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Abstract

Many high-dimensional online decision-making problems can be modeled as1

stochastic sparse linear bandits. Most existing algorithms are designed to achieve2

optimal worst-case regret in either the data-rich regime, where polynomial depen-3

dence on the ambient dimension is unavoidable, or the data-poor regime, where4

dimension-independence is possible at the cost of worse dependence on the num-5

ber of rounds. In contrast, the Bayesian approach of Information Directed Sam-6

pling (IDS) achieves the best of both worlds: a Bayesian regret bound that has7

the optimal rate in both regimes simultaneously. In this work, we explore the use8

of Sparse Optimistic Information Directed Sampling (SOIDS) to achieve the best9

of both worlds in the worst-case setting, without Bayesian assumptions. Through10

a novel analysis that enables the use of a time-dependent learning rate, we show11

that SOIDS can optimally balance information and regret. Our results extend the12

theoretical guarantees of IDS, providing the first algorithm that simultaneously13

achieves optimal worst-case regret in both the data-rich and data-poor regimes.14

We empirically demonstrate the good performance of SOIDS.15

1 Introduction16

In stochastic linear bandits, one assumes that the mean reward associated with each action is linear17

in an unknown d-dimensional parameter vector [Abe and Long, 1999, Auer, 2002, Dani et al., 2008,18

Abbasi-Yadkori et al., 2011]. Under standard conditions, it is known that the minimax regret in this19

setting is of the order O(d
√
T ) [Dani et al., 2008, Rusmevichientong and Tsitsiklis, 2010]. Nu-20

merous follow-up works have investigated the possibility of reduced regret under various structural21

assumptions on the unknown parameter vector, the noise, or the shape of the decision set [Valko22

et al., 2014, Chu et al., 2011, Kirschner and Krause, 2018], [Lattimore and Szepesvári, 2020, Chap-23

ter 22]. One such assumption is that the unknown parameter vector is sparse, which means that it24

has only s� d non-zero components. This setting is called sparse linear bandits and s is referred to25

as the sparsity level. In this setting, previous work has established the existence of algorithms with26

regret scaling as O(
√
sdT ) [Abbasi-Yadkori et al., 2012]. This result is complemented by a lower27

bound, which says that this rate cannot be improved as long as T ≥ dα for some α > 0 [Lattimore28

and Szepesvári, 2020]. We refer to this scenario as the data-rich regime. Since this bound scales29

polynomially with the dimension d, many researchers have considered this to be a negative result,30

interpreting it as a sign that sparsity cannot be effectively exploited in linear bandit problems. This31

interpretation has been challenged by a more recent observation that, when the action set admits32

an exploratory distribution, simple “explore-then-commit” algorithms enjoy regret bounds of order33

O((sT )
2
3 ) [Hao et al., 2020, Jang et al., 2022]. These bounds scale only logarithmically with the34

dimension, and constitute a major improvement over the previously mentioned rate in the data-poor35

regime, where T �
(
d
s

)3
. Most known algorithms are specialized to either the data-poor or data-36

rich regime, and perform poorly in the other one. A notable exception is the sparse Information37

Directed Sampling algorithm introduced in Hao et al. [2021], which performs almost optimally in38

both regimes. However, Hao et al. [2021] only provide Bayesian performance guarantees for sparse39
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IDS. These results hold on average, assuming that the problem instance is drawn at random from a40

known prior distribution.41

In this work, we lift this assumption and develop an algorithm that can adapt to both regimes in42

a “frequentist” sense: we assume that the true parameter is fixed and unknown to the learner, and43

provide guarantees that hold for any given instance. The algorithm is an adaptation of the recently44

proposed Optimistic Information Directed Sampling (OIDS) algorithm of Neu, Papini, and Schwartz45

[2024], which itself is an adaptation of the classic Bayesian IDS algorithm originally proposed by46

Russo and Van Roy [2017]. Within the Bayesian setting, it has been shown that IDS can exploit var-47

ious types of problem structure, and adapt to the hardness of the given instance [Hao and Lattimore,48

2022, Hao et al., 2022]. These results have been complemented by the recent work of Neu, Papini,49

and Schwartz [2024], which showed that similar improvements can be achieved without Bayesian50

assumptions, via a simple adjustment of the standard IDS method. In this paper, we continue this51

line of work and show that OIDS can achieve a “best-of-both-worlds” guarantee for sparse linear52

bandits, which has so far remained ellusive outside of the limited Bayesian bandit setting.53

Our contribution is as follows:54

• We extend the analysis of the optimistic posterior to allow the use of time-dependent learn-55

ing rates and history-dependent learning rates. This removes the need to know the horizon56

in advance and allows us to update the learning rate based on data observed by the agent57

instead of some loose theoretical constant, a necessity for efficient algorithms.58

• We demonstrate that the SOIDS algorithm recovers almost optimal rates in both the data-59

poor and data-rich regimes. This is the first algorithm to do so in a frequentist setting.60

2 Preliminaries61

Sparse linear bandits. We consider the following decision-making game, in which a learning62

agent interacts with an environment over a sequence of T rounds. At the start of each round t, the63

learner selects an action At ∈ A ⊂ Rd according to a randomized policy πt ∈ ∆(A). In response,64

the environment generates a stochastic reward Yt = r(At) + εt, where r : A → R is a fixed reward65

function and εt is zero-mean, conditionally 1-sub-Gaussian noise. We assume that the action set A66

is finite, and that the reward function can be written as67

r(a) = 〈θ0, a〉 ,
where θ0 ∈ Rd is an unknown parameter vector. We make the mild boundedness assumptions68

that maxa∈A ‖a‖∞ ≤ 1 and ‖θ0‖1 ≤ 1. We study the special case of this problem in which the69

parameter vector θ0 is s-sparse in the sense that at most s � d of its components are non-zero. In70

other words, we assume that θ0 belongs to the following sparse parameter space:71

Θ =
{
θ ∈ Rd :

∑d
j=1I{θj 6=0} ≤ s, ‖θ‖1 ≤ 1

}
.

