all the data at x∗, which is further
empirically verified by Xie et al. [65]. For mean-square loss, Mori et al. [40] and Paquette et al.
[49] derived Σ(x) ≈ 2f(x)

B ∇2f(x∗) near local minima x∗, where B is the mini-batch size. Wang
and Wu [64] further theoretically justified the approximation for nonlinear networks. In addition, the
approximation Σ(x) ≈ ∇2f(x∗) is commonly used in local escaping analysis of SGD [23, 65, 66, 69].
Our requirement here is more relaxed, as we only need the eigenvectors to be the same, regardless of
eigenvalues.

To guarantee the existence and uniqueness of a solution for an SDE, it is often sufficient to
impose regularity conditions on both the drift and diffusion terms. In this context, we show that,
when Σ is positive definite, conditions in Lemma 14 lead to the well-posedness of the proposed
HA-SME model.
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Theorem 18. Assume f ∈ C3
b

(
Rd
)
, Σ being positive definite, and that at least one of the two

conditions in Lemma 14 is satisfied everywhere. HA-SME has a unique strong solution.

Remark 19. While for general smooth objectives, Lemma 14 requires a small stepsize, in the
particular case of quadratic functions with a constant noise covariance, the requirement of small
stepsize is not necessary, as will be discussed in Appendix F. In this case, the diffusion coefficient is
constant, and the drift term depends linearly on Xt, naturally fulfilling the Lipschitz criterion. This
is sufficient for proving the well-posedness of SDEs, independent of the stepsize.

Appendix E. Weak Approximation Error Analysis of HA-SME

In this section, we analyze the approximation errors of HA-SME in approximating SGD on general
smooth functions. Our first result establishes the order 2 weak approximation for HA-SME, as defined
in Definition 8, matching the order-best guarantee in the literature. Subsequently, we conduct a
more fine-grained analysis, elucidating the explicit dependence of the approximation error on the
smoothness parameter of the objective function. We observe a significant improvement of HA-SME
over the existing SME models. In particular, for convex objectives, the leading error term of HA-SME
is independent of the smoothness parameter.

E.1. Weak Approximation Error Guarantee

Below, we show a weak approximation error guarantee on sufficiently smooth functions. The as-
sumptions we impose are common in deriving weak approximation errors for SDEs that approximate
SGD [12, 22, 32].

Theorem 20. Assuming for any ξ, F (·; ξ) ∈ C7
b

(
Rd
)
, HA-SME is an order 2 weak approximation

of SGD.

An order 2 weak approximation is the order-best approximation guarantee known for SGD in
existing literature. Typically, achieving weak approximation results requires bounding the (high-
order) derivatives of the drift and diffusion terms of the SDE. While this condition is readily met for
SMEs, ensuring boundedness for HA-SME presents a challenge, as the drift and diffusion terms in
HA-SME are defined as limits of power series and involve logarithmic components. Our proof builds
upon the following lemma.

Lemma 21 (Regularity of the drift term and diffusion coefficient). Consider a fixed n ≥ 0. Assume
for that any ξ, we have F (·; ξ) ∈ Cn+2

b (Rd). Then, there exists a constant η0 > 0 such that, for any

η < η0, max0≤i≤d ∥[b(x)]i∥Cn < ∞ and max0≤i,j≤d

∥∥∥[D(x)D(x)
⊺]

i,j

∥∥∥
Cn

< ∞.

Remark 22. A similar proof shows that SPF also admits the order 2 weak approximation error.
Although SME-2, SPF, and HA-SME share the same order of weak approximation error, as demon-
strated in Appendix F, these models can have drastically different behaviors near critical points.
This discrepancy between the practice and the above theory arises because the classical analysis
solely emphasizes the dependence on the stepsize, while neglecting other crucial factors, such as
the norm of the Hessian matrix. To better differentiate these models, a more fine-grained analysis is
necessary, where the dependence on the problem-dependent parameters is explicitly accounted for.
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E.2. Fine-Grained Error Analysis with Hessian Dependence

Our subsequent analysis explicitly examines the dependence of the error on stepsize η, Lipschitz
parameter s := supx∈Rd ∥∇f(x)∥, and smoothness parameter λ := supx∈Rd

∥∥∇2f(x)
∥∥. Through

this detailed analysis, we differentiate the approximation guarantees of HA-SME from SME-2 and
SPF, highlighting its advantage in modeling SGD.

Theorem 23. Assume for any ξ, we have F (·; ξ) ∈ C8
b

(
Rd
)
, and for any 0 ≤ i, j ≤ d, we have

[Σ(·)]i,j ∈ C6
b

(
Rd
)
. Let X(t) be the stochastic process described by HA-SME and {xk} be the

sequence generated by SGD. There exists η0 > 0 such that for any η < η0 and T > 0, it holds that
for all x ∈ Rd,

sup
k=1,...,⌊T/η⌋

|E[u (xk) |x0 = x]− E[u (X(kη)) |X(0) = x]| ≤ O
((
η2s3 + η3s4λ3

)
M(T )

)
, (28)

where for any p ≥ 1, M(T ) := η
∑⌊T/η⌋−1

k=0

∑
1≤|J |≤8

∣∣DJuk(x)
∣∣
∞ with uk(x) = E [u(xk) | x0 = x].

Note that M(T ) characterizes how the regularity of the test function u deteriorates along the SGD
trajectory. By definition, this quantity is solely determined by the SGD dynamics, thus independent
of the SDE models.

Similarly, we derive the following results for SME-2 and SPF.

Theorem 24. Under the same settings as Theorem 23,

1. when X(t) is described by SME-2, it holds that for all x ∈ Rd,

sup
k=1,...,⌊T/η⌋

|E[u (xk) |x0 = x]− E[u (X(kη)) |X(0) = x]| ≤ O
((
η2
(
s3 + sλ2

)
+ η3s4λ3

)
M(T )

)
,

2. when X(t) is described by SPF, it holds that for all x ∈ Rd,

sup
k=1,...,⌊T/η⌋

|E[u (xk) |x0 = x]− E[u (X(kη)) |X(0) = x]| ≤ O
((
η2
(
s3 + λ

)
+ η3s4λ3

)
M(T )

)
.

The above theorems implies that HA-SME demonstrates a clear improvement in terms of de-
pendency on λ. In particular, it eliminates the dependence on λ in the leading error term involving
η2.

As is common in the finite-time approximation error analysis of SDE [12, 22, 32], we point out
that M(T ) could exhibit exponential growth in terms of T and λ in general. However, in cases when
the function is convex, the following result shows that these constants remain independent of λ.

Lemma 25. Assuming that for any ξ, F (·; ξ) ∈ C9
b

(
Rd
)

is convex, i.e., F (y; ξ) − F (x; ξ) ≥
∇F (x; ξ)

⊺
(y − x) for any x, y ∈ Rd. There exists a constant η0 such that, for any η < η0, it holds

that

M(T ) ≤ O (∥u∥C8) ,

where M(T ) is defined in Theorem 23, and O(·) hides terms that do not depend on η, λ or s.

The above lemma allows us to develop the following approximation guarantee.
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Theorem 26. Fixing T > 0, assume that the test function satisfies u ∈ C8
b

(
Rd
)
, F (·; ξ) ∈ C9

b

(
Rd
)

is convex for any ξ, and for any 0 ≤ i, j ≤ d, [Σ(·)]i,j ∈ C6
b

(
Rd
)
. Let X(t) be the stochastic

process described by HA-SME and {xk} be the sequence generated by SGD. There exists a constant
η0 > 0 such that for any η < η0, it holds that for all x ∈ Rd,

sup
k=1,...,⌊T/η⌋

|E[u (xk) |x0 = x]− E[u (X(kη)) |X(0) = x]| ≤ O
(
η2s3

)
.

Following a similar proof together with Theorem 24, we can establish that the upper bounds for
SME-2 and SPF are O

(
η2
(
s3 + sλ2

))
and O

(
η2(s3 + λ)

)
, respectively. This difference partially

explains the limitations of existing SDE models in capturing the escape dynamics as illustrated in
Figures 1 and 2.

Intuitively, the advantage of HA-SME is inherent in its construction by SBEA. Even under
Principle 3 of term selection, HA-SME incorporates infinite sequences of terms associated with λ,{(

∇2f(x)
)p}∞

p=0
, in both its drift and diffusion terms. This is in stark contrast to SME-1, SME-2,

and SPF, all of which truncate the error series at a certain point. All three of these models can be
recovered by SBEA with a proper truncated series of {gp} and {hp}: SME-1 includes g0, h0, and h1;
SME-2 includes g0, g1, h0, and h1; and SPF includes {gi}∞i=0, h0, and h1. We conjecture that the
λ-dependence in the error analysis for SME-2 and SPF cannot be improved. This limitation arises
because error terms that exhibit such λ-dependence are inherently truncated during their construction
within the SBEA framework.

Remark 27. Since Theorem 26 addresses the global point-wise approximation, the dependence on
the global gradient norm of f appears unavoidable and cannot be neglected. However, to study
the escaping behavior of SGD near a critical point, we believe that the global gradient norm s
can be relaxed to its local version. This would be an interesting result because, in the vicinity of a
critical point of a smooth function, the local gradient norm can be regarded as a negligible constant.
Consequently, the leading term in Theorem 26 would be independent of both s and λ (whereas errors
of existing SDE proxies always depend on λ).

Remark 28. If we further assume that f(·, ξ) is strongly-convex for any ξ, then M(T ) can be shown
to be uniformly bounded w.r.t. T (the proof is provided in ?? G.2.1), leading to a uniform-in-time
approximation guarantee3. A similar guarantee for SME-2 was established in the literature under the
strong-convexity assumption [31], but without considering the explicit dependence on the problem
parameters s and λ.

Appendix F. Exact Recovery of SGD by HA-SME on Quadratics

The quadratic objective, despite its simplicity, holds significance in studying the behaviors of SGD.
Its relevance comes from not only its application in linear regression but also its use in modeling the
local curvature of complex models through second-order Taylor expansions. Moreover, insights from
Neural Tangent Kernel [1, 24] suggests that in regression tasks, the objectives of sufficiently wide
neural networks closely resemble quadratic functions. The convergence of SGD on quadratic models
has been extensively studied, for example, for constant stepsizes [9] and stepsize schedulers [17, 47].

3. Our result assumes uniformly bounded gradients, which may not hold for strongly-convex functions. However, this
can be alleviated by restricting our discussion to a compact set, and modifying HA-SME to prevent it from escaping
this set, akin to the approach by Li and Wang [31].
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Additionally, the exploration of locally escaping behaviors of SGD often relies on a local quadratic
assumption [22, 23, 65, 66, 69].

In this section, we aim to compare different SDEs in terms of their ability to approximate SGD
on quadratic functions. In this context, We first discuss the failure cases of existing SDE proxies
(including SPF in Equation (27)) and then illustrate how HA-SME can accurately match SGD under
certain conditions.

F.1. Failure Cases for Existing SDEs

We now offer a theoretical justification for the phenomena observed in Figures 1 and 2 — specifically,
why SME-1, SME-2, and SPF fail in modeling SGD on quadratic functions. We restrict the noise in
this analysis to be additive and state-independent.

Assumption 1 (quadratic objecive4). The objective function f is defined as f(x) = 1
2x

⊺
Ax, where

A ∈ Rd×d is a symmetric real matrix. We denote its eigen-decomposition by A = UΛU
⊺, where

U ∈ Rd×d satisfies U⊤U = Id and Λ ∈ Rd×d is diagonal.

Assumption 2 (state-independent noise). The stochastic gradient satisfies

∇F (x, ξ) = ∇f(x) + ξ, ξ ∼ N (0,Σ),

where Σ is a constant positive semi-definite matrix.

With state-independent noise, the aforementioned SDEs applied to quadratics can be represented
as Ornstein–Uhlenbeck (OU) processes. For simplicity, this subsection considers isotropic noise, i.e.
Σ = σ2I for some scalar σ. We show that even within this highly simplified noise setting, existing
SDEs may struggle to accurately capture the escaping behaviors exhibited by SGD. The following
proposition computes the distributions of the iterates of SGD and the SDE proxies.

Proposition 29. Under Assumptions 1 and 2 with Σ = σ2I for some scalar σ, it holds that

1. The iterates of SGD (Equation (2)) with stepsize ηk ≡ η satisfy

xk ∼ N
(
U (I − ηΛ)k U

⊺
x0, η

2σ2
k−1∑
m=0

U (I − ηΛ)2m U
⊺

)
.

2. The solution of SME-1 (Equation (7)) satisfies

X(x0, t) ∼ N
(
exp(−At)x0, ησ

2U
I − exp(−2Λt)

2Λ
U

⊺
)
.

3. The solution of SME-2 (Equation (4)) satisfies

X(x0, t) ∼ N
(
exp

(
−
(
A+

η

2
A2
)
t
)
x0, ησ

2U
I − exp

(
−
(
2Λ + ηΛ2

)
t
)

2Λ + ηΛ2
U

⊺

)
.

4. We focus on the simply quadratic 1
2
x
⊺
Ax, while noting that all results in this section can easily generalize to any

quadratic function of the form 1
2
x
⊺
Ax+ bx+ c.
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4. The solution of SPF (Equation (27)), if η < 1/∥A∥, satisfies

X(x0, t) ∼ N
(
U (1− ηΛ)t/η U

⊺
x0, η

2σ2U
1− (1− ηΛ)2t/η

−2 log (1− ηΛ)
U

⊺

)
.

Now we delve into the analysis of different escaping scenarios.

Escaping Saddle Points in Figure 1(a) Consider the function defined in Figure 1(a), i.e., f
(
[x, y]

⊺)
=

1
2

(
x2 − y2

)
, where the saddle point is at (0, 0). According to Proposition 29, along the di-

rection of y, the iterate xk generated by SGD has a mean of (1 + ηλ2)
ky0 and a variance of

η2σ2
∑k−1

m=0(1 + ηλ2)
2m, which drifts away from 0 for any η > 0. Thus, SGD can successfully

escape for any stepsize η > 0. However, for SME-2, when η ≥ 2, as t → ∞, its stationary distribu-
tion is a Gaussian distribution with mean 0 and covariance ησ2

(
2Λ + ηΛ2

)−1. In such a regime
of constant stepsize, the dynamics of SME-2 converges to a stationary distribution around 0, while
SGD escapes exponentially fast. This observation confirms the numerical simulation presented in
Figure 1(a).

Escaping Minimum in Figure 1(b) Consider the objective f
(
[x, y]

⊺)
= 1

2

(
x2 + y2

)
where

all eigenvalues of the Hessian are positive. From Proposition 29, SGD will escape from (0, 0) if
η > 2 — both the mean and covariance of the iterates grow exponentially. However, for SME-1
and SME-2, their stationary distributions are zero-mean Gaussians with covariance ησ2U(2Λ)−1U

⊺

and ησ2
(
2Λ + ηΛ2

)−1, respectively. This elucidates why, in Figure 1(b), their dynamics oscillate
around the minimum.

Escaping Behavior on Bimodal Function in Figure 2 Consider the one-dimensional piece-wise
quadratic function depicted in Figure 2(a). When we initialize the point within the range [−1, 1],
the local function is quadratic. At least for the first step, the behaviors of SGD and SPF should be
accurately predicted by Proposition 29. We consider small stepsize close to 1/∥∇2f(x)∥ (which
is 1 in this case). Due to the additive noise, the iterates of SGD always have a variance no smaller
than η2σ2. Such a variance allows the iterates to escape from the local basin and reach the basin
around the global minimum at x = 5. However, after the first step, SPF would have a mean around
0 and variance also near 0 after time η. It can be shown by substituting t = η, setting ηΛ close
to 1 in Proposition 29 and by noting that limz→1

1−(1−z)2

log(1−z) = 0. This explains why SPF tends to
stay closely around the initial minimum in our simulation, as shown in Figure 2. This phenomenon
underscores the need for a more nuanced correction of the diffusion term to accurately model the
escaping behaviors of SGD in such settings.

F.2. Hardness of Approximating SGD with OU Process on Quadratics

Ideally, we would like to approximate SGD on quadratics exactly using SDEs, i.e., the iterates of
SGD share the same distribution as its continuous-time counterpart at time stamps kη for any natural
number k. However, this is not possible for general quadratic objective with arbitrary gradient
noises, even if they are additive and state-independent Gaussian noises. We provide a hard instance,
demonstrating that no OU process (even extended to complex domain as elaborated below) can
achieve this. We focus on the class of OU process because the corresponding transition kernel is
Gaussian, which matches the transition kernel of SGD (when viewed as a Markov chain) under
Assumptions 1 and 2.
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Complex OU Process We note that the iterates of SGD in this context is always real-valued and
follows a Gaussian distribution, as outlined in Proposition 295. However, to allow the continuous-
time proxy to have the maximum capability of approximating SGD, we allow it to be complex-valued.
The benefit of extending to complex space has been observed by Rosca et al. [53] when matching the
dynamics of GD by PF.

A random vector, denoted by z = x + iy, is a complex Gaussian random vector if x and y
are two (possibly correlated) real Gaussian random vectors. In the real-valued case, a Gaussian
random vector can be characterized by its mean and covariance, while in the complex-valued
case, one additional parameter called pseudo-covariance is involved. Formally, the covariance
is defined as Γ(z) = E

[
(z − E [z]) (z − E [z])H

]
and pseudo-covariance is defined as C(z) =

E
[
(z − E [z]) (z − E [z])

⊺
]
. We refer to ?? G.3.1 for a detailed discussion of properties of complex

Gaussian random vectors.
We now state the desideratum when matching the distribution of a real normal variable, denoted

as z̃, and a complex normal variable z.

Desideratum 1. The distribution of a complex Gaussian random vector z is said to match the
distribution of real normal variable z̃ if the following conditions hold:

E [Re(z)] = E [z̃] , E [Im(z)] = 0, Γ(z) = C(z) = Cov [z̃, z̃] .

