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ABSTRACT

Generative adversarial networks (GANs) have emerged as a powerful unsuper-
vised method to model the statistical patterns of real-world data sets, such as natu-
ral images. These networks are trained to map random inputs in their latent space
to new samples representative of the learned data. However, the structure of the
latent space is hard to intuit due to its high dimensionality and the non-linearity
of the generator, limiting the usefulness of the models. Understanding the latent
space requires a way to identify input codes for existing real-world images (inver-
sion), and a way to identify directions with known image transformations (inter-
pretability). Here, we use a geometric framework to address both issues simul-
taneously. We develop an architecture-agnostic method to compute the Rieman-
nian metric of the image manifold created by GANs. The eigen-decomposition
of the metric isolates axes that account for different levels of image variability.
An empirical analysis of several pretrained GANs shows that image variation
around each position is concentrated along surprisingly few major axes (the space
is highly anisotropic) and the directions that create this large variation are similar
at different positions in the space (the space is homogeneous). We show that many
of the top eigenvectors correspond to interpretable transforms in the image space,
with a substantial part of eigenspace corresponding to minor transforms which
could be compressed out. This geometric understanding unifies key previous re-
sults related to GAN interpretability. We show that the use of this metric allows for
more efficient optimization in the latent space (e.g. GAN inversion) and facilitates
unsupervised discovery of interpretable axes. Our results illustrate that defining
the geometry of the GAN image manifold can serve as a general framework for
understanding GANs.

1 BACKGROUND

Generative adversarial networks (GANs) learn patterns that characterize complex datasets, and sub-
sequently generate new samples representative of that set. In recent years, there has been tremendous
success in training GANs to generate high-resolution and photorealistic images (Karras et al., 2017;
Brock et al., 2018; Donahue & Simonyan, 2019; Karras et al., 2020). Well-trained GANs show
smooth transitions between image outputs when interpolating in their latent input space, which
makes them useful in applications such as high-level image editing (changing attributes of faces),
object segmentation, and image generation for art and neuroscience (Zhu et al., 2016; Shen et al.,
2020; Pividori et al., 2019; Ponce et al., 2019). However, there is no systematic approach for under-
standing the latent space of any given GAN or its relationship to the manifold of natural images.

Because a generator provides a smooth map onto image space, one relevant conceptual model for
GAN latent space is a Riemannian manifold. To define the structure of this manifold, we have to
ask questions such as: are images homogeneously distributed on a sphere? (White, 2016) What
is the structure of its tangent space — do all directions induce the same amount of variance in
image transformation? Here we develop a method to compute the metric of this manifold and
investigate its geometry directly, and then use this knowledge to navigate the space and improve
several applications.
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To define a Riemannian geometry, we need to have a smooth map and a notion of distance on it, de-
fined by the metric tensor. For image applications, the relevant notion of distance is in image space
rather than code space. Thus, we can pull back the distance function from the image space onto the
latent space. Differentiating this distance function on latent space, we will get a differential geomet-
ric structure (Riemannian metric) on the image manifold. Further, by computing the Riemannian
metric at different points (i.e. around different latent codes), we can estimate the anisotropy and
homogeneity of this manifold.

The paper is organized as follows: first, we review the previous work using tools from Riemannian
geometry to analyze generative models in section 2. Using this geometric framework, we introduce
an efficient way to compute the metric tensor H on the image manifold in section 3, and empirically
investigate the properties of H in various GANs in section 4. We explain the properties of this
metric in terms of network architecture and training in section 5. We show that this understanding
provides a unifying principle behind previous methods for interpretable axes discovery in the latent
space. Finally, we demonstrate other applications that this geometric information could facilitate,
e.g. gradient-free searching in the GAN image manifold in section 6.

2 RELATED WORK

Geometry of Deep Generative Model Concepts in Riemannian geometry have been recently ap-
plied to illuminate the structure of latent space of generative models (i.e. GANs and variational
autoencoders, VAEs). Shao et al. (2018) designed algorithms to compute the geodesic path, parallel
transport of vectors and geodesic shooting in the latent space; they used finite difference together
with a pretrained encoder to circumvent the Jacobian computation of the generator. While promis-
ing, this method did not provide information of the metric directly and could not be applied to GANs
without encoders. Arvanitidis et al. (2017) focused on the geometry of VAEs, deriving a formula
for the metric tensor in order to solve the geodesic in the latent space; this worked well with shallow
convolutional VAEs and low-resolution images (28 x 28 pixels). Chen et al. (2018) computed the
geodesic through minimization, applying their method on shallow VAEs trained on MNIST images
and a low-dimensional robotics dataset. In the above, the featured methods could only be applied to
neural networks without ReLU activation. Here, our geometric analysis is architecture-agnostic and
it’s applied to modern large-scale GANs (e.g. BigGAN, StyleGAN2). Further, we extend the pixel
L2 distance assumed in previous works to any differentiable distance metric.

3 METHODS

Formulation A generative network, denoted by G, is a mapping from latent code z to image
I , G : Rn → I = RH×W×3, z 7→ I . Borrowing the language of Riemannian geometry, G(z)
parameterizes a submanifold in the image space with z ∈ Rn. Note for applications in image
domain, we care about distance in the image space. Thus, given a distance function in image space
D : I × I → R+, (I1, I2) 7→ L, we can define the distance between two codes as the distance
between the images they generate, i.e. pullback the distance function to latent space through G.
d : Rn × Rn → R+, d(z1, z2) := D(G(z1), G(z2)).

The Hessian matrix (second order partial derivative) of the squared distance function d2 can be seen
as the metric tensor of the image manifold (Palais, 1957). The intuition behind this is as follows:
consider the squared distance to a fixed reference vector z0 as a function of z, fz0

(z) = d2(z0, z).
Obviously, z = z0 is a local minimum of fz0(z), thus fz0(z) can be locally approximated by a
positive semi-definite quadratic form H(z0) as in Eq.1. This matrix induces an inner product and
defines a vector norm, ‖v‖2H = vTH(z0)v. This squared vector norm approximates the squared
image distance, d2(z0, z0 + δz) ≈ ‖δz‖2H = δTzH(z0)δz. Thus, this matrix encodes the local
distance information on the image manifold up to second order approximation. This is the intuition
behind Riemannian metric. In this article, the terms ”metric tensor” and ”Hessian matrix” are used
interchangeably. We will call αH(v) = vTHv/vTv the approximate speed of image change along
v as measured by metric H .

d2(z0, z) ≈ δzT ∂
2d2(z0, z)

∂z2
|z0
δz, H(z0) :=

∂2d2(z0, z)

∂z2
|z0

(1)
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Numerical Method As defined above, the metric tensor H can be computed by doubly differen-
tiating the squared distance function d2. Here we use a convolutional neural network (CNN)-based
distance metric, LPIPS (Zhang et al., 2018), as it has been demonstrated to approximate human
perceptual similarity judgements. The direct method to compute Hessian is by building a compu-
tational graph towards the gradient g(z) = ∂zd

2|z=z0
and then computing the gradient towards

each element in g(z). This method computes H column by column, therefore its time complexity
is proportional to the latent-space dimension n and the backpropagation time through this graph.

For situations when direct backpropagation is too slow (e.g. FC6GAN, StyleGAN2), we developed
an approximation method to compute the major eigen-dimensions of the Hessian more efficiently.
These top eigen-pairs are useful in applications like optimization and exploration; moreover, they
form the best low-rank approximation to the Hessian. As we will later discover, the spectra of these
Hessians have a fast decay, thus far less than n eigenvectors are required to approximate them, cf.
Sec 4. As a matrix, the Hessian is a linear operator, which could be defined as long as one can com-
pute the Hessian vector product (HVP). Since the gradient to z commutes with inner product with
v, HVP can be rewritten as the gradient to vTg, or the directional derivative to the gradient vT∂zg
(Eq.2). The first form ∂z(vTg) is easy to compute in reverse-mode auto-differentiation, and the di-
rectional derivative is easy to compute in forward-mode auto-differentiation (or finite differencing).
Then, Lanczos iteration is applied to the HVP operator defined in these two ways to solve the largest
eigen pairs, which can reconstruct an approximate Hessian matrix. The iterative algorithm using the
two HVP definitions are termed Backward Iteration and Forward Iteration respectively. For details
and efficiency comparison, see Appendix A.2.

