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Abstract

Blind deconvolution is the problem of recovering a convolutional kernel a0 and an activation signal x0

from their convolution y = a0 ~ x0. This problem is ill-posed without further constraints or priors. This
paper studies the situation where the nonzero entries in the activation signal are sparsely and randomly
populated. We normalize the convolution kernel to have unit Frobenius norm and cast the sparse blind
deconvolution problem as a nonconvex optimization problem over the sphere. With this spherical constraint,
every spurious local minimum turns out to be close to some signed shift truncation of the ground truth,
under certain hypotheses. This benign property motivates an effective two stage algorithm that recovers the
ground truth from the partial information offered by a suboptimal local minimum. This geometry-inspired
algorithm recovers the ground truth for certain microscopy problems, also exhibits promising performance
in the more challenging image deblurring problem. Our insights into the global geometry and the two
stage algorithm extend to the convolutional dictionary learning problem, where a superposition of multiple
convolution signals is observed.

1 Introduction
Blind deconvolution aims to recover two unknown signals: a kernel a0 and some underlying signal x0 from
their convolution y = a0 ~ x0. Blind deconvolution is ill-posed in general: there are infinitely many pairs of
signals rendering the same convolution. To render the problem well-posed, one may exploit prior knowledge
about the structure of a0 and x0. For example, the underlying signal x0 is sparse in many engineering and
scientific applications:

Microscopy data analysis: In the crystal lattice of nanoscale materials, there exist randomly and sparsely
distributed “defects”, whose locations and signatures encode crucial information about the electronic struc-
ture of the material. Accurate recovery of such information can facilitate investigation of the detailed structure
of materials [CLC+17].

Neural spike sorting: Neurons communicate by firing brief voltage spikes, whose characteristics reflect
important features of the neuron. These spikes occur randomly and sparsely in time. Neurophysiologists are
interested in assigning stereotyped spikes to putative cells, as well as in knowing their respective spike times
[ETS11, Lew98].

Image deblurring: Motion blur can be modeled as the convolution of a latent sharp image and a kernel
capturing the motion of the camera, usually assumed to be invariant across the image [FSH+06]. The
inverse process of recovering the original sharp image from a blurry image has been widely studied [CL09,
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KH96]. Many well-performing approaches leverage the observation that sharp natural images typically have
(approximately) sparse gradients [CW98, LWDF11, PF14].

All of these applications lead to instances of the sparse blind deconvolution problem. The dominant
algorithmic approach to sparse blind deconvolution involves nonconvex optimization1. Nonconvex formulations
for deconvolution can be derived via several probabilistic formalisms (ML/MAP, VB, ect.), or simply from
heuristics. For example, in image deblurring, the kernel a can be modeled as residing on a simplex [LWDF11,
GTZ+16, KTF11, LCM14]. This is natural from a modeling prospective2, but problematic for optimization:
natural formulations of deconvolution over the simplex admit trivial global minimizers (corresponding to
spiky convolutional kernels a = δ) [PF14, BVG13], which provide no information about the ground truth.
Practical remedies for this problem include exploiting additional data priors [GTZ+16, LCM14, XWHH16]
or careful initialization via edge restoration or multi-scale refinement [KTF11, XJ10], to avoid the trivial spiky
global minima.

In contrast, motivated by a careful comparison of MAP and VB approaches, [WZ13, ZWZ13] propose to
instead constrain a to have unit Frobenius norm – i.e., to reside on a high-dimensional sphere.3 This choice is
arguably more appropriate for certain scientific applications – such as microscopy – in which the kernel a can
have negative entries. For image deblurring, a can be assumed to be nonnegative, and the sphere constraint
seems less natural from a modeling perspective.

In this paper, we study the geometry of sphere-constrained sparse blind deconvolution. Our goal is to
understand when simple algorithms based on nonconvex optimization can exactly recover the convolutional
kernel a and the sparse signal x. This goal is motivated by the applications described above – in particular,
microscopy data analysis – in which there is a strong, physical sparsity prior and a clear, physical notion of the
ground truth. We develop our theory and algorithms under the assumption that a is a short kernel, and that
x is sparsely and randomly supported. We demonstrate through a theoretical analysis of certain (idealized)
cases and many numerical experiments that when these assumptions are satisfied, the proposed algorithm
correctly recovers a, and hencex. These results stem from a striking geometric property of sphere-constrained
sparse blind deconvolution: although the problem is still nonconvex, every local minimizer ā is very close to
a signed shift-truncation of the ground truth kernel a0. This observation provides a geometric explanation
of how the sphere constraint can facilitate sparse blind deconvolution.

The remainder of this paper is organized as follows. Section 2 discusses the intrinsic symmetries associ-
ated with the convolutional operator and their implication on the geometry of sphere-constrained sparse
blind deconvolution. Section 3 introduces the optimization-based two stage algorithm and some related
technical details. Section 4 discusses two other important extensions in image deblurring and convolutional
dictionary learning. Section 5 gives experimental corroboration of our theory, and shows promising results
on microscopy data analysis, image deblurring, and convolutional dictionary learning. Section 6 discusses
directions for future work.

For simplicity, we assume that the convolutional signals are one dimensional in both our problem formu-
lation and technical proofs; all of our results extend naturally to higher-dimensional signals. Throughout
this paper, vectors v ∈ Rk are indexed as v = [v0, v1, · · · , vk−1], and [·]m denotes the modulo-m operation.
We use ‖·‖ to denote the operator norm, and ‖·‖p to denote the entry wise `p norm. A projection onto the
Frobenius sphere is denoted with PS [·] = ·

‖·‖2
, and a projection onto subset I is denoted with (·)I .

1In signal processing, a number of elegant convex relaxations of the problem have been developed [ARR12, Chi16, LLSW18]. However,
these approaches typically require stronger prior information (subspace constraint rather than sparsity) or exhibit suboptimal scalings.

2Since entries of a roughly represent the fraction of the camera exposure time at a given location.
3[WZ13] contains a wealth of additional ideas about the role of sparsity-promoting priors in obtaining good local minima, and on

the probabilistic underpinnings of deconvolution. Our experiments support the viewpoint that the key insight in [WZ13] is the role of
the spherical constraint in avoiding bad minimizers.
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2 Symmetry and Global Geometry
Without loss of generality, we assume the observation data y is generated via a circular convolution ~ of the
ground truth a0 ∈ Rk and x0 ∈ Rm:

y(a0,x0) = a0 ~ x0 = ã0 ~ x0 ∈ Rm. (2.1)

Here, ã0 ∈ Rm denote the zero paddedm-length version of a0, which can be expressed as ã0 = ιa0 with
ι : Rk → Rm be a zero padding operator. Its adjoint ι∗ : Rm → Rk acts as a projection to lower dimensional
space by keeping the first k components. Equivalently, we can write

y(a0,x0) = Cã0
x0 = Cx0 ã0. (2.2)

Here, Cv ∈ Rm×m is the circulant matrix generated from vector v, whose j-th column is a cyclic shift sj−1[v]
of the vector v:

sτ [v] (i) = v([i− τ ]m), ∀ i ∈ [0, · · · ,m− 1]. (2.3)

2.1 Symmetries and Symmetry Breaking
The SBD problem exhibits a scaled-shift symmetry, which derives from the symmetries of the convolution
operator. Namely, given a pair (a0,x0) satisfying y = a0 ~ x0, for any nonzero scalar α and integer τ

y = (αsτ [ã0]) ~
(
α−1s−τ [x0]

)
. (2.4)

Note that a scaled shift α−1s−τ [x0] of a sparse signal x0 remains sparse, and that a scaled shift αsτ [ã0] of
a length-k kernel a0 still has k-nonzero entries. So, these symmetries are intrinsic to the SBD problem, as
formulated here. We can only hope to recover (a0,x0) up to this symmetry.

The presence of nontrivial symmetries is a hallmark of bilinear problems arising in practice – see, e.g.,
[SQW17a, SQW17b] for examples from dictionary learning and generalized phase retrieval. Symmetries
render straightforward approaches to convexify the problem ineffective.4 They also raise challenges for
nonconvex optimization: equivalent symmetric solutions correspond to multiple disconnected global optima.
This creates a very complicated objective landscape, which could potentially also contain spurious local
optimizers. Certain highly symmetric nonconvex problems arising in signal processing do not exhibit
spurious minimizers [SQW17a, SQW17b], however, proving this can be challenging.

2.1.1 Symmetry breaking.

We employ a weak symmetry breaking mechanism by constraining a ∈ Sk−1 5: we reduce the scale ambiguity
to a sign ambiguity, by constraining a to have unit Frobenius norm; we mitigate the shift ambiguity by
constraining a to be supported on the first k entries.

In general, sτ [ã0] are not be supported on the first k entries, hence constraining a to be supported on the
first k entries removes the shift symmetry. However, effects of such shift symmetry still persist. Since the
restriction ι∗sτ [ã0] to the first k entries can be convolved with the sparse signal s−τ [x0] to produce a near
approximation to y:

(ι∗sτ [ã0]) ~ s−τ [x0] ≈ y, (2.5)

especially when the shift |τ | is small. We will see that (i) these symmetric solutions ι∗sτ [ã0] persist as local
minima of a natural optimization formulation of the SBD problem, but that (ii) under conditions, these are
the only local minima.