The above result is equivalent to the statement: z̃ and Re(z) have the same distribution, and Im(z)
have 0 mean and 0 variance. Moreover, consider the setting described by Assumptions 1 and 2 so
that the SGD iterates are all real Gaussian random vectors. A complex OU process

dXt = BXtdt+DdWt,

is said to match the iterates of the SGD if the distributions of Xt matches those of the SGD iterates
at all corresponding time stamps, i.e. t = kη where k is the iteration index of SGD. Here B ∈ Cd×d,
D ∈ Cd×m and Wt represents an m-dimensional standard Wiener process.

Proposition 30. Consider the setting described by Assumptions 1 and 2. One can construct real
matrices A and Σ such that, for any given step-size η > 0, there exists no complex OU process6 that
matches the iterates of SGD, in the sense of Desideratum 1.

The hard instance is constructed by choosing a full-rank matrix A and a degenerate covariance
matrix Σ such that the eigenvectors of Σ are not aligned with those of A. The distributional mismatch
of the SDE and SGD can be intuitively understood through the following argument: Starting from a
deterministic initialization, after one SGD step, the covariance of the iterates is η2Σ, which is rank-
deficient; In contrast, in continuous-time dynamics, the noise injected is rotated by the misaligned
linear transformations from the drift term and the covariance matrix quickly becomes full-rank.
Please find the rigorous proof in ?? G.3.5.

5. This proposition, while initially framed for isotropic noises, can be easily generalized to anisotropic noises.
6. In our formulation of complex OU process, we use real Brownian motion Wt. It should be noted, however, that

the framework can also include complex Brownian motion [51]. Consider a complex Brownian motion defined by
W̃t = W r

t + iW i
t , where W r

t and W i
t are two independent real Brownian motions. Consequently, any SDE of the

form dXt = BXtdt+DdW̃t can be equivalently expressed as dXt = BXtdt+D
[
I iI

] [
dW r

t dW i
t

]⊺
.
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F.3. Exact Approximation From HA-SME

While in general, complex OU process cannot exactly model SGD on quadratic functions, HA-SME
when extended to complex-valued, achieves an exact match when the matrices A and Σ commute or
when the stepsize is small enough. These conditions are slightly weaker than the sufficient conditions
for the existence of our HA-SME (Lemma 14).

The following lemma outline conditions for a complex OU process to match SGD on quadratics.

Lemma 31. Consider the same setting as Proposition 30, and denote the diagonal elements of
Λ as λ1, λ2, . . . , λd. After time kη for k ≥ 0, the mean of X(kη) equals the mean of xk, i.e.,
E [X(kη)] = E [xk], if and only if B = U log(1−ηΛ)

η U
⊺
. In addition,

1. the covariance of X(kη) equals the covariance of xk if and only if for all 0 ≤ i, j ≤ d,

[(
U

⊺
D
) (

U
⊺
D
)H]

i,j
=

[
U

⊺
ΣU
]
i,j

(
log(1− ηλi) + log(1− ηλj)

)
ηλiλj − (λi + λj)

. (29)

2. pseudo-covariance of X(kη) equals the covariance of xk if and only if for all 0 ≤ i, j ≤ d,

[(
U

⊺
D
) (

U
⊺
D
)⊺]

i,j
=

[
U

⊺
ΣU
]
i,j

(log(1− ηλi) + log(1− ηλj))

ηλiλj − (λi + λj)
. (30)

Satisfying any of the existence conditions for HA-SME in Lemma 14 ensures the existence of
matrix D that adheres to the two required conditions in Lemma 31. Under these existence conditions,
the matrices, whose elements are defined in the RHS of Equation (29) and Equation (30), become
the same real positive semi-definite matrix. By taking the square roots of this matrix’s eigenvalues,
we can construct D that satisfies both Equations (29) and (30), thereby achieving an exact match for
SGD on quadratic functions.

Theorem 32. Under Assumptions 1 and 2, the solution of HA-SME exactly matches the iterates of
SGD if either of the following two conditions holds:

1. A and Σ commute, and ηλi ̸= 1 for all eigenvalues λi of A.

2. Σ is positive definite, and η ≤ 1
∥A∥ min

{
1−

√
1− λmin(Σ)√

dλmax(Σ)
, 1−

√
2
2

}
.

To the best of our knowledge, this marks the first instance of an SDE that precisely mirrors the
distribution of SGD, albeit restricted to quadratic functions.

Remark 33. The first condition in this theorem relaxes the constraints from Lemma 14 to allow
larger stepsizes. As noted in Rosca et al. [53], complex flow is helpful for capturing the instabilities
caused by large stepsizes in GD on quadratics. This is also the case for HA-SME. When η < 1/∥A∥,
HA-SME operates in real space. However, when η > 1/∥A∥, imaginary components emerge due to
the logarithmic function.
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Appendix G. Detailed Proofs

G.1. Construction of HA-SME

G.1.1. PROOF SKETCH OF LEMMA 12

We start with a sketch of the proof for Lemma 12, where we first determine the functional structure
of the components gi’s and hi’s in the SBEA ansatz in Equation (12) and then determine their exact
expression using a generating function based approach. We prove via induction. The complexity in
our analysis emerges from identifying all possible terms generated by the expansion of Ll1Ll2 · · · Lln

in Equation (18). The collective expansion of these operators unfolds as a multinomial series. This
sets our work apart from the PF, as in the latter, in the absence of diffusion terms, the expansion
generates only a monomial. The rigorous proofs of the statements made in the induction are provided
afterwards.

Lemma 10 is the building block for our analysis, it can be seen from the following.

Proof for Lemma 10. In the semi-group expansion of Equation (17), consider the term 1
n!η

nLnu(x)
for 1 ≤ n ≤ p+ 1. Since we already have ηn, to get ηp+1 , Lnu(x) must contribute ηp+1−n. As Li

contains ηi, we obtain the conclusion.

Before providing the inductive proof, statement (1) in Lemma 12, i.e. the uniqueness of gp and
hp, can be easily obtained from the following argument.

Proof of point (1) in Lemma 12. We first give examples for solving the first few gi and hi, then we
use an argument of induction to finish the proof. For the terms associated with η0, Equation (14)
and Equation (17) already match, i.e., u(x). For terms associated with η, we can solve that g0(x) =
−∇f(x) and h0(x) = 0. Considering terms with η2, we have for discrete-time (Equation (14))

η2 · 1
2
∇2u(x) :

(
∇f(x)∇f(x)

⊺
+Σ(x)

)
,

and for continuous-time(Equation (17))

η2 ·

g1(x)
⊺∇u(x) +

1

2
h1(x) : ∇2u(x)︸ ︷︷ ︸

from ηLu(x)

+
1

2
(−∇f · ∇(−∇f · ∇u))(x)︸ ︷︷ ︸

from 1
2
η2L2u(x)

 .

Note that this holds for any proper u, so we group terms associated with ∇u and ∇2u and match the
terms in discrete-time and continuous-time. In this way, we obtain 2 equations, which gives us the
following g1 and h1:

g1(x) = −1

2
∇2f(x)∇f(x) and h1(x) = Σ(x). (31)

Now assume we already know {gi}1≤i<p and {hi}1≤i<p. We will proceed to solve gp and hp.
This is done by solving terms with η of order p+ 1. The terms associated with ηp+1 are shown in
Lemma 10. When n = 1, we will have linear terms with gp and hp, respectively. When n ≥ 2, since
l1 + l2 + · · ·+ ln could only sum to p− 1, we only have gi and hi for i < p. Given that we assume
{gi}1≤i<p and {hi}1≤i<p are already solved, by grouping terms with ∇u and ∇2u, we obtain two
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linear equations and can solve for gp and hp. Note that the coefficients for gp and hp in these two
linear equations are non-zero, therefore, the solution exists and is unique.

We now give a sketch of the inductive proof of the second statement in Lemma 12, on the
functional structure of the components hp’s and gp’s. Recall point (2) in Lemma 12: The components
gp and hp admit the form

gp(x) = cp ·
(
∇2f(x)

)p∇f(x), (32)

hp(x) =

p−1∑
k=0

ak,p−1−k ·
(
∇2f(x)

)k
Σ(x)

(
∇2f(x)

)p−1−k
, (33)

where {ck} and {ak,p−1−k} are constants to be determined. Let q be the induction index and let
Equations (20) and (21) be the induction hypothesis for q = p ≥ 1. Such a hypothesis clearly holds
for q = 1 (recall the calculation in Remark 11). The following lemma shows that the nice functional
structures in Equations (20) and (21) are preserved for q = p+ 1.

Lemma 34. Under Principle 3, suppose that Equations (20) and (21) hold in step q = p. They also
hold for q = p+ 1.

Proof sketch. To establish the induction, we need to enumerate all possible terms generated by the
expansion in Equation (18). Viewing the application of each Lli as a layer, this process entails a
dual-stage selection mechanism:

1. Within each layer we consider the terms generated from either ηligli · ∇ or ηli
2 hli : ∇2 in Lli .

2. For a fixed layer, we consider how the operators ∇ and ∇2 are applied on the subsequent layer.
For example, for the operator ∇, it could be acting on gli+1

to yield a concrete function ∇gli+1
,

or it can engage with the operator ∇2 from the subsequent layer to form the operator ∇3.

Finally, for every possible sequence-of-selections made in the above mechanism, any
remaining differential operators ∇j will be applied on the test function u. Hereafter, we use the
typewriter font to emphasize that the sequence-of-selections is with respect to the above
selection mechanism.

Unraveling all potential selection in Equation (18) is inherently difficult. However, Principle 3
allows us to ensures the particular structures of gp and hp. For the following discussion, we introduce
the concept of free-nabla-j: During unraveling of the operator compositions in Equation (18),
a free-nabla-j is generated if we obtain an operator ∇j during any stage of the above selection
mechanism.

We have the following result.

Lemma 35. Once free-nabla-j, for j ≥ 3, is generated, one can terminate the subsequent
operator expansion as all the resulting terms will be excluded by Principle 3.

See an elaborated discussion in ?? G.1.2. From this observation, the expansion of Equation (18)
can be significantly simplified and one can show that if the induction in Equations (20) and (21)
holds for q = p, gp+1 and hp+1 admit the following form:

gp+1(x) = cp+1 ·
(
∇2f(x)

)p+1∇f(x) (34)
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hp+1(x) =

p∑
k=0

(ak,p−k + bk,p−k · ∥∇f(x)∥2) ·
(
∇2f(x)

)k
Σ(x)

(
∇2f(x)

)p−k
. (35)

Further, a detailed examination of the combinations reveals the following result.

Lemma 36. bk,p−k ≡ 0.

The above results together establish the induction step of q = p+ 1.

Once we have determine the functional structure of gp and hp, the next step is to determine
the coefficients ai,j and cp. As we obtain the structures of gp and hp by induction, the coefficients
admit recursion forms. To resolve these coefficients, we utilize an argument based on the generating
functions. As a result, we obtain point (3) in Lemma 12.

G.1.2. PROOF OF LEMMA 34

To establish the inductive step in Lemma 34, we prove the following points in this section.

(a) We first prove Lemma 35, which allows us to significantly simplify the expansion of the
compositions of the generators Li’s.

(b) We analyze all possible terms generated without incurring free-nabla-j, for j ≥ 3, and
find that there are only three possibilities. This leads to the functional structure described in
Equations (34) and (35).

(c) We further provide the recursive definitions of the coefficients {ci}, {ai,j}, and {bi,j}. This
allows us to conclude that bk,p−k ≡ 0 (Lemma 36) and also it allows us to calculate the limit
of the power series {gp} and {hp}, i.e. point (3) in Lemma 12.

G.1.3. PROOF OF LEMMA 35

Let us recall the concept of free-nabla-j: During unraveling of the operator compositions in
Equation (18), a free-nabla-j is generated if we obtain an operator ∇j during any stage of the
selection mechanism mentioned in the proof sketch of Lemma 34.

In the following, we show that once free-nabla-j for j ≥ 3 is generated in a sequence-of-selections
mentioned in the proof sketch of Lemma 34, the term resulting from this sequence is excluded by
Principle 3, i.e. it contains at least one of the terms ∇(r)f(x),∇(s)u(x) and ∇(m)Σ(x) for r, s ≥ 3
and m ≥ 1. To establish this result, there are two possibilities once free-nabla-j for j ≥ 3 is
generated:

1. The free-nabla-j operator is to be directly applied on the test function u. In this case,
all the resulting term from this sequence-of-selections contains ∇(j)u(x), j ≥ 3,
which is excluded by Principle 3.

2. The free-nabla-j operator is to be applied on a generator Li, i.e. we encounter the term

∇(j)(ηigi · ∇+
1

2
ηihi : ∇2). (36)
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One can prove that (see the discussion below) all terms in the expansion of the above expression
either is excluded by Principle 3 or it contains free-nabla-q for q ≥ j7. Consequently, the
order j does not decrease after the operator free-nabla-j being applied on a generator Li.

One can repeat the case 2 until the free-nabla-j operator is directly applied on the test function
u, which reduces to case 1. From the above argument, all terms generated are to be excluded by
Principle 3.

G.1.4. PROOF OF THE FUNCTIONAL STRUCTURES IN EQUATIONS (34) AND (35)

According to Lemma 35, we only need to consider the sequence-of-selections mentioned
in the proof sketch of Lemma 34 such that no free-nabla-j operator is generated, for j ≥ 3. It
turns out that there are only three possible sequence-of-selections, as depicted in Figure 3.

In this section, we elaborate on these three possible sequences, based on which we then establish
the functional structures in Equations (34) and (35). In the meantime, we also derive the recursive
definitions of the coefficients {ci}, {ai,j}, and {bi,j}.

Notation For the ease of the proof, we define for n ≥ 1, m ≥ 0 and sequence {ci}+∞
i=0 ,

ρ
(
n,m, {ci}+∞

i=0

)
=

∑
l1+l2+...ln=m

cl1cl2 · · · cln ,

i.e., sum of all possible combinations of n items from sequence {ci}+∞
i=0 such that the sum of

indices is m. A way to look at this is through generating functions. Let c(x) =
∑+∞

i=0 cix
i, then

ρ
(
n,m, {ci}+∞

i=0

)
is equivalent to the coefficient of xm in c(x)n.

Solve for gp We claim that we can solve gp by matching terms with ∇u. To show the claim, we
observe that ∇u terms could only be achieved by choosing gli and never selecting hli for for all
1 ≤ i ≤ n. This is the case of our Sequence Type I illustrated in Figure 3(a). To see why this is the
case, we start with Lln , since we want terms with ∇u(x), we must select gln instead of hln . Next,
when selecting from Lln−1 , we could also only select gln−1 , since if hln−1 is chosen, we would have
hln−1 : ∇2 (gln · ∇u). The ∇2 operation must be applied to gln otherwise we will have ∇2u instead
of ∇u. However, when we apply the gradient operator twice in gln , there must be a third-order
gradient factor, which we choose to exclude, popping up as we have gln of form Equation (20).
Following this logic recursively, we have that ∇u terms contain only gi (with 0 ≤ i ≤ p− 1). Also
note that the gradient operator in gli · ∇ must be applied to gli+1

except when i = n where the
gradient operator is applied to u, otherwise we will have ∇2 operator and face the same issue as
when we selecting hli .

Since now in the ∇u terms only contains gp (with non-zero coefficient) without hp, we can solve
for gp. Again, since the gradient operator from gli (except i = n) could only be used for the next
gli+1

, specifically applied on the ∇f(x) factor of gli+1
otherwise we would have third-order gradient

7. For simplicity, we take j = 3 as example. For j > 3, the logic is similar. One has for the first term in Equation (36)

∇(3) (gi · ∇) = gi · ∇(4)︸ ︷︷ ︸
free-nabla-4

+ ∇gi · ∇(3)︸ ︷︷ ︸
free-nabla-3

+∇2gi · ∇(2) +∇3gi · ∇︸ ︷︷ ︸
every term contains ∇rf , r ≥ 3

.

By the product rule of the differential and based on the induction in Equation (34), one can check that in the expansions
of ∇2gi and ∇3gi, all terms contain ∇rf , for r ≥ 3. Hence, the last two terms in the above expression are excluded
by Principle 3. The second term in Equation (36) can be excluded with a similar argument.
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Ll1 ηl1gl1 · ∇ 1
2η

l1hl1 : ∇2

Ll2 ηl2gl2 · ∇ 1
2η

l2hl2 : ∇2

· · ·
Lli ηligli · ∇ 1

2η
lihli : ∇2

Lli+1 ηli+1gli+1
· ∇ 1

2η
li+1hli+1

: ∇2

· · ·
Lln ηlngln · ∇ 1

2η
lnhln : ∇2

(a) Sequence Type I

Ll1 ηl1gl1 · ∇ 1
2η

l1hl1 : ∇2

· · ·
Lli ηligli · ∇ 1

2η
lihli : ∇2

Lli+1 ηli+1gli+1
· ∇ 1

2η
li+1hli+1

: ∇2

Lli+2 ηli+2gli+2
· ∇ 1

2η
li+2hli+2

: ∇2

· · ·
Lln ηlngln · ∇ 1

2η
lnhln : ∇2

(b) Sequence Type II

Ll1 ηl1gl1 · ∇ 1
2η

l1hl1 : ∇2

Ll2 ηl2gl2 · ∇ 1
2η

l2hl2 : ∇2

Ll3 ηl3gl3 · ∇ 1
2η

l3hl3 : ∇2

· · ·
Lli ηligli · ∇ 1

2η
lihli : ∇2

· · ·
Lln ηlngln · ∇ 1

2η
lnhln : ∇2

(c) Sequence Type III

Figure 3: Illustrations of possible combinations in the construction of HA-SME. In constructing
HA-SME, we examine the product of Ll1Ll2 · · · Lln , where each Lli contains two terms. The red
arrows indicate the remaining Sequences after filtering out those with higher-order derivatives of f ,
u, or Σ, which are excluded in the construction rules of HA-SME. These arrows originate from ∇
or ∇2 and lead to gli or ∇, demonstrating how the ∇ from the previous operator is applied in the
subsequent operator. The dashed arrows represent the exclusion of repeated operations.

of f(x), we have n− 1 factors of ∇f(x) changed to ∇2f(x) and only one remains. Therefore, gp is
of form Equation (20).

