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ABSTRACT

Detecting individual tree crowns in tropical forests is essential to study these
complex and crucial ecosystems impacted by human interventions and climate
change. However, tropical crowns vary widely in size, structure, and pattern and are
largely overlapping and intertwined, requiring advanced remote sensing methods
applied to high-resolution imagery. Despite growing interest in tropical tree crown
detection, annotated datasets remain scarce, hindering robust model development.
We introduce SELVABOX, the largest open-access dataset for tropical tree crown
detection in high-resolution drone imagery. It spans three countries and contains
more than 83 000 manually labeled crowns — an order of magnitude larger than all
previous tropical forest datasets combined. Extensive benchmarks on SELVABOX
reveal two key findings: 1 higher-resolution inputs consistently boost detection
accuracy; and ‘2 models trained exclusively on SELVABOX achieve competitive
zero-shot detection performance on unseen tropical tree crown datasets, matching
or exceeding competing methods. Furthermore, jointly training on SELVABOX and
three other datasets at resolutions from 3 to 10 cm per pixel within a unified multi-
resolution pipeline yields a detector ranking first or second across all evaluated
datasets. Our dataset,’ code,”>* and pre-trained weights are made public.

Figure 1: The SELVABOX dataset. The illustrated samples are extracted from rasters recorded in
Panama, Brazil and Ecuador with a spatial extent of 80m x 80m and a resolution of 1.2 to 5.1 cm per
pixel. The red square on the right highlights a zoom of the Ecuador sample with a spatial extent of
40m x 40m at the same resolution.

1 INTRODUCTION

Tropical forests cover 10% of the land area, but they store most of the biomass and biodiversity of
plants on our planet (Pan et al., 2011; Gatti et al., 2022). Large trees that reach the upper canopy have
a disproportionate influence on the functioning of tropical forests, with the largest 1% of trees storing
half of the carbon of forests worldwide (Lutz et al., 2018). However, tree demography patterns in
tropical forests are being altered, with increasing tree mortality, due to climate change (Brienen et al.,
2015; Bonan, 2008; Esquivel-Muelbert et al., 2019) and human interventions (Harris et al., 2021). As

'SELVABOX dataset: https://huggingface.co/datasets/CanopyRS/SelvaBox
2Preprocessing library (geodataset): https://github.com/CanopyRSAdmin/geodataset Temp
3Benchmaurking pipelines (CanopyRS): https://github.com/CanopyRSAdmin/CanopyRSTemp
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such, monitoring individual trees in tropical forests is essential to understand the current and future
potential of these forests to regulate the global climate (Davies et al., 2021).

Monitoring tropical trees is a difficult task involving slow, costly, and dangerous ground surveys
by forest technicians (de Lima et al., 2022). Forest plots of tens of hectares are the gold standard
of tropical tree monitoring to measure and map each individual, but completing a single one can
take years of dedicated work by large teams of experts (Davies et al., 2021). Remote sensing
technologies considerably augment field work, facilitating forest cartography through aerial detection
of individual trees across spatial extents vastly exceeding the practical limitations of ground-based
inventories (Brandt et al., 2020). Satellite imagery has been used successfully in forest monitoring
tasks (Ouaknine et al., 2025), including height map estimation (Tolan et al., 2024; Lang et al., 2023)
and individual tree crown detection (Brandt et al., 2020; Tucker et al., 2023). However, the highest
resolution satellite imagery is typically 0.3-0.5 m, which is still too coarse to distinguish trees in dense
tropical forest canopies. Moreover, cloudy conditions complicate satellite sensing in the tropics.

By contrast, unoccupied aerial vehicles (UAVs) or drones can achieve cm-resolution (< 5 cm), albeit
at the expense of spatial coverage (Reiersen et al., 2022; Vasquez et al., 2023; Cloutier et al., 2024).
Recently, datasets of UAV LiDAR (Puliti et al., 2023; 2025; Gaydon & Roche, 2025) and methods for
forest structure assessment with LiDAR data have been extensively developed (Bai et al., 2023; Ma
et al., 2023; Vermeer et al., 2024; Henrich et al., 2024), However, the cost of LiDAR sensing limits its
adoption in tropical contexts where researchers are financially disadvantaged (de Lima et al., 2022)
and calls for the development of RGB-only methods. Most open access high-quality, high-resolution
tree detection RGB datasets represent temperate forests of the global North (Tab. 1). Tropical forests
remain severely underrepresented and have relatively modest annotation counts (Ball et al., 2023b;
Vasquez et al., 2023) despite their critical significance for biodiversity and carbon storage.

The high tree species diversity (Gatti et al., 2022) and heterogeneity in crown sizes, shapes and
textures (Fig. | and 2) in tropical forests pose unique challenges. Indeed, solving the problem of
detecting numerous objects of highly variable sizes within the same scene is still an open topic in
computer vision applied to remote sensing (Rabbi et al., 2020; Li et al., 2021; Bashir & Wang, 2021).
While convolutional neural networks (CNNs) remain the predominant approach for individual tree
crown detection (Weinstein et al., 2019; Zamboni et al., 2021; Yu et al., 2022; Ball et al., 2023b; Zhao
et al., 2023; Bountos et al., 2025), recent studies have explored transformer-based architectures on
satellite imagery (Jiang et al., 2025), motivated by their effectiveness in multi-scale object recognition
tasks (e.g., Liu et al. (2021); Zhang et al. (2023)). However, a comprehensive, resolution-aware
benchmark comparing these two paradigms on UAV imagery across diverse forest ecosystems and
out-of-distribution scenarios remains absent. With the growing number of UAV datasets acquired
with different flight parameters, models that can generalize across resolutions and standardized
frameworks are needed to bridge the gap between the ecology and computer vision communities.

We address these challenges through our contributions: ‘1 SELVABOX, a high-resolution drone
imagery dataset spanning three neotropical countries (Brazil, Ecuador, Panama) and comprising over
83 000 manual bounding box annotations on individual tree crowns; ‘2 An exhaustive benchmark of
detection methods at varying resolutions and input sizes, including a standardized evaluation frame-
work for UAV rasters and a comprehensive assessment of model generalization on out-of-distribution
(OOD) samples; 3 State-of-the-art models trained for tree crown detection out-performing com-
peting methods on both topical and non-tropical forest datasets, in both in-distribution (ID) and
OOD settings; and ‘4 two open-source Python libraries facilitating raster preprocessing, inference,
postprocessing and standardized benchmarking. These contributions aim to simultaneously advance
tropical forest monitoring and applications of machine learning to critical environmental challenges.

2 RELATED WORK

Datasets. High-resolution drone imagery enables detailed tree characterization at the pixel
level (see Figure 1). This capability has catalyzed the development of open access for-
est monitoring datasets (Ouaknine et al., 2025) specifically designed for tree crown se-
mantic segmentation tasks, including pixel-wise canopy mapping (Galuszynski et al., 2022),
woody invasive species identification (Kattenborn et al., 2019), and tree species clas-
sification (Cloutier et al., 2024; Kattenborn et al., 2020). Tree crown semantic seg-
mentation, a pixel-wise classification task, cannot inherently distinguish individual trees,
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making it unsuitable for applications Table 1: Related datasets. The number of tree crowns
such as tree counting or biomass es- manually* annotated (‘# Trees’) are noted in ‘k’ for thou-
timation where individual tree crown sands. The reported resolution or ground sampling distance
detection and delineation are essen- (‘GSD’) is in centimeter per pixel. We define the forest ‘type’
tial (Fu et al., 2024). Datasets for in- as either urban, plantation, natural; ‘biome’ as either tem-
dividual tree crown detection (Wein- perate, tropical or worldwide (when the dataset spans over
stein et al., 2021; Reiersen et al., 2022)  several biomes). *except for ReforesTree, see Section 4.
and delineation (Ball et al., 2023b;

Firoze et al., 2023; Vasquez et al., Name #Trees  GSD Type Biome
2023, Cloutier et a]" 2024’ Lefebvre N;onf”l‘ree’];jval.(g\’v:in\tcintcll u]i(;_z(;Z)]) 4]2]1: 1(2) 1nal[urt'f\l letmp?ra;e
. . . . . eforesTree (Reiersen et al., X plantation ropical
& Lallberte, 2024, Veitch-Michaelis Firoze et al. (Firoze et al., 2023) 6.5k 2-5 natural temperate
1 2024 d b . Detectree2 (Ball et al., 2023b) 3.8k 10 natural tropical
eta . )7 Correspon lng to o _]eCt BCI50ha (Vasquez et al., 2023) 4.7k 4.5 natural tropical
deteCtiOH and instance Segmentation BAMFORESTS (Troles et al., 2024) 27k 1.6-1.8 natural temperate
A QuebecTrees (Cloutier et al., 2024) 23k 1.9 natural temperate
tasks respe(;tlvely7 have been proposed Quebec Plantation (Lefebyre & Laliberté, 2024)  19.6k 0.5  plantation  temperate
f b th 1 f t t . d OAM-TCD (Veitch-Michaelis et al., 2024) 280k 10 mostly urban  worldwide
or bo genera orest moni Orlﬂg an SELVABOX (ours) 83k 1.2-5.1 natural tropical

specialized applications such as dead
tree identification (Mosig et al., 2024). Table | summarizes open access datasets for general tree
crown monitoring. Despite considerable community efforts to share manually annotated tree crown
data, a substantial gap remains in datasets for monitoring tropical trees in natural forests.

Modeling. Deep learning is the dominant paradigm for individual tree crown delineation, supersed-
ing earlier computer vision and machine learning methods (Kattenborn et al., 2021). Open access
datasets (Tab. 1) have facilitated the development of individual tree crown detection models with
deep learning architectures, including Faster R-CNN (Ren et al., 2015b), Mask R-CNN (He et al.,
2017), and RetinaNet (Lin et al., 2017), as demonstrated with DeepForest (Weinstein et al., 2019) and
Detectree2 (Ball et al., 2023b). These CNN-based methods have proven effective in diverse forest
scenarios (Zhao et al., 2023). Tree crown models have also leveraged SAM (Kirillov et al., 2023) by
providing efficient prompts for zero-shot tree crown delineation (Teng et al., 2025). While the FoMo
benchmark (Bountos et al., 2025) has explored transformer-based architectures including pretrained
DeiT (Touvron et al., 2021) and DINOv2 (Oquab et al., 2024) backbones, advanced transformer-based
object detection methods (Liu et al., 2022; Zhang et al., 2023) remain underexplored in this domain.