4Given any set of points where the convex objective function achieves equal values, the function value will be no larger at any convex
combination of them.

5This is motivated in part by [SQW17a], which demonstrates that a certain formulation of the dictionary learning problem over the
sphere has no spurious local minimizers, even for relatively dense target representations. The “simplex constrained” analogue of that
work, which optimizes over hyperplanes, requires the target solution to be much sparser [SWW12].
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Figure 1: Geometry on the `2 ball for fixed a0 and generic x0. Left: the objective ϕ(a) in a low dimen-
sional setting a ∈ S2 – dark blue represents small values while dark red represents large values. All
local minima are close to signed shift truncations of the ground truth a0, with a0 itself achieving global
minimum. The green lines indicate regions where a are ill-posed as convolutional kernels. Right: a shift
truncation a achieves a local minimum of ϕ(a) in a high dimensional setting. Shown here is the ground
truth y = a0 ~ x0,a0, and x0 (top right) versus their respective recovered quantities a ~ x,a, and x
(bottom right).

2.2 Global Geometry on the Sphere
We study the following objective function, which can be viewed as balancing sparsity of xwith fidelity to the
observation y: 6

min
a∈Sk−1,x

ψ(a,x)
.
= 1

2‖y − a~ x‖22 + λr(x). (2.6)

When x0 is long and random, it is more convenient to study this function through its “marginalization”

ϕ(a)
.
= min

x
ψ(a,x), (2.7)

which is defined over the sphere Sk−1.
In Figure 1, we plot the function value of ϕ(a) on the sphere a ∈ S2: red and blue imply larger and

smaller objective value respectively and there are several local minima. For this highly nonconvex function,
the ground truth a0 achieves the global minimum, while other local minima ā are very close to certain
signed shift truncations of the ground truth. Figure 1 (right) exhibits an example of a local minimum in a
higher-dimensional problem.

2.2.1 Analysis under Restricted Settings

Demonstrating that this observation holds in general is challenging: for most reasonable choices of the
regularizer r, there is no closed form expression for the objective ϕ(a). We develop an analysis under several
simplifying assumptions. Throughout, we let r(x) be the `1 norm, although similar conclusions hold for
other sparsifying regularizers. With this choice, we can simplify the objective ϕ by dividing the sphere Sk−1

via the sign-support pattern of the minimizing x∗(a):

x∗(a) = arg min
x

1
2 ‖y − a~ x‖22 + λ ‖x‖1 . (2.8)

Let I and σ denote the support and sign of x∗

I = supp (x∗) , σ = sign(x∗), (2.9)

then the whole sphere can be divided via the sign support pattern

Sk−1 =
⋃
σ

Rσ, Rσ = {a | sign(x∗(a)) = σ} . (2.10)

6Similar formulation can be found in lot of sparse representation problems [MBP14].
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On eachRσ where the sign support pattern σ remains the same, the stationarity condition for minimizer
x∗(a) implies

x∗I(a) = (C∗aCa)
−1
I (C∗ay − λσ)I . (2.11)

Plugging above expression back to the original objective function ϕ(a) yields

ϕσ(a) = − 1
2 (C∗ay − λσ)

∗
I (C∗aCa)

−1
I (C∗ay − λσ)I + 1

2 ‖y‖
2
2 . (2.12)

Although the objective function ϕ(a) can be substantially simplified by removing the x variable in this
way, it still maintains a complicated dependence on a. To obtain some preliminary insights, we make two
simplifications for easier calculation while preserving important characteristics of the geometry of ϕ:

Simplification I: x0 = δ. We maximally simplify the underlying sparse signal as a single spike δ and
the observation will be y = a0 ~ x0 = ã0. This case itself is trivial, but its function geometry is a basic but
important case to be understood. This simple case also yields intuitions that carry over to the less trivial
situation in which x0 is a long random vector.

Simplification II: C∗aCa → I . For a random a ∈ Sk−1, its expectation satisfies E [C∗aCa] = I . Here, we
simply use the identity matrix to replace any C∗aCa and therefore reduce the complexity of Equation 2.12.

With these two simplifications, the original objective problem can be replaced with the following:

minimize ϕ̂(a) subject to a ∈ Sk−1, (2.13)

where
ϕ̂(a)

.
= min

x

1
2 ‖ã0‖22 + 1

2 ‖x‖
2
2 − 〈ã~ x, ã0〉+ λ ‖x‖1 .

In this case, the minimizing x∗(a) has a simple closed form solution:

x∗(a) = SOFTλ [C∗aã0] = SOFTλ
[
Č∗a0

ιa
]
, (2.14)

here, SOFTλ [u] = sign(u) max {|u| − λ, 0} is the entry-wise soft-thresholding operator and Ča0 ∈ Rm×m is
the reversed circulant matrix for a0 defined via

Ča0 =
[
s0 [ã0] s−1 [ã0] . . . s−(m−1) [ã0]

]
. (2.15)

On a constant sign support pattern σ, ϕ̂(a) can be written into a simpler quadratic form:

ϕ̂σ(a) = − 1
2 ‖(C

∗
aã0 − λσ)I‖

2
2

+ 1
2 ‖ã0‖22 . (2.16)

For this surrogate ϕ̂(a), we can show that if λ is sufficiently large compared to the magnitude of x0, every
strict local minimizer is a signed shift truncation of the ground truth:

Theorem 2.1. Define the set of possible supports of minimizer x∗ with
I =

{
supp

(
SOFTλ

[
Č∗a0

ιa
])
| a ∈ Sk−1

}
. (2.17)

For each nonempty support I =
{
i1 < i2 < · · · < i|I|

}
, let

WI =

[
ι∗s−i1 [ã0]

‖ι∗s−i1 [ã0]‖F

∣∣∣∣∣ ι∗s−i2 [ã0]

‖ι∗s−i2 [ã0]‖F

∣∣∣∣∣. . .
∣∣∣∣∣ ι∗s−i|I| [ã0]∥∥ι∗s−i|I| [ã0]

∥∥
F

]
Suppose that λ < 1 and that for every nonempty I ∈ I,

‖W ∗
IWI − I‖ <

λ2

6
, (2.18)

then every local minimum ā of ϕ̂ over Sk−1 satisfies either ā ∈ R0 (in which case ā is also a global maximum), or

ā = ± ι∗sτ [ã0]

‖ι∗sτ [ã0]‖F
= ±PS [ι∗s−τ [ã0]] (2.19)

with x?(ā) = ±SOFTλ [‖ι∗sτ [ã0]‖F ] s−τ [x0] for some shift τ .
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Proof Please refer to the supplement.

This theorem says that the only local minima in this idealized case are signed shift truncations of the
ground truth a0, with certain choice of λ. Moreover, on those local minima ā, the minimizing sparse x?(ā)
correspond to the soft thresholded, oppositely shifted ground truth x0. The quantity ‖W ∗

IWI − I‖ measures
the orthogonality of different shifts of a0. In particular, if a0 is benign enough in the sense that any two
different shifts of a0 are uncorrelated, or ‖W ∗

IWI − I‖ → 0 for any I , then any nonzero λ guarantees the
desired geometry. On the other hand, for a fixed a0, both |I| and |I| becomes smaller as λ increases, therefore
the constraint ‖W ∗

IWI − I‖ < λ2/6 is more likely to be satisfied.
A similar result holds when x0 is separated enough that copies of the kernel do not overlap. It also holds

if x0 is a long, sufficiently sparse random vector. For example, if the entries of x0 satisfy a Bernoulli-Gaussian
distribution x0(i) = Ω(i)v(i), with Ω(i) ∼ Ber(θ) and v(i) ∼ N (0, 1), and the probability θ diminishes
sufficiently quickly with k. We conjecture that this phenomenon holds much more broadly. In particular,
determining how slowly θ can diminish with k is an open problem.

2.3 Global Geometry on the Simplex
In the application to image deblurring, the blur kernel is always positive and sums to 1, which naturally leads
to a simplex-constrained optimization problem. However, the optimization landscape changes drastically
when the convolutional kernel a is constrained to live on the `1 norm ball. The objective value of the same
objective function over the `1 ball is shown in Figure 2.

Figure 2: Geometry on the `1 ball: The trivial spike convolutional kernel is the global minimizer, while
the ground truth [1/3, 1/3, 1/3] becomes a local minimizer.

There is a significant difference induced by these two constraints: the trivial spike kernel (a = δ) becomes
the global minima and other meaningful solutions become local minima with the `1 norm constraint [BVG13],
while the spherical constraint always renders local minima close to some signed shift truncation of the ground
truth. This important empirical knowledge of the structure of the local minima enables us to infer the ground
truth from any local minimizer.

3 A Two-Stage Algorithm
Inspired by the geometric property that every local minimum of the simplified problem ϕ̂ is a signed shift-
truncation of the ground truth a0, we present a two stage algorithm for reliable recovery of the ground truth
a0 in this section. In the first stage, the algorithm recovers some signed shift truncation of the ground truth,
and the following stage infers the ground truth from this partial recovery.