The remaining proof for finding cp is almost the same as the proof for Theorem A.2 of Rosca
et al. [53]. The resulting ci is the coefficients of the Taylor expansion of c(x) = log(1−x)

x , i.e.,
c(x) =

∑+∞
i=0 cix

i.

Solve for hp In the proof gp, we have shown that the ∇u terms allow us to solve gp, and now
we proceed to solve the form of hp by considering ∇2u terms. Again, to solve hp, we need terms
with the order of η summing up to p+ 1 and consider Lemma 10. Let us discuss what are the valid
possibilities of selections from such an expansion.

Let us call the selection between gli and hli the i-th step of selection. Assume we have the
gradient operator ∇q after the i-th step. If in the next step, we select gli+1

· ∇, since gli+1
has only

one factor of ∇f , which means we can only apply the gradient operator once on this gli+1
, the order

of the remaining gradient operator passed to the next step is still at least q. If in the i+ 1-th step, we
select hli+1

: ∇2 instead, all the gradient operators should go to the next step (otherwise, if applied
on hli+1

, factors we exclude will emerge), resulting in a ∇q+2. Note that by our construction, in the
end, the operator applied on u should not exceed 2. Therefore no matter what we select from the first
step, which produces at least ∇, we should only select gli instead hli for i > 1. Because otherwise
we would have at least ∇3 passing to u. According to the above reasoning, we have only two cases
left:

1. If we select gl1 in the first step, which corresponds to Figure 3(b), then in order to get ∇2u at
the end, we will need at a step i with 2 ≤ i ≤ n, the gradient operator is not applied to gli but
passed to the next step. For other steps, the operator is applied to g. This is the only way to
have ∇2u. Plugging in the solution of gi, we know that the resulting term in Equation (17) is
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of form

ηp+1
p−1∑
s=0

bs,p−1−sTr
{
∇f(x)

(
∇2f(x)

)s∇2u(x)
(
∇2f(x)

)p−1−s∇f(x)
⊺
}
,

where bs,p−1−s can be written as

bs,p−1−s

=

p+1∑
n=2

1

n!

n∑
i=2

n−i∑
q=0

(
n− i

q

)
ρ
(
q + 1, p− 1− s− q, {ck}+∞

k=0

)
ρ
(
n− 1− q, s+ q − n+ 2, {ck}+∞

k=0

)
,

(37)

where ck = − 1
1+k , the coefficient associated with gi. Note that the coefficient is for terms

with ∇2f(x) to the power of s on the left of ∇2u and p− 1− s on the right. To see why this
is the case, we have the following selection procedure:

(a) Such terms can be found in ηn

n! Lnu for n = 2 to p+ 1.

(b) As mentioned before, we have at step 2 ≤ i ≤ n, the gradient operator is not applied
to gli . Note that in this case the ∇2f(x) coming from gli will contribute to the RHS of
∇2u. Then we will have for the remaining steps of selection,

∇2
(
gli+1

· ∇
(
gli+2

· ∇ (· · · gln · ∇u)
))

.

(c) According to Lemma 40, there are
(
n−i
q

)
combinations such that the number of ∇g

resulting in the RHS of ∇2u is q.

(d) For the RHS of ∇2u, we have gli and q of ∇g selected from the last step. Note that
gk would contains

(
∇2f(x)

)k for k ≥ 0, and for the q of ∇g, we obtain additional(
∇2f(x)

)q because of the ∇ operator. Therefore, the total number of ∇2f(x) on the
RHS of ∇2u comes from gli and q of ∇g and an additional q. Therefore, we select from
q + 1 of g, whose indices sum up to p− 1− s− q (so that the total order of ∇f(x) is
p− 1− s− q + q = p− 1− s).

(e) For the LHS of ∇2u, we have g1, {∇glk}i−1
k=2 and n− i− q of ∇g selected according to

Step 1c. Following similar logic as the last step, in total we select 1+ i−2+n− i− q =
n− 1− q of g, whose indices sum up to s+ q − n+ 2.

We note that for any matrix A, Tr{A} = Tr
{
A

⊺}, so the traces associated with bs,m and
bm,s are the same for s,m ≥ 0. According to Lemma 37, bs,m + bm,s = 0 for m + s ≥ 1.
Therefore, the coefficients cancel each other. For the case of bs,s with s ≥ 1, Lemma 37 also
implies bs,s + bs,s = 0 =⇒ bs,s = 0.

Therefore, in summary, in this whole case, there is no term generated.

2. If we select hl1 in the first step, which corresponds to Figure 3(c), then in order to get ∇2u at
the end, we will in the following steps apply the gradient at glk for k ≥ 2 at once and pass to
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the next step the other gradient operator. In this way, all terms of Equation (17) with order of η
summing to p+ 1 and coming from 1

n!Lnu, has the following form:

1

2
ηp+1ãi,j,k Tr

{(
∇2f(x)

)i
Σ(x)

(
∇2f(x)

)j ∇2u(x)
(
∇2f(x)

)k}
, (38)

for some absolute constants ãi,j,k with i+ j + k = p− 1. The reason why we have this form
is because of our induction assumption and Lemma 40. The reason why i+ j + k = p− 1 is
that to have ηp+1, we must have l1 + l2 + · · ·+ ln = p+ 1− n. For the first step, we have
hl1 . According to the induction assumption, it can offer (l1 − 1)-th order of ∇2f(x). For the
remaining steps, we have ∇gls , which can offer (ls+1)-th order of ∇2f(x). Therefore, in total
we have ∇f(x) to the power of l1−1+l2+l3+· · ·+ln+n−1 = p+1−n−1+n−1 = p−1.
According to the property of the trace operator, Equation (38) can also be written as

1

2
ηp+1ãi,j,k Tr

{(
∇2f(x)

)k+i
Σ(x)

(
∇2f(x)

)j ∇2u(x)
}
.

Now we try to match the ηp+1 terms in Equation (14) and Equation (17). Note that in
Equation (14), the term associated with ηp+1 for p ≥ 2 is 0, therefore we have the following
equality for solving hp:

1

2
ηp+1

(
Tr
{
hp(x)

⊺∇2u(x)
}
+

p+1∑
n=2

ãi,j,k Tr
{(

∇2f(x)
)k+i

Σ(x)
(
∇2f(x)

)j ∇2u(x)
})

= 0,

which implies (since this should hold for any u)

hp(x) = −
p+1∑
n=2

ãi,j,k
(
∇2f(x)

)j
Σ(x)

(
∇2f(x)

)k+i
.

So far, by induction, we have proved that hp has the form of Equation (20) (regardless of the
constants). Next we will try to find these constants. We will stick to the notation in Lemma 12,
i.e., using ai,j for the rest of the proof, i.e.,

hp(x) =

p−1∑
k=0

ak,p−1−k ·
(
∇2f(x)

)k
Σ(x)

(
∇2f(x)

)p−1−k
.

Similar to the proof of Equation (37), we have

ak,p−1−k

= −
p∑

n=2

1

n!

k∑
l=0

p−1−k∑
r=0

al,r

n−1∑
q=0

(
n− 1

q

)
ρ
(
q, k − q − l, {ck}+∞

k=0

)
ρ
(
n− 1− q, p− k − n+ q − r, {ck}+∞

k=0

)
.

(39)

The reason is that we have the following selection process:

(a) Such terms can be found in ηn

n! Lnu for n = 2 to p+ 1.
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(b) We try to find term with

Tr
{(

∇2f(x)
)p−1−k

Σ
(
∇2f(x)

)k ∇2u
}
,

which can be found from Sequence(
∇2f(x)

)l
Σ
(
∇2f(x)

)r︸ ︷︷ ︸
hl1

:
(
∇2f(x)

)k−l ∇2u
(
∇2f(x)

)p−1−k−r
.

(c) For
(
∇2f(x)

)k, we can have
(
∇2f(x)

)l coming from hl1 . Also hl1 can contribute to
(∇f(x))p−1−k with

(
∇2f(x)

)r. That is why we have summations over l and r with
coefficients al,r.

(d) As mentioned before, we have for the selection at step 2 ≤ k ≤ n,

∇2 (gl2 · ∇ (gl3 · ∇ (· · · gln · ∇u))) .

According to Lemma 40, there are
(
n−1
q

)
combinations such that the number of ∇g

resulting in the LHS of ∇2u is q.

(e) For the LHS of Σ(x), we have q of ∇g selected from the last step. The indices should
sum up to k − q − l, since we will generate additional q of ∇2f(x) and hl1 provides l.
Therefore, we have coefficient ρ

(
q, k − q − l, {ck}+∞

k=0

)
similarly for the RHS.

G.1.5. PROOF OF LEMMA 36 AND THE RECURSIVE EXPRESSIONS OF {ci} AND {ai,j}
Lemma 37. Recall the recursive definition of bs,m in Equation (37),

bs,m =

s+m+2∑
n=2

1

n!

n∑
i=2

n−i∑
q=0

(
n− i

q

)
ρ
(
q + 1,m− q, {ck}+∞

k=0

)
ρ
(
n− 1− q, s+ q − n+ 2, {ck}+∞

k=0

)
,

where s,m ≥ 0, s+m ≥ 1, ck = − 1
k+1 . We have bs,m + bm,s = 0.

Proof. Let c(x) =
∑+∞

k=0 ckx
k, and we know that c(x) = log(1−x)

x . Define

b(x, y) =

+∞∑
s,m≥0

bs,mxsym.

Then we have

b(x, y)

=
+∞∑

s,m≥0

xsym
s+m+2∑
n=2

1

n!

n∑
i=2

n−i∑
q=0

(
n− i

q

)
ρ
(
q + 1,m− q, {ck}+∞

k=0

)
ρ
(
n− 1− q, s+ q − n+ 2, {ck}+∞

k=0

)
=

+∞∑
n=2

1

n!

+∞∑
s+m≥n−2

xsym
n∑

i=2

n−i∑
q=0

(
n− i

q

)
ρ
(
q + 1,m− q, {ck}+∞

k=0

)
ρ
(
n− 1− q, s+ q − n+ 2, {ck}+∞

k=0

)
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=
+∞∑
n=2

1

n!

+∞∑
s+m≥n−2

xsym
n−2∑
q=0

n−q∑
i=2

(
n− i

q

)
ρ
(
q + 1,m− q, {ck}+∞

k=0

)
ρ
(
n− 1− q, s+ q − n+ 2, {ck}+∞

k=0

)
=

+∞∑
n=2

1

n!

+∞∑
s+m≥n−2

xsym
n−2∑
q=0

(
n− 1

q + 1

)
ρ
(
q + 1,m− q, {ck}+∞

k=0

)
ρ
(
n− 1− q, s+ q − n+ 2, {ck}+∞

k=0

)
=

+∞∑
n=2

1

n!

+∞∑
s+m≥n−2

xsym
n−2∑
q=1

(
n− 1

q

)
ρ
(
q,m− q + 1, {ck}+∞

k=0

)
ρ
(
n− q, s+ q − n+ 1, {ck}+∞

k=0

)
=

1

y

+∞∑
n=2

1

n!

+∞∑
s+m≥n−2

xsym+1
n−2∑
q=1

(
n− 1

q

)
ρ
(
q,m− q + 1, {ck}+∞

k=0

)
ρ
(
n− q, s+ q − n+ 1, {ck}+∞

k=0

)
,

where in the forth equality, we used hockey-stick identity [54], and in the fifth equality, we replace q
with q − 1. Note that

+∞∑
s+m≥n−2

xsym+1
n−2∑
q=1

(
n− 1

q

)
ρ
(
q,m− q + 1, {ck}+∞

k=0

)
ρ
(
n− q, s+ q − n+ 1, {ck}+∞

k=0

)
(40)

is equivalent to

(yc(y) + xc(x))n−1 c(x)− (xc(x))n−1 c(x). (41)

To see why this is the case, let us first looked at

(yc(y) + xc(x))n−1 c(x).

To have ym+1, we can select yc(y) from (yc(y) + xc(x))n−1 for q times, which results in coefficients(
n−1
q

)
and ρ

(
q,m− q + 1, {ck}+∞

k=0

)
. For xs, we select n−1−q of xc(x) from (yc(y) + xc(x))n−1,

and obtain ρ
(
n− q, s+ q − n+ 1, {ck}+∞

k=0

)
. Note that in Equation (40), the sum of q starts from 1,

which means we have not considered the case where yc(y) is never selected in (yc(y) + xc(x))n−1.
That is why in Equation (41), we subtract (xc(x))n−1 c(x).

Next, we proceed with

b(x, y) =
1

y

+∞∑
n=2

1

n!

(
(yc(y) + xc(x))n−1 c(x)− (xc(x))n−1 c(x)

)
=

1

y

+∞∑
n=2

1

n!
(yc(y) + xc(x))n−1 c(x)− 1

y

+∞∑
n=2

1

n!
(xc(x))n−1 c(x). (42)

For the first part, we have

1

y

+∞∑
n=2

1

n!
(yc(y) + xc(x))n−1 c(x)

=
c(x)

y (yc(y) + xc(x))

+∞∑
n=2

1

n!
(yc(y) + xc(x))n
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=
c(x)

y (yc(y) + xc(x))

(
eyc(y)+xc(x) − 1− (yc(y) + xc(x))

)
,

where in the last equality we used Taylor expansion ex =
∑+∞

n=0
1
n!x

n. Plugging in the definition of
c(x), we have

c(x)

y (yc(y) + xc(x))

(
eyc(y)+xc(x) − 1− (yc(y) + xc(x))

)
=

log(1− x)

xy log ((1− x)(1− y))
((1− x)(1− y)− 1− log ((1− x)(1− y)))

=
log(1− x)

xy log ((1− x)(1− y))
(xy − x− y − log ((1− x)(1− y))) .

For the second part of Equation (42),

1

y

+∞∑
n=2

1

n!
(xc(x))n−1 c(x) =

1

xy

+∞∑
n=2

1

n!
(xc(x))n

=
1

xy

(
exc(x) − 1− xc(x)

)
=

1

xy
(1− x− 1− log(1− x))

=
1

xy
(−x− log(1− x)) .

Combining the two parts, we get

b(x, y) =
log(1− x)

xy log ((1− x)(1− y))
(xy − x− y − log ((1− x)(1− y))) +

1

xy
(x+ log(1− x))

=
log(1− x)

xy log ((1− x)(1− y))
(xy − x− y) +

1

y
.

Now to prove the required result, we consider the generator function

b(x, y) + b(y, x)

=
log(1− x)

xy log ((1− x)(1− y))
(xy − x− y) +

1

y
+

log(1− y)

xy log ((1− x)(1− y))
(xy − x− y) +

1

x

=
1

xy
(xy − x− y) +

1

x
+

1

y

= 1.

Note that the coefficients of b(x, y) + b(y, x) for xsym with s+m ≥ 1 is bs,m + bm,s, which means

bs,m + bm,s = 0.
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Lemma 38. Define a0,0 = 1 and for s,m ≥ 0 and s +m ≥ 1, recall the recursive definition in
Equation (39),

as,m

= −
s+m+1∑
n=2

1

n!

s∑
l=0

m∑
r=0

al,r

n−1∑
q=0

(
n− 1

q

)
ρ
(
q, s− q − l, {ck}+∞

k=0

)
ρ
(
n− 1− q,m+ 1− n+ q − r, {ck}+∞

k=0

)
,

where ck = − 1
1+k . Then we have

a(x, y) =
+∞∑

s,m≥0

as,mxsym =
log((1− x)(1− y))

xy − x− y
.

Proof. We begin with

a(x, y)

=

+∞∑
s,m≥0

as,mxsym

= 1−
+∞∑

s,m≥1

xsym
s+m+1∑
n=2

1

n!

s∑
l=0

m∑
r=0

al,r

n−1∑
q=0

(
n− 1

q

)
ρ
(
q, s− q − l, {ck}+∞

k=0

)
· ρ
(
n− 1− q,m+ 1− n+ q − r, {ck}+∞

k=0

)
= 1−

+∞∑
n=2

1

n!

+∞∑
s+m≥n−1

xsym
s∑

l=0

m∑
r=0

al,r

n−1∑
q=0

(
n− 1

q

)
ρ
(
q, s− q − l, {ck}+∞

k=0

)
· ρ
(
n− 1− q,m+ 1− n+ q − r, {ck}+∞

k=0

)
Similar to the proof technique used in Lemma 37, we note that

+∞∑
s+m≥n−1

xsym
s∑

l=0

m∑
r=0

al,r

n−1∑
q=0

(
n− 1

q

)
ρ
(
q, s− q − l, {ck}+∞

k=0

)
ρ
(
n− 1− q,m+ 1− n+ q − r, {ck}+∞

k=0

)
is equivalent to

a(x, y) (xc(x) + yc(y))n−1 ,

where c(x) =
∑+∞

k=0 ckx
k = log(1−x)

x . To constitute xsym, we first select al,rxlyr from a(x, y), and
then select q times xc(x) from (xc(x) + yc(y))n−1.

Then we have

a(x, y) = 1−
+∞∑
n=2

1

n!
a(x, y) (xc(x) + yc(y))n−1

= 1− a(x, y)

xc(x) + yc(y)

+∞∑
n=2

1

n!
(xc(x) + yc(y))n
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= 1− a(x, y)

xc(x) + yc(y)

(
exc(x)+yc(y) − 1− (xc(x) + yc(y))

)
.