Evaluation. Previous open access datasets (Tab. 1) have evaluated detection methods using
classification-based metrics per tree (recall, precision, Fl-score) (Weinstein et al., 2020; 2021;
Zheng et al., 2021; Beloiu et al., 2023) with detection-based metrics such as intersection over union
(IoU) and mean average precision (mAP) (Hao et al., 2021; Yu et al., 2022; Ball et al., 2023b; Fu
et al., 2024; Firoze et al., 2023; Veitch-Michaelis et al., 2024; Bountos et al., 2025). UAV rasters are
usually divided in tiles for training and evaluation, but tile-level metrics are susceptible to edge effects
(where partial trees appear at tile boundaries) and duplicate detections when scaled to larger areas,
complicating accurate tree counting. As a consequence, tile-level metrics fail to accurately represent
performances at the entire raster level, which is what matters to practioners. For example, tracking
the mortality of large tropical trees over time and across vast areas requires aggregating detections
from individual tiles into a coherent raster-level map. A recall metric for keypoint-in-tree prediction
tasks at the raster level was proposed to evaluate OAM-TCD (Veitch-Michaelis et al., 2024). In this
work, we extend the evaluation of aggregated predictions from individual images to detection-based
tasks, including both precision and recall metrics (F1-score) as well as the location of each object.

Multi-resolution. Despite growing interest in multi-scale and multi-resolution analysis for deep
learning in remote sensing applications (Reed et al., 2023; Bountos et al., 2025), these approaches
remain understudied for forest monitoring. While increased spatial extent per tile improves tree
crown classification (Nisi et al., 2015; Liu et al., 2020; Kattenborn et al., 2020) and higher tile
resolution benefits tree crown semantic segmentation more than increased spatial extent (Schiefer
et al., 2020), resolution-induced domain shift remains challenging for individual tree crown detection.
Current pre-trained models (e.g., DeepForest, Detectree2) show poor zero-shot performance on OOD
samples (Gan et al., 2023), though targeted fine-tuning can mitigate this gap (Bountos et al., 2025).
Further research is needed to evaluate how tile spatial extent, size, and resolution impact detection
performance and to develop fine-tuning methodologies that reduce zero-shot degradation on OOD
samples, particularly given the substantial size variation in tropical tree crowns (Fig. 2).
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3 THE SELVABOX DATASET

SelvaBox dataset
[ Brazil ZF2
% | Ecuador Tiputini
I Panama Agua Salud

10000
We present SELVABOX, a large-scale
benchmark dataset addressing the critical
open-access annotation scarcity in tropical
forest remote sensing (Sec. 2) while mo-
tivating research in individual tree crown
detection. SELVABOX encompasses 83 137
individual tree crown bounding boxes on
top of 14 RGB orthomosaics, including
96.6 ha in Brazil, 96 ha in Panama and o 4
318.1 ha in Ecuador, recorded with four A A e 4050 >%0
different drones (DJI Mavic 3 Entreprise
[m3e], DJI Mavic 3 Multispectral [m3m], Figure 2: Distribution of box annotations size in
DIJI Mavic Pro [mavicpro], DJI Mavic Mini  SELVABOX per country.
2 [mini2]) at ground sampling distance
(GSD) between 1.2-5.1 cm per pixel (Tab. 6 in App. A.1). Our drone imagery was acquired
over primary and secondary forests, and native tree plantations. It includes diverse sets and shapes of
tropical trees as depicted in Figure 1. More details about the orthomosaics can be found in App. A.1.
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Locations. The RGB imagery was acquired in three countries: Brazil, Ecuador, and Panama
(Tab. 6 in App. A.1). The Brazil data was collected at the ZF-2 station, a forest with high-diversity
characteristic of the Central Amazon and growing on nutrient-poor soils. The topography consists of
plateaus dissected by valleys (Amaral et al., 2019). The Ecuador data was recorded at the Tiputini
Biodiversity Station (TBS), located within the Yasuni Biosphere Reserve, one of the most biodiverse
forests on Earth (Valencia et al., 2004). The climate of this Western Amazonia region is considered to
be aseasonal compared to Central Amazonia while the soils tend to be richer in nutrients as they are
derived from younger sediments from the Andes (Hoorn et al., 2010). Finally, the Panama data was
acquired from four areas of the Agua Salud Project (Mayoral et al., 2017). Two areas are plantations
of native tree species (Mayoral et al., 2017), while the other two are from surrounding secondary
forests. The soils of Agua Salud are acidic and nutrient-poor (van Breugel et al., 2019). The tree
species diversity of Central Panama is considered lower than our other two Amazonian sites.

Annotations. The data was manually annotated by five trained biologists. They were asked to draw
bounding boxes around every individual tree crown they could reliably detect from the imagery. They
generated 83 137 manual tree annotations during 1 284 people-hours with crowns spanning from < 2
m to > 50 m in diameter (Fig. 2). All annotations were produced with ArcGIS Pro version 3.0, stored
in hosted feature layers on ArcGIS Online, have georeferenced coordinates, and were exported to
geopackages. Figure 2 shows the tree crown annotation bounding-box size distribution, where we
notice a long-tail distribution for larger trees, especially in Ecuador.

Our annotation process used photo-interpretation, the most reliable and feasible approach at this scale.
Field-based validation faces significant technical constraints in tropical forests, including GNSS
signal blockage, multipath errors from dense canopy, difficulties linking non-straight tree trunks to
canopy imagery, and variable geolocation errors—making the process less efficient and accurate
than photo-interpretation (Laliberté et al., 2025). Additionally, logistical challenges like intense heat,
humidity, heavy rain, and dense vegetation make fieldwork costly and hazardous. Since LiDAR
data requires expensive equipment and specialized annotators compared to photo-interpretation, it
is less accessible for tropical forest scientists, who have limited research funding (de Lima et al.,
2022). Consequently, we adopted an RGB-only validation approach to ensure scalability and broad
applicability. The annotation process followed a standardized protocol with initial training of domain-
expert annotators, multi-pass annotation reviews, and systematic quality control (see App. A.3 for
full details). We supplemented visual interpretation with digital surface models (DSMs) derived from
3D photogrammetric point clouds, using elevation data to distinguish adjacent crowns with similar
visual features but different heights.

Spatially separated splits. We propose train, validation and test splits, created spatially in the
rasters to ensure no pixel overlap between splits and avoid geospatial auto-correlation (Kattenborn
et al., 2022), and including 61.4k, 9.6k, and 10.6k boxes respectively. We define our splits by
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manually creating areas of interest (AOIs) geopackages in the QGIS software (Fig. 4 in App. A.2).
Orthomosaic borders with poor visual quality were deliberately excluded during AOI creation to
ensure clean, artifact-free splits. For the test split, we defined the AOIs on rasters with minimal visual
reconstruction artifacts while including a maximal diversity and quality in box annotations.

Incomplete annotations. Although considerable effort was put into producing a dense tree-crown
mapping during the annotation process, some annotators reported difficulties clearly distinguishing
a subset of individual trees on one raster in Brazil and three rasters in Ecuador, resulting in sparser
annotations. Annotation sparsity is a common challenge in tree detection datasets: The Detectree2
dataset contains only tiles covered in area by at least 40% tree crown annotation polygons (Ball et al.,
2023b). This method introduces noise during the training process as annotations may be missing for
up to half of the trees in an image, causing misleading penalization. We adopt a different strategy
where we mask targeted pixels in our AOIs with missing annotations when dividing the rasters in
tiles. During training, we expect models to become agnostic to such masked pixels, i.e. not predicting
boxes in those areas, thus not being penalized due to missing annotations. Such holes were created
for train AOISs, a sub-set of valid AOIs, while test AOIs were chosen to cover areas where annotations
are dense and complete. Figure 5 (in App. A.4) shows an example of pixels masked that way.

Tiling and preprocessing. When tiling the rasters, i.e. dividing rasters into tiles, we use AOI
geopackages to mask pixels that are outside of each tile’s assigned split. Each tree crown annotation
is assigned to a single split where it overlaps the most according to the AOIs. For each tile, we keep
annotations that overlap at least at 40% with the tile’s extent. For the ready-to-train dataset, we
remove tiles that contain no annotations, more than 80% black (masked), white or transparent pixels.
A sliding-window tiling approach was used, with 50% tile overlap for the training and validation
splits, and 75% for the test split to ensure that the largest trees entirely fit in at least one tile (Sec. 4).
We release our preprocessing pipeline as a python library called geodataset. The final preprocessed
dataset is available on HuggingFace under the permissive CC-BY-4.0 license.

4 BENCHMARKING MODELS AND METHODS

We structure our experiments in three sequential phases. First, we identify effective modeling choices
by evaluating various object detection models and input image settings on SELVABOX, examining
how resolution and spatial extent influence detection accuracy based on in-distribution performance
(Sec. 4.1). Second, we validate the efficacy of multi-resolution domain augmentation by testing
whether multi-resolution training improves or degrades performance compared to single-resolution
training (Sec. 4.1). Finally, we assess generalization to other datasets by evaluating three categories:
models trained exclusively on SELVABOX, models trained on SELVABOX combined with additional
datasets, and models trained without SELVABOX including external methods (Sec. 4.2).

In addition to SELVABOX, we use the OAM-TCD (Veitch-Michaelis et al., 2024), NeonTreeEvaluation
(Weinstein et al., 2022; 2021), QuebecTrees (Cloutier et al., 2023; 2024), BCISOha (Vasquez et al.,
2023), and Detectree2 (Ball et al., 2023a) datasets. We excluded the Quebec Plantations dataset
(Lefebvre & Laliberté, 2024), as it comprises non-tropical, young tree plantations outside the scope
of our study. Similarly, we excluded ReforesTree (Reiersen et al., 2022), a tropical plantation dataset
whose bounding box annotations were generated by inference from a fine-tuned DeepForest model
(Weinstein et al., 2020), resulting in noisy annotations unsuitable for robust training or evaluation
(Fig. 9 in App. E.3). Additionally, we omitted the dataset published by Firoze et al. (Firoze et al.,
2023), as it was designed for image sequence-based tree detection, with annotations derived from
highly overlapping, video-like image sequences, introducing redundancy and requiring extensive
preprocessing. Given that each dataset varies in ground sampling distance (GSD), tree crown size
distribution, annotation type, and predefined splits or areas of interest (AOIs), we applied independent
preprocessing procedures detailed in Appendix E.1. Our benchmarking, inference, and training
pipelines are publicly available in our Python repository CanopyRS.

Evaluation metrics. To evaluate models at the tile level, we consider the industry-standard
COCO-style mAP50.95 and mAR5g.95 metrics (Lin et al., 2014). Due to the high number of ob-
jects per tile in SELVABOX (at 80m ground extent, see Sec. 4.1), QuebecTrees and BCI50Oha, we
increase the maxDets parameter of COCOEval from 100 to 400 for those datasets.
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As detailed in Section 2, tile-level metrics do not necessarily reflect raster-level performance, which
is the operational target for concrete applications such as large-scale forest inventories. To address
this, we propose RF175, a Raster-level F1 score evaluating final predictions after tile aggregation via
Non-Maximum Suppression (NMS). It uses the same greedy matching as COCO metrics, but requires
a single, strict ToU threshold of > 75% for a match. This 75% threshold is a balanced criterion for
dense canopies, where 50% IoU is too permissive and 90% is overly difficult. By integrating the F1
score at the raster level with this IoU restriction, the RF175 metric accounts for precision and recall,
both important in forest monitoring applications. For each dataset, we tune NMS hyperparameters on
the validation set, apply the optimal settings to the test set, and report the final RF175 as a weighted
average over all rasters (details in App. B.3). While annotation noise makes a perfect score of 1.0
unlikely, maximizing RF 15 is a practical target for reliable ecological monitoring.