3.1 Stage I: Find the Signed Shift Truncation
Theorem 2.1 suggests that λ needs to be relatively large to guarantee that all local minimizers are signed shift
truncations of the ground truth. However, this is not sufficient to guarantee the success of an optimization
algorithm due to the non-differentiability of the `1 regularizer at x? = 0. Because of this non-differentiability,
when λ is too large, there is a nonzero measure set of a where ‖C∗ay‖∞ ≤ λ and therefore x?(a) = 0. These
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a are not correlated with any signed shift truncation of a0 and are the global maxima of ϕ. The objective
function is constant over this region, so there is no way to escape using only local information.

One way to cope with this flat global maxima region is to replace the nondifferentiable `1 sparsity penalty
with a differentiable one. A natural choice is the huber-µ function, which can be seen as an `1 penalty but
with a rounded bottom for |xi| ≤ µ:

hµ(x) =
∑
|xi|≤µ

(
x2
i

2µ
+
µ

2

)
+
∑
|xi|>µ

|xi| (3.1)

As we choose µ � λ, the µ-huber function closely approximates the `1 norm, which still maintaining the
effect of “smoothing” the flat region. The flat region for the `1 penalty objective occurs when x∗(a) = 0,
correspondingly we define a region asRh,0 with small x∗(a) such that

Rh,0 := {a ∈ Sk−1 : ‖x∗(a)‖∞ ≤ µ}. (3.2)

Within theRh,0 region, the original objective function can be rewritten into a simpler form:

ϕhµ(a) = 1
2‖y − a~ x‖22 + λ

2µ‖x‖
2
2 + µn

2 , (3.3)

thus the optimality condition for x∗ implies

x∗(a) =
(
C∗aCa + λ

µI
)−1

C∗ay ≈
µ
λC
∗
ay. (3.4)

Plugging x∗(a) back to (2.6) and ignoring the higher order term O(µ
2

λ2 ) yields

ϕhµ(a) ≈ − µ
2λ ‖y ~ a‖22 + 1

2 ‖y‖
2
2 + µn

2 . (3.5)

In this case, minimization of the objective function ϕhµ(a) within the region Rh,0 is equivalent to
finding the maximum eigenvalue of the matrix ι∗C∗yCyι with the corresponding leading eigenvectors
e1(ι∗C∗yCyι) achieving the local minima. However, these points can be excluded from Rh,0 by setting
λ < minv∈e1(ι∗C∗yCyι)

∥∥C∗yιv∥∥∞.7
With above modifications, the original flat local maxima regionRh,0 becomes concave and always have a

direction of negative curvature for the algorithm to escapeRh,0. Hence, the first stage of the algorithm can
find a signed shift-truncation of the ground truth ā = ± ι∗sτ [ã0]

‖ι∗sτ [ã0]‖F
as desired.

3.2 Stage II: Infer the Ground Truth
The second stage of the algorithm aims to recover the ground truth from its signed shift truncation ā. To
recover the truncated part, we first put ā in a higher dimensional sphere by zero padding (Figure 3), and then
recover the ground truth a0 on this higher dimensional sphere. Intuitively, as ā still captures a considerable
portion of the ground truth a0 (the zero padded ā is close to the shifted a0 in a higher dimensional space),
the zero padded ā serves as a good initialization. This intuition is made rigorous in the following lemma:

Lemma 3.1. Let λrel = λ/ ‖x0‖∞, suppose the ground truth a0 satisfies

|〈a0, ιsτ 6=0 [ã0]〉| < λ2
rel −

(
2 + 1/λ2

rel

)√
1− λ2

rel (3.6)

for any nonzero shift τ , and x0 is separated enough such that any two nonzero components are at least 2k entries away
from each other. If initialized at some a ∈ Sk−1 that |〈a,a0〉| > λrel, a small-stepping projected gradient method
minimizing ϕ(a) recovers the signed ground truth ±a0.

7A computationally easier upper bound would be
√
λ1(ι∗C∗yCyι)

k
. Note that in some scenario, there exists a local minima appearing

in either regionRh,0 orRch,0 regardless of how we set λ. Such extreme case happens when the ground truth convolutional kernel is
only supported on a small consecutive portion of its full size, hence a tight estimate of the kernel size is preferred.
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Figure 3: Zero Padding a Signed Shift Truncation The original signed shift truncation (left) and the
corresponding zero padded one (right).

Proof Please refer to the supplement.

This lemma says when the initial point a is close enough to the ground truth, the gradient always points
to a0 as long as |〈a0, ιsτ 6=0 [ã0]〉| is sufficiently small. Theorem 2.1 suggests that the first stage of the algorithm
finds one local minimum ā that |〈ā,a0〉| ≥ λrel. Hence, the second stage of the algorithm, which minimizes
the same objective function but on a higher dimensional sphere, recovers the ground truth up to sign shift
ambiguity as desired.

To ensure accurate recovery, it is important to take the effect of λ on the function geometry into consider-
ation. A larger λ encourages a sparser x and induces a simpler and smoother function landscape, which
effectively eliminates undesirable local minima that are not close to any signed shift truncations, as shown in
Figure 4. On the other hand, a smaller λ emphasizes more on the accurate recovery of the signal, therefore
the global minima of (2.6) will be closer to the ground truth when λ decreases.
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Figure 4: Function Geometry with Varying λ: The objective ϕ(a) over the hemisphere for λ =
10−1, 10−3, 10−6. Here a0 = PS2 [[1, 8, 2]] and x0 ∼ Ber(.1)�N (0, 1). The ground truth kernel a0 and its
shift-truncations PS2 [[8, 2, 0]], PS2 [[0, 1, 8]] are shown in red, and sign-flips PS2 [−[8, 2, 0]], PS2 [−[0, 1, 8]]
are shown in magenta. Notice that each signed shift truncation shown on the hemisphere is close to a
corresponding local minima, while as the objective landscape becomes less regularized as λ shrinks.

This geometric effect induced by λ suggests a continuation method in the second stage of the algorithm.
We start with a relatively big λ for smoother function geometry, which encourages the algorithm to converge
to one meaningful local minimum close to some signed shift truncation of the ground truth. Then run the
same algorithm with decreasing sequence of λ to produce a finer approximation of the ground truth. The
overall algorithm is described in Algorithm 1.

We need to note that solving a = arg minϕλ(a) in Algorithm 1 involves iteration between (i) finding the
marginalization over x∗(a) step, and (ii) updating a based on the gradient/Hessian of ϕλ(a). This could be
very computationally consuming, a more efficient variant would be to optimize over the cross space of a and
x together. The corresponding algorithm can be easily adapted to fit into the same general framework. The
only things we want to emphasize in the proposed algorithm are the dimension lifting of the sphere and the
continuation of λ.

8



Algorithm 1 Nonconvex Sparse Blind Deconvolution
Ensure: Observation data y, regularization parameter λ0 and λmin, continuation parameter β > 1
1: Solve a(0) = arg minϕλ0

(a) on Sk−1 with random initialization
2:
3: Set λ1 = λ0, zero pad a(0) to a(1) and a(1) ∈ Sk′−1 (k′ > k).
4: while λk > λmin do
5: Solve a(k+1) = arg minϕλk(a) on Sk′−1 with initialization a(k).
6:
7: λk+1 = λk/β
8:
9: end while

4 Further Extensions
In this section, we extend our algorithm to handle two other deconvolution problems of practical interests:
image deblurring and convolutional dictionary learning. The proposed two stage algorithm can be modified
and applied to these more complicated applications.

4.1 Image Deblurring
Image deblurring aims to recover a sharp natural image from its blurred observation due to unknown photo-
graphic processes such as camera shake or defocus. Although the natural images are not necessarily sparse, it
is widely acknowledged that their gradients are approximately sparse. Let y = a0 ~ x0 denote the observed
blurry image, which is the convolution of the original sharp image x0 and the blurring kernel a0. Because of
the linearity of the convolution operator, the gradient of the blurred image equals the convolution of the
kernel and gradient of the original sharp image, which is usually sparse as desired

∇xy = a0 ~∇xx0, ∇yy = a0 ~∇yx0. (4.1)

Here, ∇x and ∇y denote derivatives in the x and y directions. In this application, ∇xx0 and ∇yx0 are the
underlying sparse signals, and the blind image deblurring problem can be cast as solving:

min
a∈Sk−1

+ ,x1,x2

{
1
2‖∇xy − a~ x1‖22 + λr(x1) (4.2)

+ 1
2‖∇yy − a~ x2‖22 + λr(x2)

}
.

Here, Sk−1
+ denotes the intersection of the unit sphere and the positive orthant. In this application, the

non-negativity of the blurring kernel removes the sign ambiguity. We observe in experiments that local
minimizers are all near some shift truncation of the ground truth kernel. The same two stage algorithm can
therefore be applied to infer the ground truth.