We assume that the sparsity level s is known to the agent. The performance of the agent is evaluated72

in terms of the regret, which is defined as73

RT = T max
a∈A

〈θ0, a〉 − E

[
T∑

t=1

r(At, θ0)

]
, (1)

where the expectation is taken with respect to both the random choices of the agent and the random74

noise in the observed rewards. We note that the regret is implicitly a function of the true parameter75

θ0. Our focus is on proving regret bounds that hold for arbitrary choices of θ0 ∈ Θ.76

The data-rich and data-poor regimes. As mentioned in the introduction, it is known there exist77

algorithms for sparse linear bandits with worst-case regret of the order O(
√
sdT ) [Abbasi-Yadkori78

et al., 2012]. This regret bound is only meaningful when the dimension d is smaller than the number79

of rounds T , a situation referred to as the data-rich regime. Under the assumption that there exists80

an exploratory policy, Hao et al. [2020] showed that there is a simple algorithm that satisfies a81

problem-dependent regret bound, which can be meaningful in the so-called data-poor regime, where82

d is much larger than T . Formally, we say that there exists an exploratory policy if the action set A83

is such that84

Cmin := max
µ∈∆(A)

σmin

(∫
A
aaT dµ(a)

)
> 0 ,
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which is equivalent to the condition that A spans Rd. The exploratory policy, is the distribution85

on A that achieves the maximum (which is guaranteed to exist when A is finite). The Explore86

the Sparsity Then Commit (ESTC) algorithm was shown to satisfy a regret bound of the order87

O(s2/3T 2/3C
−2/3
min ) [Hao et al., 2020]. The transition between the T 2/3 rate in the data-poor88

regime and the
√
T rate in the data-rich regime also appears in an existing lower bound of the89

order Ω(min(s1/3T 2/3C
−1/3
min ),

√
dT ) [Hao et al., 2020].90

The best of both worlds for sparse linear bandits. Recently, Hao et al. [2021] showed that the91

sparse Information Directed Sampling (IDS) algorithm achieves a type of “best-of-both-worlds”92

guarantee. Under the sparse optimal action condition (Definition 1), IDS satisfies a regret bound of93

the order O(min(
√
dT∆, (sT )2/3∆1/3C

−1/3
min )), where ∆ ∝ min(log(|A|), s log(dT/s)). This is94

simultaneously optimal in both the data-rich and data-poor regimes. However, this result is limited95

to the Bayesian setting. This is because IDS uses the Bayesian posterior to quantify uncertainty,96

which is only meaningful if θ0 really is a random draw from the prior.97

The sparse optimal action condition. Part of our analysis requires that a certain technical condi-98

tion is satisfied. This condition comes from prior work [Hao et al., 2021], and is used to bound the99

regret in the data-poor regime (cf. Lemma 7).100

Definition 1. For a given prior Q+
1 , an action set A has sparse optimal actions if with probability 1101

over the random draw of θ from Q+
1 , there exists a′ ∈ arg maxa∈A r(a, θ) such that ‖a′‖0 ≤ s.102

We use a prior that only assigns positive probability to s-sparse vectors, which means the sparse103

optimal action property is satisfied whenever the action set is an `p-ball. Note that the hard in-104

stances in both the
√
sdT lower bound in Theorem 24.3 of Lattimore and Szepesvári [2020] and the105

s2/3T 2/3 lower bound in Theorem 5 of Jang et al. [2022] satisfy the sparse optimal action property1.106

Therefore, imposing this additional condition does not trivialize the problem.107

Notation. We conclude this section by introducing some additional notation that will be used in the108

subsequent sections. For any candidate parameter vector (or model) θ ∈ Rd, we let r(a, θ) = 〈θ, a〉109

denote the corresponding linear reward function. In addition, we define a∗(θ) = arg maxa∈A r(a, θ)110

(with ties broken arbitrarily) and r∗(θ) = r(a∗(θ), θ) to be the optimal action and maximum reward111

for the model θ. The gap of an action a for a model θ is ∆(a, θ) = r∗(θ) − r(a, θ). Similarly, the112

gap for a policy π ∈ ∆(A) and a model distribution Q ∈ ∆(Θ) is ∆(π,Q) =
∫
A×Θ

∆(a, θ) dπ ⊗113

Q(a, θ), and we let ∆t = ∆(πt, θ0) denote the gap of the policy played by the agent in round t114

under the true model θ0. Using this notation, the regret can be written as RT = E[
∑T

t=1 ∆t]. We115

define the unnormalized Gaussian likelihood function p(y|θ, a) = exp(− (y−〈θ,a〉)2
2 ). Finally, we116

let Ft = σ(A1, Y1, . . . , At, Yt) denote the σ-algebra generated by the interaction between the agent117

and the environment up to the end of round t.118

3 Sparse Optimistic Information Directed Sampling119

We develop an extension of the Optimistic Information Directed Sampling (OIDS) algorithm pro-120

posed by Neu, Papini, and Schwartz [2024]. The main difference between OIDS and IDS is that121

the Bayesian posterior is replaced by an appropriately adjusted optimistic posterior. For an arbitrary122

prior Q+
1 ∈ ∆(Θ), the optimistic posterior is defined by the following update rule:123

dQ+
t+1

dQ+
1

(θ) ∝
t∏

s=1

(p(Ys | θ,As))
η · exp

(
λt

t∑
s=1

∆(As, θ)
)
. (2)

Here, η is a positive constant that should be thought of as “large”, and (λt)t is a decreasing sequence124

of positive real numbers that decays to 0, and should be thought of as “small”. We allow λt to be125

computed by the algorithm at the end of the round t. In other words, any Ft-measurable λt is ad-126

missible. Note that when η = 1 and λt = 0, the optimistic posterior coincides with the Bayesian127

posterior. While this construction is closely related to the optimistic posterior update described in128

Zhang [2022] and Neu, Papini, and Schwartz [2024], there are a few important differences. First,129

1The optimal actions in the hard instance used to prove Theorem 5 in Jang et al. [2022] are 2s-sparse, which
still allows us to prove the same bound on the surrogate 3-information ratio, up to constant factors.
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the ∆(As, θ) term appearing in the adjustment serves as an alternative to their proposal of using130

r∗(θ) for the same purpose. Intuitively this serves to “overestimate” the true gaps with the op-131

timistic posterior, driving exploration towards parameters that promise rewards much higher than132

whatever would have been accrued by the agent. In contrast, the adjustment of Zhang [2022] drives133

exploration towards parameters θ with high optimal reward regardless of how well the agent would134

have performed under the same θ—meaning that it unduly assigns mass to uninteresting parameter135

choices, where any policy is guaranteed to work well anyway. Intuition aside, this adjustment greatly136

simplifies our analysis of the optimistic posterior as compared to the analysis of Zhang [2022] and137