HV P : v 7→ Hv = ∂z(vTg(z)) = vT∂zg(z) ≈ (g(z + εv)− g(z − εv))/2‖εv‖ (2)

Note a similar computational method has been employed to understand the optimization landscape
of deep neural networks recently (Ghorbani et al., 2019), although it has not been applied towards
the geometry of latent space of GANs before.

Connection to Jacobian This formulation and computation of the Riemannian metric is generic
to any mapping into a metric space. Consider a mapping φ(z) : Rn → RM , which could be the
feature map of a layer in the GAN, or a CNN processing the generated image. We can pull back the
squared L2 distance and metric from RM , d2φ(z1, z2) = 1

2‖φ(z1)−φ(z2)‖22, and define a manifold.
The metric tensor Hφ of this manifold can be derived as Hessian of d2φ. Note, there is a simple
relationship between the Hessian of d2φ, Hφ and the Jacobian of φ, Jφ (Eq. 3). Through this we
know the eigenvalues and eigenvectors of the Hessian matrix Hφ correspond to the squared singular
values and right singular vectors of the Jacobian Jφ. This allows us to examine the geometry of any
representation throughout the GAN, and analyze how the geometry in the image space builds up.

Hφ(z0) =
∂2

∂z2

1

2
‖φ(z0)− φ(z)‖22|z0

= Jφ(z0)TJφ(z0) (3)

vTHφ(z0)v = ‖Jφ(z0)v‖2, Jφ(z0) = ∂zφ(z)|z0 (4)

In this work, we use LPIPS, which defines image distance based on the squared L2 distance
of the first few layers of a pretrained CNN. If we concatenate the activations and denote this
representational map by ϕ(I) : I → RF , then the metric tensor of the image manifold can
be derived from the Jacobian of the composite of the generator and the representation map ϕ,
H(z) = JTϕ◦GJϕ◦G, Jϕ◦G = ∂zϕ(G(z)). This connection is crucial for understanding how ge-
ometry depends on the network architecture.

4 EMPIRICAL OBSERVATIONS

Using the above method, we analyzed the geometry of the latent space of the following GANs:
DCGAN (Radford et al., 2015), DeePSiM/FC6GAN (Dosovitskiy & Brox, 2016), BigGAN (Brock
et al., 2018), BigBiGAN (Donahue & Simonyan, 2019), Progressive Growing of GANs (PGGAN)
(Karras et al., 2017), StyleGAN 1 and 2 (Karras et al., 2019; 2020) - model specifications reviewed in
Sec. A.3. These GANs are progressively deeper and more complex, and some employ a style-based
architecture instead of the conventional DCGAN architecture (e.g. StyleGAN1,2). This diverse set
of models allowed us to test the broad applicability of this new approach. In the following sections,
”top” and ”bottom” eigenvectors refer to the eigenvectors with large and small eigenvalues.
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Top Eigenvectors Capture Significant Image Changes. In differential geometry, a metric tensor
H captures an infinitesimal notion of distance. To determine whether this quantity represents evident
image changes, we randomly picked a latent code z0, then computed the metric tensorH(z0) and its
eigendecomposition H(z0) =

∑
i λiviv

T
i . Then we explored linearly in the latent space1along the

eigenvectorsG(z0 +µivi). We found that images changed much faster when moving along top than
along bottom eigenvectors, both per visual inspection and LPIPS (Fig.1). More intriguingly, eigen-
vectors at different ranks encoded qualitatively different types of changes; for example, in BigGAN
noise space, the top eigenvectors encoded head direction, proximity and size; while lower eigen-
vectors encoded background changes, shading or much more subtle pixel-wise changes. Moreover,
PGGAN and StyleGANs trained on the face dataset (celebA,FFHQ) have top eigenvectors that rep-
resent similar interpretable transforms of faces, such as head direction, sex or age (Fig.10). These
observations raised the possibility that top eigenvectors also captured perceptually relevant changes:
we tested this directly with positive results in Sec. 6.
A B C DBigGAN Class Space BigGAN Noise Space StyleGAN2 Cat StyleGAN2 Face
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Figure 1: Images change at different rates along top vs bottom eigenvectors. Each panel (A-D)
shows perturbations around a randomly chosen reference image (center column); each row shows
perturbations introduced by moving along each of five eigenvectors; each contiguous column is
separated by the same distance in latent space. Eigenvectors are shown in descending order of their
eigenvalues. Line plots under each montage show the LPIPS image distance to the reference image
as a function of positively and negatively perturbed distance along each eigenvector (x-axis). The
rate of image change differed across eigenvectors; top vs bottom eigenvectors encoded changes such
as object class, head direction, pose, color, shading or other subtle details (e.g. fur variations in panel
A, bottom). Eigenvector rank and associated eigenvalue labeled in the legend.
Spectrum Structure of GANs To explore how eigenvalues were distributed, for each GAN, we
randomly sampled 100-1000 z in the latent space, used backpropagation to compute H(z) and then
performed the eigendecomposition. In Fig. 2, we plotted the mean and 90% confidence interval of
the spectra and found that they spanned 5-10 orders of magnitude, with fast decays; each spectrum
was dominated by a few eigenvectors with large eigenvalues. In other words, only a small fraction of
dimensions were responsible for major image changes (Table 2), while most dimensions introduced
nuanced changes (e.g. shading, background) — thus GAN latent spaces were highly anisotropic.

We found this anisotropy in every GAN we tested, which raises the question of why it has not been
discussed more frequently. One possibility is that the statistical properties of high dimensionality
create an illusion of isotropy. When traveling along a random direction v in latent space, the approx-
imate rate of image change αH(v) = vTHv/vTv is a weighted average of all eigenvalues as in
Eq. 9. In Sec A.6, we show analytically that the variance of α(v) across random directions will be
2/(n+2) times smaller than the variance among eigenvalues. For example, in BigGAN latent space
(256 dimensions), the eigenvalues span over six orders of magnitude, while the α(v) for random

1For some spaces, we used spherical linear exploration (i.e. SLERP), where we restrict the vector to a
sphere of certain norm. We project vi onto tangent space of z0 and travel on the big circle from z0 along vi.
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Figure 2: Spectra of GANs, shown as a function of individual model (A) and types of architecture
(B, C). DCGAN-type (green-blue), Z and W space for StyleGAN (SG1, 2) (red, orange). Lines
and shaded areas show the averaged spectra and the 5-95% percentile of each eigenvalue among
samples (for quantification, see Table 2). D. Histogram of approximate speed of image change α(v)
for eigenvectors and random directions, visualizing the ”illusion of isotropy”.

directions has a standard deviation less than one order of magnitude (Figs. 2, 6). Further, the center
of this distribution was closer to the top of the spectrum, and thus provided a reasonable rate of
change, while masking the existence of eigendimensions of extremely large and small eigenvalues.

Global Metric Structure Because the metric H(z) describes local geometry, the next question is
how it varies at different positions in the latent space. We computed the metric H(z) at randomly
selected z and examined their similarity using a statistic adopted from Kornblith et al. (2019). In
this statistic, we applied the eigenvectors Ui = [u1, ...un] from a metric tensor Hi at position zi to
the metric tensor Hj at zj , as uTi Hjui. These values formed a vector Λij , representing the effects
of metric Hj on eigenvectors of Hi. Then we computed the Pearson correlation coefficient between
Λij and the target eigenvalues, Λj , as corr(Λj ,Λij). This correlation measured the similarity of
the action of metric tensors on eigenframes around different positions. As the spectrum usually
spanned several orders of magnitude, we computed the correlation on the log scale CHlogij , where
the eigenvalues distribute more uniformly.

Λij = diag(UTi H(zj)Ui) (5)

CHij = corr(Λij ,Λj), C
Hlog
ij = corr(log(Λij), log(Λj)) (6)

Using this correlation statistic, we computed the consistency of the metric tensor across hundreds
of positions within each GAN latent space. As shown in Fig. 3C, the average correlation between
eigenvalues and vHv values of two points CHlogij was 0.934 in BigGAN. For DCGAN-type architec-
ture, mean correlations on the log scale ranged from 0.92-0.99; for StyleGAN-1,2, 0.64-0.73 in the
Z space, and 0.87-0.89 in the W space (Fig. 3D, Tab.4). Overall, this shows that the local directions
that induce image changes of different orders of magnitude are highly consistent at different points
in the latent space. Because of this, the notion of a ”global” Hessian makes sense, and we estimated
it for each latent space by averaging the Hessian matrices at different locations.