Plugging in the definition of c(x), we obtain

a(x, y) = 1− a(x, y)

log ((1− x)(1− y))
((1− x)(1− y)− 1− log ((1− x)(1− y)))

= 1− a(x, y)

log ((1− x)(1− y))
(xy − x− y − log ((1− x)(1− y))) .

Solving this equation for a(x, y) gives us the desired result.

G.1.6. PROOF OF THEOREM 13

Next, we need to show that b(x) and D(x) is convergent. Solving for b(x) is similar to the proof of
Rosca et al. [53, Theorem A.2]. Here, we present the derivation of the diffusion term. We have

D(x) =

+∞∑
p=0

ηphp(x) =

+∞∑
p=0

ηp
p−1∑
k=0

ak,p−1−k ·
(
∇2f(x)

)k
Σ(x)

(
∇2f(x)

)p−1−k
,

where ak,p−1−k is determined in Lemma 12. The above equation implies

U
⊺DU = U

⊺

+∞∑
p=0

ηp
p−1∑
k=0

ak,p−1−k ·
(
∇2f(x)

)k
Σ(x)

(
∇2f(x)

)p−1−k

U

=
+∞∑
p=0

ηp
p−1∑
k=0

ak,p−1−k · ΛkU
⊺
Σ(x)UΛp−1−k.

Since Λ is a diagonal matrix, we have

[
U

⊺DU
]
i,j

=

+∞∑
p=0

ηp
p−1∑
k=0

ak,p−1−k · λk
i

[
U

⊺
Σ(x)U

]
i,j

λp−1−k
j

= η

+∞∑
p=0

p−1∑
k=0

ak,p−1−k · (ηλi)
k
[
U

⊺
Σ(x)U

]
i,j

(ηλj)
p−1−k

= η

+∞∑
k=0

+∞∑
p=k+1

ak,p−1−k · (ηλi)
k
[
U

⊺
Σ(x)U

]
i,j

(ηλj)
p−1−k

= η
[
U

⊺
Σ(x)U

]
i,j

+∞∑
k=0

+∞∑
q=0

ak,q · (ηλi)
k(ηλj)

q,

where in the last equality we let q = p− 1− k. Then according to Lemma 12, we have[
U

⊺DU
]
i,j

= η
[
U

⊺
Σ(x)U

]
i,j

a(ηλi, ηλj),

where a(x, y) = log(1−x)(1−y)
xy−(x+y) .
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G.1.7. PROOF OF THE WELL-POSEDNESS OF HA-SME

Proof for Lemma 14. In the first condition, the matrix U
⊺
ΣU becomes diagonal. We can check that

the diagonal elements are always positive definite, and by taking square root of the eigenvalues, we
obtain

D = U

√
Λ̃η

log (1− ηΛ)2

(1− ηΛ)2 − 1
U

⊺
, (43)

where Σ = U Λ̃U
⊺ and ∇2f(x) = UΛU

⊺.
For the second condition, we consider small stepsize regime. We will proceed to show that the

RHS matrix of Equation (24), denoted as M is positive semi-definite, so that such a square root
always exists. Consider matrix K, whose (i, j)-th element is defined as

Ki,j =
log(1− ηλi) + log(1− ηλj)

(1− ηλi)(1− ηλj)− 1
.

We consider small η, i.e., η <
1−

√
2

2
∥∇2f(x)∥ , therefore, K is real. The matrix M can then be written as

M = ηU
⊺
ΣU ⊙K = ηU

⊺
ΣU ⊙ (1+K − 1) = η

(
U

⊺
ΣU + U

⊺
ΣU ⊙ (K − 1)

)
,

where 1 is a all-one matrix. Now since η > 0, to determine the positive semi-definiteness of M, it is
sufficient to determine positive semi-definiteness of U⊺

ΣU + U
⊺
ΣU ⊙ (K − 1).

Note that for matrix U
⊺
ΣU , since U is orthogonal, it only changes the eigenspace of Σ, but does

not change the eigenvalues. To see why this is the case, assume λ is a eigenvalue of Σ with v being
the corresponding eigenvector. Then we have

Σv = λv.

Then U−1v is a eigenvector for U⊺
ΣU with eigenvalue λ, since

U
⊺
ΣUU−1v = U

⊺
Σv = U

⊺
λv = λU−1v.

Going back to our problem, since U
⊺
ΣU is positive definite, a sufficient condition for matrix

U
⊺
ΣU + U

⊺
ΣU ⊙ (K − 1) to be PSD is that

λmin

(
U

⊺
ΣU
)
= λmin (Σ) ≥ ∥U⊺

ΣU ⊙ (K − 1)∥ . (44)

Let us look at ∥U⊺
ΣU ⊙ (K − 1)∥ , we know that

∥U⊺
ΣU ⊙ (K − 1)∥ ≤

√
d∥U⊺

ΣU∥ sup
i,j

∣∣∣[K − 1]i,j

∣∣∣
=

√
d∥U⊺

ΣU∥ sup
i,j

∣∣∣∣ log ((1− ηλi)(1− ηλj))

(1− ηλi)(1− ηλj)− 1
− 1

∣∣∣∣
=

√
dλmax (Σ) sup

i,j

∣∣∣∣ log ((1− ηλi)(1− ηλj))

(1− ηλi)(1− ηλj)− 1
− 1

∣∣∣∣ ,
where we used Lemma 41 for the inequality.

42



A HESSIAN-AWARE SDE FOR MODELLING SGD

According to Lemma 39,

sup
i,j

∣∣∣∣ log ((1− ηλi)(1− ηλj))

(1− ηλi)(1− ηλj)− 1
− 1

∣∣∣∣ ≤ sup
i,j

1− (1−max{|ηλi|, |ηλj |})2 ≤ 1−
(
1− η

∥∥∇2f(x)
∥∥)2

Plugging in back to Equation (44), a sufficient condition for M to be PSD is

λmin (Σ) ≥
√
dλmax (Σ)

(
1−

(
1− η

∥∥∇2f(x)
∥∥)2) .

Rearranging the terms gives us the condition in the theorem.

Proof of Theorem 18. To show the result, it is sufficient to show that the eigenvalues of D are
lower bounded away from 0. For the first condition, we have an explicit form of D in Equa-
tion (43). Note that when the abstract value of all entries of ηΛ are smaller than 1, entries of
log(1− ηΛ)2/

(
(1− ηΛ)2 − 1

)
are lower bounded away from 0. Therefore, as long as eigenvalues

of Σ are lower bounded, i.e., Σ is positive definite, the eigenvalues of D are lower bounded from 0.
For the second condition, Similar to the proof for Lemma 14, we know that as long as the stepsize
satisfies the condition, the eigenvalues of the diffusion coefficient are positive and lower bounded.

Now, we show that why lower boundedness of eigenvalues of D is sufficient to prove the result.
We need to show that the drift term b and diffusion term D are Lipschitz. According to Lemma 42,
the drift term is Lipschitz, and according to Lemma 43, we know that DD

⊺ is Lipschitz. Therefore,
∂[DD

⊺
]i,j/∂xk is upper bounded. Then according to Lin and Maji [34, Equation (7)], we have

vec

(
∂Di,j

∂DD⊺

)
= (D ⊗ I + I ⊗D)−1 vec

(
1̃i,j
)
,

where vec is the vectorization of matrices and ⊗ denotes the Kronecker product. 1̃i,j is a matrix
whose (i, j)-th element is 1 and all other elements are 0. Next, we get

∂Di,j

∂xk
=
∑
p,q

∂Di,j

∂[DD⊺]p,q

∂[DD
⊺
]p,q

∂xk

=
∑
p,q

[
(D ⊗ I + I ⊗D)−1 vec

(
1̃i,j
)]

qd+p

∂[DD
⊺
]p,q

∂xk

≤
∑
p,q

∥∥(D ⊗ I + I ⊗D)−1 vec
(
1̃i,j
)∥∥∣∣∣∣∂[DD

⊺
]p,q

∂xk

∣∣∣∣
≤
∑
p,q

∥∥(D ⊗ I + I ⊗D)−1
∥∥∣∣∣∣∂[DD

⊺
]p,q

∂xk

∣∣∣∣.
It remains to show that the eigenvalues of (D ⊗ I + I ⊗D)−1 is bounded. According to Steeb and
Hardy [61, Theorem 2.15], the eigenvalues of D⊗ I + I ⊗D are {a+ b | a, b ∈ {λi}di=1}, where λi

are the eigenvalues of D. Therefore, the eigenvalues of D ⊗ I + I ⊗D are lower bounded since we
have the eigenvalues of D being lower bounded by a positive constant. This implies that eigenvalues
of (D ⊗ I + I ⊗D)−1 are upper bounded, which concludes the proof.
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G.1.8. HELPER LEMMAS

Lemma 39. For any x, y ∈ R and
√
2
2 − 1 ≤ x, y ≤ 1−

√
2
2 , it holds that∣∣∣∣ log((1− x)(1− y))

(1− x)(1− y)− 1
− 1

∣∣∣∣ ≤ 1− (1−max{|x|, |y|})2 .

Proof. Let z = (1− x)(1− y), then the LHS becomes
∣∣∣ log zz−1 − 1

∣∣∣. We first study the function

f(z) =
log z

z − 1
− 1,

whose gradient is given by

f ′(z) =
z−1
z − log z

(z − 1)2
=

1− 1
z − log z

(z − 1)2
≤ 0,

where the last inequality comes from the fact log z ≥ 1 − 1
z for z > 0. Also note that f(1) = 0,

therefore, we know that

|f(z)| =
{

log z
z−1 − 1, z ≤ 1

1− log z
z−1 , z > 1.

According to previous analysis, the maximum of
∣∣∣ log zz−1 − 1

∣∣∣ would be at the minimum or maximum

possible value of z. Denoting m := max{|x|, |y|} with 0 ≤ m ≤ 1−
√
2
2 , then we know that∣∣∣∣ log((1− x)(1− y))

(1− x)(1− y)− 1
− 1

∣∣∣∣ ≤ max

{
log(1−m)2

(1−m)2 − 1
− 1, 1− log(1 +m)2

(1 +m)2 − 1

}
Next, we will show that for 0 ≤ m ≤ 1,

log(1−m)2

(1−m)2 − 1
− 1 ≥ 1− log(1 +m)2

(1 +m)2 − 1
.

We start with

log(1−m)2

(1−m)2 − 1
− 1−

(
1− log(1 +m)2

(1 +m)2 − 1

)

=
2(m+ 2) log(1−m) + 2(m− 2) log(1 +m)− 2m(m+ 2)(m− 2)

m(m+ 2)(m− 2)
.

Since m(m+ 2)(m− 2) < 0, it suffice to show that the numerator is less or equal than 0. We let

g(m) = 2(m+ 2) log(1−m) + 2(m− 2) log(1 +m)− 2m(m+ 2)(m− 2),

whose gradient is

g′(m) =
m+ 2

m− 1
+ log(1−m) +

m− 2

1 +m
+ log(1 +m)− 3m2 + 4
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≤ m+ 2

m− 1
+

m− 2

1 +m
− 4m2 + 4

=
3m2(m2 − 3)

(1−m)(m+ 1)
≤ 0,

where the inequality holds because log z ≤ z − 1 for z > 0. Therefore, for 0 ≤ m ≤ 1, we have
g(m) ≤ g(0) = 0. So far, we have proved that∣∣∣∣ log((1− x)(1− y))

(1− x)(1− y)− 1
− 1

∣∣∣∣ ≤ log(1−m)2

(1−m)2 − 1
− 1.

Next, we will prove that an upper bound is as follows

log(1−m)2

(1−m)2 − 1
− 1 ≤ 1− (1−m)2,

for 0 ≤ m ≤ 1−
√
2
2 . With a change of variable for z = (1−m)2, to prove the above inequality is

the same as showing the following for 1
2 ≤ z ≤ 1,

log z

z − 1
− 1− (1− z) =

log z

z − 1
+ z − 2 =

log z + z2 − 3z + 2

z − 1
≤ 0.

Then it is sufficient to show

h(z) := log z + z2 − 3z + 2 ≥ 0.

We have

h′(z) =
1

z
+ 2z − 3 =

(z − 1)(2z − 1)

z
≤ 0.

Therefore h(z) ≥ h(1) = 0 for 1
2 ≤ z ≤ 1. The whole proof is finished.

Lemma 40. Let u : Rd → R and {vi(x)}ni=1 be vector fields, i.e., vi : Rd → Rd. The terms in the
result of

∇2 (v1 · ∇ (v2 · ∇ (v3 · ∇ (· · · vn · ∇u)))) ,

that contain only ∇2u and ∇vi for i ∈ [1, n] are

∑
S⊆[1,n]

∏
i∈S̃

∇vi

∇2u

 ∏
i∈ ̂[1,n]\S

∇vi

 ,

where · is the inner product between vectors, S̃ is the ascending ordered set containing all elements
from S, Ŝ is the corresponding descending ordered set, and \ is the set difference operator.
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Proof. We will prove this by induction. First, let us consider the case of n = 1, then clearly, we have

∇2 (v1 · ∇u) = ∇v1∇2u+∇2u∇v1 + C,

where C contains irrelevant terms, i.e., terms with higher order gradients of vi and u. Now assume
the conclusion holds true for n = 1, . . . ,m− 1, then when n = m, we have

∇2 (v1 · ∇ (v2 · ∇ (v3 · ∇ (· · · vm · ∇u))))

= ∇v1∇2 (v2 · ∇ (v3 · ∇ (· · · vm · ∇u))) +∇2 (v2 · ∇ (v3 · ∇ (· · · vm · ∇u)))∇v1 + C

= ∇v1
∑

S⊆[2,m]

∏
i∈S̃

∇vi

∇2u

 ∏
i∈ ̂[2,m]\S

∇vi

+
∑

S⊆[2,m]

∏
i∈S̃

∇vi

∇2u

 ∏
i∈ ̂[2,m]\S

∇vi

∇v1 + C

=
∑

S⊆[1,m]

∏
i∈S̃

∇vi

∇2u

 ∏
i∈ ̂[1,m]\S

∇vi

+ C,

which concludes the proof.

Lemma 41. We have for any A,B ∈ Rd×d,

∥A⊙B∥ ≤
√
d sup

i,j
Ai,j∥B∥.

Proof. Let e1, e2, . . . , ed be the standard basis of Rd. Then we have for any 1 ≤ k ≤ d,

∥(A⊙B)ek∥ ≤ sup
i,j

Ai,j∥Bek∥ ≤ sup
i,j

Ai,j∥B∥.

Then for any vector v ∈ Rd, which can be written as v = v1e1 + v2e2 + · · · , we have

∥(A⊙B)v∥ ≤
d∑

k=1

|vk|∥(A ·B)ek∥ ≤ sup
i,j

Ai,j∥B∥
d∑

k=1

|vk| ≤ sup
i,j

Ai,j∥B∥
√
d∥v∥,

where the last inequality we used Cauchy-Schwartz inequality.

G.2. Approximation Error Analysis

G.2.1. PROOFS FOR SECTION E

Proof for Theorem 20. The proof follows the idea of Theorem 2.2 of Feng et al. [12], however our
proof is more difficult since we need to deal with more complicated HA-SME. The assumption of
∥F (x; ξ)∥c7 < ∞ implies ∥f(x)∥c7 < ∞ and ∥Σ(x)∥c6 < ∞. According to Lemma 42, we have
boundedness of ∥b(x)∥C5 , where b(x) is the drift term of HA-SME. According to Lemma 42, we

have boundedness of the diffusion term of HA-SME, i.e.,
∥U(x)L(x)U(x)⊺∥

C5

η is upper bounded. Let
un(x) defined the same as in Feng et al. [12], i.e., un(x0) = E [u(xn)]. According to Theorem 2.1
of Feng et al. [12], for small enough η, we have boundedness of ∥un∥C6 .
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Starting both from un(x), we first measure the error between the discrete-time SGD and
continuous-time iterates after one-step. For the discrete-time SGD, by Taylor expansion, and
boundedness of ∇f(x; ξ) and ∥un(x)∥C6 , we have∣∣∣∣un+1(x)− un(x) + η⟨∇f(x),∇un(x)⟩ − 1

2
η2E

[
∇f(x; ξ)∇f(x; ξ)

⊺]
: ∇2un(x)

∣∣∣∣
=

∣∣∣∣un+1(x)− un(x) + η⟨∇f(x),∇un(x)⟩ − 1

2
η2
(
∇f(x)∇f(x)

⊺
+Σ(x)

)
: ∇2un(x)

∣∣∣∣
≤ O

(
η3
)
. (45)

In continuous time, after time η, according to Lemma 44, we have∣∣∣∣eηL − un(x)− ηLun(x)− η2

2
L2un(x)

∣∣∣∣ ≤ O(η3). (46)

Note that different from previous SDEs (Equations (4) and (7)), now ηLun(x) and η2

2 L2un(x)
contains infinite many terms and we need to consider their errors. We know that

ηLun(x) = ηb(x) · ∇un(x) +
η

2
D(x)D(x)

⊺
: ∇2un(x),

where b(x) is the drift term of HA-SME. By Taylor expansion of Lun w.r.t. η and Lemma 45, we
have ∣∣∣∣ηb(x) · ∇un(x) + η∇f(x) · ∇un(x) +

η2

2
∇2f(x)∇f(x) · ∇un(x)

+
η

2
U(x)L(x)U(x)

⊺
: ∇2un(x)− 1

2
η2Σ(x) : ∇2un(x)

∣∣∣∣ ≤ O(η3).

Then we have∣∣∣∣ηLun(x) + η∇f(x) · ∇un(x) +
η2

2
∇2f(x)∇f(x) · ∇un(x)− 1

2
η2Σ(x) : ∇2un(x)

∣∣∣∣ ≤ O
(
η3
)
.