Neu, Papini, and Schwartz [2024]. An important additional novelty is that our update features a138

time-dependent exploration parameter λt, which is crucial for the adaptive regret bounds that we139

seek in this work. To describe the OIDS algorithm, we must first define the surrogate information140

gain and the surrogate regret. For any round t and any policy π ∈ ∆(A), the surrogate information141

gain is defined as142

IGt(π) =
1

2

∑
a∈A

π(a)

∫
Θ

(
〈θ − θ̄(Q+

t ), a〉
)2

dQ+
t (θ) ,

where for any Q ∈ ∆(Θ), θ̄(Q) = Eθ∼Q [θ] is the mean parameter under distribution Q. The143

surrogate regret is defined as144

∆̂t(π) =
∑
a∈A

π(a)

∫
Θ

∆(a, θ) dQ+
t (θ) .

For any policy π and any γ ≥ 2, we define the surrogate generalized information ratio as145

IR
(γ)
t (π) =

(∆̂t(π))
γ

IGt(π)
= 2 ·

(∑
a∈A π(a)

∫
Θ
〈θ, a∗(θ)− a〉 dQ+

t (θ)
)γ∑

a∈A π(a)
∫
Θ
(〈θ − θ̄(Q+

t ), a〉)2 dQ+
t (θ)

. (3)

We can at last define our algorithm: Sparse Optimistic Information Directed Sampling (SOIDS). In146

each round t, the policy played by SOIDS is defined to be the distribution on A that minimizes the147

2-information ratio:148

π
(SOIDS)
t = arg min

π∈∆(A)

IR
(2)
t (π) . (4)

The choice of γ = 2 is motivated by the remarkable fact that the minimizer of the 2-information149

ratio is an approximate minimizer of surrogate generalized information ratio for all γ ≥ 2.150

Lemma 1. For all γ ≥ 2,151

IR(γ)
t (π

(SOIDS)
t ) ≤ 2γ−2 min

π∈∆(A)
IR(γ)

t (π) .

This fact was discovered for the Bayesian IDS policy by Lattimore and György [2021] and continues152

to hold within here. We provide a proof in Appendix F.2 for completeness. Finally, we remark that153

the "sparse" part of the name SOIDS refers to the choice of the priorQ+
1 . We use the subset selection154

prior from Section 3 of Alquier and Lounici [2011], which is described in Appendix B.2.155

4 Main results156

In this section, we state our main results. First, we relate the true regret of any policy sequence to157

the surrogate regret of the same policy sequence. Then, we use the fact that the surrogate regret is158

controlled by both the 2 and 3-information ratio. This, combined with Lemma 1, allows us to show159

that with properly tuned parameters, SOIDS has optimal worst-case regret in both the data-poor and160

data-rich regimes. Finally, we show that SOIDS can be tuned in a data-dependent manner, such that161

its regret bound scales with the cumulative observed information ratio instead of the time horizon.162

4.1 General bound for the Optimistic Posterior163

We start with a generic worst-case regret bound relating the true regret of any algorithm to its sur-164

rogate regret. Since the surrogate regret is defined with respect to the optimistic posterior, which is165

known to the learner, it can be easily controlled with standard Bayesian techniques. This result is an166

extension of the bounds stated in Neu et al. [2024], Zhang [2022]. To our knowledge it is the first167

result of its kind which is compatible with time-dependent or data-dependent learning rates. The168

stated result is specialized to the setting of sparse linear bandits, but the techniques used to deal with169

time-dependent and data-dependent learning rates are applicable beyond this setting.170
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Theorem 1. Assume that the optimistic posterior is computed with η = 1
4 and a sequence of de-171

creasing learning rates λt satisfying ∀t ≥ 1, λt ≤ 1
2 . Set λ0 = 1

2 . If the learning rates do not172

depend on the history, then the regret of any sequence of policies πt satisfies173

RT ≤ E

[
5 + 2s log edT

s

λT−1
−

T∑
t=1

3

32
· IGt(πt)

λt−1
+ 2

T∑
t=1

∆̂t(πt)

]
. (5)

Otherwise, if the learning rates depend on the history, let C1,T be a deterministic upper bound on174
1
λt

− 1
λt−1

valid for all t ≤ T , and C2,T be a deterministic upper bound on 1
λT−1

. The regret of any175

sequence of policies πt satisfies176

RT ≤ E

2 + s log
4e3d2T 3C2

1,TC2,T

s2

λT−1
−

T∑
t=1

3

32
· IGt(πt)

λt−1
+ 2

T∑
t=1

∆̂t(πt)

+ 2. (6)

4.2 Best of both worlds guarantees for Sparse Optimistic Information Directed Sampling177

Next, we show that the SOIDS algorithm with properly tuned parameters attains optimal regret rate178

in both the data-rich and data-poor regimes.179

Theorem 2. Assume that our problem satisfies the spare optimal action condition described in180

definition 1. Let λ(2)t =
√

3Ct+1

128d(t+1) and λ(3)t = 1

4·6
1
3

(
Ct+1

√
Cmin

(t+1)
√
s

) 2
3

, with Ct = 5 + 2s log edt
s .181

Now, set λt = min( 12 ,max(λ
(2)
t , λ

(3)
t )), then the regret of SOIDS run with parameter λt is upper182

bounded by183

RT ≤ min

(
27

√(
5 + 2s log

edT

s

)
dT , 30

(
5 + 2s log

edT

s

) 1
3
(

T
√
s√

Cmin

) 2
3

)
+O(

√
s log

d√
s
)

(7)

= min

(
O

(√
sdT log

edT

s

)
,O

(
(sT )

2
3

(
log

edT

s

) 1
3

))
,

where O(
√
s log d√

s
) represents an absolute constant independent of T.184

We observe that our algorithm enjoys both the Õ(
√
sdT ) and the Õ((sT )

2
3 ) regret rates. Unlike the185

Bayesian regret bound for the sparse IDS algorithm of Hao et al. [2021], our regret bound holds in186

a “worst-case” sense for any value of θ0 ∈ Θ. To our knowledge, this makes our method the first187

algorithm to achieve optimal worst-case regret in both the data-poor and data-rich regimes188