Implication of the Null Space As the spectra have a large portion of small eigenvalues and the
metric tensors are correlated in space, the bottom eigenvectors should create a global subspace,
in which latent traversal will result in small or even imperceptible changes in the image. This is
supported by our perceptual study, as over half of the subjects cannot see any change in image when
latent vector move in bottom eigenspace. (Sec. 6). This perceptually ”null” space has implications
about exploration in the GAN space and interpretable axes discovery. As G(z + v) ≈ G(z), if one
axis u encodes an interpretable transformG(z)→ G(z+u), then shifting this vector by a vector in
the null space v will still result in an interpretable axis G(z)→ G(z + v + u) ≈ G(z + u). Thus,
each interpretable axis have a family of ”equivalent” axes which encode similar transforms, differing
from each other by a vector in ”null” space. However, adding component v in the null space will
decrease the rate of image change along that axis. In this sense, the vectors using a smallest step
size to achieve that transform should be the ”purest” axes of the family. Further, the cosine angle
between two interpretable axes may not represent the similarity of the transforms they encode. A
large angle can be found between two axes of the same family but at different image traversal speed.
We compared the axes from previous works in A.9 and observed that projecting out a large part of
their axes did not affect the semantics it encoded (Fig. 8).
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Figure 3: Globalization of metric structure: A. Schematic of the geometric picture. In the latent
space (green area), the metric eigen frames at each point (blue and violet) are mapped to transfor-
mations in image space (blue area); the length and saturation of image-space vectors represent the
eigenvalue (i.e. amplification factor) of G. We show that the top eigen space are relatively aligned
at different positions. B. Distributions of log(Λij) and log(Λj), showing the action of metric are
correlated at 3 different points. C. Histogram of correlation CHlogij between all pairs among 1000
points in BigGAN space. D. Comparison of correlation values on linear and log scales for different
GAN models. DCGAN-type (blue), Z and W space for StyleGAN1,2 (red and orange).

5 MECHANISM

Above, we showed an intriguingly consistent geometric structure across multiple GANs. Next, we
sought to understand how this structure emerged through network architecture and training.

To link the metric tensor to the generator architecture, it is helpful to highlight the relationship
between the metric tensor and Jacobian matrix H(z) = JTϕ◦GJϕ◦G (Eq. 3). As the latent space
gets warped and mapped onto image space, directions in latent spaces are scaled differently by
the Jacobian of the map; specifically, directions that undergo the most amplification will become
the top eigenvectors (Fig. 4A). As the Jacobian of the generator is a composition of Jacobians of
each layer dψi, the scaling effect on the image manifold is a product of the scaling effects of each
intermediate layer. We can analyze the scaling effect of different layers ψi by applying a set of
vectors onto the metric tensors of these layers Hψi

. In BigGAN, when we apply the eigenvectors of
the first few layers onto the metric of other layers, the top eigenvectors are still strongly amplified
by subsequent layers, thus forming the top eigendimensions of the manifold. Of note, this is not true
for a weight-shuffled control BigGAN: in that case, the top eigendimension of the first few layers
was not particularly amplified on the image manifold, and vice versa (Fig. 4 B). This shows that the
amplification effect of layers becomes more aligned through training, with the top eigenspace shared
across layers. Further, as the amplification effects are not lined up across layers of weight shuffled
networks, these networks should exhibit a more isotropic geometry on their image manifold. Indeed,
we find their spectra to be flatter and the largest eigenvalue smaller (Fig. 7).
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6



Published as a conference paper at ICLR 2021

6 APPLICATIONS

By defining the geometry of the latent space via the metric tensor, we gain an understanding of which
directions in this space are more informative than others. This understanding leads to improvements
in three applications: 1) finding human-interpretable axes in the latent space, 2) improving gradient-
based optimizers, 3) accelerating gradient-free search.

Interpretable Axes Discovery When users wish to manipulate generated images via their latent
code, it is useful to reduce the number of variables needed to effectuate that manipulation. Our
method provides a systematic way to compute the most informative axes (top eigenspace) in the
latent space to use as variables, and the resulting eigenvalues can serve to compute appropriate step
sizes along each corresponding axes. We visualized the image changes corresponding to the top
eigenvectors in BigGAN, BigBiGAN, PGGAN, StyleGAN1,2 (Fig.1). We found many of these
eigenvectors appeared to capture interpretable transformations like zooming, head direction and
object position, consistent across reference image.

To test if this was apparent to people other than the authors, we conducted a study using Amazon’s
Mechanical Turk. We tested the perceptual properties of the axes identified by the metric tensor,
including the top 10 eigenvectors, random vectors orthogonal to the top 15d eigenspace, and bottom
10 eigenvectors. Images were generated using four different GANs (PGGAN, BigGAN noise space,
StyleGAN2-Cat and -Face), and were presented to 185 participants. In each trial, five randomly
sampled reference images were perturbed along a given axis, and participants were asked if they
could a) perceive a change, b) indicate an estimate of its magnitude [0%-100%] c) describe a com-
mon change in their own words and how many of the five images shared this change, c) indicate
how similar were the 5 image changes (consistency, score of 1-9, 9 most similar) and finally, d) state
how difficult it was to describe this change (difficulty score, scale of 1-9, 9 most difficult).

Only 48.5% of the subjects reported to see any change happen for bottom eigenvectors, while the
fraction was 93.5% and 89.8% for top and orthogonal directions respectively. Further, when subjects
observed some change, they reported that the image transformations induced by top eigenvectors
were larger (70.3% ± 0.6%) than those of orthogonal directions (66.8% ± 0.9%, P = 7.0 × 10−4,
2 sample T-test) and than those of bottom eigenvectors (61.5% ± 1.6%, P = 2.1 × 10−10). This
was true even though we picked a step size in the top eigenspace that was 5-10 times smaller than
in the orthogonal and bottom eigenspaces. Further, subjects reported the top 10 eigenvectors had a
higher mean perceptual consistency score (6.72 ± 0.06), n = 929 responses) than the orthogonal
(6.42 ± 0.09, P = 5.8 × 10−3, n = 448 responses) and bottom eigenvectors (6.12 ± 0.14, P =
1.3 × 10−5, n = 242 responses). Participants reported that the top eigenvectors were easier to
interpret (4.91±0.08) than the bottom eigenvectors (5.69±0.14, P = 3.8×10−6, albeit comparably
to the orthogonal eigenvectors 4.82 ± 0.11, P = 0.5). Thus, overall we conclude that the Hessian
eigenvectors not only capture informative axes of image transformations, but that these were also
perceptually relevant, corresponding to similar semantic changes when applied to different reference
vectors (Fig. 11) — axes interpretable not just in local sense, but in a global sense.

Improving Gradient-Based GAN Inversion. For applications like GAN-assisted drawing and
photo editing (Zhu et al., 2016; Shen et al., 2020), one crucial step is to find a latent code correspond-
ing to a given natural image (termed GAN inversion). For this problem, one basic approach is to
minimize the distance between a generated image and the target image z∗ = arg minzD(G(z), I).
Although second-order information (Hessian) is valuable in optimization, they are seldom used as
they are expensive to compute and update. However, since we find that the local Hessians are highly
correlated across the latent space, we can pre-compute it once for each latent space and use the
global average Hessian to boost first-order optimization. As an example, ADAM is a first-order
optimization algorithm that adapts the learning rate of each parameter separately according to the
moments of gradients on that parameter (Kingma & Ba, 2014). It can be seen as a quasi-second
order optimizer that approximates a diagonal Hessian matrix based on first-order information. How-
ever, if the true Hessian is far from diagonal, i.e. the space is anisotropic and the valley is not aligned
with the coordinates, then this approximation could work poorly.