(47)

Next, we look at the errors in η2

2 L2un(x). By Taylor expansion of L2un w.r.t. η and Lemma 45, we
have∣∣∣∣η22 L2un(x)− η2

2
∇2f(x)∇f(x) · ∇un(x)− η2

2
∇f(x)∇f(x)

⊺
: ∇2un(x)

∣∣∣∣ ≤ O
(
η3
)
. (48)

Combining Equations (46) to (48), we get∣∣∣∣eηLun(x)− un(x) + η∇f(x) · ∇un(x)− η2

2
Σ(x) : ∇2un(x)− η2

2
∇f(x)∇f(x)

⊺
: ∇2un(x)

∣∣∣∣ ≤ O
(
η3
)
.

Combining the above equation and Equation (45), we have∣∣eηLun(x)− un+1(x)
∣∣ ≤ O

(
η3
)
.
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Denote

En = ∥un(x)− u(x, nη)∥L∞ .

We obtain

En+1 =
∥∥un+1(x)− u(x, (n+ 1)η) + eηLun(x)− eηLun(x)

∥∥
L∞

≤
∥∥eηL (un(x)− u(x, nη))

∥∥
L∞ +

∥∥un+1(x)− eηLun(x)
∥∥
L∞

=
∥∥eηL (un(x)− u(x, nη))

∥∥
L∞ +O

(
η3
)

≤ ∥un(x)− u(x, nη)∥L∞ +O
(
η3
)

= En +O
(
η3
)
,

where the last inequality comes from the L∞ contraction of etL (see Lemma 2.1 of Feng et al. [12]).
Then we know that

En ≤ nO
(
η3
)
=

T

η
O
(
η3
)
≤ O

(
η2
)
.

Proof of Lemma 21. The lemma follows by Lemmas 42 and 43

Proof of Lemma 25. We will show the results for both the convex and strongly-convex (corresponding
to our Remark 28) settings. According to Feng et al. [12], for any n ≥ 0, un+1(x) can be written as

un+1(x) = E [un (x− η∇F (x; ξ))] .

Let us check the first-order derivatives of un+1. Denoting y = x− η∇F (x; ξ), we obtain

∇un+1(x) = E
[(
I − η∇2F (x; ξ)

)
∇un(y)

]
.

1. If f(·) is strongly-convex, we obtain

sup
x

∥∥∇un+1(x)
∥∥ ≤ (1− ηµ) sup

x
∥∇un(x)∥.

With small η, we have η supx,ξ
∥∥∇2F (x; ξ)

∥∥ < 1, and the recursion form is a contraction:

sup
x

∥∇un(x)∥ ≤ (1− µη)n sup
x

∥∇u(x)∥

≤ e−µηn sup
x

∥∇u(x)∥

≤ O
(
e−µηn∥u∥C1

)
.

2. If f(·) is convex, we have

sup
x

∥∥∇un+1(x)
∥∥ ≤ sup

x
∥∇un(x)∥ ≤ O (∥u∥C1) .
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The notation O (·) does not depend on n, η or upper bounds for derivatives of F in O(·) with orders
higher than the second order.

Next, we consider the second-order gradients:

∇2un+1(x) = E
[(
I − η∇2F (x; ξ)

)
∇2un(y)

(
I − η∇2F (x; ξ)

)
− η∇un(y)

⊺∇3f(x)
]
.

Then we also obtain a recursion for the 2-norm of its vector form:

sup
x

∥∥vec (∇2un+1(x)
)∥∥

2︸ ︷︷ ︸
an+1

(49)

= sup
x

∥∥∇2un+1(x)
∥∥
F

(50)

≤ sup
x

∥∥(I − η∇2F (x; ξ)
)
∇2un(y)

(
I − η∇2F (x; ξ)

)∥∥
F
+ η sup

x

∥∥∇un(y)
⊺∇3f(x)

∥∥
F

= sup
x

∥∥vec ((I − η∇2F (x; ξ)
)
∇2un(y)

(
I − η∇2F (x; ξ)

))∥∥
2
+ η sup

x

∥∥∇un(y)
⊺∇3f(x)

∥∥
F

= sup
x

∥∥∥(I − η∇2F (x; ξ)
)⊗2

vec
(
∇2un(y)

)∥∥∥
2
+ η sup

x

∥∥∇un(y)
⊺∇3f(x)

∥∥
F

≤ sup
x

∥∥∥(I − η∇2F (x; ξ)
)⊗2
∥∥∥
2

∥∥vec (∇2un(y)
)∥∥

2
+ η sup

x

∥∥∇un(y)
⊺∇3f(x)

∥∥
F

≤ sup
x

∥∥I − η∇2F (x; ξ)
∥∥2
2

∥∥vec (∇2un(y)
)∥∥

2
+ η sup

x

∥∥∇un(y)
⊺∇3f(x)

∥∥
F
,

where ⊗ is the Kronecker product, and we used that ∥A⊗B∥2 ≤ ∥A∥2∥B∥2 for matrices A and B.

1. If f(·) is strongly-convex, the recursion becomes

sup
x

∥∥vec (∇2un+1(x)
)∥∥

2︸ ︷︷ ︸
an+1

≤ (1− ηµ)2︸ ︷︷ ︸
c

sup
x

∥∥vec (∇2un(x)
)∥∥

2︸ ︷︷ ︸
an

+ η sup
x

∥∥∇un(y)
⊺∇3f(x)

∥∥
F︸ ︷︷ ︸

bn

.

(51)

According to our assumption and previous results, bn ≤ O(ηe−µηn∥u∥C1). Also we choose
small η such that 1− ηµ > 0. It holds for the recursion that

an+1 ≤ cn+1a0 +

n∑
s=0

cn−sbs.

In our case, it becomes

sup
x

∥∥vec (∇2un(x)
)∥∥

2
≤ (1− ηµ)2n sup

x

∥∥vec (∇2u(x)
)∥∥

2
+

n∑
s=0

(1− ηµ)2(n−s)O(ηe−µηs∥u∥C1)

≤ (1− ηµ)n sup
x

∥∥vec (∇2u(x)
)∥∥

2
+

n∑
s=0

e−µη2(n−s)O(ηe−µηs∥u∥C1)

≤ e−µηn sup
x

∥∥vec (∇2u(x)
)∥∥

2
+

n∑
s=0

eµηsO(ηe−2µηn∥u∥C1)
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= e−µηn sup
x

∥∥vec (∇2u(x)
)∥∥

2
+

eηµ(n+1) − 1

eηµ − 1
O(ηe−2µηn∥u∥C1)

≤ e−µηn sup
x

∥∥vec (∇2u(x)
)∥∥

2
+

eηµ(n+1)

eηµ − 1
O(ηe−2µηn∥u∥C1)

≤ e−µηn sup
x

∥∥vec (∇2u(x)
)∥∥

2
+

eηµn

eηµ − 1
O(ηe−2µηn∥u∥C1)

= e−µηn sup
x

∥∥vec (∇2u(x)
)∥∥

2
+

1

eηµ − 1
O(ηe−µηn∥u∥C1)

≤ e−µηn sup
x

∥∥vec (∇2u(x)
)∥∥

2
+

1

ηµ
O(ηe−µηn∥u∥C1)

= e−µηn sup
x

∥∥vec (∇2u(x)
)∥∥

2
+O(e−µηn∥u∥C1)

≤ O(e−µηn∥u∥C2), (52)

where we used that ex ≥ x+ 1.

2. If f(·) is convex, we have

sup
x

∥∥vec (∇2un+1(x)
)∥∥

2
≤ sup

x

∥∥vec (∇2un(x)
)∥∥

2
+O(η).

Therefore, we obtain

sup
x

∥∥vec (∇2un(x)
)∥∥

2
≤ O (T∥u∥C2) .

Next, we proceed with induction.

1. If f(·) is strongly-convex, assume it holds that for any 0 < s ≤ p, we have supx ∥vec (∇sun(x))∥F ≤
O(e−µηn∥u∥Cs). Then, we study the p+ 1-th order gradient of un+1:∥∥vec (∇p+1un+1(x)

)∥∥
2
=
∥∥∥(I − η∇2F (x; ξ)

)⊗p+1
vec
(
∇p+1un(y)

)∥∥∥
2
+ ηO(e−µηn∥u∥Cp).

The first term is the result by applying the ∇ operator p+ 1 times on u. For other terms, at
least one ∇ is applied on

(
I − η∇2F (x; ξ)

)
, which results in a η and gradients of F higher

than the second-order (which is hidden in O(·)). Also, the gradients of u are at most the p-th
order, which by induction are already upper bounded. Therefore, similarly to Equation (51),
we obtain

sup
x

∥∥vec (∇p+1un+1(x)
)∥∥

2

≤ sup
x

∥∥∥(I − η∇2F (x; ξ)
)⊗p+1

vec
(
∇p+1un(y)

)∥∥∥
2
+ ηO(e−µηn∥u∥cp)

≤ sup
x

∥∥(I − η∇2F (x; ξ)
)∥∥p+1

2
sup
x

∥∥vec (∇p+1un(x)
)∥∥

2
+ ηO(e−µηn∥u∥cp)

≤ (1− ηµ)p+1 sup
x

∥∥vec (∇p+1un(x)
)∥∥

2
+ ηO(e−µηn∥u∥cp),

which can be then recursively bounded similarly to Equation (52), i.e.,

sup
x

∥∥vec (∇p+1un(x)
)∥∥

2
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≤ e−µηn sup
x

∥∥vec (∇p+1u(x)
)∥∥

2
+O(e−µηn∥u∥cp)

≤ O(e−µηn∥u∥cp+1).

Now we know that ∑
1≤|J |≤p

∣∣DJun(x)
∣∣ ≤ O

(
e−µηn∥u∥Cp

)
.

It follows

η

⌊T/η⌋−1∑
k=0

∑
1≤|J |≤p

∣∣∣DJuk(x)
∣∣∣ ≤ η

⌊T/η⌋−1∑
k=0

O
(
e−µηk∥u∥Cp

)
≤ η

1− e−ηµ⌊T/η⌋

1− e−µη
O (∥u∥Cp)

≤ η

1− e−µη
O (∥u∥Cp)

≤ O (∥u∥Cp) .

2. If f(·) is convex, we assume for any 0 < s ≤ p, supx ∥vec (∇sun(x))∥F ≤ O(T s−1∥u∥Cs).
Similarly to the strongly-convex case, we obtain∥∥vec (∇p+1un+1(x)

)∥∥
2
=
∥∥∥(I − η∇2F (x; ξ)

)⊗p+1
vec
(
∇p+1un(y)

)∥∥∥
2
+ ηO(T p−1∥u∥Cp),

which implies

sup
x

∥∥vec (∇p+1un(x)
)∥∥

2
≤ O(T p∥u∥Cp+1).

Further it holds that

η

⌊T/η⌋−1∑
k=0

∑
1≤|J |≤p

∣∣∣DJuk(x)
∣∣∣ ≤ O

(
T p+1∥u∥Cp

)
.

Proof for Theorem 23. The assumption of ∥F (x; ξ)∥c8 < ∞ implies ∥f(x)∥c8 < ∞. According to
Lemma 42, we have boundedness of ∥b(x)∥C6 , where b(x) is the drift term of HA-SME. According

to Lemma 42, we have boundedness of the diffusion term of HA-SME, i.e.,
∥U(x)L(x)U(x)⊺∥

C6

η is
upper bounded. Denote Mn

p :=
∑

1≤|J |≤p

∣∣DJun(x)
∣∣.

Similar to the proof for Theorem 20, we first have∥∥∥∥un+1 − un + η∇f · ∇u− 1

2
η2Σ : ∇2un

∥∥∥∥
L∞

≤ O
(
η3s3Mn

3

)
.

First, we expand eηLun using Taylor’s expansion and Lemma 44,∥∥∥∥eηLun − un − ηLun − 1

2
η2L2un − 1

3!
η3L3un

∥∥∥∥
L∞

≤ O
(
η4λ3s4Mn

8

)
.
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Then using Lemma 45, we find the expansion of Lun, L2un and L3un, respectively.

Lun = −∇f · ∇un + η

(
−1

2
∇2f∇f · ∇un +

1

2
Σ : ∇2un

)
+

η2

2

(
−2

3

(
∇2f

)2∇f · ∇un +
1

2

(
Σ∇2f +∇2fΣ

)
: ∇2un

)
+O

(
η3λ3sMn

2

)
. (53)

For L2un, we have

L2un = ∇f(x)
⊺∇2f∇un +∇f

⊺∇2un∇f

+ η

(
∇f

⊺ (∇2f
)2∇un +∇f

⊺∇2f∇2un∇f − 1

2
Σ :
(
∇2un∇2f +∇2f∇2un

)
+O(Mn

3 )

)
+O

(
η2λ3s2Mn

4

)
.

For L3un, we have

L3un = −∇f
⊺ (∇2f

)2∇un − 3∇f
⊺∇2f (∇un)2 +O (Mn

3 ) +O
(
ηλ3s3Mn

6

)
.

Summarizing the above, we obtain∥∥eηLun − un+1
∥∥
L∞ ≤ O

(
η3s3Mn

3 + η4λ3s4Mn
8

)
.

Following the last few steps in the proof of Theorem 20, we obtain

En ≤
n−1∑
k=0

O
(
η3s3Mk

3 + η4λ3s4Mk
8

)
finish the proof.

Proof for Theorem 24. The proof follows similarly to the proof of Theorem 23. For SME-2, in the
expansion of Lun, i.e., Equation (53), the term

η2

2

(
−2

3

(
∇2f

)2∇f · ∇un +
1

2

(
Σ∇2f +∇2fΣ

)
: ∇2un

)
is missing. Therefore, after cancellation of terms, there will be error terms of λ2s∥∇un∥ and
λ
∥∥∇2un

∥∥. For SPF, in Equation (53), the term

η2

2

(
1

2

(
Σ∇2f +∇2fΣ

)
: ∇2un

)
is missing. Therefore, it results in additional error of λ

∥∥∇2un
∥∥.

Proof for Theorem 26. The proof is simply to combine the results from Theorem 23 and Lemma 25.
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G.2.2. HELPER LEMMAS

Lemma 42. For n ≥ 0, assume f ∈ Cn+2
b (Rd) and denote λ := supx∈Rd

∥∥∇2f(x)
∥∥ and s :=

supx∈Rd ∥∇f(x)∥. There exist constants η0 and C > 0, both independent of λ and s, such that for
any η satisfying η < η0 and ηλ < C, the drift term of HA-SME, defined in in Equation (23), satisfies

max
0≤i≤d

|[b(x)]i| < O (s) and max
0≤i≤d

∥[b(x)]i∥Cn < O (s+ λ) ,

where [b(x)]i is the i-th entry of b(x), and O(·) hides the dependence on the upper bounds for the
derivatives of f higher than the second-order derivatives.

Proof. Recall the definition of the drifting term of HA-SME in Equation (23)

b(x) = U(x)
log (I − ηΛ(x))

ηΛ(x)
U(x)

⊺∇f(x).

We first note that b(x) can be written as

b(x) = −
∞∑
p=0

1

p+ 1
ηp
(
∇2f(x)

)p∇f(x).

The (i, j)-th element of Ap for matrix A ∈ Rd×d can be represented as

[Ap]i,j =

d∑
s1=1

[A]i,s1

d∑
s2=1

[A]s1,s2

d∑
s3=1

[A]s2,s3 · · ·
∑
sp−1

[A]sp−2,sp−1 [A]sp−1,j .

Therefore, for any i, the i-th element of b(x) can be written as

[b(x)]i = −
∞∑
p=0

1

p+ 1
ηp
[(
∇2f(x)

)p∇f(x)
]
i

= −
∞∑
p=0

1

p+ 1
ηp

d∑
s1=1

[
∇2f(x)

]
i,s1

d∑
s2=1

[
∇2f(x)

]
s1,s2

· · ·
d∑

sp=1

[
∇2f(x)

]
sp−1,sp

[∇f(x)]sp

= −
∞∑
p=0

1

p+ 1
ηp

d∑
s1=1

∂i∂s1f(x)
d∑

s2=1

∂s1∂s2f(x) · · ·
d∑

sp=1

∂sp−1∂spf(x)∂spf(x)︸ ︷︷ ︸
(A)

.

Notice that Term (A) can be expanded as a summation of dp terms, each of which contains p + 1
factors. Note that the first-order and second-order partial derivatives are upper bounded by s and λ
respectively, i.e., |Dαf | ≤ s for |a| = 1 and |Dαf | ≤ λ for |a| = 2. Therefore, we have

|[b(x)]i| ≤
∞∑
p=0

1

p+ 1
ηpdpλps

= s
∞∑
p=0

1

p+ 1
(ηdλ)p .
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We get a power series in the above equation, and according to Cauchy–Hadamard theorem [7], the
convergence radius for g(x) =

∑∞
p=0

1
p+1x

p is

1

lim supp→∞

∣∣∣ 1
p+1

∣∣∣ 1p =
1

1
= 1.

Then we know that |[b(x)]i| is upper bounded by O(s) as long as

ηdλ < 1 =⇒ ηλ <
1

d
.