4.3 Instance dependent guarantees189

The bounds presented in the previous sections are minimax in nature, meaning they hold uniformly190

over all problem instances. We present a bound in which the scaling with respect to the horizon T191

is replaced with the cumulative surrogate-information ratio, which could be much smaller than T in192

“easier” instances, leading to better guarantees.193

Theorem 3. Assume that our problem satisfies the sparse optimal action condition described in Def-194

inition 1 and that s ≤ d
2 . Let λ(2)t =

√
s

2d+
∑t

s=1 IR(2)
s (πs)

and λ(3)t =

(
s

3
√

6s√
Cmin

+
∑t

s=1

√
IR(3)

s (πs)

) 2
3

.195

Then the regret of SOIDS run with parameter λt = max(λ
(3)
t , λ

(2)
t ) satisfies the following regret196

bound197

RT ≤
(
2

s
+

80

3
+ 5 log

edT

s

)
min


√√√√s

(
2d+

T−1∑
t=1

IR(2)
t (πt)

)
, s

1
3

(
3
√
6s√

Cmin

+

T∑
t=1

√
IR(3)

t (πt)

) 2
3


(8)

= O

log
edT

s
min


√√√√s

(
2d+

T−1∑
t=1

IR(2)
t (πt)

)
, s

1
3

(
3
√
6s√

Cmin

+

T∑
t=1

√
IR(3)

t (πt)

) 2
3

 .
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This type of result is only possible because our novel analysis of the optimistic posterior (cf. The-198

orem 1) can handle history-dependent learning rates. A full proof is provided in Appendix D. This199

result shows that (with appropritate choices of the learning rates) SOIDS is fully adaptive to which200

of the two regimes is best. Because our analysis requires decreasing learning rates, we are forced to201

leave the log(T ) terms out of the learning rates, and our logarithmic term has a worse power than202

in the bound of Theorem 2. An interesting open question is whether it is possible to improve the203

dependency on this logarithmic term while still using data-dependent learning rates.204

5 Analysis205

We now provide an outline of the proofs of the main results.206

5.1 Proof of Theorem 1207

A key observation is that the optimistic posterior can be interpreted as a learner playing an auxiliary208

online learning game over distributions ∆(Θ). The loss of that game is a weighted sum of negative209

log-likelihood and estimation error losses. We define210

L
(1)
t (θ) =

t∑
s=1

log

(
1

p(Ys|θ,As)

)
=

t∑
s=1

1

2

(
〈θ,As〉 − Ys

)2
to be the cumulative negative log-likelihood loss of θ and211

L
(2)
t (θ) =

t∑
s=1

−∆(As, θ)

to be the cumulative estimation error loss of θ. In addition, we define the regularizer Φ : ∆(Θ) → R212

by the mapping P 7→ DKL
(
P
∥∥Q+

1

)
, which is the KL-divergence with respect to the prior Q+

1 . With213

those notations, the optimistic posterior corresponds to an instance of the Follow the Regularized214

Leader (FTRL) algorithm introduced by Hazan and Kale [2010] and Abernethy et al. [2008]. FTRL215

is a standard method in online convex optimization that balances cumulative loss minimization with216

a regularization term to enforce stability and guarantee controlled regret. The update can be reframed217

as218

Q+
t+1 = arg min

P∈∆(Θ)

〈P, ηL(1)
t + λtL

(2)
t 〉+Φ(P ).

This formulation enables the application of tools from convex analysis and online learning, such as219

Fenchel duality, to derive regret bounds for this auxiliary online learning game and to understand220

the interplay between the two losses under the learning rates η and λt. We now focus on the case in221

which the learning rates λt don’t depend on the history and relegate the analysis of history-dependent222

learning rates to Appendix C. The following lemma provides a bound on the average regret when223

the model θ0 is drawn from an arbitrary comparator distribution P .224

Lemma 2. Let P ∈ ∆(Θ) be any comparator, then the following bound holds225

T∑
t=1

∆(P,At) ≤
DKL

(
P
∥∥Q+

1

)
λT

+
Φ∗(η(L

(1)
T (θT )− L

(1)
T (·))− λTL

(2)
T (·))

λT
+
η

λT
(P ·L(1)

T −L(1)
T (θT )).

Here θt = arg minθ∈Θ L
(1)
t (θ) denotes the maximum likelihood estimator at time t, and Φ∗(L) =226

log
∫
Θ
exp(L(θ))dQ+

1 (θ) is the Fenchel dual of the regularizer Φ. A complete proof of this result227

is provided in appendix B.1.1. We aim to chose a comparator P and the prior Q+
1 such that P is228

concentrated around θ0 and the KL divergence DKL
(
P
∥∥Q+

1

)
is controlled. If the parameter space229

were finite, the natural choice would be to take P as a Dirac on θ0 and Q+
1 as a uniform distribution230

on the whole parameter space; more care is necessary here. ChoosingQ+
1 as a subset-selection prior231

and P as a uniform distribution on a sparse neighborhood of θ0 satisfies both requirements.232

Lemma 3. The subset-selection prior Q+
1 ∈ ∆(Θ) verifies that for any ε > 0 and θ ∈ Θ, there is a233

comparator P (θ) ∈ ∆(Θ) satisfying both234

∀θ′ ∈ supp(P (θ)), ‖θ − θ′‖1 ≤ ε and DKL
(
P (θ)

∥∥Q+
1

)
≤ s log

2ed

εs
.
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The proof of this lemma, as well as the exact choice of the prior Q+
1 and the comparator P (θ0),235

are provided in Appendix B.2. In Appendix ?? (cf. Lemma 21), we establish that both L(2)
T (·) and236

E
[
L
(1)
T (·)

]
are 2T -Lipschitz with respect to the `1-norm. Hence,237

E

[
|P · L(1)

T − L
(1)
T (θ0)|

λT

]
≤ 2Tε

λT
, and

T∑
t=1

|∆(θ0, At)−∆(P,At)| ≤ 2Tε.

Combining these with Lemma 2, we obtain the following bound on the cumulative regret:238

RT ≤E

[
s log 2ed

εs + 2T (λT + η)ε

λT
+

Φ∗(−η(L(1)
T (·)− L

(1)
T (θT ))− λTL

(2)
T (·))

λT

]

+ E
[
η

λT
(L

(1)
T (θ0)− L

(1)
T (θT ))

]
.