To test whether the metric can help overcome this problem, we used the eigenvectors of the global
average Hessian to rotate the latent space; this orthogonal change of variables should make the
Hessian more diagonal and thus accelerate ADAM. This method can be seen as a precondition-
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Figure 5: Applications of the metric tensor A. Perceptual properties of eigenvectors. Word
cloud shows subjects’ descriptions (N = 24) of the image transforms induced by the top- (red) vs. the
bottom eigenvector (black) in StyleGAN2-Face. B. Distribution of difficulty scores associated with
top- vs. bottom eigenvectors (red, black) across all four GANs for N=185 subjects. Lines show mean
frequency ± standard error (per bootstrap). C-E. Eigenbasis pre-conditioning improves GAN
inversion. C. BasinCMA with eigenbasis pre-conditioning (Hess,H) outperformed a method using
normal basis (None,N) in inverting ImageNet and BigGAN generated images; D. Examples of fitted
ImageNet and BigGAN images with our Hessian BasinCMA and original method (LPIPS distance
below). E. Results for PGGAN and StyleGAN2 inverting samples from CelebA and FFHQ. F.
Hessian-CMAES (Hess) outperforms CMAES (Orig) in maximizing CNN activation in BigGAN,
and increases sampling efficiency in FC6GAN latent space. Each line represents a different layer of
optimized units in AlexNet. *** denotes paired t-test p < 1× 10−6

ing step which could be inserted into any pipeline involving ADAM. We tested this modification
on the state-of-the-art algorithm for inverting BigGAN, i.e. BasinCMA (Huh et al., 2020), which
interleaves ADAM and CMAES steps. We used our Hessian eigenbasis in the ADAM steps, and
found that we could consistently lower the fitted distance to the target when inverting ImageNet and
BigGAN-generated images (Fig. 5). Similarly, eigenbasis preconditioning consistently improved
inversion of PGGAN and StyleGAN2-Face for real image sampled from both FFHQ and CelebA
using ADAM method. In short, the understanding of homogeneity and anisotropy of the latent space
can improve gradient-based optimization.

Improving Gradient-Free Search in Image Space In some domains, it is important to optimize
objectives in the absence of a gradient, for example, in black-box attacks against image recogni-
tion systems via adversarial images, when searching for activity-maximizing stimuli for neurons
in primate visual cortex, or when optimizing perceptual evaluation in the user (Ponce et al., 2019;
Xiao & Kreiman, 2020; Chiu et al., 2020). These applications usually involve a low-dimensional
parameter space (such as GANs) and an efficient gradient-free search algorithm, such as covariance
matrix adaptation evolution strategy (CMAES). CMAES explores the latent space using a Gaussian
distribution and adapts the shape of the Gaussian (covariance matrix) according to the search history
and local landscape. However, online learning of a covariance matrix in high-dimensional space is
computationally costly, and inaccurate knowledge of it can be detrimental to optimization. Here we
applied the prior geometric knowledge of the space to build the covariance matrix instead of learning
it from scratch. For example, as illustrated by natural gradient descent (Amari, 1998), one simple
heuristic for optimizing on the image manifold is to move in smaller steps along dimensions that
change the image faster to avoid overshoot. We built in this heuristic to improve CMAES, termed
CMAES-Hessian. With our method, the search can be limited to the most informative directions,
which should increase sampling efficiency; further, our method tunes the exploration step size in a
way that is inversely proportional to the rate of image change. To test this approach, we applied
our CMAES-Hessian algorithm to the problem of searching for activation maximizing stimuli for
units in AlexNet (Nguyen et al., 2016) in the latent space of FC6GAN and BigGAN. We found that
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the dimension of the search space could be reduced from 4096 to 500 for FC6GAN without impair-
ing maximal activation values. Further, we found that CMAES-Hessian consistently led to higher
activation values compared to the classic CMAES algorithm in BigGAN space (Fig. 5F).

7 DISCUSSION AND FUTURE DIRECTIONS

In this work, we developed an efficient and architecture-agnostic way to compute the geometry of
the manifold learnt by generative networks. This method discovers axes accounting for the largest
variation in image transformation, which frequently represent semantically interpretable changes.
Subsequently, this geometric method can facilitate image manipulation, increase explainability, and
accelerate optimization on the manifold (with or without gradients).

There have been multiple efforts directed at identifying interpretable axes in latent space using un-
supervised methods, including (Ramesh et al., 2018; Härkönen et al., 2020; Shen & Zhou, 2020;
Voynov & Babenko, 2020; Peebles et al., 2020). Our description of the connection between the
metric tensor of the image manifold and the Jacobian matrices of intermediate layers unifies these
previous results. As we have showed, the top right singular vectors of the weights (i.e. Jacobian)
of the first few layers (as used in Shen & Zhou (2020)), correspond to the top eigenvectors of the
metric tensor of the image manifold, and these usually relate to interpretable transforms. Similarly,
the top principal components (PCs) of intermediate layer activations Härkönen et al. (2020) roughly
correspond to the top left singular vectors of the Jacobian, thus also to the interpretable top eigenvec-
tors of the metric on the image manifold. Likewise, Ramesh et al. (2018) also observed that the top
right singular vectors of the Jacobian of G are locally disentangled. Regarding Voynov & Babenko
(2020) and Peebles et al. (2020), we empirically compared their interpretable axes and our eigenvec-
tors, and found that in some of the GANs, the discovered axes have a significantly larger alignment
with our top eigenspace and they are highly concentrated on individual top axes than expected from
random mixing. We refer readers to Sec.A.9,A.10 and Fig.8,9 for further comparison.

Although we have answered how the anisotropy comes into being mechanistically, there remains
the question of why it should exist at all. Anisotropy may result from gradient training: theoretical
findings on deep-linear networks for classification show that gradient descent aligns the weights
of layers, resulting in a highly anisotropic Jacobian (Ji & Telgarsky, 2018). Whether that analysis
transfers to the setting of generative networks remains to be investigated.

Alternatively, assuming that a well-trained GAN faithfully represents the data distribution, this
anisotropy may reveal the intrinsic dimensionality of the data manifold. Statistical dependencies
of variation in real-world images imply that the images reside in a statistical manifold of much
lower dimension. Further, among transformations that happen on this manifold, there will be some
dimensions that transform images a lot and some that do not. In that sense, our method may be
equivalent to performing a type of nonlinear PCA of the image space through the generator map. In
fact, we have found that GANs trained on similar datasets (e.g. PGGAN, StyleGAN1,2 trained on
the human face dataset CelebA,FFHQ) have top eigenvectors that represent the same set of trans-
forms (e.g. head direction, gender, age; Fig. 10). This supports the ”PCA” hypothesis, as these
transformations may account for much of the pixelwise variability in face space; the GANs are able
to learn to represent these transformations as linear directions, which our method can then identify.

This further raises the intriguing possibility that if the dataset is actually distributed on a lower
dimensional space, one could learn generators with smaller latent spaces; or alternatively, it may be
easier to learn generators with large latent spaces and reduce them after intensive training. These
are questions worth exploring.
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A APPENDIX

A.1 CONNECTION TO INFORMATION GEOMETRY

It is useful to compare our work to the ”information geometry”(Amari, 2016) on the space of distri-
butions. In that formulation, KL divergence is a pseudo-metric function on the space of distributions,
and its Hessian matrix towards parameters of distribution is the Fisher information matrix. In infor-
mation geometry, this Fisher information matrix could be considered as the metric on the manifold
of distributions; this metric information can be further used to assist optimization on the manifold of
distributions, termed natural gradient descent (Amari, 1998). In our formulation, the squared image
difference function D2 is analogous to this KL-divergence; the image G(z) as parameterized by
latent code z is analogous to the distribution pθ parameterized by θ. The metric tensor we com-
puted is comparable to the Fisher information matrix in their setting. Thus our way of using metric
information to assist optimization on manifold is analogous to natural gradient descent.

A.2 METHODS FOR COMPUTING THE HESSIAN

One direct way to compute the Hessian of a given scalar function (e.g. squared distance d2 in
our case), is to compute gz0

(z) = ∂zd
2|z=z0

, create a computational graph from code z to the
gradient gz0

(z), and back propagate from gradient vector gz0
(z) element by element. In this way

the computational time is linear to time of a single backward pass times the latent space dimension
n.

Given a large latent space or a deep network (e.g. 4096 dimensions in FC6GAN, or 512 in Style-
GAN2), this method can be very slow. An efficient way is to use the Hessian vector product (HVP)
operator and iterative eigenvalue algorithms like power iteration or Lancsoz iterations to solve the
eigenvectors corresponding to eigenvalues of largest amplitudes. These largest eigen pairs create the
best low rank approximation to the real Hessian matrix. Note that, to find the smallest amplitude
eigen pairs, inverse Hessian vector product operator is required, which is much more expensive to
compute. However, as the eigenspace with the smallest eigenvalues represent directions that do not
change images much, the exact eigenvector does not matter. We can just define an arbitrary basis in
the ”null” space orthogonal to the eigenspace with large amplitude eigenvalues.