4.2 Convolutional Dictionary Learning
Convolutional dictionary learning (CDL) is an important problem in machine learning for images, speeches, as
well as scientific problems like microscopy data analysis and neural spike sorting. The observation signal y
is the superposition of convolutions of N pairs of kernels a0n and corresponding coefficients x0n:

y =
∑N
n=1a0n ~ x0n. (4.3)

Blind deconvolution can be seen as a special case of CDL with N = 1. If the coefficients x0n are sparse, a
natural way to extend our knowledge of SBD would be to assume all N convolutional kernels having unit
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Frobenius norm and cast it as minimizing following objective function over the product of N spheres:

min
an∈Sk−1

min
xn

1
2‖y −

∑N
n=1an ~ xn‖22 + λ

∑N
n=1r(xn). (4.4)

We anticipate that all the local minima are near signed shift truncations of the ground truth, provided the
target kernels a0n are sufficiently diverse. The modified two stage algorithm still manages to capture the
partial information offered by local minima and hence recovers the ground truth. Experimental results are
provided in Section 5.4 to corroborate this claim.

5 Experiments
In this section, we investigate the performance of our algorithm on both synthetic and real data. We first
report a systematic investigation, performed in [CLC+17], of the performance of our algorithm on synthetic
data, which are designed to mimic properties of the microscopy data analysis problem. In Sections 5.2-5.4,
we present experiment results showing how our method performs on real data from microscopy and image
deblurring.

5.1 Evaluation on Synthetic Data
Noise-free data: we generate the noise-free observation signal of size m = 256 × 256 through circular
convolution between a kernel of size k and a randomunderlying activation signal with a Bernoulli distribution
with sparsity θ, i.e. xi

i.i.d.∼ Ber(θ), or x ∼ Ber(θ). We plot the kernel recovery error for varying kernel size
k and sparsity level θ in the left of Figure 5 [CLC+17]. Each point on the diagram is the average of 20
independent measurements. The algorithm performs excellently in the blue regions, but begins to fail in the
red regions, where either the kernel size is large or the underlying activation signal is dense. The region
where typical STM measurements are performed are bounded below by the white dashed line, where the
proposed algorithm achieves satisfying performance.
Noisy data: we generate convolutional signals by convolving fixed kernel of dimension k, k/m = 0.14 with
the random activation map x ∼ Ber(θ) of dimensionm, and applying additive Gaussian noise. We test the
performance of our algorithm for varying sparsity θ and noise power. The result is shown in Figure 5 (right):
the algorithm achieves noise-robust recovery when the sparsity constraint is satisfied.

Figure 5: Recovery accuracy [CLC+17]. Left: phase transition diagram from noise-free simulated results.
Right: performance of algorithm 1 in the presence of additive noise in themeasurement; the error increases
for small θ due to a lack of samples, whereas extremely large θ leads to algorithmic failure.
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5.2 Microscopy Data Analysis
We apply our algorithm on experimental microscopy data obtained from a NaFeCoAs sample. Our results
shown in Figure 6 indicate that the proposed algorithm manages to recover the missing details of the ripples
in the Fourier domain of the defect, which encode the physical scattering processes of electrons at work.

Figure 6: STMData Analysis. From left to right: the microscopy images, extracted convolutional kernels
(defect patterns), and their respective Fourier magnitude images.

5.3 Image Deblurring
We test our algorithm on the image deblurring dataset from [LWDF11], solving (4.3) to recover the convolu-
tional kernel. To clearly separate the inaccuracy of the algorithm and the universal blurring kernel model, all
the experiments are done on three kinds of blurred images: (i) synthetic blurred images generated by the
convolution of sharp images and blurry kernels; (ii) noisy blurred images generated by adding Gaussian
noise to the clean synthetic blurred images (SNR=100); and (iii) real blurry images taken with camera shakes
[LWDF11].

We compare with algorithms by Zhang et al.[ZWZ13], Krishnan et al.[KTF11], Sun et al.[SCWH13], and
Liu et al.[LCM14].8

Because of the shift ambiguity, we evaluate the accuracy of the recovered blurring kernel considering
all possible shifts. The kernel recovery error is defined as minτ ‖ι∗sτ [ã] / ‖a‖1 − a0/ ‖a0‖1‖F , and the
cumulative distribution is shown in Figure 7.

Figure 7: Blur Kernel Recovery Error: Cumulative distributions of recovered blur kernel error from
synthetic (left), noised(middle) and real (right) blurry images.

We use the same non-blind deblurring algorithm from [KF09], with the same parameter. We consider the
blurred image using the ground truth kernel to be the bench mark, and evaluate the quality of the deblurred

8We use the default parameters for these algorithms. It’s possible that better performance could be obtained by tuning the parameters
more carefully. In our algorithm, we fix the λ’s to be 0.1, 0.01, 0.001, 0.001 for all the instances.
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image by calculating the Frobenius norm of its difference to such bench mark. Results are shown are in
Figure 8.

Figure 8: Non-blindRestoration Error: Cumulative distributions of deblurred image error from synthetic
(left), noised(middle) and real (right) blurry images.

Our algorithm achieves better convolutional kernel recovery for all three types of images, but its improve-
ment on deblurred image is less obvious, especially for real images. This could be due to (i) the convolutional
kernel in this dataset is not strictly uniform across the image, and (ii) the non-blind deconvolution algorithm
exploits the heavy-tailed distribution of a natural image’s gradient and becomes less sensitive to the accuracy
of the recovered convolutional kernel.

5.4 Convolutional Dictionary Learning
We show results of recovering multiple convolutional kernels on both synthetic data (Figure 9) and real
STM data (Figure 10). In the synthetic data, the three convolutional kernels are of size 16 × 16 and their
corresponding activation signals are generated through a Bernoulli model of sparsity 0.005. Results of both
stages of the algorithm are shown in Figure 9: the first stage returns kernels close to some shift truncations of
the ground truth, and the second stage recovers the ground truth on a higher dimensional space.
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Figure 9: Multi Kernel Blind Deconvolution on Synthetic Data: Input image (left) and the recovered
convolutional kernels of Stage I and Stage II of the algorithm (right).

We repeat this experiment with microscopy data obtained from aNaFeAs sample. The algorithmmanages
to differentiate the two convolutional kernels (defect patterns), as shown in Figure 10. For this material, the
kernel orientations depend on the history of the material (stress, temperature, etc.), and using convolutional
dictionary learning can be used to automatically detect these features.

6 Generalizations: Matching Loss and Constraints
In the Lasso-like objective function studied in this paper, the approximation error of y−a~x are measured in
the squared Frobenius norm (or entry-wise `2 norm), which is usually adopted to penalize gaussian addictive
noise in the observation. To obtain reliable solutions, a spherical constraint on the short kernel turned out
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Figure 10: Multi Kernel Blind Deconvolution on Real STM Image: Input image (left) and recovered
convolutional kernels and their corresponding activation signals (right).

to be crucial. Moreover, several theoretical papers [ZKW18, KZLW18] studying variations of the Lasso-like
objective function also adopt the unit Frobenius constraint, and show that the claimed geometry continues to
hold under much more general conditions. However, noise could be more complicated and does not always
satisfy the gaussian model in real applications. If given prior knowledge of the noise, other penalties for the
loss term y − a~ x could be preferable. For example, ‖y − a~ x‖pp with p < 2 performs better to penalize
heavy tailed noise, and ‖y − a~ x‖pp with p > 2 performs better control on the magnitude of the noise.

In this section, we briefly discuss the following more general formulation for the short-and-sparse
deconvolution problem

min ψp(a,x)
.
= 1

p ‖y − a~ x‖pp + λr ‖·‖1 (6.1)

s. t. ‖a‖q = 1.

Similarly, we write ϕp(a)
.
= minx ψp(a,x). In this case, we use entrywise `p norm to measure the approx-

imation error of a ~ x, and assume the optimization constraint for a to be a unit `q (2 < q < ∞) sphere.
Comprehensive study of the function landscape of above general formulation is even more challenging.
However, we can demonstrate that once p = q, there exist local solutions that share the same geometric
property (a local optimum is close to some scaled shifted truncation) through local analysis. As in the
objective optimization problem (2.6), the inherent shift ambiguity leads to these structured local minimizers.
Because of the randomness in x0, the derived results hold for more general x0.

Lemma 6.1. Suppose y = a0 ~ x0 with x0 = e0, and p = q ≥ 2. Then for any shift τ , positive scalar ε and λ such
that at every a ∈ Sq ∩ B

(
ι∗s−τ [a0]
‖ι∗s−τ [a0]‖q

, ε
)
the solution x∗(a)

.
= arg minx ψp(a,x) is (i) unique and (ii) is supported

on the τ -th entry, the point ā .
= ι∗s−τ [a0]
‖ι∗s−τ [a0]‖q

is a strict local minimizer of the cost ϕp(a) over the manifold ‖a‖p = 1.

Proof Please refer to the supplement.

This lemma says that as long as the constraint matches the loss, i.e., we choose q = p ≥ 2, a scaled shift
truncation ā = ι∗s−τ [a0] / ‖ι∗s−τ [a0]‖q achieves the local minimum. In contrast, when the constraint does not
match the loss, i.e., q 6= p, this property is not satisfied: the Riemannian gradient vanishes at a stationary point a,
which satisfies

sign (ι∗s−τ [ã0]− αa) = sign (a) , (6.2)
and

(ι∗s−τ [ã0]− αa)
◦(p−1)

= α′a◦(q−1), (6.3)
with α′ denoting another non-zero scalar of arbitrary value. This point is not a shift truncation of the ground
truth.9

9When p 6= q, with λ decreasing, (6.2) can be rewritten as αa = ι∗s−τ [ã0] +α′a
◦ q−1
p−1 . With the stationary condition for x∗(a), we

have αa→ ι∗s−τ [ã0] as λ→ 0. Algorithmically, this helps to explain why practical algorithms solving (6.1) with p 6= q can sometimes
recover the kernel, where a careful continuation in λ is always necessary.
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Hence, when the constraint matches the loss, there is good local geometry. In this paper, we have
empirically demonstrated that when p = q = 2, there is good global geometry, under appropriate conditions.
We can potentially leverage this property to find global solutions to the general `p (p ≥ 2) problem: one first
minimizes `2 to obtain a point near the ground truth and then locally minimizes ϕp over an `p ball to obtain
an estimate that uses the statistical characteristics of the noise.