Next, we consider the first-order derivative of b(x). We denote the upper bound for higher order
partial derivatives as B, i.e., max2<|a|≤n+2 |Dαf | ≤ B. Recall that in b(x), Term (A) contains dp

terms and each term has p factors of second-order derivatives of f(x) and one factor of the first-order
derivative of f(x). If we take gradient of Term (A) w.r.t. x, each term, according to the product rule
of gradients and by taking derivatives w.r.t. each factor, will result in: (1) p terms, each consisting of
one factors of ∂3f , p− 1 factor of ∂2f , and one factor of ∂f ; (2) 1 term consisting of p+ 1 factors
of ∂2f . Therefore, we can bound

|∂j [b(x)]i| ≤
∞∑
p=0

1

p+ 1
ηpdp

(
pBsλp−1 + λp+1

)
= s

∞∑
p=0

p

p+ 1
dpηB(ηλ)p−1 + λ

∞∑
p=0

1

p+ 1
(dηλ)p

For the second summation, the convergence radius of the power series is the same as the upper
bound for [b(x)]i, and it is bounded by O(λ) for sufficiently small η and ηλ. For the first summation,
comparing to the upper bound of [b(x)]i, the coefficients of the power series are multiplied by p.
However, this will not change the convergence radius. It is known that for sequences ap and bp, if
lim supp→∞ ap = A and limp→∞ bp = B, then lim supp→∞ (apbp) = AB. Note that

lim
p→∞

|p|
1
p = 1.

Therefore, by applying Cauchy–Hadamard theorem, multiplying the coefficients with p would not
change the radius of convergence. Therefore, if we have ηλ and ηB smaller than the convergence
radius of

∑
p

1
1+px

p, that is 1, the first summation in the upper bound of |∂j [b(x)]i| can be upper
bounded by some constants. As a result, we can conclude that

|∂j [b(x)]i| ≤ O(s+ λ).

Following the same idea, we identify that after applying twice partial derivatives on b(x), i.e.,
∂j∂k[b(x)]i, each term in Term (A) becomes:

p∂4f
(
∂2f

)p−1
∂f + p(p− 1)

(
∂3f

)2 (
∂2f

)p−2
∂f + (2p+ 1)∂3f

(
∂2f

)p
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Thus, we have

|∂j∂k[b(x)]i| ≤
∞∑
p=0

1

p+ 1
ηpdp

(
p(p− 1)B2sλp−2 + pBsλp−1 + (2p+ 1)Bλp

)
= s

∞∑
p=0

p(p− 1)

p+ 1
dp(Bη)2(λη)p−2 + s

∞∑
p=0

p

p+ 1
dpBη(λη)p−1 +B

∞∑
p=0

2p+ 1

p+ 1
dp(λη)p.

By the same reason as what we did for the ∂j [b(x)]i, the three summations converge, and are upper
bounded by some constants not relying on λ.

For derivatives higher than the second ones, we can follow the same logic to show that as long as
ηB and ηλ is small enough, the derivatives are upper bounded and such bound does not rely on λ.
Specifically, for the k-th order derivative of b(x) with k ≥ 2, we will have terms of the following
form derived from each term in Term (A):

O
(
pk
) m∏

j=1

∂qjf

(∂2f
)s

(∂f)r ,

with m+ s+ r = p+ 1 and qj ≥ 3, s ≤ p and r ≤ 1. As we only consider derivatives of b(x) up
to some finite order. We have finite such terms and they can be bounded using the idea presented
previously.

Lemma 43. For n ≥ 0, assume f ∈ Cn+2
b

(
Rd
)

and [Σ]i,j ∈ Cn
b

(
Rd
)

for all 1 ≤ i, j ≤ d where
[A]i,j is the (i, j)-th entry of matrix A, then there exists η0, C > 0, such that for any η < η0 and
ηλ < C, where λ := supx∈Rd

∥∥∇2f(x)
∥∥ and C, η0 does not depend on λ, we have that the diffusion

term D(x) of stochastic principle flow satisfy

max
0≤i,j≤d

∥∥∥[D(x)D(x)
⊺]

i,j

∥∥∥
Cn

η
< O (1) ,

where O(·) hides the dependence on the upper bounds for the derivatives of f higher than the
second-order derivatives and max0≤i,j≤d ∥[Σ]i,j∥Cn .

Proof. The proof idea is similar to the proof of Lemma 42, however, in this case, we do not have an
explicit form for the coefficients of the power series. The diffusion term can be represented as

D(x)D(x)
⊺
=

∞∑
p=1

ηp
p−1∑
k=0

ak,p−1−k ·
(
∇2f(x)

)k
Σ(x)

(
∇2f(x)

)p−1−k
,

where ak,p−1−k are absolute constants such that by Taylor expansion at (0, 0),

g(x, y) :=
log(1− x)(1− y)

xy − (x+ y)
=

+∞∑
s,m≥0

as,mxsym.
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For the power series above, we know that its convergence radius is greater or equal than 1 for both x
and y, meaning that x < 1 and y < 1 is a sufficient condition for it to converge. Also, according to
the Cauchy–Hadamard theorem for multiple variables [58], the signs of the coefficients do affect the
convergence radius, therefore the convergence radius of

g̃(x, y) :=

+∞∑
s,m≥0

|as,m|xsym

is also greater or equal than 1. Now we look back into D(x)D(x)
⊺. We note that the (i, j)-th element

of ApBAk for A,B ∈ Rd×d can be written as

[
ApBAk

]
i,j

=
d∑

s1=1

[A]i,s1

d∑
s2=1

[A]s1,s2 · · ·
d∑

sp=1

[A]sp−1,sp

d∑
m=1

[S]sp,m

d∑
q1=1

[A]m,q1

d∑
q2=1

[A]q1,q2 · · ·

d∑
qk−1=1

[A]qk−2,qk−1
[A]qk−1,j

.

Therefore, we can derive that[
D(x)D(x)

⊺]
i,j

=

∞∑
p=1

ηp
p−1∑
k=0

ak,p−1−k

d∑
s1=1

[
∇2f(x)

]
i,s1

d∑
s2=1

[
∇2f(x)

]
s1,s2

· · ·
d∑

sk=1

[
∇2f(x)

]
sk−1,sk

d∑
m=1

[Σ(x)]sk,m

d∑
q1=1

[
∇2f(x)

]
m,q1

d∑
q2=1

[
∇2f(x)

]
q1,q2

· · ·
d∑

qp−k−2=1

[
∇2f(x)

]
qp−k−3,qp−k−2

[
∇2f(x)

]
qp−k−2,j

=
∞∑
p=1

ηp
p−1∑
k=0

ak,p−1−k

d∑
s1=1

∂i∂s1f(x)
d∑

s2=1

∂s1∂s2f(x) · · ·
d∑

sk=1

∂sk−1
∂skf(x)

d∑
m=1

[Σ(x)]sk,m

d∑
q1=1

∂m∂q1f(x)

d∑
q2=1

∂q1∂q2f(x) · · ·
d∑

qp−k−2=1

∂qp−k−3
∂qp−k−2

f(x)∂qp−k−2
∂jf(x).

Let us look at the term associated with ak,p−1−k, i.e., everything after ak,p−1−k in the above
equation. It contains p − 1 summations, thus resulting in dp−1 terms. Each term has p factors
consisting of one element of Σ(x) and others being second-order derivatives of f(x). Denoting
S := maxi,j ∥[Σ(x)]i,j∥C6 , we can derive

∣∣∣[D(x)D(x)
⊺]

i,j

∣∣∣ ≤ ∞∑
p=1

ηp
p−1∑
k=0

|ak,p−1−k|dp−1Sλp−1

= ηS

∞∑
p=1

p−1∑
k=0

|ak,p−1−k| (ηdλ)p−1

= ηS

∞∑
p=1

p−1∑
k=0

|ak,p−1−k| (ηdλ)k (ηdλ)p−1−k
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= ηS

∞∑
s,m≥0

|as,m| (ηdλ)s (ηdλ)m .

According to our previous reasoning, the power series is convergent if

ηdλ < 1 =⇒ ηλ <
1

d
,

and we have

max
i,j

∥∥∥[D(x)D(x)
⊺]

i,j

∥∥∥
C0

η
< ∞.

Next, we consider the first-order derivative of D(x)D(x)
⊺. Similar to the reasoning in the proof

of Lemma 42, after taking derivatives there are pdp−1 terms associated with coefficients ak,p−1−k,
and each term has p factors consisting of one factor being derivatives of Σ(x) or Σ(x) and others
being up to third-order derivatives of f(x). Specifically, we have the following terms associated with
ak,p−1−k:

(p− 1)∂3f
(
∂2f

)p−2
Σ+

(
∂2f

)p−1
∂Σ.

Let B be the constant such that max2<|a|≤n+2and|a|̸=2 |Dαf | ≤ B, and let m := max {Bη, λη}. We
have∣∣∣∂k [D(x)D(x)

⊺]
i,j

∣∣∣ ≤ ηS
∞∑
p=1

p−1∑
k=0

|ak,p−1−k|(p− 1)dp−1Bη (λη)p−2 + ηS
∞∑
p=1

p−1∑
k=0

|ak,p−1−k| (dλη)p−1 .

The second summation can be bounded the same way as before. For the first summation, it is upper
bounded by

ηS
∞∑
p=1

p−1∑
k=0

|ak,p−1−k|(p− 1) (dm)k (dm)p−1−k

= ηS
∞∑

s,m≥0

(s+m)|as,m| (dm)s (dm)m .

Now we have a power series with coefficients multiplied by (s+m) compared to the previous one.
However this would not change the convergence radius. Denote the convergence radius of g̃(x, y) as
r1 and r2. According to Cauchy–Hadamard theorem for multiple variables, we have

lim sup
s+m→∞

|as,mrs1r
m
2 | 1

s+m = 1.

We note that r1 and r2 are also convergence radius for our new power series, since

lim sup
s+m→∞

|(s+m)as,mrs1r
m
2 | 1

s+m = lim sup
s+m→∞

|as,mrs1r
m
2 | 1

s+m lim
s+m→∞

|s+m| 1
s+m︸ ︷︷ ︸

=1
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= lim sup
s+m→∞

|as,mrs1r
m
2 | 1

s+m = 1.

Therefore a sufficient condition for the convergence of the power series is

max {ηλ, ηB} <
1

d
.

The proof is similar for higher-order derivatives. Every time we take derivative, the coefficients
would be multiplied by a factor of order s + m, however, that would not change the radius of
convergence. Specifically, for the k-th derivative of D(x)D(x)

⊺ with k ≥ 2, terms associated with
ak,p−1−k have the following form:

O
(
pk
) m∏

j=1

∂qjf

(∂2f
)s

∂rΣ,

with m+ s = p− 1, qj ≥ 3, s ≤ p− 1 and r ≤ k. These terms can be bounded using similar idea
of the previous proof.

Lemma 44. Let L be the infinitesimal generator for an SDE defined as

dXt = b(Xt)dt+D(Xt)dWt,

where b : Rd → Rd and D : Rd → Rd×d. We have for any n ≥ 1 and t > 0, it holds∥∥∥∥∥∥etLu−
n−1∑
p=0

tp

p!
Lpu

∥∥∥∥∥∥
L∞

≤ O
(
tnmax

i
∥b∥C0∥b∥n−1

C2(n−1)

∥∥DD
⊺∥∥n

C2(n−1)∥u∥C2n

)
,

where ∥b∥Cm := max0≤i≤d ∥[b]i∥Cm and
∥∥DD

⊺∥∥
Cm := max0≤i≤d

∥∥∥[DD
⊺]

i,j

∥∥∥
Cm

.

Proof. According to the Taylor expansion of etL on t, we obtain for any x∣∣∣∣∣∣etLu(x)−
n−1∑
p=0

tp

p!
Lpu(x)

∣∣∣∣∣∣ =
∣∣∣∣ tnn! ∂netLu(x)

(∂t)n

∣∣∣∣
t=s

∣∣∣∣,
for some 0 ≤ s ≤ t. According to Feng et al. [12, Lemma 2.1], etL is a contraction, therefore, we
have ∥∥∥∥∥∥etLu(x)−

n−1∑
p=0

tp

p!
Lpu(x)

∥∥∥∥∥∥
L∞

=

∥∥∥∥ tnn! ∂netLu(x)

(∂t)n

∣∣∣∣
t=s

∥∥∥∥
L∞

≤ tn

n!
∥Lnu∥L∞ .

Note that L is linear operator and it will apply ∇2 operator Therefore, we obtain gradients of b and
DD

⊺ up to the 2(n − 1)-th order and gradients of u up to the 2n-th order. Note that we bound
the first b using ∥b∥C0 and the following n− 1 occurrences of b using ∥b∥C2(n−1) , since they have
different dependence on λ for HA-SME according to Lemma 42. It would be more convenient for
fine-grained analysis later.
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Lemma 45. For n ≥ 0, assume f ∈ C2n
b (Rd) and [Σ(x)]i,j ∈ C2n−2

b

(
Rd
)

for any 0 ≤ i, j ≤ d.
Let L be the infinitesimal generator for HA-SME, which depends on η. We have for any function
u : Rd → R, and integer n, p > 0,∥∥∥∥∂pLnu

(∂η)p

∥∥∥∥
L∞

≤ O
(
λn+p−1sn∥u∥C2n

)
,

where λ := supx∈Rd

∥∥∇2f(x)
∥∥, s := supx∈Rd ∥∇f(x)∥ and O(·) hides the dependence on the up-

per bounds for the derivatives of f other than the second-order derivatives and max0≤i,j≤d ∥[Σ]i,j∥Cn .

Proof. We note that when taking partial gradient of b w.r.t. η, the dependence on λ on the upper
bounds for the derivatives, i.e.,

∥∥∥[ ∂b∂η]i∥∥∥Cm
, would increase its order by 1. That is to say, if∥∥∥[ ∂kb

(∂η)k

]
i

∥∥∥
Cm

≤ O(λq), then
∥∥∥[ ∂k+1b

(∂η)k+1

]
i

∥∥∥
Cm

≤ O(λq+1). The reason is that gradients w.r.t. x of

b can be written as power series of η and ηλ (see the proof of Lemma 42). Whenever we taking
partial derivative w.r.t. η, the order of η compared to λ in each term is decreased by 1. Then we can
take a λ factor out and the remaining series still converges (the same reasoning as in the proof of
Lemma 42). The same logic applies to DD

⊺. In Lnu, we will have at most n − 1 occurrences of
gradients of b. Therefore, before taking derivatives w.r.t. η, the upper bounds would be at most λn−1.
After taking the derivative p times, the order of λ is at most n+ p− 1. Similar logic applies to DD

⊺

and corresponding Lemma 43.

G.3. Exact Match of SGD on Quadratics

Before diving into the proof, we will introduce some basics about complex normal distribution and
complex linear SDEs.

G.3.1. COMPLEX NORMAL DISTRIBUTION

Since our proposed SDE may operate in complex space, similar to PF, we provide here some basics
about the complex distribution, specifically the complex normal distribution. A complex random
vector is defined by two real random variables:

z = x+ iy,

where x and y are two real random vectors, which may be correlated. The random vector z is called

a complex normal vector if
[
x
y

]
is a normal vector. In contrast to real-valued random vector, there

are three parameters that define a complex normal variable CN (µ,Γ, C),

µ := E [z] (Expectation)

Γ := E
[
(z − E [z]) (z − E [z])H

]
(Covariance)

C := E
[
(z − E [z]) (z − E [z])

⊺
]

(Pseudo-Covariance)

Similar to the real case, for z ∼ CN (µ,Γ, C), the following property holds

Az + b ∼ CN
(
Aµ+ b, AΓAH , ACA

⊺)
.
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If we look at the real and imaginary part separately, we have

Γ = Cov [x, x] + Cov [y, y] + i (Cov [y, x]− Cov [x, y]) ,

C = Cov [x, x]− Cov [y, y] + i (Cov [y, x] + Cov [x, y]) .
(54)

For the covariance of x and y, we have

Cov [x, x] =
1

2
Re (Γ + C) ,

Cov [y, y] =
1

2
Re (Γ− C) .

(55)

G.3.2. COMPLEX LINEAR STOCHASITC DIFFERENTIAL EQUATION

We consider the linear stochastic differential equation

dz = Azdt+DdWt, (56)

where z ∈ Cd, A ∈ Cd×d, D ∈ Cd×m, and Wt ∈ Cm is a standard real Brownian motion. Note that
there are also notions of complex-valued Brownian motion [51] defined as

W c
t = W r

t + iW i
t ,

where W r
t and W i

t are independent real Brownian motions. Diffusion process with complex-valued
Brownian motion can be re-written as a SDE with real-valued Brownian motions:

dz = Azdt+D

[
I
iI

]⊺
d

[
W r

t

W i
t

]
.

The complex-valued SDE defined in Equation (56) can be re-written as a real-valued SDE.

d

[
Re(z)
Im(z)

]
=

[
Re(A) − Im(A)
Im(A) Re(A)

] [
Re(z)
Im(z)

]
dt+

[
Re(D)
Im(D)

]
dWt.

G.3.3. HELPER LEMMAS

Lemma 46 (Topsøe [63, Equation (22)]). For x ∈ R and x ≥ 0, it holds that

log(1 + x) ≤ x(6 + x)

6 + 4x
.

Lemma 47. For x ∈ R and 1 ≤ x ≤ 2, it holds that

(5− 8x) log(x− 1) ≥ 16− 8x.

Proof. Denote f(x) = (5− 8x) log(x− 1)− 16 + 8x, and we have

f ′(x) =
−8(x− 1) log(x− 1)− 3

x− 1
.

Let g(x) = (x− 1) log(x− 1), then we get

g′(x) = 1 + log(x− 1).
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We know that the minimum of g(x) is obtained at x = 1/e+ 1, i.e., g(x) ≥ −1/e. Therefore,

f ′(x) ≤ 8/e− 3

x− 1
≤ 0.

Hence f(x) is decreasing, and f(x) ≥ f(2) ≥ 0, which concludes the proof.

Lemma 48. For x ∈ R and 1 ≤ x ≤ 2, it holds that

−4x4 log2(3/2) ≤ 5/2− 3x.

Proof. Denote f(x) = −4x4 log2(3/2)− 2.5 + 3x. We have

f ′(x) = −16x3 log2(3/2) + 3,

and

f ′′(x) = −48x2 log2(3/2) < 0.