There are two ways to construct a HVP operator: one way uses the 2nd order computational graph
from z to the gradient g(z) to compute HVP by back-prop, i.e. HV Pbackward; the other way
uses finite difference on the first-order gradient to compute HVP i.e. HV Pforward. As it does not
require backpropagation, a single operation of HV Pforward is faster than HV Pbackward but it is
less accurate and takes more iterations to converge. We use the ARPACK (Lehoucq et al., 1998)
implementation of the Lanczos algorithm as our iterative eigenvalue solver.

HV Pbackward : v 7→ ∂z(vT g(z)) (7)

HV Pforward : v 7→ g(z + εv)− g(z − εv)

2ε‖v‖
(8)

We termed the direct method Full BackProp (BP), the iterative method using HV Pbackward and
HV Pforward Backward Iteration and Forward Iteration respectively. We computed the Hessian
at the same z0 using these three methods in different GANs and compared their temporal cost
empirically in Table A.2.

Note, our method can be employed to compute the singular values and right singular vectors of the
Jacobian from latent space towards any intermediate layer representation. To obtain the left singular
vector, i.e. the change in representation or image space caused by the direction, we need to push
forward the right singular vectors through the Jacobian, which is feasible through forward-mode
autodiff or finite difference.

A.3 SPECIFICATION OF GAN LATENT SPACE

The pretrained GANs used in the paper are from the following sources:

12



Published as a conference paper at ICLR 2021

Table 1: Computational Cost for Three Methods: Computation time is measured on a GTX
1060 GPU. The iterative method has a variable runtime which depends on the number of eigenpairs
required. In this table, we all use one half of the full dimension as the eigenpaired required, which is
the largest we can require using ARPACK implementation of Lanczos. Thus these numbers should
be seen as an upper limit of time for Backward and Forward Iteration method. A shallower or
narrower network will result in faster computation time. For StyleGAN2 which has configurable
depth and width, we use the config-f.

Dimension Full BackProp Backward Iter Forward Iter
Time Time Time

DCGAN 120 12.5 13.4 6.9
FC6 GAN 4096 282.4 101.2 90.2
BigGAN 256 69.4 70.6 67
BigBiGAN 120 15.3 15.2 13.3
PGGAN 512 95.4 95.7 61.2
StyleGAN 512 112.8 110.5 64.5
StyleGAN2* 512 221 217 149

DCGAN model was obtained from torch hub https://pytorch.org/hub/
facebookresearch_pytorch-gan-zoo_dcgan/. It’s trained on 64 by 64 pixel
fashion dataset. It has a 120d latent space, using Gaussian as latent space distribution.

Progressive Growing GAN (PGGAN) was obtained from torch hub https://pytorch.org/
hub/facebookresearch_pytorch-gan-zoo_pgan/ and we use the 256 pixel version.
It’s trained on celebrity faces dataset (CelebA). It has a 512d latent space, using Gaussian as latent
space distribution.

DeePSim, FC6GAN model was re-written and translated into Pytorch, with weights ob-
tained from official page https://lmb.informatik.uni-freiburg.de/people/
dosovits/code.html of Dosovitskiy & Brox (2016). The architecture is designed to mirror
that of AlexNet, and the FC6GAN model is trained to invert AlexNet’s mapping from image to FC6
layer. Thus it has 4096d latent space. This model is highly expressive in fitting arbitrary pattern, but
not particularly photorealistic.

BigGAN model was obtained through Hugging Face’s translation of DeepMind’s Tensorflow imple-
mentation https://github.com/huggingface/pytorch-pretrained-BigGAN, we
use biggan-deep-256 version. It’s trained on ImageNet dataset in a class conditional way. It has a
128d latent space called noise space, and a 128d embedding space for the 1000 classes called class
space. The 2 vectors are concatenated and sent into the network. The distribution used to sample in
noise space is truncated normal. Here we analyze the metric tensor computed in the concatenated
256d space (BigGAN) or in the 128d noise space or class space separately (BigGAN-noise, class).

BigBiGAN model was obtained via a translation of DeepMind’s Tensorflow implementation
https://tfhub.dev/deepmind/bigbigan-resnet50/1, we use bigbigan-resnet50
version. It’s trained on ImageNet dataset in unconditioned fashion. It has a 120d latent space,
using Gaussian as latent distribution. Note, the latent vector is split into six 20d trunks and sent into
different parts of the model, which explains why the spectrum of BigBiGAN has the staircase form
(in Fig. 2).

StyleGAN model was obtained via a translation of NVIDIA’s Tensorflow implementation https:
//github.com/rosinality/style-based-gan-pytorch. We used the 256 pixel out-
put. It has a 512d latent space called Z space, where the latent distribution is Gaussian distribution.
This Z distribution gets warped into another 512d latent space called W space, by a multi-layer
perceptron. The latent vector W is sent into a style-based generative network, in which the latent
vector just modulates the feature maps in the conv layers, instead of serving as a spatial input as in
DCGAN, FC6GAN, PGGAN.

StyleGAN2 models are obtained via a translation of NVIDIA’s Tensorflow implementation
https://github.com/rosinality/stylegan2-pytorch. This is an improved version
of StyleGAN: it also has a network mapping the 512d Z to the W space, and the style-based gen-
erative network. The various pre-trained models are fetched from https://pythonawesome.
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Table 2: Quantification of Spectra anisotropy (Models marked with † are audio wave form gener-
ating GANs using different distance metric function.)

dimen dim.99 dim.999 dim.9999 dim.99999
FC6 4096 297 502 661 848
DCGAN-fashion 120 17 35 65 97
BigGAN 256 10 53 149 224
BigGAN noise 128 29 88 120 127
BigGAN class 128 8 38 98 123
BigBiGAN 120 21 41 62 73
PGGAN-face 512 57 167 325 450
StyleGAN-face Z 512 12 27 52 84
StyleGAN2-face512 Z 512 7 17 41 78
StyleGAN2-face256 Z 512 13 28 63 103
StyleGAN2-cat Z 512 8 14 31 62
StyleGAN-face W 512 124 355 480 507
StyleGAN2-face512 W 512 153 345 471 506
StyleGAN2-face256 W 512 157 350 473 506
StyleGAN2-cat W 512 23 57 126 269
WaveGAN MSE† 100 17 38 74 94
WaveGAN STFT† 100 2 9 19 42

com/a-collection-of-pre-trained-stylegan-2-models-to-download.
More specifically StyleGAN2-Face256 and 512 are both trained on FFHQ dataset, while Face256
generate lower resolution images and use narrower conv layers. StyleGAN2-Cat is trained on
LSUN cat dataset (Yu et al., 2015) at 512 resolution.

WaveGAN model is obtained from the repository https://github.com/
mostafaelaraby/wavegan-pytorch/. Its architecture resembles that of DCGAN,
but applied to the one dimensional wave form generation problem. We customly trained it on the
wave forms of piano performance clips. It has a 100d latent space, using Gaussian as latent space
distribution.

A.4 QUANTIFICATION OF POWER DISTRIBUTION IN SPECTRA

We quantified the anisotropy of the space, i.e. the low rankness of the metric tensor in Table 2.
To do this, we computed the number of eigenvalues needed to account for the 0.99, 0.999, 0.9999,
0.99999 fraction of the sum of all eigenvalues. This can be thought of as the minimal number of
dimensions needed to achieve a low rank approximation of the Jacobian with 0.01, 0.001, 0.0001,
0.00001 residue in terms of the Frobenius norm.

There are a few interesting patterns we noticed in this table. For BigGAN, we noted that the class
subspace is more low-ranked than the noise subspace, i.e. fewer directions could account for most
of the changes across object classes than within classes. For StyleGAN 1 and 2, we analyzed the
geometry of Z space and W space separately, and found that in all the models the metric in W
space is significantly more isotropic i.e. less low rank than Z space. Thus, in this regard, the
z → w mapping warped the spherical distribution in Z space to an elongated one in W space, but
the mapping from W space to image is still more isotropic.