The first term balances model complexity and approximation via ε. In the usual FTRL analysis,239

λ → φ∗(λL)
λ is non decreasing for any L ∈ RΘ, and the term involving Φ∗ can be telescoped.240

Things are more complex here because only some part of the loss is weighted by the time varying241

learning rate λT . Through a careful analysis involving the maximum likelihood estimator, we can242

decompose the Φ∗ term into a telescoping sum and a remainder term.243

Lemma 4.

Φ∗(η(L
(1)
T (θT )− L

(1)
T (·))− λTL

(2)
T (·))

λT

≤ E

[
T∑

t=1

Φ∗(η(L
(1)
t (θ0)L

(1)
t (·))− λt−1L

(2)
t (·))

λt−1
−

Φ∗(η(L
(1)
t−1(θ0)− L

(1)
t−1(·))− λt−1L

(2)
t−1(·))

λt−1

]
(9)

+
η(6 + s log edT

s )

λT
. (10)

A detailed proof of this result is provided in Appendix B.1.4. Finally, the remaining sum can be244

handled by looking at the explicit formula for Φ∗. The terms related to the likelihood and the gap245

estimates can be separated using Hölder’s inequality, as is done in Zhang [2022] and Neu, Papini,246

and Schwartz [2024]. More explicitly, by now choosing η = 1
4 , we obtain the following lemma.247

Lemma 5.

E

[
T∑

t=1

Φ∗(η(L
(1)
t (θ0)− L

(1)
t (·))− λt−1L

(2)
t (·))

λt−1
−

Φ∗(η(L
(1)
t−1(θ0)− L

(1)
t−1(·))− λt−1L

(2)
t−1(·))

λt−1

]

≤ E

[
−

T∑
t=1

3IGt(πt)

32λt−1
+ 2

T∑
t=1

∆̂(πt)

]
. (11)

A full proof of this result is provided in Appendix B.1.4. Combining Lemmas 2, 3, 4, 5 and setting248

ε = 2
T , we obtain the desired regret bound stated in Theorem 1.249

5.2 Proof of Theorem 2250

We show how Theorem 1 can be combined with bounds on the surrogate regret to control the true251

regret. The first important fact is that the surrogate regret of any policy can always be controlled in252

terms of the 2 or the 3-surrogate information ratio of that policy.253

Lemma 6. Let λ > 0, then we have that for any policy π ∈ ∆(A)254

∆̂t(π) ≤
IGt(π)

λ
+min

(
1

4
λIR(2)

t (π), c∗3

√
λIR(3)

t (π)

)
,

where c∗3 < 2 is an absolute constant defined in Lemma 27.255
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This is a consequence of a simple generalization of the AM-GM inequality and is proved in Ap-256

pendix F.1. Combining the previous lemma with λ = 64
3 λt−1 and Theorem 1, we can further upper257

bound the regret of a sequence of policies (πt)t as258

RT ≤ E

[
5 + 2s log edT

s

λT−1
−

T∑
t=1

3IGt(πt)

32λt−1
+ 2

T∑
t=1

∆̂t(πt)

]

≤ E

[
CT

λT−1
+

T∑
t=1

min

(
32

3
λt−1IR

(2)
t (πt),

16

3
c∗3

√
3λt−1IR

(3)
t (πt)

)]
, (12)

where CT = 5+2s log edT
s . Usually, bounds on the 2-information ratio can be converted to O(

√
T )259

bounds and bounds on the 3-information ratio can be converted to O(T
2
3 ) bounds. Hence we will260

use the 2-information ratio to control the regret in the data-rich regime and the 3-information ratio261

to control the regret in the data-poor regime. Due to Lemma 1, the SOIDS policy minimizes the262

2-information ratio and approximately minimizes the 3-information ratio. As a result, if there exists263

a "forerunner" algorithm with bounded 2-information ratio or 3-information ratio, SOIDS inherits264

these bounds automatically. In particular, we can use a different forerunner for each regime and265

SOIDS will match the regret guarantees of the best forerunner in each regime.266

This forerunner-based technique is widely used to analyze IDS based algorithms and has been ap-267

plied to a variety of Bayesian settings [Russo and Van Roy, 2017, Hao et al., 2021, Hao and Lat-268

timore, 2022] and some frequentist settings [Kirschner and Krause, 2018, Kirschner et al., 2020,269

2021]. An advantage of the OIDS framework is that since the surrogate quantities are defined with270

respect to the optimistic posterior, the analysis of the surrogate information ratio is virtually identical271

to the corresponding analysis of the information ratio in the Bayesian setting.272

The forerunner we consider for the 2-information ratio is the Feel-Good Thompson Sampling273

(FGTS) algorithm of Zhang [2022]. For the 3-information ratio, we consider a mixture of the274

FGTS policy and an exploratory policy. The following lemma provides bounds on the surrogate275

information ratios of the SOIDS algorithm.276

Lemma 7. The 2- and 3-surrogate-information ratio of the SOIDS algorithm satisfy for any t ≥ 0277

IR(2)
t (π

(SOIDS)
t ) ≤ IR(2)

t (π
(FGTS)
t ) ≤ 2d (13)

and278

IR(3)
t (π

(SOIDS)
t ) ≤ 2IR(3)

t (π
(mix)
t ) ≤ 54s

Cmin
. (14)

The explicit definition of both forerunner algorithms, as well as the proof of this lemma, are deferred279

to Appendix F.3. Finally, it remains to pick the learning rate λt. The following lemma describes the280

appropriate learning rate for the data-poor and the data-rich regimes separately.281

Lemma 8. The choice of learning rate λ(2)t =
√

3Ct+1

128d(t+1) guarantees282

CT

λ
(2)
T−1

+
32

3

T∑
t=1

λ
(2)
t−1IR(2)

t (πt) ≤ 16

√
2

3
CT dT .

The choice of learning rate λ(3)t = 1

4·6
1
3

(
Ct+1

√
Cmin

(t+1)
√
s

) 2
3

guarantees283

CT

λ
(3)
T−1

+
16

3
c∗3

T∑
t=1

√
3λ

(3)
t−1IR(3)

t (πt) ≤ 12 · 6 1
3

(
s · CT

Cmin

) 1
3

T
2
3 .