Model architectures and training. We compare four object detection approaches for tree crown
delineation: ‘1 Faster R-CNN with ResNet-50 backbone (Ren et al., 2015a; He et al., 2016), a
widely used CNN-based detector; 2 DeepForest (Weinstein et al., 2019; 2020), a RetinaNet variant
trained on NeonTreeEvaluation; ‘3 Detectree2 (Ball et al., 2023b), a Mask R-CNN trained on a
dataset also called Detectree2, evaluated in two variants: ‘resize’ (multi-resolution tropical) and
‘flexi’ (joint tropical-urban training); and ‘4 DINO (Zhang et al., 2023), a DETR-based transformer
model that we evaluate with both ResNet-50 and Swin-L backbones (Liu et al., 2021). Note that
DINO (the DETR-based detector) and DINO (the self-supervised embedding model) are unrelated
despite sharing the same name. While recent DETR-based architectures have reached similar or
better performances (Zong et al., 2023), we chose DINO for its adoption by the community through
Detectron2 (Wu et al., 2019) and Detrex (Ren et al., 2023). DINO, Faster R-CNN, DeepForest, and
Detectree2 serve as strong and diverse baselines from both general-purpose and domain-specific tree
crown detection literature (Sec. 2). All models are initialized from COCO-pretrained checkpoints. We
implemented our own augmentation pipeline, and use standard crop, resize, flip, rotation and color
augmentations (App. B.1). Training sessions took between 12 hours and 3 days for both architectures.
All hyperparameters used for training and testing are detailed in Appendix B.2.

4.1 MODEL, RESOLUTION AND SPATIAL EXTENT SELECTION ON SELVABOX

We choose a raster tiling scheme that balances detection accuracy, object coverage, and hardware
constraints. Our standard tile is 80 x 80 m at 4.5 cm/px (1777 x 1777 pixels). This setting ensures
that the largest crowns in SELVABOX, some upwards of 50 m in diameter (Fig. 2), fit entirely within
one tile when using a 75% overlap between tiles in our test set, while keeping our models (e.g. ,
DINO 5-scale with Swin-L) trainable on 48 GB GPUs with a batch size of one per GPU.

To assess the trade-offs between spatial resolution and ground extent, we conduct an ablation study
across three configurations (Sec. 5 and Tab. 3). We vary the resolution between 4.5, 6, and 10 cm/px,
yielding 1777 x 1777, 1333 x 1333, and 800 x 800 pixel inputs for a fixed 80 x 80 m ground extent.
In parallel, we test 40 x 40 m tiles, which contain fewer crowns per image and still guarantee that
over 99.9% of crowns—those smaller than 30 m—are fully visible in at least one tile, assuming a
75% overlap. This ablation isolates the effects of spatial detail, object count, and input size. Each
model is trained at a fixed resolution, with only minor cropping augmentation (+10% of input size)
before resizing to a fixed input size. Further experimental details are provided in App. C.

We also compare models trained at 6 cm and 10 cm GSD while resizing the inputs to assess the impact
of both the resolution and input size on models performance. Tile-level evaluation metrics (mAP5¢.95
and mAR5(.95) are not comparable per se between 40 x 40 and 80 x 80 m spatial extent since the
tiles differ in object count and spatial boundaries. But one may compare all results with the RF175
since it is computed at the raster level, after aggregation of individual images predictions.

Multi-resolution approach. Diversity in camera sensors and recording conditions results in datasets
with various resolutions (Tab. 1 and 6), complicating or preventing model training across multiple
datasets. We mitigate this through multi-resolution input augmentation that enforces scale-invariance
during training, enabling us to combine datasets of various resolutions. This simple, yet efficient
process randomly crops inputs using a wide range of crop sizes, then randomly resizes the crops. This
achieves two effects: ‘1 cropping performs ground extent augmentation, and ‘2 resizing performs
GSD augmentation. Details on our multi-resolution augmentation pipeline are in App. D.1.
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Tables 3 and 4: Model, resolution and spatial extent selection on SELVABOX. Comparison of
performances on the proposed test set of SELVABOX with variable tile spatial extent, respectively
40 x 40 m in Tab. 2 and 80 x 80 m in Tab. 3, input size in pixels and ground spatial distance (GSD) in
cm. We highlight results per method and backbone as the first, the second and the third
best scores. We also bold and underline the best and second best scores overall. Note that mAP5q.95
and mAR ;.95 cannot be compared between 40 x 40 m and 80 x 80 m inputs as images do not match,
but we can use RF175 to compare final post-aggregation results at the raster-level.

Table 2: SELVABOX at 40 x 40 m. Table 3: SELVABOX at 80 x 80 m.

Method | GSD Lsize | mAPsg.95 mARs0.95 RFl175 Method | GSD  Lsize | mAPs0.05 mARs50.05 RF1;5
10 400 | 26.90 (x0.13)  40.87 (£0.35)  35.78 (20.44) 10 800 2494 (+0.34)  35.93 (x0.55  34.66 (+£0.97)
Faster 10 666 28.40 (£0.13)  42.79 (+0.19)  37.75 (+0.30) Faster 10 1333 26.25 (+0.14)  38.59 (+0.41)  36.09 (+0.51)
R-CNN 10 888 | 28.51 (+0.200 43.36 (x0.19)  37.46 (+0.91) R—éNN 10 1777 | 27.58 (+0.24)  40.21 (x0.38)  35.74 (+1.26)
ResNet50 6 666 29.31 (x0.05) 43.59 (x0.20) = 39.97 (=0.33) ResNet50 6 1333 | 26.52 (+0.80) 39.55 (x0.75)  36.22 (+1.45)
6 888 29.40 (+0.39) 44.18 (+0.49)  38.92 (z0.51) ; 6 1777 | 27.89 (+0.35) 41.02 (+0.69)  35.94 (+0.84)
4.5 888 30.25 (£0.24) 45.18 (+0.300  39.97 (+0.67) 4.5 1777 | 28.74 (+0.44) 41.27 (+0.59) 37.52 (+0.58)
10 400 | 30.63 (£0.24) 48.06 (£0.33)  41.14 (=0.50) 10 800 30.90 (+0.51)  47.29 (+0.33)  41.20 (+0.39)
DINO 10 666 31.76 (+0.86)  50.40 (+0.55) 41.57 (+1.94) DINO 10 1333 32.39 (+0.02)  49.22 (+0.10)  43.08 (+0.20)
4oscale 10 888 32.19 (+£0.33)  50.68 (+0.19)  42.47 (+0.97) Joscale 10 1777 32.51 (+0.89)  49.35 (+0.47)  42.39 (+1.25)
ResNet50 6 666  33.46 (£0.22) 51.80 +0.31) | 44.55 (£0.18) ResNet50 6 1333 | 33.06 (+0.29) 49.93 (+0.39)  42.92 (+0.51)
b 6 888 33.54 (+0.40) 52.12 (+0.18)  43.34 (+0.79) 6 1777 33.62 (£0.100  50.85 (+0.17) =~ 44.18 (+0.18)
45 888 34.19 (+£0.13)  52.53 (+0.40) 44.26 (+0.83) 4.5 1777 | 33.81 (+0.89) 51.00 (£0.77)  43.26 (+0.45)
10 400 | 33.84 (£0.200 52.02 (£0.25)  45.37 (=0.23) 10 800 33.90 (£0.09)  50.29 (x0.38)  44.64 (x£0.20)
DINO 10 666 | 34.64 (+0.25) 5291 (x0.30)  46.39 (+0.52) DINO 10 1333 | 34.22 x0.39  50.76 (x0.57)  45.64 (+1.03)
5-scale 10 888 34.92 (+0.34) 53.23 (+0.14)  45.22 (+0.70) S-scale 10 1777 | 35.30 (+0.26)  52.12 (+0.62)  45.37 (+0.08)
Swin L-384 6 666  37.07 (+0.16) 55.18 (+0.22)  48.50 (+0.60) Swin L-384 6 1333 | 37.12 £0.38)  53.56 (+0.48)  47.81 (0.40)
6 888 36.22 (+0.38) 54.55 (+0.43)  48.13 (0.60) - 6 1777 35.77 (x0.84) 5291 +o.56)  45.88 (£1.97)
45 888 37.78(+0.15) 56.30 (+0.21) 49.76 (+0.43) 4.5 1777 | 37.79 (+0.55) 54.66 (+0.47) 49.38 (+0.76)

While data augmentation generally improves generalization, extreme transformations may impact
convergence and performance. Therefore, we train multi-resolution models on SELVABOX with
increasingly large crop ranges (Fig. 3) and the same random resize in the [1024, 1777] pixel range,
comparing them at 80 x 80 m to the best single-resolution, single-input-size models from the previous
experiment (i.e. DINO Swin-384 at 4.5, 6 and 10 cm; see Tab. 3).

4.2 METHODOLOGY TO EVALUATE OOD GENERALIZATION

To evaluate the generalization capabilities of models trained on SELVABOX, we define BCISOha
and Detectree2 (Tab. 1) as OOD datasets for test-only evaluation. We perform zero-shot evaluations
on these datasets, meaning models are tested without any fine-tuning on data completely excluded
from training, and characterized by diverse resolutions, image quality, and forest types. These two
datasets are considered OOD relative to SELVABOX because ‘1 BCI50ha is located on an island in
Panama (whereas SELVABOX is on mainland Panama), and Detectree?2 is located in Malaysia, on a
different continent; and ‘2 both datasets were acquired using different drones, camera sensors, and
flight conditions. Additionally, we include NeonTreeEvaluation, QuebecTrees, and OAM-TCD as
either in-distribution or OOD datasets to assess how varying the number and diversity of datasets
used during training affects model generalization.

We compare a multi-resolution model trained exclusively on SELVABOX, using a crop augmentation
range of [30,120] meters (equivalent to [666, 2666] pixels), against models trained on different
combinations of OAM-TCD, NeonTreeEvaluation, QuebecTrees, and SELVABOX datasets (including
DeepForest and Detectree2). We selected this multi-resolution augmentation range based on our
benchmark results (Sec. 5, Fig. 3), which indicated that this range achieves performance comparable
to single-resolution and less aggressive multi-resolution methods on SELVABOX, while also allowing
spatial extents of images from different datasets to partially overlap (Tab. 19 in App. E.1). Finally, we
optimize non-maximum suppression (NMS) hyperparameters using the validation sets of SELVABOX
and Detectree2, while keeping BCI50ha strictly zero-shot.