Although our analysis only pertains to q ≥ 2, we believe that there is good local geometry even when
q < 2. In this situation, the constraint set is no longer twice differentiable and the shift truncations are always
on the non-smooth region of the constraint set. As the p decrease, the normal cone at the nonsmooth points
gets wider. For example, if q ≥ 2 the normal cone is the normal direction. Therefore, as q decreases, the
normal cone is larger and hence more like to contain the gradient direction, then this shift truncation is likely
to be a stationary point.

7 Discussions
This work studies the global geometry of a nonconvex optimization problem for SBD when the kernel is
assumed to have unit Frobenius norm. In this setting, we find that all the local minima are benign, in the
sense that they are close to some signed shift truncation of the ground truth. With this insight, we propose a
two stage algorithm that recovers the ground truth by exploiting the information hidden in local minima.

This problem reveals the challenges faced when analyzing the SBD problem via a geometrical approach.
For problems enjoying stronger symmetry properties [SQW17a, SQW17b], similar approaches yield a global
understanding of the function geometry and recovery guarantees. We expect that the weak symmetries in
SBD make a major contribution to the difficulties encountered for this problem.

There are lots of additional further directions could be of great interests for both theory and application:
Our empirical results show that the our characterization of local minima carries through to the convolutional
dictionary learning problem, which can also be efficiently solved by slight adaptation of the proposed
algorithm. However, the theory part is open, it would be interesting to know how many kinds of kernels,
or what kinds of kernels are recoverable, probably by some measures of incoherence, which is a common
assumption in dictionary learning problem.

Two other imperfections we encounter in scientific measurement are resolution limit and measurement
error, which inspire us to consider (i) if it’s possible to integrate blind deconvolution and super-resolution
process together; (ii) if we can come up with a robust blind deconvolution algorithm to automatically rule
out noisy entries.

Acknowledgement
The authors gratefully acknowledge support from NSF 1343282, NSF CCF 1527809, and NSF IIS 1546411.

References
[AMS07] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University

Press, Princeton, NJ, USA, 2007.
[AMS09] Pierre-Antoine Absil, Robert Mahoney, and Rodolphe Sepulchre. Optimization Algorithms on Matrix Manifolds.

Princeton University Press, 2009.
[ARR12] Ali Ahmed, Benjamin Recht, and Justin Romberg. Blind deconvolution using convex programing. arXiv

preprint:1211.5608, 2012.
[BVG13] Alexis Benichoux, Emmanuel Vincent, and Remi Gribonval. A fundamental pitfall in blind deconvolution

with sparse and shift-invariant priors. 38th International Conference on Acoustics, Speech, and Signal Processing,
May 2013.

[Chi16] Yuejie Chi. Guaranteed blind sparse spikes deconvolution via lifting and convex optimization. IEEE Journal
of Selected Topics in Signal Processing, 10(4):782–794, June 2016.

14



[CL09] Sunghyun Cho and Seungyong Lee. Fast motion deblurring. ACM Transactions on Graphics (SIGGRAPH
ASIA 2009), 28(5):article no. 145, 2009.

[CLC+17] Sky Cheung, Yenson Lau, Zhengyu Chen, Ju Sun, Yuqian Zhang, JohnWright, and Abhay Pasupathy. Beyond
the fourier transform: A nonconvex optimization approach to microscopy analysis. Submitted, 2017.

[CW98] Tony F. Chan and Chiu-Kwong Wong. Total variation blind deconvolution. IEEE Transactions on Image
Processing, 7(3):370–375, Mar 1998.

[ETS11] Chaitanya Ekanadham, Daniel Tranchina, and Eero P. Simoncelli. A blind sparse deconvolution method for
neural spike identification. In Advances in Neural Information Processing Systems 24, pages 1440–1448. 2011.

[FSH+06] Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T. Roweis, and William T. Freeman. Removing camera
shake from a single photograph. ACM Transactions on Graphics, 25(3):787–794, June 2006.

[GTZ+16] Dong Gong, Mingkui Tan, Yanning Zhang, Anton van den Hengel, and Qinfeng Shi. Blind image deconvolu-
tion by automatic gradient activation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016.

[KF09] Dilip Krishnan and Rob Fergus. Fast image deconvolution using hyper-laplacian priors. In Advances in
Neural Information Processing Systems 22, pages 1033–1041. 2009.

[KH96] Deepa Kundur and Dimitrios Hatzinakos. Blind image deconvolution. Signal Processing Magazine, IEEE,
13(3):43–64, May 1996.

[KTF11] Dilip Krishnan, Terence Tay, and Rob Fergus. Blind deconvolution using a normalized sparsity measure. In
IEEE Conference onComputer Vision and Pattern Recognition (CVPR), pages 233–240, June 2011.

[KZLW18] Han-Wen Kuo, Yuqian Zhang, Yenson Lau, and John Wright. Geometry and symmetry in short-and-sparse
deconvolution. In Preparation, 2018.

[LCM14] Guangcan Liu, Shiyu Chang, and Yi Ma. Blind image deblurring using spectral properties of convolution
operators. IEEE Transactions on Image Processing, 23(12):5047–5056, Dec 2014.

[Lew98] Michael S. Lewicki. A review of methods for spike sorting: the detection and classification of neural action
potentials. Network: Computation in Neural Systems, 9(4):53–78, 1998.

[LLSW18] Xiaodong Li, Shuyang Ling, Thomas Strohmer, and Ke Wei. Rapid, robust, and reliable blind deconvolution
via nonconvex optimization. Applied and computational harmonic analysis, June 2018.

[LWDF11] Anat Levin, Yair Weiss, Fredo Durand, and William T. Freeman. Understanding blind deconvolution
algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12):2354–2367, Dec 2011.

[MBP14] Julien Mairal, Francis Bach, and Jean Ponce. Sparse modeling for image and vision processing. Foundations
and Trends in Computer Graphics and Vision, 8(2-3), December 2014.

[PF14] Daniele Perrone and Paolo Favaro. Total variation blind deconvolution: The devil is in the details. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[SCWH13] Libin Sun, Sunghyun Cho, Jue Wang, and James Hays. Edge-based blur kernel estimation using patch priors.
In Proc. IEEE International Conference on Computational Photography, 2013.

[SQW17a] Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the sphere. IEEE Transactions on
Information Theory, 2017.

[SQW17b] Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval. Foundations of Computational
Mathematics, 2017.

[SWW12] Daniel Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-used dictionaries. COLT, 2012.
[WZ13] David Wipf and Haichao Zhang. Revisiting bayesian blind deconvolution. arXiv preprint:1305.2362, 2013.
[XJ10] Li Xu and Jiaya Jia. Two-phase kernel estimation for robust motion deblurring. In European Conference on

Computer Vision (ECCV), pages 157–170, 2010.
[XWHH16] Lei Xiao, Jue Wang, Wolfgang Heidrich, and Michael Hirsch. Learning high-order filters for efficient blind

deconvolution of document photographs. In 14th European Conference on Computer Vision (ECCV), pages
734–749, 2016.

[ZKW18] Yuqian Zhang, Han-Wen Kuo, and John Wright. Structured local minimum is sparse blind deconvolution.
NIPS, 2018.

[ZWZ13] Haichao Zhang, David Wipf, and Yanning Zhang. Multi-image blind deblurring using a coupled adaptive
sparse prior. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), January 2013.

15



A Notations
This supplementary material contains a complete proof of Theorem 2.1 and Lemma 3.1 of the main paper.
Section 1 discusses some technical notations and geometric observations, Section 2 and 3 presents a complete
proof for the theorem and lemma respectively, and Section 4 contains two auxiliary lemmas used in the main
proof.

Before commencing our main proof, we introduce some notations, recap the simplified objective function
ϕ̂ and a few basic observations on its geometry. In this note, we use Ca or Cã exchangeably to denote the
m×m circulant matrix generated by a k-length short convolutional kernel awithout ambiguity.