A.5 GEOMETRIC STRUCTURE IS ROBUST TO THE IMAGE DISTANCE METRIC

Our work used the LPIPS distance metric to compute the Riemannian metric tensor. To determine
how much of the results depended on this choice of metric, we computed the metric tensor at the
same hidden vector using different image distance functions, specifically a) structural similarity in-
dex measure (SSIM) and b) Mean Squared Error (MSE) in pixel space, which do not depend on
CNN. We computed the Hessian at 100 random sampled vectors in BigGAN, Progressive Growing
GAN (Face), StyleGAN2 (Face 256), using MSE, SSIM and LPIPS, and then compared their Hes-
sian spectra and eigenvectors. We found that the entry-wise correlation across the Hessian matrices
(d2 elements) ranged from [0.94-0.99]. The correlation of eigenvalue spectra ranged from [0.987-
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Table 3: Comparison of Hessian Computed with Different Sample Dissimilarity Metric d We
experimented with BigGAN, PGGAN and StyleGAN2 (FFHQ 256 resolution), we compared the
Hessian computed by LPIPS and that by MSE or SSIM at 100 latent vectors. The statistics we
showed are: element-wise Hessian correlation (H corr), eigen spectra correlation (eigval corr), the
Hessian consistency measure CHlin and CHlog . The linear regression between the log spectra of
LPIPS the and that of the alternative (SSIM or MSE) yields the slope (slope) and intercept (inter-
cept). The mean and standard deviation (in parenthesis) of the the 100 statistics are shown. In the
last row, WaveGAN† is an audio generating GAN. We measured the similarity of the Hessian us-
ing MSE of wave forms (MSE) and MSE of spectrogram (STFT) as dissimilarity metric. Hessian
computed using these two measures are less similar to each other.

H corr eigval corr CHlin CHlog slope intercept
BigGAN MSE 0.973(0.033) 0.995(0.008) 0.996(0.014) 0.999(0.001) 1.01(0.03) 1.47(0.22)

SSIM 0.988(0.012) 0.997(0.003) 0.999(0.002) 0.999(0.001) 1.06(0.02) -0.40(0.07)
PGGAN MSE 0.938(0.047) 0.987(0.016) 0.987(0.038) 0.999(0.000) 1.02(0.02) 1.75(0.19)

SSIM 0.970(0.020) 0.993(0.009) 0.997(0.007) 0.999(0.000) 1.06(0.01) -0.23(0.11)
StyleGAN2 MSE 0.945(0.035) 0.989(0.011) 0.990(0.020) 0.987(0.011) 1.13(0.16) 1.32(0.34)

SSIM 0.945(0.047) 0.987(0.015) 0.988(0.027) 0.991(0.008) 1.08(0.18) -0.17(0.26)
WaveGAN† STFT 0.529(0.229) 0.892(0.088) 0.661(0.313) 0.938(0.062) 1.09(0.05) 4.67(0.30)

0.995]. Measuring Hessian similarity using the statistics we developed CHlog and CHlin resulted in
correlations concentrated at 0.99. Thus, we found that the Hessian matrices and their spectra were
highly correlated across image distance metrics, and that the Hessian matrices had a similar effect
on the eigenvectors of each other.

One major difference across Hessians from different image distance metric was evident in the scale
of the eigenvalues. We regressed the log Hessian spectra induced by SSIM or MSE onto the log
Hessian spectrum induced by LPIPS, and found the intercepts of the regression were usually not ze-
ros (Tab. 5). This result showed different image distance metrics exhibit different ”unit” or intrinsic
scale, although they all factored out the same structure in the GAN.

This result is contextualized by Section 5. As equation 3 showed, the Riemannian metric or Hessian
of the generator manifold is the inner product matrix of the Jacobian of the representational map.
The effect of image distance metric on the Riemannian metric is to add a few more terms on top of
the chain of Jacobians. The Jacobian terms from the layers of generator seem to have a larger effect
than the final terms coming from the image distance metric.

Note that this does not mean that the choice of sample space distance function is irrelevant. Going
beyond image generation, when applying our method to an audio generating GAN, the WaveGAN,
we found that the choice of distance function in the space of sound waves will substantially affect the
Hessian obtained. We used the MSE of wave forms and MSE of spectrograms (denoted by STFT) to
compute metric tensor of that sound wave manifold. We found the element-wise Hessian correlation
between these is around 0.53, while the other Hessian similarity metric are also lower than the
counterparts for BigGAN, PGGAN and StyleGAN2 (Tab. 5). We think the MSE of spectrograms
is a more perceptually relevant distance metric of sound waves than MSE of wave forms, and this
difference is reflected in the geometry they induced i.e. anisotropy and homogeneity (Tab. 2, 4).
Thus, when and how the sample space distance metric will affect the geometry of generative model
still requires more development to be answered.

A.6 RANDOM MIXING OF SPECTRA

Here we give a simple derivation of why a highly ill-conditioned Hessian matrix may appear normal,
under the probe of random vectors. Given a symmetric matrix H , and its eigen decomposition
UΛUT , we computed its effect on an isotropic random vector v, α(v) = vTHv/vTv, and v ∼
N (0, I). This random variable represents the effect of the symmetric matrix on random directions.
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Note that a change of variable using the orthogonal matrix w = UTv will not change the distribution
w ∼ N (0, I). Through this the random variable α could be rewritten as

α(v) =
vTHv

vTv
=

∑
i

λi
‖uTi v‖22
‖v‖22

, v ∼ N (0, I) (9)

=
∑
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λiw
2
i /

∑
i

w2
i , wi ∼ N (0, I) i = 1, 2...d (10)

=
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i w

2
i

∑
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λiw
2
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As each element in w is distributed as i.i.d. unit normal, w2
i is distributed as i.i.d. chi-square

distribution of parameter 1. w2
i ∼ χ2(1) ∼ Γ( 1

2 ,
1
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i /
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conform to a Dirichlet distribution c ∼ Dirichlet( 1
2 ,

1
2 , ...

1
2 ). Through moment formula of Dirichlet

distribution, it is straightforward to compute the mean and variance of α(w) = cTλ
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2
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As we can see, the variance of the effect on random directions scales 1/n relative to the variance
of original eigenvalue distribution. This is why the distribution is much tighter than the whole
eigenvalue distribution.

This phenomenon may explain why the perceptual path length regularization (PPL) used in Karras
et al. (2020) doesn’t really result in a flat spectrum. In our notation, the PPL regularization min-
imizes EzEv‖αz(v) − b‖2, which is to minimize the variance of the distribution of α(v) with v
sampled from normal distribution and z sampled from latent distribution. The global minimizer for
this regularization is indeed a mapping G with flat spectrum, i.e. an isometry up to some scaling.
However, we can see through our derivation and Fig.6 that even for highly anisotropic spectrum,
this variance will not be very large. Thus we should expect a limited effect of this regularization.

A.7 METHOD TO QUANTIFY METRIC SIMILARITY

We developed our own statistic to quantify the similarity of metric tensor between different points.
Here we discuss the benefits and caveats of it.

Angles between eigenvectors per se are not used, since eigenvectors with close-by eigenvalues are
likely to rotate into each other when computing eigendecomposition (Van der Sluis & Van der Vorst,
1987). However, the statistics should be invariant to this eigenvector mixing, and also take the
eigenvalues into account. In our statistics, we applied the eigenvectors U1 = [u1,i, ...] of one matrix
H1 to the other H2, i.e. examined the length of these vectors as measured by the other matrix
as the metric tensor, αH2

(u1,i) = uTi H2ui. Recall that αH1
(u1,i) = uT1,iH1u1,i = λ1,i and

αH2
(u2,i) = uT2,iH2u2,i = λ2,i. If the eigenvectors fall in the eigenspace of the same eigenvalue

in H2, then α(u1,i) will equal the eigenvalue, and thus our statistic is invariant to rotation within
the eigenspace. If the eigenvectors are totally uncorrelated, the resulting α(u1,i) will distribute
like that of random vectors as in Fig.6. As we compute the correlation between the eigenvalue
λ2,i = αH2(u2,i) and the αH2(u1,i), we summarize the similarity of action of H2 on eigenvectors
U1 and U2.

However, this method assumes an anisotropy of spectra in both metric tensors. For example, if
both tensors are identity matrices H1 = H2 = I , then this correlation will yield NaN, as there is no
variation in the spectra to be correlated. Similarly, if the metric tensor has a more isotropic spectrum,
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Figure 6: Spectral Histogram compared to Apparent Anistropy in Different GAN models
(FC6GAN, DCGAN, BigGAN, BigBiGAN, PGGAN, StyleGAN, StyleGAN2) The apparent speed
of image change α(v) has much smaller variability than the variability in the whole spectra. Eq. 13
can predict the mean and std of the apparent variability.

then it will generally have a smaller correlation with others. In that sense, spectral anisotropy also
plays a role in our statistics for metric similarity or homogeneity of the manifold. In all the GAN
spaces we examined, there is a strong anisotropy in the metric spectra, thus this correlation works
fine. But there is caveat for comparing this correlation between two GANs when there is also
difference in the anisotropy in their spectra, as a smaller anisotropy can also results in a smaller
metric similarity.