5 EXPERIMENTS AND RESULTS

First, we evaluate model architectures, resolutions, and spatial extents on SelvaBox (Sec. 5.1). Then,
we validate our multi-resolution training methodology. Finally, we assess generalization on OOD
datasets (Sec. 5.2).
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5.1 SELVABOX RESULTS e S
Using the methodology in Section 4.1, we find: o o Y

§ 40 l \\ e
Resolution matters, transformers too. In Tables 2 and = o Single_re;}s:m \\%
3, we find that for all GSD and spatial extents, DINO & 351 & singleres. 6cm
outperforms Faster R-CNN, and Swin L-384 outperforms e e mel |
ResNet-50. We also observe significant improvements in 301 &~ multi-res. [30, 100]
mAP50.95, mMAR50.95 and RF175 when using lower GSD B muitires 301200 1
for all architectures. While larger input sizes at fixed 4 6 8 10
resolution benefits ResNet-50-based methods, DINO + Ground Sampling Distance (cm/px)

Swin L-384 models do not see such improvements at 6 cm
per pixel. This suggests diminishing returns from further
increases in input size, and only the Swin L-384 backbone
fully leverages more detailed inputs. Finally, we observe
that Faster R-CNN reaches best RF175 performance at
40 x 40m rather than 80 x 80m, likely due to larger
context and higher number of objects making the task
more difficult at lower resolutions.

Figure 3: Multi-resolution vs. single-
resolution on SELVABOX. RF15 for
the best single-resolution methods from
Tab. 3 trained at fixed 80 x 80 m extent vs
multi-resolution approaches with vary-
ing crop augmentation ranges [36, 88],
[30,100], [30,120]. All methods are
‘DINO 5-scale Swin L-384".

Multi-resolution is effective on SELVABOX. In Figure 3, we observe that all multi-resolution
models achieve RF175 results within standard-deviation of the best single-resolution models, for all
three resolutions. Additionally, single-resolution models struggle at test-time on unseen resolutions.
Results for mAP5.95 and mAR5(.95 are similar and presented in Appendix (Fig. 7). This demonstrates
that a single multi-resolution model can be trained for transferability across spatial extents and GSDs
without performance losses on SELVABOX, instead of training multiple resolution-specific models.

5.2 OOD RESULTS

Following the methodology described in Sec. 4.2, we evaluate zero-shot generalization, we find:

SELVABOX exposes the limitations of current methods and datasets. We report results on
tropical forests in Table 4. First, existing methods, namely Detectree2 and DeepForest, perform poorly
on SELVABOX in zero-shot evaluation with 6.08 and 13.14 RF175 respectively. Our method trained
with multi-resolutions on NeonTreeEvaluation, QuebecTrees and OAM-TCD reaches 30.81 RF1+5
on SELVABOX in zero-shot evaluation, showing great generalization performances on unseen tropical
forests. When SELVABOX is included in-distribution of the training process, our methods achieve
state-of-the-art performances with 47.63 (multi-datasets + SELVABOX) and 48.60 (SELVABOX only)
RF175. These experimental results show how challenging SELVABOX is for existing methods, filling
a gap not covered by existing datasets and methods.

SELVABOX improves OOD generalization on tropical datasets. We observe that models trained
on SELVABOX achieve state-of-the-art performance in zero-shot evaluation on BCI50ha, at 39.39
(multi-datasets + SELVABOX) and 41.91 (SELVABOX only) RF175, followed by Detectree2-resize at
34.97 RF175. On the Detectree2 dataset, the best performing model is Detectree2-resize in RF1+5
although a potential data leak could have occurred during the evaluation on their dataset, given that we
were unable to recover the training-test splits originally used. Our multi-dataset + SELVABOX method
outperforms both Detectree2’s models in terms of mAP50.95 and mAR50.95 on the Detectree2 dataset
and beats DeepForest. It also outperforms our multi-dataset without SELVABOX and SELVABOX-only
methods, while being evaluated on a restricted zero-shot regime. We include corresponding qualitative
results in Appendix E.4. To our knowledge, the DINO-Swin-L trained on multi-dataset + SELVABOX
including a multi-resolution training process achieves state-of-the-art performance for the tropical
tree crown detection task, generalizing well on both SELVABOX and OOD tropical datasets.

State-of-the-art performance on both tropical and non-tropical datasets. We present results
on temperate and urban forests in Table 5. We observe that both our multi-dataset methods (with
and without SELVABOX) outperforms all the other in-distribution or OOD methods on temperate
(NeonTreeEvaluation and QuebecTrees) and urban (OAM-TCD) datasets. Furthermore, training on
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Table 4: Tropical datasets evaluation. We respectively denote N for NeonTreeEvaluation, D for
Detectree2, Q for QuebecTrees, O for OAM-TCD, S for SELVABOX and B for BCISOha. We mark
the best and second-best scores in bold and underline, respectively. We tag with * in-distribution
competing methods of Detectree2 where we could not recover original train, valid and test splits
potentially leading to a train-test data leakage of their method on their dataset.

Method Train SELVABOX (S) | Detectree2 (D) | BCI50ha (B)

dataset(s)‘ mAPso.05 mARs0.05 RFl75  OOD| mAPsp.05 mARs005  RFl7s  OOD| mAPsg.05  mARs0.05 RFl7;5  OOD

Detectree2-resize D 8.62 15.47 13.14 v 17.67 34.11 23.87 X* 32.11 48.18 34.97 v

Detectree2-flexi ~ D+urban 6.43 13.20 9.21 v 6.43 19.86 4.46 X 12.72 29.47 4.26 v

DeepForest N 4.70 9.08 6.08 v 6.85 19.27 7.83 v 14.48 25.50 10.02 4

F. R-CNN-ResNet50 N 1.79x0.21) 11.08x0.01) 4.54=x0.33) v |11.09x1.58) 26.28(+2.38) 14.80x2.57) v | 0.72*0.12) 4.47x0.95) 142018

DINO-Swin-L N 5.67x0.73) 17.63x1.13) 9.94x2.12) ' |14.77(£3.58) 32.62(+4.06) 19.87(x4.12) v | 1.74=x0.35) 11.890.51) 3.770.59

DeepForest S 28.84(x0.19) 44.67(x0.09) 38.00x0.22) X | 6.34x1.11) 18.35=1.78) 2.71x0.67) v |25.17(%1.09) 46.85(x0.71) 36.46(x1.38) v

F. R-CNN-ResNet50 S 28.49(x0.05) 41.88(x0.25) 36.37(x0.37) X | 3.32x0.76) 11.50=1.31) 1.04x0.66) v |27.23(=1.49) 46.70x1.64) 31.24x1.39)

DINO-Swin-L S 37.77(+0.35) 54.69(+0.07) 48.60(+0.49) X |13.271.80) 28.24(+2.75) 8.47*3.13) v |36.87(+0.67) 60.30(+0.90)41.91(+1.28) v

DeepForest N+Q+0 [14.93(£1.23) 31.76(£1.05) 21.55(x1.57) v [10.96(x£1.78) 26.14(£2.20) 8.19(%2.46) " |10.84(£0.94) 31.13(%2.08) 18.58(+1.10) v

F.R-CNN-ResNet50 N+Q+O [16.39x0.11) 29.39¢+0.11) 24.77(+0.38) v |12.50(x0.42) 28.17(+0.64) 13.65(+0.92) v |11.92(+3.43) 32.74(+4.29) 16.16(x3.36) v

DINO-Swin-L N+Q+0 |20.85(+1.46) 39.87(+1.66) 30.81(x1.53) v |15.35x1.88) 30.51(+2.72) 11.31(x2.55 v |25.72(+1.92) 48.78(+1.72) 25.32(x1.87) v

DeepForest N+Q+0+8(|27.58(+0.54) 43.69(+0.44) 35.92(+1.20) X [12.77¢x0.31) 29.39+0.36) 9.13(+0.45) v |19.53(+1.92) 43.52(+3.19) 28.00(x3.81) v

F. R-CNN-ResNet50 N+Q+0+S(24.93(+1.10) 39.34(x0.38) 30.56(£1.44) X |13.80(£1.91) 29.84(+2.79) 14.42(x2.69) v |20.42(1.48) 43.25(+1.56) 23.49+1.17)

DINO-Swin-L  N+Q+0+S|36.95¢x0.56) 53.71(x0.32) 47.63(+0.23) X [18.20(£3.22) 35.20(%3.61) 19.23(+3.33) v |33.13(x3.06) 58.36(+2.21) 39.39x171) v

Table 5: Non-tropical datasets evaluation. We respectively denote N for NeonTreeEvaluation, D for
Detectree2, Q for QuebecTrees, O for OAM-TCD, S for SELVABOX and B for BCI5SOha. We mark
the best and second-best scores in bold and underline, respectively. We cannot compute RF175 for
NeonTreeEvaluation and OAM-TCD as only individual images are available for their test splits.

Method Train | NeonTreeEvaluation (N) | QuebecTrees (Q) | OAM-TCD (0)

datasel(s)‘ mAP50.05 mAR50.95 RFl75 OOD‘ mAPs50.05  mMAR50.95 RFl75 OOD‘ mAPs50.05 mMAR50.95 RFl75 00D

Detectree2-resize D 4.09 15.67 NA 7.62 13.85 13.98 4 245 12.43 NA

Detectree2-flexi ~ D+urban 1.75 9.86 NA 9.75 16.59 15.60 4 520 13.21 NA /

DeepForest N 18.06 25.82 N/A X 3.58 7.32 4.82 v 6.19 11.42 NA

F. R-CNN-ResNet50 N 17.08(x0.31) 27.16(x0.099 N/A X | 5.97(x0.45) 18.39(x0.64) 10.66(£0.19) v | 9.75x0.23) 18.850.82) N/A

DINO-Swin-L N 23.68(+0.20) 35.18(x0.200 N/A X |10.46(x2.60) 23.47(x3.34) 14.20(x4.13) v |[18.42(x1.66) 29.91(x1.400 N/A V/

DeepForest S 1.16(+0.14) 5.52(#+0.999 N/A v |21.46(+0.47) 36.29(+0.25) 31.09(+1.03) ¢ | 9.68(+1.12) 21.95+1.25) N/A /

F. R-CNN-ResNet50 S 0.63(+0.19) 2.98(+0.53) N/A v |17.65(+0.27) 30.71(+0.46) 26.10+0.88) ¢ | 8.50+0.50) 16.17(+1.099 N/A /

DINO-Swin-L S 5.16¢+0.57) 14.67x1.47 N/A V' |27.34(+2.63) 44.04(+2.69) 38.34(+2.43) v |22.58(+0.31) 35.59+0.52) N/A

DeepForest N+Q+0 |20.50(+0.26) 31.13x0.15) N/A X |36.75(x0.37) 49.66(+0.58) 47.37(+0.22) X |39.00x0.21) 49.78+0.18) N/A X

F. R-CNN-ResNet50 N+Q+O |[17.94(+0.10) 28.04(z0.16y N/A X [33.45(+0.84) 45.68(+1.02) 43.65(+0.92) X |[38.34(#0.26) 47.76(+0.31) N/A X

DINO-Swin-L N+Q+0O |23.50(x0.78) 34.85x0.800 N/A X |44.53(+1.19) 58.48(+1.00) 56.53(+0.64) X |44.29(+0.33)55.57(+0.41) N/A X

DeepForest N+Q+0+S5|20.71(x0.25) 32.14x0.13) N/A X |36.53(+0.35) 49.66(+0.55) 47.04x0.61) X |38.37(x0.46) 49.38+0.29) N/A X

F. R-CNN-ResNet50 N+Q+0+S| 18.47(+0.16) 28.80(+0.23) N/A X |31.98(20.45) 45.10(+0.31) 42.06(+0.73) X |38.08(x0.31) 47.87(+0.28) N/A X

DINO-Swin-L.  N+Q+0+S|23.90(+0.49) 35.53(+0.50) N/A X |45.05(10.59) 58.74(+0.56) 56.41(+0.87) X [44.03(+0.53) 55.340.67) N/A X

SELVABOX alone allows our methods to outperform competing approaches on both the QuebecTrees
and OAM-TCD datasets, achieving better results on QuebecTrees than models trained on NeonTree
(a global-scale temperate forest dataset), demonstrating SELVABOX’s quality and the generalization
capacity of our training process. We include corresponding qualitative results in Appendix E.5.
Our multi-dataset methods reached average performance within standard deviation for non-tropical
datasets, confirming that our multi-dataset approach with SELVABOX reaches state-of-the-art perfor-
mance on both tropical and non-tropical datasets.