Reversed Circulant Matrix Let Ča0
be the reversed circulant matrix for a0 such that

Ča0 =
[
s0 [ã0] s−1 [ã0] s−2 [ã0] . . . s−(m−1) [ã0]

]
∈ Rm×m, (A.1)

Here, sτ [ã0] denotes a cyclic shift as defined in Equation (3) of the main paper. Since the i-th entry of C∗aã0

satisfies
[C∗aã0]i = 〈si [ã] , ã0〉 = 〈ã, s−i [ã0]〉 = 〈a, ι∗s−i [ã0]〉 , (A.2)

therefore following equation always holds

C∗aã0 = Č∗a0
ã. (A.3)

Projection onto I Let e0, . . . , em−1 denote the standard basis vectors. For index set I =
{
i1, . . . , i|I|

}
6= ∅,

let
VI

.
=
[
ei1 | ei2 | · · · | ei|I|

]
∈ Rm×|I|, (A.4)

and then
PI = VIV

∗
I (A.5)

denote the projection onto the coordinates indexed by I while setting other entries zero.
Partial Signed Support Let u, v be two vectors of the same dimension. If supp (u) ⊆ supp (v) and

u(i)v(i) ≥ 0 for all i ∈ supp (v), then u attains the partial signed support of v, denoted as u� v.
Piecewise Quadratic Function Let x∗(a) denote the minimizer for simplified objective function

ϕ̂(a) = min
x

1
2 ‖ã0‖22 + 1

2 ‖x‖
2
2 − 〈a~ x, ã0〉+ λ ‖x‖1 , (A.6)

with sign σ and support I defined as

σ
.
= signx∗(a) ∈ {−1, 0, 1}m , I

.
= supp (σ) ⊆ {0, 1, . . . ,m− 1} 10. (A.7)

By stationary condition for x∗(a), we obtain

x∗(a) = SOFTλ [C∗aã0] = SOFTλ
[
Č∗a0

ιa
]
, (A.8)

where SOFTλ [u] = sign(u) max {|u| − λ, 0} is the entry-wise soft-thresholding operator.
For each sign pattern σ = supp (x∗) ∈ {−1, 0, 1}m, there exists corresponding region on the sphere such

that
Rσ =

{
a | sign SOFTλ

[
Č∗a0

ιa
]

= σ
}
. (A.9)

On the relative interior of each Rσ , the function ϕ̂ has a simple expression:

ϕ̂(a) = ϕ̂σ(a)
.
= − 1

2a
∗ι∗Ča0PIČ

∗
a0
ιa+ λσ∗PIČ

∗
a0
ιa+ 1

2 −
λ2|I|

2 . (A.10)

Therefore, the objective function is piecewise quadratic and can be rewritten as

ϕ̂σ = 1
2a
∗Mσa+ b∗σa+ Constσ, (A.11)

with
Mσ = −ι∗Ča0PIČ

∗
a0
ι, bσ = λι∗Ča0PIσ. (A.12)

With above notations clarified, we are now ready to present a proof for the main theorem.
10As in the main paper, we assume thatm dimensional vectors are indexed by the integers 0, 1, . . . ,m− 1.
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B Proof of Theorem 2.1
Proof On the relative interior of each Rσ , the simplified objective function

ϕ̂σ = 1
2a
∗Mσa+ b∗σa+ cσ (B.1)

has Euclidean derivative and Hessian

∇ϕ̂σ(a) = Mσa+ bσ, (B.2)
∇2ϕ̂σ(a) = Mσ. (B.3)

As we assume a to have unit Frobenius norm, or to live on a sphere, the more natural Riemannian gradient
and Hessian are defined as

grad [ϕ̂σ] (a) = Pa⊥∇ϕ̂σ(a) (B.4)
= Mσa+ bσ − a(a∗Mσa+ b∗σa), (B.5)

Hess [ϕ̂σ] (a) = Pa⊥
(
∇2ϕ̂σ(a)− 〈∇ϕ̂σ(a),a〉 I

)
Pa⊥ (B.6)

= Pa⊥
(
Mσ − (a∗Mσa+ b∗σa)I

)
Pa⊥ . (B.7)

Here,Pa⊥ = I−aa∗ denotes projection onto the tangent space over the sphere at a. As in the Euclidean space,
a stationary point on the sphere needs to satisfy grad [ϕ̂σ] (a) = 0. At a stationary point ā, if Hess [ϕ̂σ] (ā)
is positive semidefinite, the function is convex and ā is a local minimum; if Hess [ϕ̂σ] (ā) has a negative
eigenvalue, then there exists a direction alone which the objective value decreases and hence ā is a saddle
point [AMS07].

Let I =
{
i1 < i2 < · · · < i|I|

}
and define

ηi = ‖ι∗s−i [ã0]‖2 ∀i ∈ I, (B.8)
η = (ηi1 , ηi2 , . . . , ηi|I|) ∈ R|I|, (B.9)

and

U =

[
σi1ι

∗s−i1 [ã0]

ηi1

∣∣∣∣∣σi2ι∗s−i2 [ã0]

ηi2

∣∣∣∣∣. . .
∣∣∣∣∣σi|I|ι∗s−i|I| [ã0]

ηi|I|

]
∈ Rk×|I|. (B.10)

Here, columns of U have unit `2 norm. Then we have

Mσ = −Udiag(η)2U∗, bσ = λUη. (B.11)

As I is defined via soft thresholding, we have
∣∣[Č∗a0

ιa]i
∣∣ > λ holds for every i ∈ I . Hence,

a∗Mσa+ b∗σa = −a∗ι∗Ča0
PIČ

∗
a0
ιa+ λσ∗PIČ

∗
a0
ιa (B.12)

= −
∥∥PIČ∗a0

ιa
∥∥2

2
+ λ

∥∥PIČ∗a0
ιa
∥∥

1
(B.13)

< 0 (B.14)

holds at any a ∈ cl (Rσ) \R0.
Stationary point and implications
Consider any stationary point ā ∈ cl (Rσ) \R0 of ϕ̂. By continuity of the gradient of ϕ̂ (proved in Lemma

B.1), ā is also a stationary point of ϕ̂σ . By definition, grad [ϕ̂σ] (ā) = 0, which implies that

(ā∗Mσā+ b∗σā)ā = Mσā+ bσ. (B.15)

Note that since ā∗Mσā+ b∗σā 6= 0 and bσ ∈ range(Mσ), this implies that ā ∈ range(Mσ).
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Let γ = − (a∗Mσa+ b∗σa) > 0, then the condition for a stationary point ā becomes

γā = Udiag(η)2U∗ā− λUη. (B.16)

Let α = U∗ā, and note that for each j, αj > 0 and αjηj > λ. In terms of U , the stationarity condition
becomes

γα = U∗Udiag(η)2α− λU∗Uη. (B.17)
Since the diagonal elements of U∗U are all ones, and hence can be written as

U∗U = I + ∆. (B.18)

We have
γα = diag(η)2α− λη + ∆

{
diag(η)2α− λη

}
. (B.19)

As α � 0 and diag(η)α � λ · 111, together with an auxiliary Lemma E.2 proved in Section E, we have∥∥diag(η)2α− λη
∥∥

2
≤ ‖α‖2 (B.20)
= ‖U∗ā‖2 (B.21)
≤ ‖U‖`2→`2 (B.22)
≤

√
3/2, (B.23)

whence ∥∥∥∆{diag(η)2α− λη
}∥∥∥
∞
≤

√
3/2× ‖∆‖`2→`∞ . (B.24)

Suppose that ∆ is small enough that the right hand side of (B.24) is bounded by λ2/2, i.e.,

‖∆‖`2→`∞ ≤
λ2

√
6
. (B.25)

Plugging back into the stationary condition diag(η)2α− γα = λη −∆
{

diag(η)2α− λη
}
gives

(diag(η)2 − γ)α � λη − λ2/2 � 0. (B.26)

Since αi < 1 and ηi > λ for all i, which implies that

γ < η2
min − ληmin + λ2/2, (B.27)

where ηmin is the smallest of the ηi.
Negative curvature in Hessian Recall the Riemannian Hessian on the sphere is defined as

Hess [ϕ̂σ] (a) = Pa⊥
(
Mσ − (a∗Mσa+ b∗σa)I

)
Pa⊥ (B.28)

= Pa⊥
(
−U diag(η)2U∗ + γI

)
Pa⊥ . (B.29)

Below argument shows that this Riemmanian Hessian has negative eigenvalues. Let Ũ be an orthonormal
matrix generated via

Ũ
.
= U(U∗U)−1/2 (B.30)

Whenever ‖∆‖`2→`2 < 1/2 holds, Lemma E.2 guarantees
∥∥∥U − Ũ∥∥∥

`2→`2
< 3 ‖∆‖`2→`2 . Under this condition,

we can lower bound the smallest nonzero eigenvalue of U diag(η)2U∗, as

λmin(U diag(η)2U∗) = σmin(U diag(η))2 (B.31)
11Here, � denotes element-wise inequality between vectors.
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≥
(

max
{
σmin

(
Ũ diag(η)

)
−
∥∥∥U − Ũ∥∥∥ ‖diag(η)‖ , 0

})2

(B.32)

=
(

max
{
ηmin −

∥∥∥U − Ũ∥∥∥ ηmax, 0
})2

(B.33)

≥ η2
min − 3ηmaxηmin ‖∆‖`2→`2 . (B.34)

Since λ < ηmin ≤ ηmax ≤ 1, additionally if ‖∆‖`2→`2 ≤
λ
6 , we have

3ηmaxηmin ‖∆‖`2→`2 ≤ ληmin − λ2/2, (B.35)

Together with (B.25) and (B.27), we can obtain

λmin(U diag(η)2U∗) > γ, (B.36)

or
λmax(Mσ) < −γ. (B.37)

Thus, whenever the following conditions are satisfied

λ < 1, ‖∆‖`2→`∞ ≤
λ2

√
6
, ‖∆‖`2→`2 ≤

λ

6
, (B.38)

we have λmax(Mσ) < −γ as desired.
Above calculations imply that for every ξ ∈ range (Mσ) ⊆ Rk,

ξ∗ (Mσ + γI) ξ < 0. (B.39)

Since
Hess [ϕ̂σ] (ā) = Pā⊥

(
Mσ + γI

)
Pā⊥ , (B.40)

for ξ ∈ ā⊥ ∩ range (Mσ),
ξ∗Hess [ϕ̂σ] (ā) ξ < 0. (B.41)

Hence, on the relative interior relint (Rσ), ϕ̂ ≡ ϕ̂σ obtains, and so this implies that for ‖σ‖0 > 1, there are no
local minima in relint (Rσ).