Finally, we are aware that there are different ways to average symmetric positive definite matrices
(SPSD), induced by different measures of distance in the space of SPSD(Yuan et al., 2020). Here
we picked the simplest one to estimate the global Hessian in the latent space: averaging the metric
tensors element by element.

A.8 GEOMETRIC STRUCTURE OF WEIGHT-SHUFFLED GANS

Here we show the geometric analysis for the shuffled controls for all our GANs. Specifically, we
shuffled the elements of the weight tensor from each layer to keep the overall weight distribution
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Table 4: Quantification of Manifold Homogeneity by metric conisistency CHij on log scale and
linear scale. Same data generating Fig. 3 D. Models marked with † are audio wave form generating
GANs.

Log scale Linear Scale
mean std mean std

FC6GAN 0.984 0.002 0.600 0.119
DCGAN 0.920 0.028 0.756 0.192
BigGAN 0.934 0.024 0.658 0.186
BigBiGAN 0.986 0.007 0.645 0.180
PGGAN 0.928 0.014 0.861 0.123
StyleGAN-Face Z 0.638 0.069 0.376 0.160
StyleGAN2-Face512 Z 0.616 0.052 0.769 0.181
StyleGAN2-Face256 Z 0.732 0.037 0.802 0.130
StyleGAN2-Cat256 Z 0.700 0.040 0.689 0.151
StyleGAN-Face W 0.878 0.037 0.780 0.190
StyleGAN2-Face512 W 0.891 0.048 0.838 0.127
StyleGAN2-Face256 W 0.869 0.052 0.756 0.159
StyleGAN2-Cat256 W 0.895 0.118 0.539 0.216
WaveGAN MSE† 0.906 0.022 0.776 0.139
WaveGAN STFT† 0.809 0.096 0.467 0.285

Table 5: Hessian preconditioning improves GAN inversion The mean and standard error of fitting
score (minimum LPIPS distance to target using 4 random initial vectors) are presented in the table,
which is the same data generating Fig. 5. For each GAN, target dataset pair, 200-300 different target
images are used.

Hessian None
GAN Target Image Mean SEM Mean SEM
StyleGAN1024 CelebA 0.334 0.002 0.344 0.002
StyleGAN1024 FFHQ 0.231 0.003 0.236 0.003
StyleGAN1024 GANgen 0.055 0.002 0.060 0.003
PGGAN CelebA 0.179 0.003 0.207 0.003
PGGAN FFHQ 0.175 0.003 0.197 0.003
PGGAN GANgen 0.045 0.003 0.027 0.001
BigGAN ImageNet 0.162 0.003 0.189 0.003
BigGAN GANgen 0.144 0.003 0.195 0.003

unchanged. To show how learning affected the geometry of the image manifold, we computed the
spectra and the associated metric consistency statistic for weight-shuffled GANs2.

In Fig. 7, we showed that the shuffled controls exhibited flatter spectra and smaller top eigenvalues.
There, the correlation of metric tensors in shuffled GANs shows an unclear result. In some GANs,
there remains strong correlations in the metrics across locations, while in some, the correlation is
close to zero. We think the reason is that our statistic for homogeneity (i.e. a correlation of action of
metric tensors CHlogij ) somewhat entangles homogeneity with the anisotropy of the space. That is,
when the space has a totally flat spectrum (the map is isometric), then the correlation coefficient of
action will be zero or nan, although the metric tensor will be the same everywhere. Thus the change
of anisotropy and the change of homogeneity may interfere with each other, thus shuffling can result
in a mixed result. We are working to develop new statistics that will measure the similarity of the
Hessian, invariant of anisotropy.

2We were unable to obtain a sensible spectra for either shuffled or randomly initialized BigBiGAN possibly
due to its architecture; but we show the comparison for all other models.
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Figure 7: Comparing Spectra of Original and Weight Shuffled GANs: Most Shuffled GAN
shows a slower spectral decay and a smaller maximum eigenvalue.

A.9 DETAILED COMPARISON TO PREVIOUS UNSUPERVISED WAYS TO DISCOVER
INTERPRETABLE AXES

Here we compare the axes discovered by our method with those from a previous approach. Specif-
ically, we applied our method to the same pre-trained GANs used in Voynov & Babenko (2020),
comparing the axes they discovered versus our Hessian structure. Although this method follows a
quite different approach compared to ours and those of (Härkönen et al., 2020; Shen & Zhou, 2020),
we thought it would be interesting to determine if the interpretable axes discovered in their approach
had a relationship with the Hessian structure defined above. If so, this could serve as independent
confirmation of the effectiveness of both types of approaches.

In their work, for each generative network G, two additional models were simultaneously trained
to discover interpretable axes: a ”deformator” M and a ”latent shift predictor” P . The ”defor-
mator” M learned to propose vectors {vi} to alter the image, which were used to create im-
ages pairs (G(z), G(z + vi)) using random reference vectors z; the ”latent shift predictor” P
took in the images pairs and learned to classify the direction in which the latent code shifted
v̂i = P (G(z), G(z+vi)). The axes learned by the deformatorM were subsequently annotated and
a subset was selected by humans.
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Using their code, we compared these annotated axes with the Hessian structure we computed on
their GANs (PGGAN512, BigGAN noise and StyleGAN Face). In PGGAN512, we found that
their discovered axes had a significantly larger vTHv (i.e. approximate rate of image change) than
random vectors in that space; in other words, their axes were significantly more aligned with the top
eigen space (P < 0.05 for all axes). Further, we wanted to investigate whether their axes aligned
with individual eigenvectors identified by our Hessian or whether their axes randomly mixed with
our top eigen space. To achieve this goal, we search for the power coefficients that are significantly
higher than expected from projection of unit random vector. In fact, for each and every of the
discovered axes, we found 1-3 eigenvectors that they are significantly (p < 5 × 10−4) aligned to.
Moreover, these strongly aligned eigenvectors are all in our top 60 eigen dimensions, in fact, 3 of
their axes aligned with eigenvector 11 and 2 of their axes aligned with our eigenvector 6. (Fig.8 A)
Moreover, we ”purify” their axes by a) retaining projection coefficients only in top 60 eigenvectors,
or b) retaining the coefficients only in the 1-3 strongly aligned eigen vectors and set all the other
500+ coefficients to zero, and compared their effect on a same set of reference vectors, using the
same step size. We found that by project out coefficients in the lower space, the image transformation
is perceptually very similar (Fig.8 B,C). If we only retains the eigenvectors that it highly aligns to,
the image transform will be more different, but the annotated semantics in the transform seems to
keep (Fig.8 D,E). Thus, their method also discovered that the top eigenspace of PGGAN contained
informative transformations, and further confirmed that optimizing interpretability may improve
alignment with individual eigen vectors rather than mixing all the eigen dimensions.

Note, as we project out coefficients, the resulting vector has a smaller than unit norm, thus we are
moving a smaller distance in latent space using the same step size (Fig.8 B-E title). If we renormalize
the vector to unit norm we will need to take a smaller step size to achieve the same transform. This
is confirming our predictions in Sec. 4: Each interpretable axis u has a family of equivalent axes
u + v, which add a direction v in the lower eigenspace or null space of the GAN. These axes
encode the same transforms but the speeds of image change on them are different. In this sense,
the top eigenspace could be used to provide a ”purer” version of the interpretable axes discovered
elsewhere.

Although both types of approaches are promising, by removing the need to train additional net-
works, our method can be viewed as a more efficient way to identify informative axes. Further work
comparing axes discovered by different methods will elucidate the connection between interpretable
axes and the Hessian structure more.

A.10 DETAILED COMPARISON TO HESSIAN PENALTY

In this section, we compare our work with that of (Peebles et al., 2020), which also focused on the
use of a Hessian matrix to “disentangle” directions in generator latent space. This Hessian penalty
approach devised a stochastic finite difference estimator of the non-diagonal elements of the Hessian,
using only a forward pass, resulting in an efficient regularization of Hessian diagonality during GAN
training. This clever approach led to several benefits, including increases in smoothness in latent
interpolation, and improvements in interpretability. However, there are clear contrasts between the
Hessian penalty approach and ours.

At the highest conceptual level, both works relied on the analysis of the Hessian matrix. Our frame-
work is motivated by a geometric picture of the image manifold and latent representations, while
their work is motivated by the idea of increasing the independence of latent factors. The Hessian
matrices involved are also different: we computed the Hessian of the squared distance metric d2 in
image space, while they they computed the Hessian of every pixel in the image.