6 CONCLUSION

We present SELVABOX, the largest tropical tree crown detection dataset to date, with over 83, 000
expert-verified annotations from high-resolution UAV imagery across Central and South American
forests. We achieve state-of-the-art performance across in-distribution and out-of-distribution bench-
marks in a zero-shot setting training on SELVABOX and other open-access datasets. We advocate for
the RF175 metric, a raster-level score reflecting forest monitoring needs, and suggest that future work
explore alternative aggregation methods such as soft-NMS (Bodla et al., 2017) or weighted boxes
fusion (Solovyev et al., 2021). Our dataset, code, and models are fully open to support research in
forest monitoring, while acknowledging the potential risks of misuse for illegal exploitation.
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REPRODUCIBILITY STATEMENT

All code, data, and experimental details required to reproduce the results of this paper are made
available. The SELVABOX dataset is described in Sections 3 and 4, with additional details on
orthomosaics, splits and annotations in App. A. The ML-ready SELVABOX dataset is available on
HuggingFace and linked on the first page of this manuscript. The raster-level annotations and AOIs
in geopackage format are available on HuggingFace in a separate branch. Preprocessing steps for
external datasets benchmarked in this manuscript are described in App. E.1, and we also release these
preprocessed versions on HuggingFace. Our open-access data preprocessing package, geodataset,
and our benchmark, inference and training GitHub repository, CanopyRS, are described in App. F
and linked on the first page of this manuscript. The main training hyperparameters and compute setup
are described in App. B.2. The RF175 metric pseudo-code implementation and related inference
hyperparameters used in our benchmarks can be found in App. B.3. Finally, model weights of our
best methods as well as smaller model variants are available on HuggingFace and CanopyRS package.
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APPENDICES & SUPPLEMENTARY MATERIAL

A THE SELVABOX DATASET

A.1 ORTHOMOSAICS.

The RGB orthomosaics were generated in Agisoft Metashape version 2.1. Images were acquired
by flying at a constant elevation above the canopy. We kept a forward overlap of > 80% and a side
overlap of > 70%. Images were acquired around mid-day to minimize shadows. Sky conditions
ranged from full sun to overcast.

The main Metashape parameters used for all of our orthomosaic reconstructions were:

* Alignment accuracy: High

* Point cloud quality: High

* Point cloud filtering: Disabled

* Orthomosaic blending mode: Mosaic

Table 6: SELVABOX orthomosaics. We denote each type of DJI drone as ‘m3e’ for Mavic 3
Enterprise, ‘m3m’ for Mavic 3 Multispectral, ‘mavicpro’ for Mavic Pro, ‘mini2’ for Mavic Mini 2.

Raster name Drone Country Date conflli(l}i,ons (c?nslg() Forest type #Hectares  #Annotations  Proposed split(s)
zf2quad m3m Brazil  2024-01-30 clear 23 primary 15.5 1343 valid
zf2tower m3m Brazil  2024-01-30 clear 22 primary 9.5 1716 test
zf2transectew m3m Brazil  2024-01-30 clear 1.5 primary 2.6 359 train
zf2campinarana m3m Brazil  2024-01-31 clear 2.3 primary 66 16396 train
transectotoni mavicpro  Ecuador 2017-08-10 cloudy 4.3 primary 4.3 5119 train
tbslake m3m Ecuador  2023-05-25 clear 5.1 primary 19 1279 train, test
sanitower mini2 Ecuador  2023-09-11 cloudy 1.8 primary 5.8 1721 train
inundated m3e Ecuador  2023-10-18 cloudy 22 primary 68 9075 train, valid, test
pantano m3e Ecuador  2023-10-18 cloudy 1.9 primary 41 4193 train
terrafirme m3e Ecuador 2023-10-18 clear 2.4 primary 110 6479 train
asnortheast m3m Panama  2023-12-07  partial cloud 1.3 plantations, secondary 33 12930 train, valid, test
asnorthnorth m3m Panama  2023-12-07 cloud 1.2 plantations, secondary 15 6020 train
asforestnorthe2 m3m Panama  2023-12-08 clear 1.5 secondary 20 5925 valid, test
asforestsouth2 m3m Panama  2023-12-08 clear 1.6 secondary 28 10582 train

Table 7: SELVABOX boxes details. Details of number of boxes for each raster, country and overall
as well as their minimum, maximum and median box size expressed in meters.

Country  Location Raster name \ # Boxes Min box size (m) Max box size (m) Median box size (m)
20240130_zf2quad_m3m 1343 1.02 33.00 6.34
20240130_zf2tower_m3m 1716 0.97 28.71 6.16

Brazil ZF2 20240130_zf2transectew_m3m 359 0.90 26.94 5.12
20240131_zf2campirana_m3m 16396 0.93 36.72 6.01
All rasters 19814 0.90 36.72 6.03
20231018_inundated_m3e 9075 0.52 54.27 6.41
20231018_pantano_m3e 4193 0.92 41.60 6.66
20231018_terrafirme_m3e 6479 0.81 53.19 6.26

Ecuador Agua Salud 20170810_transectotoni_mavicpro 5119 0.83 47.97 5.80
20230525_tbslake_m3e 1279 1.46 41.28 8.45
20230911 _sanitower_mini2 1721 0.86 57.16 5.53
All rasters 27866 0.52 57.16 6.31
20231208 _asforestnorthe2_m3m 5925 0.51 36.17 4.99
20231207_asnortheast_amsunclouds_m3m 12930 0.50 36.42 4.17

Panama  Agua Salud 20231207_asnorthnorth_pmclouds_m3m 6020 0.50 29.28 4.63
20231208 _asforestsouth2_m3m 10582 0.83 38.92 4.83
All rasters 35457 0.50 38.92 4.58

All All All rasters | 83137 0.50 57.16 5.44
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A.2 SPATIALLY SEPARATED SPLITS.

zf2quad zf2tower zf2transectew

zf2campirana transectotoni tbslake

& -

sanitower inundated

terrafirme

asforestnorthe2 asforestsouth2
Figure 4: Visualization of spatially separated splits. All 14 rasters of SELVABOX are illustrated

with their corresponding train, valid and test AOI-based splits. Images are uniformly sized and not at
scale. A few train AOIs (red) have holes to exclude sparse annotations (see Section 3).

— train
— valid
— test
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A.3 ANNOTATION PROTOCOL

The annotations were created by five domain experts with exact same instructions, and all started
with a demo and an annotation practice beforehand. All annotations were made in ArcGIS Pro
version 3.0 with ArcGIS Online layers to track the online work of two annotators working on the
same orthomosaic simultaneously. In large and dense areas, one or several annotators performed an
additional pass over the orthomosaic to annotate potential missing trees.

Once annotations were completed by one or several annotators, one or two domain experts performed
quality control steps for all annotations of each orthomosaic by following precise guidelines:

. Set up a 60x60 m grid over the orthomosaic.
. Proceed to the verification by systematically scanning each cell to avoid missing any areas.
. Ensure that there are as many annotated trees as possible in each cell.

. Also annotate dead or leafless trees.

wn AW N =

. Check that annotations already completed are correct, adjusting them if necessary.
All annotators and reviewers were provided with documentation covering difficult use cases, to use
as a reference when they were uncertain about the annotation procedure.

As a comparison, we point out that annotations in OAM-TCD (Veitch-Michaelis et al., 2024)
(NeurIPS 2024) were created by professional annotators who were not domain experts, and only a
portion of these annotations were reviewed by ecologists.

A.4 INCOMPLETE ANNOTATIONS.

Figure 5: Example of masked pixels in sparse annotations zones. Example on a 3555 x 3555 pixels
training tile (160 x 160 meters) from the pantano raster. On the left is the raw tile, showing holes
(red polygons) in the train AOI geopackage where annotations (white boxes) are sparse. On the right
is the preprocessed tile, where pixels overlapping the AOI holes have been masked to remove sparse
annotations. AOI holes were created mostly where visible trees were not annotated (see Section 3).
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B HYPERPARAMETERS AND AUGMENTATIONS

B.1 AUGMENTATIONS
For all experiments, we use the same set of basic augmentations:

Table 8: Settings of data augmentations used for all experiments. Augmentations were applied in
the top to bottom order of the table. The Hue augmentation is applied to pixel values in the 0-255
range. The fallback value column describes the behavior of the preprocessing pipeline when an
augmentation is not applied. Multi-dataset models use the multi-res. variants of crop and resize
augmentations. The ‘spatial-extent’ for our single-res. experiments on SELVABOX is either 40 m or
80m (see Tab. 2 and 3). The crop augmentation for the multi-res. settings is expressed in pixels,
where the value is randomly drawn between x,;, and x,x that will correspond to different spatial
extents depending on the dataset (see Fig. 6 and Sec. E.1). The resize augmentation will either be
applied with a fixed value y, expressed in pixel, for the single-res. applications on SELVABOX, or
randomly drawn between ypi, and ymay for the multi-resolution and multi-dataset training approaches.

Augmentation Probability Augmentation Range Fallback value
Flip Horizontal 0.5 — —
Flip Vertical 0.5 — —
Rotation 0.5 [-30°, +30°] —
Brightness 0.5 [-20%, +20%] —
Contrast 0.5 [-20%, +20%] —
Saturation 0.5 [-20%, +20%] —
Hue 0.3 [-10, +10] —

Crop (single-res.) 0.5 spatial extent x [-10%, +10%] spatial extent

Crop (multi-res.) 0.5 [Zmin, Tmax] max. image size

Resize (single-res.) 1.0 Y —
Resize (multi-res.) 1.0 [Ymins Ymax] —
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B.2 TRAINING HYPERPARAMETERS

This section lists the hyperparameters found for each of our settings. We performed grid search
(=~ 10 hyperparameter combinations) for every setting on four hyperparameters — the learning-rate,
its scheduler, the total number of epochs and the batch size. We left all other hyperparameters at their
default values as specified in Detectron2 and Detrex configuration files. CosineLR refers to a cosine
learning-rate schedule without restart. We applied a 5 000-step warmup at the start of each training
session. Training was performed on either 48 GB NVIDIA RTX 8000 or L40S GPUs, depending on
compute-cluster availability. Most sessions used one or two GPUs; however, DINO + Swin L-384
with large input sizes, multi-resolution, or multi-dataset settings required four GPUs (one image per
GPU per batch) due to their high memory footprint.