Relative boundariesWefirst note that if ‖σ‖0 = 1 and I = {i}, eitherRσ is emptywhen ‖ι∗s−i [ã0]‖2 ≤ λ,
or it contains an open ball around range (Mσ)

⋂
Sk−1 = ± ι∗s−i[ã0]

‖ι∗s−i[ã0]‖2
. Hence, if ā ∈ relbdy (Rσ) is a

stationary point and σ 6= 0, we necessarily have ‖σ‖0 ≥ 2.
Since ā is on the boundary of Rσ , it is also in relbdy (cl (Rσ′)) for some σ′ 6= σ. Let

Ξ = {σ′ | ā ∈ relbdy (cl (Rσ′))} . (B.42)

Suppose that for every σ′ ∈ Ξ, σ � σ′. Hence, range (Mσ) ⊆ range (Mσ′) for every σ′ ∈ Ξ and

ξ∗Hess [ϕ̂σ′ ] (ā) ξ < 0, ∀ ξ ∈ range(Mσ), σ′ ∈ Ξ. (B.43)

By continuity of the gradients, ā is a stationary point for every ϕ̂σ′ such that σ′ ∈ Ξ. If we choose an arbitrary
nonzero ξ ∈ range(Mσ), we have that for every σ′ ∈ Ξ,

ϕ̂σ′(PSk−1 [ā+ tξ]) < ϕ̂(ā)− Ω(t2). (B.44)

There exists a neighborhood N of ā for which, at every a ∈ N ∩Rσ′ , ϕ̂(a) = ϕ̂σ′(a) ≤ ϕ̂(ā) for some σ′ ∈ Ξ.
Hence, ā is not a local minimum of ϕ̂.

Local minima If ‖σ‖0 = 1 and I = {i}, then the simplified objective function is

ϕ̂σ = − 1
2 〈σiι

∗s−i [ã0] ,a〉2 + λ 〈σiι∗s−i [ã0] ,a〉+ cσ. (B.45)
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The minimizer appears at the boundary for 〈σiι∗s−i [ã0] ,a〉, namely ‖ι∗s−i [ã0]‖212 obtained by

ā = σi
ι∗sτ [ã0]

‖ι∗sτ [ã0]‖2
. (B.46)

It can be easily verified that

grad [ϕ̂σ] (ā) =
(
−‖ι∗sτ [ã0]‖22 + λ ‖ι∗sτ [ã0]‖2

)
× (I − āā∗) ā (B.47)

= 0 (B.48)

Hess [ϕ̂σ] (ā) = Pa⊥
(
−‖ι∗sτ [ã0]‖22 āā

∗ + (1− λ ‖ι∗sτ [ã0]‖2)I
)
Pa⊥ (B.49)

= (1− λ ‖ι∗sτ [ã0]‖2)Pa⊥Pa⊥ (B.50)
� 0 (B.51)

Global maxima If ‖σ‖0 = 0, then the objective remains constant and achieves the global maximum.

Lemma B.1 (Continuity of the Gradient of ϕ̂). ∇ϕ̂ is a continuous function of a.

Proof Recall that for a given σ, the gradient

∇ϕ̂σ(a) = −ι∗Ča0PIČ
∗
a0
ιa+ λι∗Ča0

PIσ (B.52)
= −ι∗Ča0

PI
(
Č∗a0

ιa− λσ
)

(B.53)

This is a continuous function within the relative interior of Rσ . Next, we show this function is continuous at
the relative boundary of Rσ . Let a′ ∈ relbdy (Rσ), and σ′ = sign(a′), I = supp (()σ′) are the corresponding
sign and support. Without loss of generality, we assume σ′�σ, denote a = a′+ εδ (‖δ‖2 = 1) and Iδ = I \ I ′,
then

∇ϕ̂σ(a)−∇ϕ̂σ′(a′) = −ι∗Ča0PI
(
Č∗a0

ιa− λσ
)

+ ι∗Ča0PI′
(
Č∗a0

ιa′ − λσ′
)

(B.54)
= −ι∗Ča0

(PI′ + PIδ)
(
Č∗a0

ιa− λσ
)

+ ι∗Ča0
PI′

(
Č∗a0

ιa′ − λσ′
)

(B.55)
= −ι∗Ča0

PIδ
(
Č∗a0

ιa− λσ
)
− ει∗Ča0

PI′Č
∗
a0
ιδ (B.56)

Since
∥∥PIδ (Č∗a0

ιa− λσ
)∥∥
∞ = ε

∥∥PIδČ∗a0
ιδ
∥∥
∞, we have ‖∇ϕ̂σ(a)−∇ϕ̂σ′(a′)‖∞ ≤ O(ε).

C Proof of Lemma 3.1
Lemma C.1. Let λrel = λ/ ‖x0‖∞, suppose the ground truth a0 satisfies

|〈a0, ιsτ 6=0 [ã0]〉| < λ2
rel −

(
2 + 1/λ2

rel

)√
1− λ2

rel (C.1)

for any nonzero shift τ , and x0 is separated enough such that any two nonzero components are at least 2k entries away
from each other. If initialized at some a ∈ Sk−1 that |〈a,a0〉| > λ/ ‖x0‖∞, a small-stepping projected gradient method
minimizing ϕ(a) recovers the signed ground truth ±a0.

ProofWithout loss of generality, we are going to assume ‖x0‖∞ = 1 for simplicity. Given that

|〈a0, ιsτ 6=0 [ã0]〉| < λ2 −
√

1− λ2
(
2 + 1/λ2

)
(C.2)

and a = 〈a,a0〉a0 + δ with ‖δ‖2 ≤
√

1− λ2, therefore

|〈a, ιsτ [a]〉| = |〈〈a,a0〉a0 + δ, ιsτ [〈a,a0〉a0 + δ]〉|
12The other boundary point is 〈σiι∗s−i [ã0] ,a〉 = λ, which achieves a smaller objective value.
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≤ 〈a,a0〉2 |〈a0, ιsτ [a0]〉|+ 2 〈a,a0〉 ‖δ‖2 + ‖δ‖22
< 1−

√
1− λ2/λ2

Moreover, as x0 is sufficiently separated, we have

|〈a, ιsτ [a]〉 ‖x?‖∞ − 〈a, ιsτ [a0]〉 ‖x0‖∞| ≤ |〈a, ιsτ [a]〉| ‖x0 − x?‖∞ + |〈a, ιsτ [a0 − a]〉| ‖x0‖∞
< λ |〈a, ιsτ [a]〉|+ ‖a0 − a‖2 ‖x0‖∞
< λ.

Hence, there exists a unique nonzerominimizer satisfying supp (x?) ⊂ supp (x0), and the optimality condition
for x? implies

x? = SOFTλ [〈a,a0〉x0] , (C.3)

In this case, we can calculate the Euclidean gradient

∇ϕ(a) = ιC∗x? (a~ x? − a0 ~ x0) (C.4)
= ‖x?‖22 a− 〈x

?,x0〉a0, (C.5)

and the Riemannian gradient

grad [ϕ] (a) = (I − aa∗)∇ϕ(a) (C.6)
= −〈x?,x0〉 (I − aa∗)a0. (C.7)

It is easy to check that at any point along the geodesic curve between a0 and a, support recovery of x?
is achieved. A small-stepping gradient descent algorithm moves towards the signed ground truth ±a0, as
desired.

D Proof of Lemma 6.1
Lemma D.1. Suppose y = a0 ~ x0 with x0 = e0, and p = q ≥ 2. Then for any shift τ , positive scalar ε and λ such
that at every a ∈ Sq ∩B

(
ι∗s−τ [a0]
‖ι∗s−τ [a0]‖q

, ε
)
the solution x∗(a)

.
= arg minx ψp(a,x) is (i) unique and (ii) supported on

the τ -th entry, the point ā .
= ι∗s−τ [a0]
‖ι∗s−τ [a0]‖q

is a strict local minimizer of the cost ϕp(a) over the manifold ‖a‖q = 1.