At the implementation level, the methods are also different. We computed the exact Hessian matrices
or their low-rank approximations based on backpropagation and the Lanczos iteration. They devised
a stochastic finite-difference estimator of the total non-diagonal elements of the Hessian, using only
a forward pass, which they termed the Hessian penalty. This remarkable achievement enabled them
to efficiently regularize Hessian diagonality during GAN training. As another point of contrast, the
Hessian penalty does not provide an explicit geometric picture as the exact Hessian matrices do in
our work. Specifically, their penalty did not reveal the spectral structure of the Hessian matrices,
which is encoded in the diagonal elements of the matrix. Because of this, the anisotropy can be
explicitly demonstrated in our work.
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Figure 8: Analyzing interpretable axes from (Voynov & Babenko, 2020) under the Hessian
framework. A. Projection power of their annotated interpretable axes and 6 unit norm random
vectors on the top 40 eigen vectors. The color code is matched. The red line on colorbar denotes
p < 1 × 10−4 threshold for the power value, and the significantly aligned axes p < 5 × 10−4 are
indicated. B,C, Image transforms encoded by projection of 2 of their vectors (19, 20) into the top
60d eigenspace. D,E Similar to B,C, but their vectors are projected onto the aligned eigenvectors
only. The norms of the projected vectors are noted on title. Panel B,D and C,E share the same
reference image and the same step size across each mini column, though the distance travelled along
BC and DE is smaller as the vector is shortened.
It is clear that the Hessian penalty provides a very important and complementary approach to ours.
This work showed that regularizing Hessian diagonality during training could promote disentangled
latent representation using PGGAN (this provides a more detailed evaluations of disentanglement
than we achieved).

Interestingly, many of the phenomena they observed in Hessian-penalized generative networks were
reminiscent to phenomena we observed in normally trained generative networks with a Hessian
eigen-frame rotation of the latent space. As a first example, they found that after applying the
Hessian penalty, many factors stopped affecting the image (termed ”latent space shrinkage” in their
work). We also found this phenomenon in normal pre-trained GANs, i.e. they showed a large bottom
eigenspace with close to 0 eigenvalues, in which the eigenvectors generated small to no changes in
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the image (termed ”null space” in our work; Sec. 4). Thus if we performed a Hessian eigen-frame
rotation, non-Hessian-penalized generators will exhibit similar behavior as theirs do.

As a second example, they also found that enforcing the Hessian penalty on middle layers is helpful
in regularizing the Hessian diagonality in the image space, which is reminiscent of our finding that
the Hessian eigen-frames are usually well aligned across the layers of generator (Sec. 5), though the
spectra get shaped throughout the layers.

The Hessian penalty raises an interesting question: what makes a diagonal Hessian matrix special?
Because the Hessian is a real symmetric matrix, at each point z, it can be diagonalized by a rotation
of the latent space. However, to achieve a diagonal matrix across the latent space, Peebles et al.
(2020) had to (implicitly) enforce each point to share the same rotation (i.e. Hessian eigen-frame).
Given the training involved, this encouraged the homogeneity or flatness of latent space as identified
in our framework. However, as shown in our work, most GANs exhibit homogeneity or flatness in
their latent space even without the Hessian penalty. So it would be interesting to compare generators
trained with Hessian penalty against those trained without the penalty but with a post hoc rotation
of the latent space using the global eigen-frame. We expect that their training will exhibit flatter
geometry than the post hoc rotated latent space. However, even if this is not true, it would still be
interesting if this flat geometry can emerge from modern GAN training i.e. fitting the natural image
distribution.

Finally, aside from regularizing GAN training, Peebles et al. (2020) also explored the use of the
Hessian penalty in finding interpretable directions in pre-trained BigGAN (BigGAN-128). Similar
to Voynov & Babenko (2020), the axes they discovered showed a striking correspondence to those
identified in our approach (Fig. 9). We showed that when we computed the Hessian at a few points
in the noise space of the generator, the interpretable axes they found aligned well with our top eigen-
vectors, with a one-to-one or one-to-two matching. For example, their reported interpretable axes
5, 6 and 8 (for the golden retriever class) had 0.998, 0.964, 0.990 of their power concentrated in
our top 10-dimensional eigenspace. Moreover, they aligned with single eigenvectors 0, 5 and 2 with
power 0.988, 0.499, 0.852 respectively. Due to the presence of close by eigenvalue, eigen vectors
can mix into each other, resulting in the phenomenon that the axes identified in Peebles et al. (2020)
can correspond to a few adjacent eigenvectors (e.g. their axes 5 correspond to our eigenvectors 4
and 5, with corresponding eigenvalues 8.3 and 7.4; as reference, eigenvalue 3 = 17.6, eigenvalue
6 = 5.6, a much larger gap.). We found that power concentration within the top eigenspace is a
great indicator of the interpretability of their reported axes: all but one of the reported axes showed
over 0.95 power concentrated in top 10d eigenspace, while the axes they found not to be interpretable
showed power 0.103±0.141 (mean+-std) in the top 10d eigenspace. One advantage of our approach
is computational efficiency. As the alternative method required learning (i.e. iterative optimization
of a mixing matrix), it took us 40 minutes×50 epochs to finish the training on a 6GB GTX 1060
GPU. In contrast, the present method directly computes the Hessian matrices at one- or a few points,
taking 12 seconds to compute a full Hessian matrix (5-50 points usually suffice). The reason for this
difference is that their method optimizes for a basis that diagonalizes the Hessian matrix based on
a noisy estimate of diagonality – the Hessian penalty; in contrast, our approach directly computes
and diagonalizes the matrix at given points. Finally, our method orders the axes by the eigenvalues,
facilitating focus on the top eigenspace, and thus alleviating the need to go through all the axes to
find interpretable ones.

In summary, we believe that as a stochastic regularizer of the Hessian matrix, the Hessian penalty
is a valuable and complementary approach to ours. Our methods provide additional value by ac-
curately estimating the top eigenvectors and eigenspectrum, suitable for analyzing geometry post
hoc. However, unlike the Hessian penalty, direct use of our method to regularize training may be
inefficient. It would be interesting to explore whether there is a middle ground that incorporates the
advantages of both their estimator and our more precise calculation.
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Figure 9: Analyzing interpretable axes from (Peebles et al., 2020) under the Hessian frame-
work. A. Projection power of Hessian-penalty-identified axes on the top 25 eigen vectors. B,C.
For the axes corresponding to fine or mid-scale changes, we performed eigen decomposition to the
corresponding 40d diagonal block of the averaged full Hessian. We then computed the projection
power with their axes. D. Comparison of the alignment with the Hessian eigen frame averaged
over different number of points (N = 1, 5, 10, 25, 50, 100) in the full space. Although the specific
matched eigen id varies between N , those interpretable axes all remain in our top eigenspace, with
power over 0.95. E. Visualize the axes in Peebles et al. (2020) with a good alignment with our top
10d eigenspace (axes 0 and 9, boxes marked in green), other than those annotated in their paper
(boxes marked in red). They are arguably interpretable as well.
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StyleGAN

ProgGrowGAN

StyleGAN2 Face256

StyleGAN2 Face512

StyleGAN2 Face1024

Figure 10: Similar transforms encoded in the top eigendimension of GANs trained on face
dataset. Linear exploration along top 20 eigenvectors from origin in latent space are showed for each
GAN. Linear equi-distance sampling on each eigenvector occupies a column and their eigenvalues
are sorted in descending order from left to right. Step size along each vector is adjusted according
to its eigenvalue for best continuity.
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Consistency of Action 
of Eigenvector on 
Di�erence References

StyleGAN2 Cat Eig1

StyleGAN2 Cat Eig4

StyleGAN2 Cat Eig10

StyleGAN Face Eig1

StyleGAN Face Eig3

StyleGAN Face Eig5

Figure 11: Top eigenvectors encode similar transforms around different reference images. Lin-
ear equidistant explorations from six randomly chosen reference images along the eigenvectors of
averaged Hessians. These show qualitatively similar transforms to images — for example, proxim-
ity of Cat face (Eig1), proximity and cat number (Eig4), fur color darkening (Eig10) in StyleGAN2
Cat; face direction (Eig1), masculine vs feminine (Eig3), child vs adult (Eig5) in StyleGAN Face.
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