The proof is deferred to Appendix G.2. It remains to analyze what happens when the learning rate284

λt = min( 12 ,max(λ
(2)
t , λ

(3)
t )) is chosen. We defer this to Appendix G.4.285

6 Experiments286

We aim to verify that, in both the data-rich and data-poor regimes simultaneously, the regret of287

SOIDS is comparable with the regret of existing algorithms that achieve near optimal worst-case288
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Figure 1: Cumulative regret for d = 20 (left) 40 (middle) and 100 (right). We plot the mean ±
standard deviation over 10 repetitions.

regret in either the data-rich or the data-poor regime. Our baseline for the data-rich regime is the289

online-to-confidence-set (OTCS) method proposed by Abbasi-Yadkori et al. [2012], which has worst290

case regret of the order
√
sdT . For a tougher comparison, we run this method with the confidence291

sets from Theorem 4.7 of Clerico et al. [2025], which have much smaller constant factors than292

those used by Abbasi-Yadkori et al. [2012]. Our baseline for the data-poor regime is the Explore293

the Sparsity Then Commit (ESTC) algorithm proposed by Hao et al. [2020], which has worst-case294

regret of the order (sT )2/3. For reference, we also compare with LinUCB Abbasi-Yadkori et al.295

[2011], which does not adapt to sparsity.296

It is generally difficult to run the SOIDS algorithm exactly because the surrogate information ra-297

tio contains expectations w.r.t. the optimistic posterior. In our implementation of SOIDS, we use298

the empirical Bayesian sparse sampling procedure of Hao et al. [2021] to draw approximate sam-299

ples from the optimistic posterior, and then approximate the surrogate information ratio via sample300

averages. We provide further details regarding the implementations of each method in Appendix J.301

For each d ∈ {20, 40, 100}, θ0 is the s-sparse vector in Rd, with s = d/10, in which first s com-302

ponents are 10/s and the remaining components are zero. The action set consists of 200 random303

draws from the uniform distribution on [−1, 1]d. The noise variance is 1 and we run each method304

10 times. In Figure 1, we report the cumulative regret over T = 1000 steps. As d is varied from 20305

to 100, we appear to transition from the data-rich regime to the data-poor regime: for d = 20, the306

OTCS method is the best performing baseline, whereas for d = 100, ETCS is the best performing307

baseline. As our theoretical results would suggest, SOIDS performs well in both regimes.308

7 Conclusion309

There remain several interesting questions that our work leaves open for future research, such as the310

possibility of improving the logarithmic terms in the data-dependent best-of-both-worlds guarantees311

(as mentioned earlier in Section 4). We highlight another question below.312

In our experiments, we have made use of an approximate implementation of OIDS adapted from Hao313

et al. [2021]. The initial success we have seen in our experiments suggests that this approximation314

might be viable in more challenging settings, and worthy of an attempt at a solid theoretical analysis.315

More broadly, the results indicate a potential advantage of IDS-style methods over DEC-inspired316

methods [Foster et al., 2022b, Kirschner et al., 2023]. Indeed, we are not aware of any general317

methods for approximating the optimization problems that the E2D algorithm of Foster et al. [2022b]318

requires to solve, in contrast to our results that indicate that IDS-inspired algorithms may very319

well be amenable to practical implementation. Whether the concrete approximation we used in320

our experiments is the best possible one or not remains to be seen.321
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A Related work431

The first algorithms and regret bounds for sparse linear bandits were designed for the data-rich432

regime. Abbasi-Yadkori et al. [2012] developed an online-to-confidence-set conversion for linear433

models, which converts any algorithm for online linear regression into a linear bandit algorithm434

whose regret depends on the regret of the online regression algorithm. When the SeqSEW algorithm435

[Gerchinovitz, 2013] is used in this conversion, the result is a sparse linear bandit algorithm with436

a regret bound of the order O(
√
sdT ) (ignoring logarithmic factors). Lattimore and Szepesvári437

[2020] established a matching lower bound for the data-rich regime, showing that this rate cannot438

be improved.439

More recently, several works have studied the data-poor regime, in which the dimension d is much440

larger than the number of rounds T . Hao et al. [2020] showed that an explore-then-commit algorithm441

satisfies a regret bound of the order O((sT )2/3C
−2/3
min ), and established a lower bound of order442

Ω(min(s1/3T 2/3C
−1/3
min ,

√
dT ). Subsequently, Jang et al. [2022] proposed the PopArt estimator for443

sparse linear regression, and showed that an explore-then-commit algorithm that uses this estimator444

achieves a regret bound of the order O(s2/3T 2/3H
2/3
? ), where H? is another problem-dependent445

quantity that satisfies H2
? ≤ C−1

min. In addition, Jang et al. [2022] established a lower bound of order446

Ω(s2/3T 2/3C
−1/3
min ), showing that the optimal rate for the data-poor regime is s2/3T 2/3. Hao et al.447

[2021] showed that sparse IDS has a Bayesian best of both worlds/regimes regret bound.448

A number of works have considered the setting of sparse contextual linear bandits, in which the449

action set A changes in each round t. In the case where the actions sets are chosen by an adaptive450

adversary, the upper and lower bounds of the order
√
sdT by Abbasi-Yadkori et al. [2012] and Lat-451

timore and Szepesvári [2020] respectively still hold. Under the assumption that the action sets are452

generated randomly, and such that either a uniform or greedy policy is (with high probability) ex-453

ploratory, several methods have been shown to achieve nearly dimension-free regret bounds Bastani454

and Bayati [2020], Wang et al. [2018], Kim and Paik [2019], Oh et al. [2021], Chakraborty et al.455

[2023].456

The concept of balancing instantaneous regret and information gain through the information ratio457

was first introduced by Russo and Roy [2016] in the context of analyzing Thompson Sampling.458

Building upon this, the Information-Directed Sampling (IDS) algorithm was proposed by Russo and459

Van Roy [2017] to directly minimize the information ratio, thereby optimizing the trade-off between460

regret and information gain. These foundational ideas have since been extended and applied to461

a variety of settings including bandits [Bubeck and Sellke, 2022], contextual bandits [Neu et al.,462

2022, Hao et al., 2022], reinforcement learning [Hao and Lattimore, 2022], and sparse linear bandits463

[Hao et al., 2021]. However, these works are primarily situated in the Bayesian framework and focus464

on Bayesian regret bounds that hold only in expectation with respect to the prior distribution.465