Proof Write x∗(a) = αeτ at point a ∈ Sp ∩ B
(

ι∗s−τ [a0]
‖ι∗s−τ [a0]‖q

, ε
)
, and suppose without loss of generality that

α > 0. Then using the KKT conditions, we have

λ =
〈
sτ [ã] ,diag sign (ã0 − αsτ [ã]) |ã0 − αsτ [ã]|◦(p−1)

〉
(D.1)

=
〈
a,diag sign (ι∗s−τ [ã0]− αa) |ι∗s−τ [ã0]− αa|◦(p−1)

〉
. (D.2)

Magnitude of x∗ At point ā = ι∗s−τ [a0]
‖ι∗s−τ [a0]‖q

, there exists closed form solution

x∗ (ā) = ᾱeτ =
(
‖ι∗s−τ [a0]‖q − λ

1
p−1

)
eτ . (D.3)

As the shifted support recovery of x∗(a) holds at point a ∈ B(ā, ε), with implicit function theorem, we can
obtain that α is a differentiable function of a, and

∇aα (ā) = −
(
‖ι∗s−τ [a0]‖q − 2λ

1
p−1

)
sign ā ◦ |ā|◦(p−1)

. (D.4)
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Euclidean Gradient and Hessian The Euclidean gradient of ϕp at ā is

∇ϕp(ā) = ∇aψp
∣∣∣
(ā,x∗(ā))

(D.5)

= ι∗C∗x∗(ā) diag sign (ā~ x∗(ā)− y) |ā~ x∗(ā)− y|◦(p−1) (D.6)

= ᾱι∗ diag sign (s−τ [ᾱsτ [ā]− ã0]) |s−τ [ᾱsτ [ā]− ã0]|◦(p−1) (D.7)

= ᾱ diag sign (ᾱā− ι∗s−τ [ã0]) |ᾱā− ι∗s−τ [ã0]|◦(p−1)
. (D.8)

And the Euclidean Hessian of ϕp at ā is

∇2ϕp(ā) = (p− 1)ᾱ diag |ᾱā− ι∗s−τ [ã0]|◦(p−2)
(
ᾱI + ā (∇aα)

T
)

+ sign (ᾱā− ι∗s−τ [ã0]) ◦ |ᾱā− ι∗s−τ [ã0]|◦(p−1)
(∇aα)

T
. (D.9)

Riemannian Gradient and Hessian We call the optimization domain manifoldMq where ‖a‖q = 1 with
2 ≤ q <∞, the Riemannian gradient at a can be written as

grad[ϕp] (a) = Pa⊥∇ϕp, (D.10)

with

Pa⊥(v) = v −

〈
v,

signa ◦ |a|◦(q−1)∥∥∥|a|◦(q−1)
∥∥∥

2

〉
signa ◦ |a|◦(q−1)∥∥∥|a|◦(q−1)

∥∥∥
2

. (D.11)

Therefore, if p = q, ā is a stationary point with vanishing Riemannian gradient

grad[ϕp] (ā) = 0. (D.12)

The Riemannian Hessian Hess[ϕp](a) : TaMq → TaMq is defined via the formula

Hess[ϕp](a)δ = ∇̃δgrad[ϕp](a) (δ ∈ TaMq) (D.13)
= PTaM∇δgrad[ϕp](a), (D.14)

where in the second linewe have used Proposition 5.3.2 of the [AMS09]. Here, ∇̃ is the Riemannian connection
onMq, ∇ is the standard Euclidean connection (directional derivative) on Rk and grad[ϕp] is any smooth
extension of the Riemannian gradient to Rk. Plugging in and using the definition of Euclidean gradient∇,
we have

Hess[ϕp](a)δ = Pa⊥∇δ [Pa⊥∇ϕp(a)] (D.15)

= Pa⊥
d

dt

[
P(a+tδ)⊥∇ϕp(a+ tδ)

]∣∣∣
t=0

(D.16)

= Pa⊥
(
∇2ϕp(a)δ +

d

dt
P(a+tδ)⊥

∣∣∣
t=0
∇ϕp(a)

)
(D.17)

For simplicity, we write

ξ(a) =
sign(a) ◦ |a|◦(q−1)∥∥|a|◦(q−1)

∥∥
2

, (D.18)

and
Pa⊥ = I − ξ(a)ξ(a)∗. (D.19)
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Notice that the vector-valued function ξ(a) is differentiable away from a = 0, and that

d

dt
P(a+tδ)⊥

∣∣∣
t=0

= − d

dt
ξ(a+ tδ)

∣∣∣
t=0
ξ(a)∗ − ξ(a)

[
d

dt
ξ(a+ tδ)

∣∣∣
t=0

]∗
. (D.20)

Since that Pa⊥ξ(a) = 0, we have

Hess[ϕp](a)δ = Pa⊥
(
∇2ϕp(a)δ −

[
d

dt

∣∣∣
t=0
ξ(a+ tδ)

]
ξ(a)∗∇ϕp(a)

)
. (D.21)

Calculus gives

d

dt

∣∣∣
t=0
ξ(a+ tδ) = (q − 1)

|a|◦(q−2) ◦ δ∥∥|a|◦(q−1)
∥∥

2

+ sign(a) ◦ |a|◦(q−1)

〈
1

|a|◦(q−1)
, δ

〉
, (D.22)

hence

Pa⊥
d

dt

∣∣∣
t=0
ξ(a+ tδ) = Pa⊥

[
(q − 1)

|a|◦(q−2) ◦ δ∥∥|a|◦(q−1)
∥∥

2

]
. (D.23)

At last, we can obtain the expression

Hess[ϕp](a)δ = Pa⊥

(
∇2ϕp(a)− (q − 1)

〈
sign(a) ◦ |a|◦(q−1),∇ϕp(a)

〉∥∥|a|◦(q−1)
∥∥2

2

diag(|a|◦(q−2))

)
δ, (D.24)

for δ ∈ TaMq. Noting that for any such δ, Pa⊥δ = δ, we can identify the Riemannian Hessian with the
matrix

Hess[ϕp](a)δ = Pa⊥

(
∇2ϕp(a)− (q − 1)

〈
sign(a) ◦ |a|◦(q−1),∇ϕp(a)

〉∥∥|a|◦(q−1)
∥∥2

2

diag(|a|◦(q−2))

)
Pa⊥ . (D.25)

Local Convexity Plugging in ā = ι∗s−τ [a0]
‖ι∗s−τ [a0]‖q

with p = q, we have

Hess[ϕp]

(
ι∗s−τ [a0]

‖ι∗s−τ [a0]‖q

)
= Pā⊥

[
∇2ϕp + (q − 1) ᾱλdiag

(
|a|◦(q−2)

)]
Pa⊥ (D.26)

= Pā⊥
[
(q − 1) ᾱ

(
λ
p−2
p−1 + λ

)
diag |ā|◦(q−2)

]
Pā⊥ . (D.27)

Hence, the function is strictly convex at point ā = ι∗s−τ [a0]
‖ι∗s−τ [a0]‖q

along direction δ ∈ TaMq as long
as whose support are contained in the support of a. We further consider a perturbation δc such that
supp (δc) ∩ supp (ā) = ∅, and ‖δc‖2 ≤ ε, then the objective value at ā+δc

‖ā+δc‖q
satisfies

ϕp

(
ā+ δc
‖ā+ δc‖q

)
=

1

p

∥∥∥∥∥y − ā+ δc
‖ā+ δc‖q

~ x∗(ā+ δc)

∥∥∥∥∥
p

p

+ λ ‖x∗(ā+ δc)‖1 (D.28)

≥ 1

p

∥∥∥∥∥y − ā

‖ā+ δc‖q
~ x∗(ā+ δc)

∥∥∥∥∥
p

p

+ λ ‖x∗(ā+ δc)‖1 (D.29)

≥ ϕp

(
ā

‖ā+ δc‖q

)
(D.30)

≥ ϕp (ā) . (D.31)

This completes the proof.
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E Auxiliary Lemmas
Lemma E.1. (Lemma B.2 of [SQW17a]) Suppose thatA � 0 is a positive definite matrix. For any symmetic matrix
∆ with ‖∆‖`2→`2 ≤ σmin(A)/2,

∥∥∥(A+ ∆)−1/2 −A−1/2
∥∥∥
`2→`2

≤
2 ‖A‖1/2`2→`2 ‖∆‖`2→`2

σmin(A)2
. (E.1)

Lemma E.2. Let U be a matrix such that U∗U = I + ∆, with ‖∆‖`2→`2 < 1/2. Then U∗U is invertible,

‖U‖`2→`2 <
√

3/2, (E.2)

and ∥∥∥U −U(U∗U)−1/2
∥∥∥
`2→`2

< 3 ‖∆‖`2→`2 . (E.3)

Proof Upper bound for the first quantity can be derived

‖U‖`2→`2 =
√
‖U∗U‖`2→`2 (E.4)

≤
√
‖I‖`2→`2 + ‖∆‖`2→`2 (E.5)

<
√

3/2. (E.6)

Applying Lemma E.1 for the second term∥∥∥U −U(U∗U)−1/2
∥∥∥
`2→`2

≤ ‖U‖`2→`2
∥∥∥I − (U∗U)−1/2

∥∥∥
`2→`2

(E.7)

= ‖U‖`2→`2
∥∥∥I−1/2 − (I + ∆)−1/2

∥∥∥
`2→`2

(E.8)

≤
√

3/2× 2 ‖∆‖`2→`2 , (E.9)

Hence, we can obtain the claim by using 2
√

3/2 < 3 to simplify the constant.
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