Table 9: Hyperparameters selected for the input size and GSD experimental analyses on
SELVABOX. Hyperparameters selected for each method and spatial extent in Tables 2 and 3. An
initial search shown that, for each architecture and spatial extent, the optimal hyperparameters were
nearly identical across GSDs; accordingly, we applied the same settings to all GSDs within each
spatial extent.

Method | Extent (m) | Optimizer LR Scheduler Max Epochs  Batch Size
Faster R-CNN (ResNet50) 40 x 40 SGD 5x 1072  CosineLR 500 8
DINO 4-scale (ResNet50) 40 x 40 AdamW 1 x10~* CosineLR 200 4
DINO 5-scale (Swin L-384) 40 x 40 AdamW 5 x 107 CosineLR 500 8
Faster R-CNN (ResNet50) 80 x 80 SGD 5x 1072 CosineLR 500 4
DINO 4-scale (ResNet50) 80 x 80 AdamW 1 x 10™* CosineLR 500 4
DINO 5-scale (Swin L-384) 80 x 80 AdamW 1 x10~* CosineLR 500 4

Table 10: Hyperparameters selected for the multi-resolution experimental analysis on SELV-
ABoOX. These hyperparameters were optimal as being the same ones as used for DINO 5-scale (Swin
L-384) at 80 x 80 m spatial extent. The associated models performance are in Figures 3, 7 and
Table 18.

Method | Train Crop Range (m) | Optimizer LR Scheduler Max Epochs  Batch Size
DINO 5-scale (Swin L-384) (36, 88] AdamW 1 x107* CosineLR 500 4
DINO 5-scale (Swin L-384) [30,100] AdamW 1 x 10~* CosineLR 500 4
DINO 5-scale (Swin L-384) (30,120] AdamW 1 x107* CosineLR 500 4

Table 11: Hyperparameters selected for the OOD experimental analyses with multi-dataset
trainings. For the MultiStepLR scheduler, we reduced the learning rate by a factor of 10 at 80% and
again at 90% of the total training epochs. The associated models performance are in Tables 4 and 5.

Method | Train Datasets | Optimizer LR Scheduler =~ Max Epochs  Batch Size
DeepForest N N/A N/A N/A N/A N/A
Faster R-CNN (ResNet50) N SGD 5x 1073 CosineLR 500 8
DINO 5-scale (Swin L-384) N AdamW 1 x107* CosineLR 80 4
DeepForest S SGD 5x 1073  CosineLR 500 8
Faster R-CNN (ResNet50) S SGD 5x 1073 CosineLR 500 8
DINO 5-scale (Swin L-384) S AdamW 1 x10~* CosineLR 500 4
DeepForest N+Q+O SGD 2x 1073 CosineLR 200 4
Faster R-CNN (ResNet50) N+Q+O SGD 5x 1073 CosineLR 200 4
DINO 5-scale (Swin L.-384) N+Q+O AdamW 1 x 1074 CosineLR 80 4
DeepForest N+Q+0+S SGD 5x 1073  CosineLR 120 8
Faster R-CNN (ResNet50) N+Q+O+S SGD 5x 1073 CosineLR 120 8
DINO 5-scale (Swin L-384) N+Q+O+S AdamW 1 x 10* MultiStepLR 80 4
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B.3 INFERENCE HYPERPARAMETERS

We detail the pseudocode for the RF175 metric in Algorithm 1 (see Section 4). Setting 7oy, = 0.75
corresponds to RF175. Before applying the NMS, we discard predictions whose bounding box lies
within a 5%—wide band along the tiles borders. We perform a grid search on the valid set over the
non-maximum suppression IoU threshold 7,5 and the minimum detection confidence score Smin,
each taking values in the discrete set {0.00, 0.05,0.10, ..., 1.00}. We multiprocess the grid search
on 12 CPU cores to speed up the process. After finding the optimal 7,5 and s;,;, on the best model
seed, we apply it on the test set to all model seeds to compute the final RF175 score with standard
deviation.

Algorithm 1 Per-dataset evaluation with weighted RF1

Require: Dataset D of rasters, detector M, Tyms, Smin» Tiou

LR+ 0 > list of per-raster F1 scores
22 W10 > list of per-raster truth counts
3: for each raster r € D do

4: P+ > accumulate tile preds
5: G < LoadGroundTruth(r) > load geo-truth
6: for each tile ¢ in r do

7: p < M.predict(t)

8: P+ PuUp

9: end for

10: Peont < {p € P : p.score > Spin }

11: P’ + NonMaxSuppression(Peonf, Tnms)
12: (tp, fp, fn) < GreedyMatch(P’, G, Tiou)
13: precision < tp/(tp + fp)

14: recall <— tp/(tp + fn)

: _precision recall
15: f1 2 precision+recall

16: n + |G| > truth count
17: R+ RUIT1

18: W<+ WUn

19: end for

200 W3 cown

21: RF1 + & SRR, W,

22: store weighted-average RF1

Algorithm 2 Greedy matching for RF1

1: procedure GREEDYMATCH(P', G, Tion)

2 sort P’ by descending score

3 mark all g € G as unmatched

4 tp<— 0, fp«0

5: for each prediction p € P’ do

6: g" < argmaxge G : g.unmatched=true IOU(p, g)
7 if IoU(p, g*) > Tiou then

8

tp<+—tp+1
9: mark g* as matched
10: else
11: fo—fp+1
12: end if
13: end for

14: fn+ |{g € G : g.unmatched = true}|

15: return (¢p, fp, fn)
16: end procedure
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Table 12: Optimal inference hyperparameters for the input size and GSD experimental analysis
at 40 x40 meters on SELVABOX. Both optimal NMS and score thresholds are selected by maximizing
the RF175 metric as described in Algorithm 1. The associated models performance are in Table 2.

Method | GSD L size | NMS IoU (Tums) ~ Score thr. (smin)

10 400 0.50 0.85

10 666 0.60 0.70

10 888 0.50 0.80

FaliterI\IthslgN 6 666 0.55 0.90
esive 6 888 0.70 0.90

45 888 0.65 0.85

10 400 0.70 0.45

10 666 0.50 0.35

10 888 0.75 0.35

D%\fa?}?;;gle 6 666 0.65 0.45
6 888 0.35 0.35

45 888 0.65 0.40

10 400 0.75 0.35

10 666 0.80 0.45

10 888 0.35 0.35

DSIN.O f’%%ﬂe 6 666 0.55 0.35
win L~ 6 888 0.45 0.40
45 888 0.50 0.35

Table 13: Optimal inference hyperparameters for the input size and GSD experimental analysis
at 80 x 80 meters on SELVABOX. Both optimal NMS and score thresholds are selected by maximizing
the RF175 metric on the validation set of SELVABOX as described in Algorithm 1. The associated
models performance are in Table 3.

Method | GSD I size | NMS IoU (Tyms)  Score thr. (spmin)

10 800 0.70 0.75

10 1333 0.40 0.70

10 1777 0.35 0.60

FeﬁterNRggN 6 1333 0.40 0.70
esNel 6 1777 0.45 0.75
45 1777 0.25 0.35

10 800 0.35 0.45

10 1333 0.75 0.45

, 10 1777 0.70 0.40
ngol\?'sggle 6 1333 0.35 0.40
esNe 6 1777 0.75 0.35
45 1777 0.40 0.35

10 800 0.75 0.35

10 1333 0.80 0.40

10 1777 0.70 0.35

win L- 6 1777 0.65 0.35
45 1777 0.75 0.45
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Table 14: Optimal inference hyperparameters for the multi-resolution experimental analysis on
SELVABOX. Both optimal NMS and score thresholds are selected by maximizing the RF175 metric
on the validation set of SELVABOX as described in Algorithm 1. The associated models performance
are in Figures 3, 7 and Table 18.

Method Train Crop Range (m) ‘ Test GSD (cm) ‘ NMS IoU (7ums)  Score thr. (Spmin)

10 0.70 0.45
DSIN.O 2‘530;;6 (36, 88] 6 0.60 0.45
win L- 45 0.70 0.45
10 0.70 0.40

DSIN.O i‘zcg‘f (30, 100] 6 0.70 0.40
win L- 45 0.60 0.40
10 0.70 0.40

DSIN.O i‘zcgﬂe [30, 120] 6 0.50 0.35
win L~ 4.5 0.80 0.40

Table 15: Optimal inference hyperparameters for the experimental analyses with multi-dataset
trainings. Both optimal NMS and score thresholds are selected by maximizing the RF175 metric on
the validation sets of both SELVABOX and Detectree2 as described in Algorithm 1. The associated
models performance are in Tables 4 and 5.

Method Train dataset(s) ‘ NMS IoU (7ums)  Score thr. (syin)
Detectree2-resize D 0.30 0.25
Detectree2-flexi D+urban 0.80 0.20
DeepForest N 0.80 0.05
F. R-CNN-ResNet50 N 0.10 0.50
DINO-Swin-L N 0.80 0.55
DeepForest S 0.30 0.40
F. R-CNN-ResNet50 S 0.20 0.45
DINO-Swin-L S 0.80 0.40
DeepForest N+Q+O 0.70 0.40
F. R-CNN-ResNet50 N+Q+O 0.50 0.45
DINO-Swin-L N+Q+O 0.70 0.40
DeepForest N+Q+O+S 0.30 0.40
F. R-CNN-ResNet50 N+Q+O+S 0.20 0.50
DINO-Swin-L N+Q+O+S 0.70 0.50
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C BENCHMARKING RESOLUTIONS AND IMAGE SIZES

Table 16: Model, resolution and spatial extent selection on SELVABOX at 40 x 40 m. Comparison
of performances on the proposed test set of SELVABOX with variable tile spatial extent. Tile size and
ground spatial distance (GSD) are in cm. We highlight results per method and backbone as the
first, the second and the third best scores. We also bold and underline the best and second
best scores overall. Note that mAP5(, mAP5¢.95, mMAR50 and mAR5¢.95 cannot be compared between
40 x 40m and 80 x 80 m inputs as images do not match, but we can use RF175 to compare final
post-aggregation results at the raster-level.