A key challenge in extending these methods to the frequentist setting lies in estimating the instanta-466

neous regret and define a meaningful notion of information gain. Both of those things are naturally467

possible in Bayesian analysis but difficult when the true model is unknown. Moreover, Bayesian468

posteriors may inadequately represent model uncertainty from a frequentist perspective. We high-469

light three strands of research that have attempted to address this challenge:470

Confidence-set based information ratio approaches: Works such as Kirschner and Krause [2018],471

Kirschner et al. [2020], and Kirschner et al. [2021] extend the notion of the information ratio to472

frequentist settings by constructing high-probability confidence sets for the instantaneous regret and473

information gain. These results are mostly limited to setting with some linear structure.474

Distributionally robust and worst-case information-regret trade-offs: The Decision-to-Estimation-475

Coeffiecient(DEC) line of work of [Foster et al., 2022b, Foster and Rakhlin, 2020, Foster et al.,476

2022c,a, Kirschner et al., 2023] explores the frequentist setting by analyzing worst-case trade-offs477

between regret and information gain. One limitation is that the DEC is an inherently worst-case478

measure of comlexity. Moreover, algorithms based on the DEC usually require solving complex479

min-max optimization problems at each time step, making their practical implementation challeng-480

ing and unclear.481

Optimistic posterior approaches for frequentist guarantees: The approach most closely related to482

our work modifies the Bayesian posterior to provide frequentist guarantees. Introduced by Zhang483

[2022], the optimistic posterior is a modification of the Bayesian posterior which enables frequentist484

regret bounds for a variant of Thompson Sampling. Subsequently, Neu et al. [2024] studied the485
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optimistic posterior framework in greater depth, defining a frequentist analog of the information486

ratio to extend IDS to frequentist settings. A notable limitation of these works is their restriction to487

constant learning rates in the optimistic posterior, which limits adaptivity, an issue that we address488

in this paper.489

B Analysis of the Optimistic posterior490

This section provides further details about the prior underlying the optimistic posterior and guaran-491

tees on the posterior updates.492

B.1 Follow the regularized leader analysis493

The main step in our analysis of the optimistic posterior is to leverage the follow the regularized494

leader formulation of our optimistic posterior update495

Q+
t+1 = arg min

P∈∆(Θ)

〈P, ηL(1)
t + λtL

(2)
t 〉+Φ(P ).

B.1.1 Proof of lemma 2496

As is usual in the analysis of the follow the regularized leader algorithm, we introduce the Fenchel497

conjugate of the regularization function Φ = DKL
(
·
∥∥Q+

1

)
as the function Φ∗ : RΘ → R taking498

values Φ∗(L) = supP∈∆(Θ) {〈P,L〉 − φ(P )}. The Fenchel–Young inequality guarantees that for499

any P ∈ ∆(Θ), L ∈ RΘ, we have500

〈P,L〉 ≤ Φ(P ) + Φ∗(L)

We now introduce the maximum likelihood estimator θt = arg minθ∈Θ L
(1)
t (θ) and let L =501

−η(L(1)
T (·) − L

(1)
T (θT )) − λTL

(2)
T (·). Since λT is never used by the algorithm, we can further502

assume that λT = λT−1. The role of the maximum likelihood estimator is to make sure that the503

term L
(1)
t (θ)−L

(1)
t (θt) is always non-negative. Applying Fenchel–Young to L gives us the follow-504

ing bound:505

η
(
L
(1)
T (θT )−

〈
P,L

(1)
T

〉)
− λT

〈
P,L

(2)
T

〉
≤ Φ(P ) + Φ∗

(
−η(L(1)

T (·)− L
(1)
T (θT ))− λTL

(2)(·)
)

Noticing that
〈
P,L

(1)
T

〉
= −

∑T
t=1 ∆(P,At) and rearranging the terms concludes the proof.506

B.1.2 Proof of Lemma 4507

We start by rewriting the potential function in the form of the following telescopic sum:508

Φ∗(−η(L(1)
T (·)− L

(1)
T (θT ))− λTL

(2)
T (·))

λT

=

T∑
t=1

Φ∗(−η(L(1)
t (·)− L

(1)
t (θt))− λtL

(2)
t (·))

λt
−

Φ∗(−η(L(1)
t−1(·)− L

(1)
t−1(θt−1))− λt−1L

(2)
t−1(·))

λt−1
.

In the usual follow-the-regularized-leader analysis, we use the fact that λ → φ∗(λL)
λ is non-509

decreasing for any L ∈ RΘ. Here however, only some of the linear loss is scaled by λt and the510

usual FTRL analysis fails. Crucially, because we introduced the maximum likelihood estimator θt,511

we have that L(1)
t (·) − L

(1)
t (θt) ≥ 0 and we can instead use the following lemma that guarantees512

that a scaled and shifted dual is monotonous.513

Lemma 9. Let Φ ≥ 0,Φ∗ be a convex function and its dual as defined previously, L1, L2 ∈ RΘ514

with L1 ≥ 0, then λ ∈ R+∗ → Φ∗(−L1+λL2)
λ is a non-decreasing function.515

Proof. By definition, we have516

Φ∗(−L1 + λL2)

λ
=

supP∈∆(Θ)〈P,−L1 + λL2〉 − Φ(P )

λ

= sup
P∈∆(Θ)

〈P,L2〉 −
〈P,L1〉+Φ(P )

λ
.
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For any P ∈ ∆(Θ), we have that Φ(P ) + 〈P,L1〉 ≥ 0 and the term inside the supremum is517

non-decreasing with respect to lambda. Since the supremum of non-decreasing functions is also518

non-decreasing, this concludes the proof.519

Applying the previous lemma, we upper bound the previous sum by replacing each λt factor by520

λt−1 (using the convention λ0 = 1/2), and then we replace the maximum likelihood estimator θt521

by θ0 inside Φ∗ to obtain522

T∑
t=1

Φ∗(−η(L(1)
t (·)− L

(1)
t (θt))− λtL

(2)
t (·))

λt
−

Φ∗(−η(L(1)
t−1(·)− L

(1)
t−1(θt−1))− λt−1L

(2)
t−1(·))

λt−1

≤
T∑

t=1

Φ∗(−η(L(1)
t (·)− L

(1)
t (θt))− λtL

(2)
t (·))

λt−1
−

Φ∗(−η(L(1)
t−1(·)− L

(1)
t−1(θt−1))− λtL

(2)
t−1(·))

λt−1

=

T∑
t=1

Φ∗(−η(L(1)
t (·)− L

(1)
t (θ0))− λtL

(2)
t (·))

λt−1
−

Φ∗(−η(L(1)
t−1(·)− L

(1)
t−1(θ0))− λtL

(2)
t−1(·))

λt−1

+
η

λt−1
(L

(1)
t (θt)− L

(1)
t (θ0) + L

(1)
t−1(θ0)− L

(1)
t−1(θt−1)).