Therefore, f ′(x) is decreasing and is 0 when x = 3

√
3

16 log2(3/2)
. Hence, f(x) obtains its maximum

at this point and f
(

3

√
3

16 log2(3/2)

)
< 0, which completes the proof.

Lemma 49. For x ∈ R and 1 ≤ x ≤ 2, it holds that

x3
(
4 log2(3/2)− 6 log(3/2) log(4/3)

)
≤ 0.09− 0.1x.

Proof. Denote f(x) = x3
(
4 log2(3/2)− 6 log(3/2) log(4/3)

)
− 0.09 + 0.1x. We have

f ′(x) = 3x2
(
4 log2(3/2)− 6 log(3/2) log(4/3)

)
+ 0.1 ≤ f ′(1) ≤ 0,

since 4 log2(3/2)−6 log(3/2) log(4/3) < 0. Therefore, f(x) is non-increasing and f(x) ≤ f(1) ≤
0.

Lemma 50. Consider complex-valued linear SDE

dz = Azdt+DdWt,

where z ∈ Cd, A ∈ Cd×d is diagonalizable with orthogonal basis, i.e., A = USU
⊺ with diagonal

matrix S and orthogonal matrix U , D ∈ Cd×m, and Wt ∈ Cm is a standard real Brownian motion.
The covariance and pseudo-covariance at time t are

Γ(t) = U

∫ t

0
exp (τS)U

⊺
DDHU exp

(
τS
)
dτU

⊺

C(t) = U

∫ t

0
exp (τS)U

⊺
DD

⊺
U exp (τS) dτU

⊺
.
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Proof. Recall that the covariance and pseudo-covariance are closely related to 4 matrices, Cov [Re(z),Re(z)],
Cov [Im(z), Im(z)], Cov [Re(z), Im(z)] Cov [Im(z),Re(z)]. Therefore, we study the dynamics of
these matrices.

We assume z(0) is a deterministic variable, i.e., its covariance is 0, then according to Equa-
tion (6.20) of Särkkä and Solin [55],

E

[[
Re(z(t))− E [Re(z(t))]
Im(z(t))− E [Im(z(t))]

] [
Re(z(t))− E [Re(z(t))]
Im(z(t))− E [Im(z(t))]

]⊺]
=

[
Cov [Re(z),Re(z)] Cov [Re(z), Im(z)]
Cov [Im(z),Re(z)] Cov [Im(z), Im(z)]

]

=

∫ t

0
exp

(
τ

[
Re(A) − Im(A)
Im(A) Re(A)

])[
Re(D)
Im(D)

](
exp

(
τ

[
Re(A) − Im(A)
Im(A) Re(A)

])[
Re(D)
Im(D)

])⊺

dτ,

(57)

where the exponential operator is matrix exponential.

Next, let us look at the matrix exp

(
τ

[
Re(A) − Im(A)
Im(A) Re(A)

])
, which has some special properties.

Note that we have

Re(A) = U Re(S)U
⊺
, and Im(A) = U Im(S)U

⊺
.

Therefore, we have[
Re(A) − Im(A)
Im(A) Re(A)

]
=

[
U Re(S)U

⊺ −U Im(S)U
⊺

U Im(S)U
⊺

U Re(S)U
⊺

]
=

[
U

U

] [
Re(S) − Im(S)
Im(S) Re(S)

] [
U

⊺

U
⊺

]
.

Note that the matrix
[
U

U

]
is orthogonal, so by the definition of matrix exponential, we have

exp

(
τ

[
Re(A) − Im(A)
Im(A) Re(A)

])
=

∞∑
p=0

τp

p!

[
Re(A) − Im(A)
Im(A) Re(A)

]p
=

[
U

U

] ∞∑
p=0

τp

p!

[
Re(S) − Im(S)
Im(S) Re(S)

]p [
U

⊺

U
⊺

]

=

[
U

U

]
exp

(
τ

[
Re(S) − Im(S)
Im(S) Re(S)

])[
U

⊺

U
⊺

]
.

By the property of matrix exponential, if for matrices X and Y , we have XY = Y X , then
exp(X + Y ) = exp(X) exp(Y ). We verify that this property holds for our case:[

Re(S) − Im(S)
Im(S) Re(S)

]
=

[
Re(S)

Re(S)

]
+

[
− Im(S)

Im(S)

]
,

and [
Re(S)

Re(S)

] [
− Im(S)

Im(S)

]
=

[
−Re(S) Im(S)

Re(S) Im(S)

]
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=

[
− Im(S)

Im(S)

] [
Re(S)

Re(S)

]
.

Therefore, we have

exp

(
τ

[
Re(S) − Im(S)
Im(S) Re(S)

])
= exp

(
τ

[
Re(S)

Re(S)

])
exp

(
τ

[
− Im(S)

Im(S)

])
=

[
exp(τ Re(S))

exp(τ Re(S))

]
exp

(
τ

[
− Im(S)

Im(S)

])
,

Where the last equality holds because Re(S) is diagonal. Next, we will show that

exp

(
τ

[
− Im(S)

Im(S)

])
=

[
cos(τ Im(S)) − sin(τ Im(S))
sin(τ Im(S)) cos(τ Im(S))

]
,

where the sin and cos operators are applied element-wise. To see this, let us write down the expansion
of the matrix exponential.

exp

(
τ

[
− Im(S)

Im(S)

])
= I +

[
−τ Im(S)

τ Im(S)

]
+

1

2

[
−τ2 Im(S)2

−τ2 Im(S)2

]
+

1

3!

[
τ3 Im(S)3

−τ3 Im(S)3

]
+

1

4!

[
τ4 Im(S)4

τ4 Im(S)4

]
+ · · ·

=

[
cos(τ Im(S)) − sin(τ Im(S))
sin(τ Im(S)) cos(τ Im(S))

]
.

Now going back to Equation (57), we have[
Cov [Re(z),Re(z)] Cov [Re(z), Im(z)]
Cov [Im(z),Re(z)] Cov [Im(z), Im(z)]

]
=

[
U

U

] ∫ t

0

[
exp(τ Re(S)) cos(τ Im(S)) − exp(τ Re(S)) sin(τ Im(S))
exp(τ Re(S)) sin(τ Im(S)) exp(τ Re(S)) cos(τ Im(S))

] [
U

⊺
Re(D)

U
⊺
Im(D)

]
([

exp(τ Re(S)) cos(τ Im(S)) − exp(τ Re(S)) sin(τ Im(S))
exp(τ Re(S)) sin(τ Im(S)) exp(τ Re(S)) cos(τ Im(S))

] [
U

⊺
Re(D)

U
⊺
Im(D)

])⊺

dτ

[
U

⊺

U
⊺

]
=

[
U

U

] ∫ t

0

[
P (τ) Q(τ)
M(τ) N(τ)

]
dτ

[
U

⊺

U
⊺

]
,

where

P (τ) = exp(τ Re(S)) cos(τ Im(S))U
⊺
Re(D)Re(D)

⊺
U exp(τ Re(S)) cos(τ Im(S))

− exp(τ Re(S)) cos(τ Im(S))U
⊺
Re(D) Im(D)

⊺
U exp(τ Re(S)) sin(τ Im(S))

− exp(τ Re(S)) sin(τ Im(S))U
⊺
Im(D)Re(D)

⊺
U exp(τ Re(S)) cos(τ Im(S))

+ exp(τ Re(S)) sin(τ Im(S))U
⊺
Im(D) Im(D)

⊺
U exp(τ Re(S)) sin(τ Im(S)),

Q(τ) = exp(τ Re(S)) cos(τ Im(S))U
⊺
Re(D)Re(D)

⊺
U exp(τ Re(S)) sin(τ Im(S))
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+ exp(τ Re(S)) cos(τ Im(S))U
⊺
Re(D) Im(D)

⊺
U exp(τ Re(S)) cos(τ Im(S))

− exp(τ Re(S)) sin(τ Im(S))U
⊺
Im(D)Re(D)

⊺
U exp(τ Re(S)) sin(τ Im(S))

− exp(τ Re(S)) sin(τ Im(S))U
⊺
Im(D) Im(D)

⊺
U exp(τ Re(S)) cos(τ Im(S)),

M(τ) = exp(τ Re(S)) sin(τ Im(S))U
⊺
Re(D)Re(D)

⊺
U exp(τ Re(S)) cos(τ Im(S))

− exp(τ Re(S)) sin(τ Im(S))U
⊺
Re(D) Im(D)

⊺
U exp(τ Re(S)) sin(τ Im(S))

+ exp(τ Re(S)) cos(τ Im(S))U
⊺
Im(D)Re(D)

⊺
U exp(τ Re(S)) cos(τ Im(S))

− exp(τ Re(S)) cos(τ Im(S))U
⊺
Im(D) Im(D)

⊺
U exp(τ Re(S)) sin(τ Im(S)),

N(τ) = exp(τ Re(S)) sin(τ Im(S))U
⊺
Re(D)Re(D)

⊺
U exp(τ Re(S)) sin(τ Im(S))

+ exp(τ Re(S)) sin(τ Im(S))U
⊺
Re(D) Im(D)

⊺
U exp(τ Re(S)) cos(τ Im(S))

+ exp(τ Re(S)) cos(τ Im(S))U
⊺
Im(D)Re(D)

⊺
U exp(τ Re(S)) sin(τ Im(S))

+ exp(τ Re(S)) cos(τ Im(S))U
⊺
Im(D) Im(D)

⊺
U exp(τ Re(S)) cos(τ Im(S)).

Now we have[
U

⊺
Cov [Re(z),Re(z)]U U

⊺
Cov [Re(z), Im(z)]U

U
⊺
Cov [Im(z),Re(z)]U U

⊺
Cov [Im(z), Im(z)]U

]
=

[∫ t
0 P (τ)dτ

∫ t
0 Q(τ)dτ∫ t

0 M(τ)dτ
∫ t
0 N(τ)dτ

]
.

Denote the covariance of z(t) as Γ(t). According to the definition of covariance for complex random
variables, we have

U
⊺
Γ(t)U =

∫ t

0
P (τ)dτ +

∫ t

0
N(τ)dτ + i

(∫ t

0
M(τ)dτ −

∫ t

0
Q(τ)dτ

)
.

Let us denote the i-th eigenvalue of A as ai, i.e., the i-th diagonal element of S. Since exp(τ Re(S)) cos(τ Im(S))
and exp(τ Re(S)) sin(τ Im(S)) are both diagonal, we have the (i, j)-th element of U⊺

Γ(t)U satis-
fies [

U
⊺
Γ(t)U

]
i,j

=

∫ t

0
exp (τ Re(ai) + Re(aj)) cos (τ Im(ai)) cos (τ Im(aj))

[
U

⊺
Re(D)Re(D)

⊺
U
]
i,j

dτ

+

∫ t

0
exp (τ Re(ai) + Re(aj)) sin (τ Im(ai)) sin (τ Im(aj))

[
U

⊺
Re(D)Re(D)

⊺
U
]
i,j

dτ

+ i

∫ t

0
exp (τ Re(ai) + Re(aj)) sin (τ Im(ai)) cos (τ Im(aj))

[
U

⊺
Re(D)Re(D)

⊺
U
]
i,j

dτ

− i

∫ t

0
exp (τ Re(ai) + Re(aj)) cos (τ Im(ai)) sin (τ Im(aj))

[
U

⊺
Re(D)Re(D)

⊺
U
]
i,j

dτ

−
∫ t

0
exp (τ Re(ai) + Re(aj)) cos (τ Im(ai)) sin (τ Im(aj))

[
U

⊺
Re(D) Im(D)

⊺
U
]
i,j

dτ

+

∫ t

0
exp (τ Re(ai) + Re(aj)) sin (τ Im(ai)) cos (τ Im(aj))

[
U

⊺
Re(D) Im(D)

⊺
U
]
i,j

dτ

− i

∫ t

0
exp (τ Re(ai) + Re(aj)) sin (τ Im(ai)) sin (τ Im(aj))

[
U

⊺
Re(D) Im(D)

⊺
U
]
i,j

dτ
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− i

∫ t

0
exp (τ Re(ai) + Re(aj)) cos (τ Im(ai)) cos (τ Im(aj))

[
U

⊺
Re(D) Im(D)

⊺
U
]
i,j

dτ

−
∫ t

0
exp (τ Re(ai) + Re(aj)) sin (τ Im(ai)) cos (τ Im(aj))

[
U

⊺
Im(D)Re(D)

⊺
U
]
i,j

dτ

+

∫ t

0
exp (τ Re(ai) + Re(aj)) cos (τ Im(ai)) sin (τ Im(aj))

[
U

⊺
Im(D)Re(D)

⊺
U
]
i,j

dτ

+ i

∫ t

0
exp (τ Re(ai) + Re(aj)) cos (τ Im(ai)) cos (τ Im(aj))

[
U

⊺
Im(D)Re(D)

⊺
U
]
i,j

dτ

+ i

∫ t

0
exp (τ Re(ai) + Re(aj)) sin (τ Im(ai)) sin (τ Im(aj))

[
U

⊺
Im(D)Re(D)

⊺
U
]
i,j

dτ

+

∫ t

0
exp (τ Re(ai) + Re(aj)) sin (τ Im(ai)) sin (τ Im(aj))

[
U

⊺
Im(D) Im(D)

⊺
U
]
i,j

dτ

+

∫ t

0
exp (τ Re(ai) + Re(aj)) cos (τ Im(ai)) cos (τ Im(aj))

[
U

⊺
Im(D) Im(D)

⊺
U
]
i,j

dτ

− i

∫ t

0
exp (τ Re(ai) + Re(aj)) cos (τ Im(ai)) sin (τ Im(aj))

[
U

⊺
Im(D) Im(D)

⊺
U
]
i,j

dτ

+ i

∫ t

0
exp (τ Re(ai) + Re(aj)) sin (τ Im(ai)) cos (τ Im(aj))

[
U

⊺
Im(D) Im(D)

⊺
U
]
i,j

dτ.

Let us look at the terms associated with
[
U

⊺
Re(D)Re(D)

⊺
U
]
i,j

. According to properties of
trigonometric functions, we have

cos(x) cos(y) + sin(x) sin(y) = cos(x− y)

sin(x) cos(y)− cos(x) sin(y) = sin(x− y),

which implies the factor associated with
[
U

⊺
Re(D)Re(D)

⊺
U
]
i,j

is∫ t

0
exp (τ Re(ai) + Re(aj)) cos (τ Im(ai)− τ Im(aj)) dτ

+

∫ t

0
i exp (τ Re(ai) + Re(aj)) sin (τ Im(ai)− τ Im(aj)) dτ.

(58)

Note that for complex variable z, Re (exp(z)) = exp(Re(z)) cos(Im(z)) and Im (exp(z)) =
exp(Re(z)) sin(Im(z)). To see why this is the case, by Euler’s formula,

exp(z) = exp (Re(z) + i Im(z)) = exp (Re(z)) exp (i Im(z)) = exp (Re(z)) (cos (Im(z)) + i sin (Im(z))) .

Therefore, going back to Equation (58), this factor is equal to∫ t

0
Re (exp (τ(Re(ai) + Re(aj) + i(Im(ai)− Im(aj))))) dτ

+

∫ t

0
i Im (exp (τ(Re(ai) + Re(aj) + i(Im(ai)− Im(aj))))) dτ

=

∫ t

0
exp (τ(Re(ai) + Re(aj) + i(Im(ai)− Im(aj)))) dτ
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=

∫ t

0
exp (τ(ai + aj)) dτ,

where x is the complex conjugate of x.
Similarly, we can calculate the factors associated with

[
U

⊺
Im(D)Re(D)

⊺
U
]
i,j

,
[
U

⊺
Re(D) Im(D)

⊺
U
]
i,j

,
and

[
U

⊺
Im(D) Im(D)

⊺
U
]
i,j

.[
U

⊺
Γ(t)U

]
i,j

=
[
U

⊺
Re(D)Re(D)

⊺
U
]
i,j

∫ t

0
exp (τ(ai + aj)) dτ − i

[
U

⊺
Re(D) Im(D)

⊺
U
]
i,j

∫ t

0
exp (τ(ai + aj)) dτ

+ i
[
U

⊺
Im(D)Re(D)

⊺
U
]
i,j

∫ t

0
exp (τ(ai + aj)) dτ +

[
U

⊺
Im(D) Im(D)

⊺
U
]
i,j

∫ t

0
exp (τ(ai + aj)) dτ

=
[
U

⊺
Re(D)Re(D)

⊺
U + U

⊺
Im(D) Im(D)

⊺
U + iU

⊺
Im(D)Re(D)

⊺
U − iU

⊺
Re(D) Im(D)

⊺
U
]
i,j

∫ t

0
exp (τ(ai + aj)) dτ

=
[
U

⊺
DDHU

]
i,j

∫ t

0
exp (τ(ai + aj)) dτ.

Therefore, we can obtain that

Γ(t) = U

∫ t

0
exp (τS)U

⊺
DDHU exp

(
τS
)
dτU

⊺
.

Similarly, for pseudo-covariance C, we have

C(t) = U

∫ t

0
exp (τS)U

⊺
DD

⊺
U exp (τS) dτU

⊺
.

G.3.4. PROOFS FOR SECTION F

Proof for Proposition 29. Solution for SGD Let us consider more general covariance matrix Σ
instead of σ2I . The iterates of SGD can be written as

xk = xk−1 − η (Axk−1 + ξk−1)

= (I − ηA)xk−1 − ηξk−1

= (I − ηA)2 xk−2 − η (I − ηA) ξk−2 − ηξk−1

. . .

= (I − ηA)k x0 − η

k−1∑
m=0

(I − ηA)m ξk−1−m.