Method ‘ GSD I size ‘ mAP50 mAP50:95 IIlAR50 mAR50:95 RF175

10 400 54.92 (+0.08) 26.90 (+0.13) 74.48 (+0.42) 40.87 (+0.35) 35.78 (+0.44)
10 666 57.03 (+0.08) 28.40 (+0.13) 76.53 (+0.49) 42.79 (+0.19) 37.75 (£0.30)
10 888 56.42 (+0.30) 28.51 (+0.20) 76.21 (+0.14) 43.36 (+0.19) 37.46 (+0.91)
6 666 57.13 (+0.17)  29.31 (+0.05) 76.25 (+0.66) 43.59 (+0.20) = 39.97 (+0.33)
6 888 57.27 (+0.54) 29.40 (+0.34) 77.26 (+0.77) 44.18 (+0.44) 38.92 (+0.51)
4.5 888 58.33 (+0.21) 30.25 (+0.24) 78.41 (+0.15 45.18 (+0.30) 39.97 (+0.67)

10 400 56.98 (+0.25) 30.63 (+0.24) 76.92 (+0.74) 48.06 (+0.33) 41.14 (+0.80)
10 666 57.62 (+0.64) 31.76 (+0.86) 78.56 (+0.16) 50.40 (+0.55 41.57 (+1.94)
10 888 58.11 (+0.64) 32.19 (+0.33) 78.55 (+0.34) 50.68 (+0.19) 42.47 (+0.97)
6 666 58.71 (+0.34) 33.46 (+0.22) 78.95 (+0.26) 51.80 (+0.31) = 44.55 (+0.18)
6 888 58.78 (+0.51) 33.54 (£0.40) 79.16 (£0.02) 52.12 (+0.18) 43.34 (+0.79)
4.5 888 60.11 (+0.36) 34.19 (+0.13) 79.87 (+0.15) 52.53 (+0.40) 44.26 (+0.83)

10 400 60.44 (+0.32) 33.84 (+0.20) 79.84 (+0.29) 52.02 (+0.25) 45.37 (+0.23)
10 666 61.26 (+0.30) 34.64 (+0.25) 80.77 (+0.17) 5291 (+0.30) 46.39 (+0.52)
10 888 61.06 (+0.55) 34.92 (+0.34) 80.70 (£0.13) 53.23 (+0.14) 45.22 (+0.70)
6 666 62.91 +0.46) 37.07 (+0.16) 81.58 (#0.12) 55.18 (+0.22) 48.50 (+0.60)
6 888 62.45 (+0.17)  36.22 (+0.38) 81.47 (+0.18) 54.55 (+0.43) 48.13 (+0.60)
4.5 888 63.41 (+0.29) 37.78 (+0.15) 82.33 (+0.35) 56.30 (+0.21) 49.76 (+0.43)

Faster RCNN
ResNet50

DINO 4-scale
ResNet50

DINO 5-scale
Swin L-384

Table 17: Model, resolution and spatial extent selection on SELVABOX at 80 x 80 m. Comparison
of performances on the proposed test set of SELVABOX with variable tile spatial extent. Tile size and
ground spatial distance (GSD) are in cm. We highlight results per method and backbone as the
first, the second and the third best scores. We also bold and underline the best and second
best scores overall. Note that mAP50, mAP50.95, mAR5¢ and mAR5g.95 cannot be compared between
40 x 40 m and 80 x 80 m inputs as images do not match, but we can use RF175 to compare final
post-aggregation results at the raster-level.

Method | GSD L size mAPs mAP;50.95 mARs5 mARs.95 RF15

10 800 50.50 (+0.44) 24.94 (+0.34) 64.72 (+1.25) 35.93 (+0.55 34.66 (+0.97)
10 1333 | 51.37 (z0.11)  26.25 (+0.14) 67.57 (+0.63) 38.59 (+0.41) 36.09 (+0.51)
10 1777 | 54.20 (+0.55 27.58 (+0.24) 70.65 (+1.84) 40.21 (+0.38) 35.74 (+1.26)
6 1333 | 51.96 (+0.64) 26.52 (+0.80) 69.77 (+1.53) 39.55 (+0.75) 36.22 (£1.45)
6 1777 | 54.68 (+0.26) 27.89 (+0.35) 72.32 (+1.35) 41.02 (+0.69) 35.94 (+0.84)
4.5 1777 | 56.21 (+0.76) 28.74 (+0.44) 72.12 (+0.76) 41.27 (+0.59) 37.52 (+0.58)

10 800 58.32 (+0.44)  30.90 (+0.51) 76.33 (+0.28) 47.29 (+0.33) 41.20 (+0.39)
10 1333 | 59.65 (+0.200 32.39 (+0.02) 77.61 (+0.07) 49.22 (+0.10) 43.08 (+0.20)
10 1777 | 59.31 (+1.299 32.51 (+0.89) 77.23 (+0.34) 49.35 (+0.47) 42.39 (+1.25)
6 1333 | 59.84 (+0.42) 33.06 (+0.29) 77.91 (x0.171 49.93 (+0.39) 42.92 (+0.51)
6 1777 | 60.48 (+0.26) 33.62 (+0.100 78.32 (+0.21) 50.85 (+0.17) 44.18 (£0.18)
4.5 1777 | 61.09 (+0.45) 33.81 (+0.84) 78.93 (+0.32) 51.00 (+0.77) 43.26 (+0.45)

10 800 62.02 (+0.08) 33.90 (+0.09) 78.89 (+0.22) 50.29 (+0.38) 44.64 (+0.20)
10 1333 | 61.73 (+0.72) 34.22 (+0.34) 79.03 (+0.87) 50.76 (+0.57) 45.64 (+1.03)
10 1777 | 62.86 (+0.78) 35.30 (+£0.26) 79.94 (+0.68) 52.12 (+0.62) 45.37 (+0.08)
6 1333 | 64.91 (+0.30) 37.12 (+0.38) 81.01 (+0.09) 53.56 (+0.48) 47.81 (+0.40)
6 1777 | 63.34 (+0.58) 35.77 (+0.84) 80.59 (+0.16) 5291 (+0.56) 45.88 (+1.97)
4.5 1777 | 64.59 +1.03) 37.79 (+0.55 81.35 (+0.71) 54.66 (+0.47) 49.38 (+0.76)

Faster RCNN
ResNet50

DINO 4-scale
ResNet50

DINO 5-scale
Swin L-384

26



Under review as a conference paper at ICLR 2026

D MULTI-RESOLUTION APPROACH

D.1 MULTI-RESOLUTION EXAMPLE

s B ]
=107
,'666x666 pixels crop,
<" upsampled to 1024x1024
/’ =»30x30 meters
=»2.9 cm/pixel (bilinear interp.)

666x666 pixels crop
=»30x30 meters
=*4.5 cm/pixel

L]
666x666 pixels crop,
upsampled to 1777x1777
=»30x30 meters

=>1.7 cm/pixel (bilinear interp.)

e

2666x2666 pixels crop,
. downsampled to 1024x1024
s Y =120x120 meters
| =»11.7 cm/pixel (bilinear interp.)

3555x3
=*160x160 meters
=»4.5 cm/pixel

» ¢ - § 0
2666x2666 pixels crop
=*120x120 meters
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2666x2666 pixels crop,
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=120x120 meters

=»6.8 cm/pixel (bilinear interp.)

Figure 6: Example of cropping and resizing augmentations for the multi-resolution approach.
We showcase the [30, 120] m configuration used in our benchmark: a 3555 x 3555 tile at 4.5cm =
0.045m GSD, equivalent to a 160 x 160 m spatial extent, will be cropped with a random crop
size value in [666, 2666] pixels, and then resized to a random value in [1024, 1777] pixels. This
process has two effects: ‘1 cropping performs augmentation for spatial extent — in our example, the
original input has the potential to be cropped in a ground extent range of [30,120] m; 2 resizing
performs the GSD augmentation — in our example, the largest possible crop (in blue) of 2666
pixels (or 120 m) can be downsampled to 1024 x 1024, which yields a maximum effective GSD of
0.045 m x % = 0.117 m = 11.7 cm per pixel, far from the original 4.5 cm per pixel. Similarly,
the smallest possible crop (in orange) of 666 pixels (or 30 m) can be upsampled to 1777 x 1777
pixels, yielding a minimum effective GSD of 0.045 m x % = 0.017 m = 1.7 cm per pixel. Note
that for small crops, the effective GSD after upsampling (via bilinear interpolation) can fall below the
original 4.5 cm/pixel, even though no new image detail is added.
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D.2 MULTI-RESOLUTION ADDITIONAL RESULTS
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Figure 7: Multi-resolution vs. single-resolution on SELVABOX. Comparison of mAP5g.95 and
mAR5(.95 between best performing single-resolution methods from Table 3 trained with a fixed spatial
extent of 80 x 80 m, against multi-resolution approaches with increasingly large crop augmentation
ranges ([36, 88], [30, 100] and [30, 120]). All methods are ‘DINO 5-scale Swin L-384". It supports
results illustrated in Figure 3.

Table 18: Multi-resolution vs. single-resolution on SELVABOX. Comparison of best performing
methods from Table 3 trained with a fixed spatial extent against multi-resolution approaches. All
methods are ‘DINO 5-scale Swin L-384’, have been trained at 4.5cm. We mark the best and second-
best scores in bold and underline, respectively. These results are also illustrated in Figures 3 and 7.

Train Test Test
extent extent res. mAP5q mAP50.95 mAR5g mAR50.95 RF175
(m) (m)  (cm/px)
80 80 10 62.02 (£0.08) 33.90 (+£0.09) 78.89 (+0.22) 50.29 (+0.38) 44.64 (+0.20)
80 80 6 64.91 (+0.30) 37.12 (+0.38) 81.01 (£0.09) 53.56 (+0.48) 47.81 (+0.40)
80 80 4.5 64.59 (+1.03) 37.79 (+0.55) 81.35 (+0.71) 54.66 (+0.47) 49.38 (+0.76)
80 10 63.33 (£0.48) 34.19 (0.44) 79.98 (+0.21) 50.99 (+0.41) 45.03 (£0.53)
[36,88] U {160} 80 6 65.38 (+0.41)  36.60 (+1.38) 81.29 (+0.20) 52.95 (+1.47) 47.87 (£0.92)
80 4.5 65.68 (+0.09) 38.19 (+0.54) 81.85 (+0.05) 54.90 (£0.59) 49.16 (+0.06)
80 10 62.52 (+1.30) 33.82 (+0.74) 79.42 (+0.35) 50.52 (+0.35) 44.13 (+0.73)
(30,100] U {160} 80 6 64.70 (+0.48) 36.46 (+0.49) 80.99 (£0.12) 52.99 (+0.55) 47.96 (+0.48)
80 4.5 65.11 (+o0.28) 37.77 (+0.36) 81.47 (+0.15) 54.68 (+0.47) 48.79 (+0.51)
80 10 62.76 (+0.49)  33.99 (+0.35) 79.51 (+0.09) 50.66 (+0.08) 44.91 (+0.65)
(30,120] U {160} 80 6 64.44 (+0.26) 36.08 (+1.59) 80.68 (+0.42) 52.64 (+2.000 46.65 (£1.67)
80 4.5 64.92 (+0.53) 37.77 (0350 81.19 (£0.08) 54.69 (+0.07) 48.60 (+0.49)
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E OUT-OF-DISTRIBUTION ANALYSIS

E.1 EXTERNAL DATASETS PREPROCESSING

For NeonTreeEvaluation, we keep the proposed 400 x 400 pixels test inputs at 10 cm GSD and define
train and validation AOISs on their rasters. Similarly, for QuebecTrees, we keep the proposed test split
AOI while defining our own train and validation AOIs. As Detectree2’s train, validation, and test
splits are not shared publicly, we defined our own validation and test AOIs, while keeping the input
size as 1000 x 1000 to follow their guidelines. BCI5SOha is only used for OOD evaluation (see OOD
experiments in Sections 4 and 5), so we define test AOIs spanning both rasters.

OAM-TCD contains two types of annotations: individual trees and tree groups. Unfortunately, tree
groups would introduce noise during the training process as all other datasets focus on individual
tree detection. Therefore, we only consider individual trees annotations and we mask the pixels
associated to tree groups from the training data to ensure consistency. This process is similar to how
we mask specific low quality pixels and sparse annotations in SELVABOX as detailed in Section 3.
OAM-TCD provides five predefined cross-validation folds; we train on folds 0-3 and use fold 4
exclusively for validation. We further divide the 2048 x 2048 validation and test tiles of OAM-TCD
into 1024 x 1024 tiles with 50% overlap, as 204.8 x 204.8 m GSD would be significantly larger than
other datasets. We refer to Table 19 for more details on final preprocessed datasets statistics and
information.

For each dataset divided into tiles, we apply the same AOI-based pixel masking,
black/white/transparent pixel cover threshold, and 0-annotation tile removal, as described in Section 3.
We use 50% overlap between tiles for all datasets for which we divided rasters into tiles, except
BCI50ha where we use 75% to maximize cover for 50+ meters tree crowns (same as SELVABOX test
split). We also release these preprocessed external datasets on HuggingFace, including the proposed
AOIs and raster-level annotation geopackages for all datasets, in a standardized ML-ready format
and with their original CC-BY 4.0 license to ensure reproducibility of our benchmark and facilitate
experiments of researchers and practitioners for tree-crown detection. We used version 1.0.0 of OAM-
TCD,* version v1 of QuebecTrees,’ version v2 of Detectree2,® version 0.2.2 of NeonTreeEvaluation,’
and version 2 of BCI50ha.?

Table 19: Preprocessing and training parameters for all datasets used. The SELVABOX parameters
correspond to the [30, 120] m multi-resolution setting. Although test tiles outnumber training tiles
numerically, training tiles are deliberately larger in spatial extent to facilitate augmentation strategies,
resulting in greater total geographic coverage within the train split. The minimum effective train
resolution range is reached by using bilinear interpolation from the smallest possible crop size to the
largest possible input resize value. *At training time, we resize NeonTreeEvaluation training tiles to
2000 pixels before cropping to ensure that the effective train extent range reaches the 40 m used in
the test split.

GSD #Train  Trainsize Augm. Crop Augm. Resize Effective train Effective train #Test  Testsize Testextent

Dataset

(cm/px) | Images (px) range (px) range (px) extent range (m)  res. range (cm/px) | Images (px) (m)
NeonTreeEvaluation 10 912 1200 [666,2666]  [1024, 1777] [40, 120]* [2.3,11.7] 194 400 40
OAM-TCD 10 3024 2048 [666,2666]  [1024, 1777] [66.6, 204.8] [3.8,20] 2527 1024 102.4
QuebecTrees 3 148 3333 [666,2666]  [1024, 1777] (20, 80] U {100} [1.1,9.8] 168 1666 50
SELVABOX 4.5 585 3555 [666,2666]  [1024,1777]  [30,120] U {160} [1.7,15.6] 1477 1777 80
Detectree2 10 N/A N/A N/A N/A N/A N/A 311 1000 100
BCI50ha 4.5 N/A N/A N/A N/A N/A N/A 2706 1777 80

4*OAM-TCD: https://zenodo.orqg/records/11617167
SQuebecTrees: https://zenodo.org/records/8148479
®Detectree2: https://zenodo.org/records/8136161
"NeonTreeEvaluation: https://zenodo.org/records/5914554
8BCI50ha: Smithsonian Barro Colorado Island 50-ha plot crown maps
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Figure 8: Distribution of box annotations size across datasets.

E.2 EXTERNAL METHODS EVALUATION
We keep the default Detectree2 inference parameters provided in their python library. For DeepForest,

we use their python library directly to benchmark their method but limit input size to 1000 x 1000
pixels maximum following their documentation guidelines and examples.

E.3 REFORESTREE DATASET QUALITATIVE RESULTS.

Rl % 4 = -
e-tuned DeepForest Annotations Multi-resolution [30, 120] Multi-dataset (N+Q+0+5S)

Figure 9: Qualitative results on ReforesTree. In white the ReforesTree annotations generated from
an in-distribution and fine-tuned DeepForest model, in blue our best multi-resolution [30, 120] model
and in red our best model trained on multi-dataset + SELVAB0OX (both our methods are OOD). Results
are shown post-NMS, using the optimal NMS IoU (7,1,5) and score (syiy) thresholds for RF1+5
from Algorithm 1 (see Section B.3 for exact values). These examples illustrate the superior detection
performance of our DINO-Swin models compared to ReforesTree annotations, especially for larger
trees.
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E.4 TROPICAL DATASETS QUALITATIVE RESULTS.

Multi-resolution [30, 120] Multi-dataset (N+Q+0+S)

Figure 10: Qualitative results on SELVABOX (Brazil). We compare the annotations in white, the
best competing method Detectree2-resize (OOD) in yellow, our best multi-resolution [30, 120] model
(ID) in blue and our best model trained on multi-dataset + SELVABOX (ID) in red. Results are

shown post-NMS, using the optimal NMS IoU (7,,,5) and score (s ) thresholds for RF175 from
Algorithm 1 (see Section B.3 for exact values).
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III 1 :
Annotations Detectree2-resize

Multi-resolution [30, 120] Multi-dataset (N+Q+0-+S)

Figure 11: Qualitative results on SELVABOX (Ecuador). We compare the annotations in white,
the best competing method Detectree2-resize (OOD) in yellow, our best multi-resolution [30, 120]
model (ID) in blue and our best model trained on multi-dataset + SELVABOX (ID) in red. Results are
shown post-NMS, using the optimal NMS IoU (7,,,,,5) and score (sy,in) thresholds for RF175 from
Algorithm 1 (see Section B.3 for exact values).

32



Under review as a conference paper at ICLR 2026

Multi-resolution [30, 120] ' Multi-dataset (N+Q+0+S) V
Figure 12: Qualitative results on SELVABOX (Panama). We compare the annotations in white,
the best competing method Detectree2-resize (OOD) in yellow, our best multi-resolution [30, 120]
model (ID) in blue and our best model trained on multi-dataset + SELVABOX (ID) in red. Results are

shown post-NMS, using the optimal NMS IoU (7,1,5) and score (syiyn) thresholds for RF175 from
Algorithm 1 (see Section B.3 for exact values).
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Annotations Detectree2-resize

Multi-resolution [30, 120] Multi-dataset (N+Q+0+S)
Figure 13: Qualitative results on BCI50ha. We compare the annotations in white, the best competing
method Detectree2-resize (OOD) in yellow, our best multi-resolution [30, 120] model (OOD) in blue
and our best model trained on multi-dataset + SELVABOX (OOD) in red. Results are shown post-NMS,
using the optimal NMS IoU (7,,,,5) and score (Spin) thresholds for RF1;5 from Algorithm 1 (see
Section B.3 for exact values).
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Annotations

Multi-resolution [30, 120] Multi-dataset (N+Q+0+5S)

Figure 14: Qualitative results on Detectree2 dataset. We compare the annotations in white, the best
competing method Detectree2-resize (ID; possibly affected by train—test leakage, since we couldn’t
recover their data splits) in yellow, our best multi-resolution [30, 120] model (OOD) in blue and
our best model trained on multi-dataset + SELVABOX (OOD) in red. Results are shown post-NMS,
using the optimal NMS IoU (7,,,5) and score (Smin) thresholds for RF175 from Algorithm 1 (see
Section B.3 for exact values).
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E.5 NON-TROPICAL DATASETS QUALITATIVE RESULTS.

4 i

Multi-dataset (N+Q+0-+S)

Figure 15: Qualitative results on QuebecTrees. We compare the annotations in white, the best
competing method Detectree2-flexi (OOD) in yellow, our best multi-resolution [30, 120] model
(OOD) in blue and our best model trained on multi-dataset + SELVABOX (ID) in red. Results are
shown post-NMS, using the optimal NMS IoU (7,,,,5) and score (syin) thresholds for RF175 from
Algorithm 1 (see Section B.3 for exact values).
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F PYTHON LIBRARIES

F.1 GEODATASET

We’ve released our pip-installable Python library geodataset on GitHub under the permissive
Apache 2.0 license. The library serves four main purposes: ‘1 Tilerizers for cutting rasters into
tiles—with resampling, AOI, and pixel-masking support—for training/evaluation (as COCO-style
JSON) or inference; 2 an Aggregator tool that converts predicted object coordinates back into the
original CRS and efficiently performs NMS on large sets of detections (at the raster-level); ‘3 base
dataset classes for training and inference that integrate easily with PyTorch’s Datal.oader; and ‘4
standardized conventions for naming tiles and COCO JSON files. See the repository documentation
for more details.

F.2 CANOPYRS

We’ve released a Python GitHub repository called CanopyRS to replicate our results, benchmark
models, and infer on new forest imagery. It’s distributed under the permissive Apache 2.0 license
and leverages geodataset for pre- and post-processing, with Detectron2 and Detrex handling model
training. Its modular design makes it easy to extend in future work—for example, supporting instance
segmentation, clustering, or classification of individual trees. See the repository documentation for
more details.

G USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs as general-purpose assistive tools to improve the clarity and conciseness of the text,
as well as for occasional coding assistance. These tools were not used for research ideation or to
generate novel scientific content. All conceptual and experimental contributions were made by the
authors.

37



	Introduction
	Related work
	The SelvaBox dataset
	Benchmarking models and methods
	Model, resolution and spatial extent selection on SelvaBox
	Methodology to evaluate OOD generalization 

	Experiments and results
	SelvaBox results
	OOD results

	Conclusion
	Appendix — Supplementary Material
	The SelvaBox dataset
	Orthomosaics.
	Spatially separated splits.
	Annotation Protocol
	Incomplete annotations.

	Hyperparameters and augmentations
	Augmentations
	Training hyperparameters
	Inference hyperparameters

	Benchmarking resolutions and image sizes
	Multi-resolution approach
	Multi-resolution example 
	Multi-resolution additional results

	Out-of-distribution analysis
	External datasets preprocessing
	External methods evaluation
	ReforesTree dataset qualitative results.
	Tropical datasets qualitative results.
	Non-tropical datasets qualitative results.

	Python Libraries
	geodataset
	CanopyRS

	Use of Large Language Models (LLMs)