Clearly, it is a linear combination of independent Gaussian variables, therefore xk+1 is also has a
Gaussian distribution. Moreover,

E [xk] = (I − ηA)k x0 = U (I − ηΛ)k U
⊺
x0
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Cov [xk, xk] = η2
k−1∑
m=0

(I − ηA)mΣ (I − ηA)m = η2
k−1∑
m=0

U (I − ηΛ)m U
⊺
ΣU (I − ηΛ)m U

⊺
.

Plugging in Σ = σ2I gives us the desired result.
The three SDEs considered applied on quadratics with Assumption 2 are OU processes. Accord-

ing to Särkkä and Solin [55, Section 6.2], for a linear time-invariant SDE

dXt = FXtdt+ LdWt,

the solution would be a Gaussian variable and its mean and covariance satisfy

E [X(x0, t)] = exp (Ft)x0

Cov [X(x0, t), X(x0, t)] =

∫ t

0
exp (F (t− τ))LL

⊺
exp (F (t− τ))

⊺
dτ.

In our case, since we assume isotropic noise, i.e., the noise covariance is σ2I , the diffusion coefficients
of the three SDEs we consider is also isotropic, i.e.,

√
ησI . Under this condition, F and L commute,

and the covariance has closed form solution.
Solution for SME-1 The SDE SME-1 applied on the problem we consider is

dXt = −AXtdt+
√
ησIdWt.

Then the mean is

E [X(x0, t)] = exp (−At)x0,

and the covariance is

Cov [X(x0, t), X(x0, t)] =

∫ t

0
exp (A(τ − t)) ησ2 exp (A(τ − t)) dτ

= ησ2

∫ t

0
U exp (Λ(τ − t))U

⊺
U exp (Λ(τ − t))U

⊺
dτ

= ησ2U

∫ t

0
exp (Λ(τ − t)) exp (Λ(τ − t)) dτU

⊺

= ησ2U

∫ t

0
exp (2Λ(τ − t)) dτU

⊺

= ησ2U
I − exp(−2Λt)

2Λ
U

⊺
.

Solution for SME-2 The SDE SME-2 applied on the problem we consider is

dXt = −(A+
η

2
A2)Xtdt+

√
ησIdWt.

Then the mean is

E [X(x0, t)] = exp
(
−
(
A+

η

2
A2
)
t
)
x0,
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and the covariance is

Cov [X(x0, t), X(x0, t)] =

∫ t

0
exp

((
A+

η

2
A2
)
(τ − t)

)
ησ2 exp

((
A+

η

2
A2
)
(τ − t)

)
dτ

= ησ2

∫ t

0
U exp

((
Λ +

η

2
Λ2
)
(τ − t)

)
U

⊺
U exp

((
Λ +

η

2
Λ2
)
(τ − t)

)
U

⊺
dτ

= ησ2U

∫ t

0
exp

((
Λ +

η

2
Λ2
)
(τ − t)

)
exp

((
Λ +

η

2
Λ2
)
(τ − t)

)
dτU

⊺

= ησ2U

∫ t

0
exp

(
2
(
Λ +

η

2
Λ2
)
(τ − t)

)
dτU

⊺

= ησ2U
I − exp

(
−2
(
Λ + η

2Λ
2
)
t
)

2
(
Λ + η

2Λ
2
) U

⊺
.

Solution for SPF The SDE SPFapplied on the problem we consider is

dXt = U
log (1− ηΛ)

η
U

⊺
Xtdt+

√
ησIdWt.

Then the mean is

E [X(x0, t)] = exp

(
U
log (1− ηΛ)

η
U

⊺
t

)
x0

= U exp
(
log (1− ηΛ)t/η

)
U

⊺
x0

= U (1− ηΛ)t/η U
⊺
x0,

and the covariance is

Cov [X(x0, t), X(x0, t)] =

∫ t

0
exp

(
U
log (1− ηΛ)

η
U

⊺
(τ − t)

)
ησ2 exp

(
U
log (1− ηΛ)

η
U

⊺
(τ − t)

)
dτ

= ησ2U

∫ t

0
exp

(
2
log (1− ηΛ)

η
(τ − t)

)
dτU

⊺

= ησ2U

(
η

−2 log (1− ηΛ)

(
1− exp

(
2 log (1− ηΛ)

η
t

)))
U

⊺

= η2σ2U

(
1

−2 log (1− ηΛ)

(
1− (1− ηΛ)2t/η

))
U

⊺
.

Proof for Desideratum 1. If the distribution of complex variable matches the real variable, then by
the definition of matching, we have

E [Re(z)] = E [z̃] E [Im(z)] = 0

Cov [Re(z),Re(z)] = Cov [z̃, z̃] Cov [Im(z), Im(z)] = 0.

Then according to Equation (54), we get

Γ(z) = Cov [Re(z),Re(z)] + Cov [Im(z), Im(z)] + i (Cov [Im(z),Re(z)]− Cov [Re(z), Im(z)])
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= Cov [Re(z),Re(z)] = Cov [z̃, z̃]

Γ(z) = Cov [Re(z),Re(z)]− Cov [Im(z), Im(z)] + i (Cov [Im(z),Re(z)] + Cov [Re(z), Im(z)])

= Cov [Re(z),Re(z)] = Cov [z̃, z̃] ,

as Im(z) = 0 deterministically. Next, we consider the opposite direction. The means match trivially.
According to Equation (55), we have

Cov [Re(z),Re(z)] =
1

2
(Γ(z) + C(z)) = Cov [z̃, z̃]

Cov [Im(z), Im(z)] =
1

2
(Γ(z)− C(z)) = 0,

which completes the proof.

G.3.5. PROOF FOR PROPOSITION 30

Proof. Consider function

f(x) =
1

2
x
⊺
[
1 0
0 −1

]
x,

and

Σ =

[
Σ11 Σ12

Σ12 Σ22

]
with Σ11,Σ12,Σ22 > 0 and Σ11Σ22 − Σ2

12 = 0.

Note that the last condition implies that Σ is positive semi-definite and not positive definite. It is easy

to come up with such a Σ, e.g.,
[
1 2
2 4

]
.

According to Lemma 31, a necessary condition for matching the discrete-time iterates is
that the RHS of Equation (29) is positive semi-definite, otherwise it cannot be decomposed to(
U

⊺
D
) (

U
⊺
D
)H . Therefore, as long as we can show that the determinant of Σ is negative, i.e., it

contains a negative eigenvalue, then we can claim that there is no such a decomposition, i.e., no
linear SDE can match the discrete-time iterates.

The RHS matrix of Equation (29) in our case is 2Σ11 Re(log(1−η))
η−2

Σ12(log(1−η)+log(1+η))
−η

Σ12(log(1+η)+log(1−η))
−η

2Σ22 log(1+η)
η+2

 ,

where we used x+ x = 2Re(x) to simplify the result. Then, our goal is to show

4Σ11Σ22Re (log(1− η)) log(1 + η)

(η − 2)(η + 2)
−

Σ2
12 (log(1− η) + log(1 + η))

(
log(1− η) + log(1 + η)

)
η2

< 0.

It is then sufficient to show the following:

(log(1− η) + log(1 + η))
(
log(1− η) + log(1 + η)

)
(η − 2)(η + 2)

4η2Re (log(1− η)) log(1 + η)
>

Σ11Σ22

Σ2
12

= 1. (59)
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To see why this is the case, notice that for all for all η > 0, it holds that

Re(log(1− η))

η − 2
> 0.

Next, we will discuss in three different cases, i.e., 0 < η < 1, 1 < η < 2 and η > 2, to prove the
above inequality. For the boundary case, one can check that the inequality holds when η → 2.

When 0 < η < 1 In this case, we have Re(log(1− η)) < 0, therefore, Equation (59) is equivalent
to

4η2Re (log(1− η)) log(1 + η) > (log(1− η) + log(1 + η))
(
log(1− η) + log(1 + η)

)
(η − 2)(η + 2)

⇐⇒ 4(log(1− η) + log(1 + η))(log(1− η) + log(1 + η)) > η2(log(1− η)− log(1 + η))(log(1− η)− log(1 + η)).
(60)

When 0 < η < 1, we have log(1− η) = log(1− η), which implies the following equivalence of
Equation (60):

4 (log(1− η) + log(1 + η))2 > η2 (log(1− η)− log(1 + η))2

⇐⇒ 4
(
log
(
1− η2

))2
> η2 (log(1− η)− log(1 + η))2

⇐⇒ − 2 log
(
1− η2

)
> η (log(1 + η)− log(1− η))

⇐⇒ η log(1 + η)− η log(1− η) + 2 log
(
1− η2

)︸ ︷︷ ︸
g(η)

< 0.

Now we analyze the function g(η).

g′(η) = log(1 + η) +
η

1 + η
− log(1− η) +

η

1− η
− 4η

1− η2

= log

(
1 + η

1− η

)
− 2η

1− η2

= log

(
1 +

2η

1− η

)
− 2η

1− η2

≤
2η
1−η

(
6 + 2η

1−η

)
6 + 8η

1−η

− 2η

1− η2

=
12η − 8η2

(1− η)(6 + 2η)
− 2η

1− η2

= − 8η3

(1− η)(1 + η)(6 + 2η)
< 0,

where the first inequality is according to Lemma 46. Now we know that g(η) is strictly decreasing
over 0 < η < 1, therefore sup0<η<1 g(η) < g(0) = 0.
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When 1 < η < 2 In this case, we also obtain Equation (60). In addition, since log(1− η) =
πi+ log(η − 1), we have

log(1− η)log(1− η) = log2(1− η) + π2.

Therefore, Equation (60) is equivalent to

4
(
log2(η − 1) + π2 + 2 log(η − 1) log(1 + η) + log2(1 + η)

)
> η2

(
log2(η − 1) + π2 − 2 log(η − 1) log(1 + η) + log2(1 + η)

)
⇐⇒ 4 (log(η − 1) + log(1 + η))2 − η2 (log(η − 1)− log(1 + η))2 + π2(4− η2) > 0 (61)

⇐⇒ (4− η2)
(
log2(η − 1) + log2(η + 1) + π2

)
+ (8 + 2η2) log(η − 1) log(1 + η) > 0.

To prove the above inequality, it is sufficient to prove a lower bound of LHS is greater than 0.(
4− η2

) (
log2(η − 1) + log2(η + 1) + π2

)
+ (8 + 2η2) log(η − 1) log(1 + η)

>
(
4− η2

) (
log2(η − 1) + log2(η + 1) + π2

)
+ (8 + 2η2) log(η − 1)η

≥
(
4− η2

) (
log2(η − 1) + log2(η + 1) + π2

)
+ (22η − 12) log(η − 1)

≥ (6− 3η) log2(η − 1) +
(
4− η2

) (
log2(1 + η) + π2

)
+ (22η − 12) log(η − 1)

≥ (6− 3η) log2(η − 1) +
(
4− η2

) (
(η log(3/2) + log(4/3))2 + π2

)
+ (22η − 12) log(η − 1)︸ ︷︷ ︸

h(η)

,

where the first inequality is because log(1 + η) < η for 1 < η < 2, and the second inequality holds
as 2η3 + 2η ≤ 22η − 12. This can be seen by noticing that 2η3 + 2η is convex on this interval and
22η− 12 is the linear interpolation of the endpoints. Similarly, 4− η2 is concave, and lower bounded
by linear interpolation 6− 3η, which gives us the third inequality. The final inequality comes from
the linear interpolation of endpoints of concave function log(1 + η).

Next, we study the lower bound of h(η). By taking its derivative, we obtain

h′(η) =
1

η − 1
(3(1− η) log2(η − 1) + (16η − 10) log(η − 1)− 4η4 log2(3/2)

+ η3
(
4 log2(3/2)− 6 log(3/2) log(4/3)

)
+ η2

(
6 log(3/2) log(4/3)− 2 log2(4/3)− 2π2 + 8 log2(3/2)

)
+ η(2 log2(4/3) + 2π2 − 8 log2(3/2) + 8 log(4/3) log(3/2) + 22)− 8 log(4/3) log(3/2)− 12)

≤ 1

η − 1
((16η − 10) log(η − 1)− 4η4 log2(3/2) + η3

(
4 log2(3/2)− 6 log(3/2) log(4/3)

)
+ η2

(
6 log(3/2) log(4/3)− 2 log2(4/3)− 2π2 + 8 log2(3/2)

)
+ η(2 log2(4/3) + 2π2 − 8 log2(3/2) + 8 log(4/3) log(3/2) + 22)− 8 log(4/3) log(3/2)− 12)

≤ 1

η − 1
(16η − 32− 4η4 log2(3/2) + η3

(
4 log2(3/2)− 6 log(3/2) log(4/3)

)
+ η2

(
6 log(3/2) log(4/3)− 2 log2(4/3)− 2π2 + 8 log2(3/2)

)
+ η(2 log2(4/3) + 2π2 − 8 log2(3/2) + 8 log(4/3) log(3/2) + 22)− 8 log(4/3) log(3/2)− 12)

≤ 1

η − 1
(16η − 32 + 2.5− 3η + η3

(
4 log2(3/2)− 6 log(3/2) log(4/3)

)
+ η2

(
6 log(3/2) log(4/3)− 2 log2(4/3)− 2π2 + 8 log2(3/2)

)
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+ η(2 log2(4/3) + 2π2 − 8 log2(3/2) + 8 log(4/3) log(3/2) + 22)− 8 log(4/3) log(3/2)− 12)

≤ 1

η − 1
(16η − 32 + 2.5− 3η + 0.09− 0.1η

+ η2
(
6 log(3/2) log(4/3)− 2 log2(4/3)− 2π2 + 8 log2(3/2)

)
+ η(2 log2(4/3) + 2π2 − 8 log2(3/2) + 8 log(4/3) log(3/2) + 22)− 8 log(4/3) log(3/2)− 12).

where the second, third and forth inequalities are according to Lemmas 47 to 49 respectively. The
remaining numerator is a quadratic function of η, and one can easily verify that it is less than 0.
Therefore, we conclude that h′(η) < 0. Hence h(x) ≥ h(2) = 0.

When η > 2 In this case, our target becomes to prove Equation (61), however with the opposite
sign of the inequality.

4 (log(η − 1) + log(1 + η))2 − η2 (log(η − 1)− log(1 + η))2 + π2
(
4− η2

)
≤ 4 (log(η − 1) + log(1 + η))2 − 4 (log(η − 1)− log(1 + η))2 + π2

(
4− η2

)
= 16 log(η − 1) log(1 + η) + π2

(
4− η2

)
< 16(η − 2) log(1 + η) + π2

(
4− η2

)
≤ 16(η − 2)

η(6 + η)

6 + 4η
+ π2

(
4− η2

)
=

(8− 2π2)η3 + (32− 3π2)η2 + (8π2 − 96)η + 12π2

3 + 2η

=
−(x− 2)

((
2π2 − 8

)
x2 +

(
7π2 − 48

)
x+ 6π2

)
3 + 2η

,

where the second inequality holds as log(x) < x− 1 for x > 1 and the third inequality is according
to Lemma 46. In addition,

(
2π2 − 8

)
x2 +

(
7π2 − 48

)
x+ 6π2 ≥ 0, therefore, we have

4 (log(η − 1) + log(1 + η))2 − η2 (log(η − 1)− log(1 + η))2 + π2
(
4− η2

)
< 0,

which concludes the proof.

Proof for Lemma 31. To match the expectation, the argument is similar to the proof in Rosca et al.
[53, Section A.6]. Here, we proceed to match the covariance and pseudo-covariance. Let us first look
at the continuous-time process. We denote the covairance of X as Γ(X). According to Lemma 50,
we have[

U
⊺
Γ(t)U

]
i,j

=

[
U

⊺
ΣU
]
i,j

(
log (1− ηλi) + log (1− ηλi)

)
ηλiλj − (λi + λj)

∫ t

0
exp

(
τ
log (1− ηλi)

η

)
exp

(
τ
log (1− ηλj)

η

)
dτ

=
η
[
U

⊺
ΣU
]
i,j

(
log (1− ηλi) + log (1− ηλi)

)
(1− ηλi) (1− ηλj)− 1

∫ t

0
exp

(
τ

η

(
log (1− ηλi) + log (1− ηλj)

))
dτ
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=
η
[
U

⊺
ΣU
]
i,j

(
log (1− ηλi) + log (1− ηλi)

)
(1− ηλi) (1− ηλj)− 1

η

log (1− ηλi) + log (1− ηλi)

(
exp

(
t

η

(
log (1− ηλi) + log (1− ηλj)

))
− 1

)
=

η2
[
U

⊺
ΣU
]
i,j

(1− ηλi) (1− ηλj)− 1

(
exp

(
t

η

(
log (1− ηλi) + log (1− ηλj)

))
− 1

)
=

η2
[
U

⊺
ΣU
]
i,j

(1− ηλi) (1− ηλj)− 1

(
((1− ηλi)(1− ηλj))

t
η − 1

)
,

where we used the fact that for complex-valued variable z, it holds that exp (z) = exp(z). Now we
consider time stamp t = kη for k = 1, 2, . . . , where we have

[
U

⊺
Γ(kη)U

]
i,j

=
η2
[
U

⊺
ΣU
]
i,j

(1− ηλi) (1− ηλj)− 1

(
((1− ηλi)(1− ηλj))

k − 1
)

= η2
[
U

⊺
ΣU
]
i,j

k−1∑
m=0

((1− ηλi)(1− ηλj))
m .

Then we have

U
⊺
Γ(kη)U = η2

k−1∑
m=0

(I − ηΛ)m U
⊺
ΣU (I − ηΛ)m ,

which implies

Γ(kη) = η2
k−1∑
m=0

U (I − ηΛ)m U
⊺
ΣU (I − ηΛ)m U

⊺

= η2
k−1∑
m=0

(I − ηA)mΣ (I − ηA)m ,

which matches the covariance of discrete-time variable. The proof for matching pseudo-covariance
is almost the same.
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