It remains to bound the difference of the negative log likelihood of the true parameter and the max-523

imum likelihood estimator. This is done via the following result (whose proof we relegate to ap-524

pendix E.1.1).525

Lemma 10. For any t ≥ 1, we have526

0 ≤ E
[
L
(1)
t (θ0)− L

(1)
t (θt)

]
≤ inf

ρ

{
2ρt+ s log

ed(1 + 2/ρ)

s

}
≤ 6 + s log

edt

s
(15)

Using this lemma, we can further bound the previously considered expression as the following527

telescopic sum:528

E

[
T∑

t=1

η

λt−1
(L

(1)
t (θt)− L

(1)
t (θ0) + L

(1)
t−1(θ0)− L

(1)
t−1(θt−1)) +

η

λT
(L

(1)
T (θ0)− L

(1)
T (θT ))

]

= E

[
T∑

t=1

η

λt−1
(L

(1)
t (θt)− L

(1)
t (θ0))−

T∑
t=1

η

λt
(L

(1)
t (θt)− L

(1)
t (θ0))

]

≤ η ·
T∑

t=1

E
[
(L

(1)
t (θ0)− L

(1)
t (θt))

]( 1

λt
− 1

λt−1

)

≤
η(6 + s log edT

s )

λT
.

Here, the first inequality comes from the non-negativity of L(1)
t (θ0) − L

(1)
t (θt) by definition of θt529

and the second one is from Lemma 10 just above and a telescoping argument. Finally we obtain the530

claim of Lemma 4.531

B.1.3 Controlling the losses separately532

The focus of this section is to understand how to control Φ∗(−L) where L is either the negative-533

likelihood loss or the estimation-error loss. We start by analyzing the negative-likelihood loss. As534

was done in Neu, Papini, and Schwartz [2024], we will relate the negative-likelihood loss to the535

surrogate information gain.536

For this analysis, we define the true information gain as537

IGt(π) =
1

2

∑
a∈A

π(a)

∫
Θ

(〈θ − θ0, a〉)2 dQ+
t (θ), (16)

and note that, by linearity reward function, the surrogate information gain is always smaller than the538

true information gain. This is stated formally below.539
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Proposition 1. For any policy π ∈ ∆(A) and any t ≥ 1 we have that540

IGt(π) ≤ IGt(π) (17)

The proof is provided in Appendix I.1. This result can then be used to relate the surrogate and the541

true information gain to the negative-likelihood loss. This result and its proof are identical to the542

proof of Lemma 17 in Neu, Papini, and Schwartz [2024].543

Lemma 11. Assume that the noise εt is conditionnally 1-sub-Gaussian, then for any t ≥ 1, η, α ≥ 0544

such that γ = ηα
2 (1− ηα) > 0, the following inequality holds545

E
[
log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα

dQ+
t (θ)

]
≤ −2γ(1− 2γ)E [IGt(πt)] (18)

≤ −2γ(1− 2γ)E
[
IGt(πt)

]
. (19)

In particular, the constant 2γ(1− 2γ) can be maximized to the value 3
16 by the choice ηα = 1

2 .546

Proof. By the tower rule of expectation and Jensen’s inequality applied to the logarithm, we have547

E
[
− log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα]
= E

[
E
[
− log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα∣∣∣∣Ft, At

]]
≤ E

[
− logE

[∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα∣∣∣∣Ft, At

]]
= E

[
− log

∫
Θ

E
[
exp

(
−ηα

(
(Yt − 〈θ,At〉)2

2
− (Yt − 〈θ0, At〉)2

2

))∣∣∣∣Ft, At

]]
.

Now, we fix some θ ∈ Θ and to simplify the notation, we let r0 = 〈θ0, At〉 and r = 〈θ,At〉. Using548

some elementary manipulations and the conditional sub-gaussianity of εt and Yt = r0+εt which im-549

plies that for any (Ft, At)-measurable ζt, E [exp (Ytζt)|Ft, At] = exp(r0ζt)E [exp (εtζt)|Ft, At] ≤550

exp(r0ζt) exp
(

ζ2
t

2

)
, we have551

E
[
exp

(
−ηα

(
(Yt − r)2

2
− (Yt − r0)

2

2

))∣∣∣∣Ft, At

]
= E

[
exp

(
−ηα

2
(2Yt − r − r0)(r0 − r)

)∣∣∣Ft, At

]
= exp

(
ηα
r20 − r2

2

)
E [exp (ηαYt(r − r0))|Ft, At]

≤ exp

(
ηα
r20 − r2

2

)
· exp (ηαr0(r − r0)) exp

(
η2α2

2
(r − r0)

2)

)
= exp

(
−(r − r0)

2 · ηα
2

(1− ηα)
)
.

Further, defining γ = ηα
2 (1− ηα), we have552

E
[
exp

(
−ηα

(
(Yt − r)2

2
− (Yt − r0)

2

2

))∣∣∣∣Ft, At

]
≤ exp(−γ(r − r0)

2)

≤ 1− γ(r − r0)
2 +

γ2

2
(r − r0)

4

≤ 1− γ(r − r0)
2 + 2γ2(r − r0)

2

≤ 1− γ(1− 2γ)(r − r0)
2.

Here, we used the elementary inequality exp(x) ≤ 1+x+ x2

2 for x ≤ 0 and then used |r− r0| ≤ 2.553

Finally, using that log x ≤ x− 1 for any x > 0, and taking the integral over Θ, we get that554

E
[
− log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα]
≤ −γ(1− 2γ)E

[∑
a∈A

πt(A)

∫
Θ

(〈θ − θ0, a〉)2
]
dQ+

t (θ)

= −2γ(1− 2γ)E [IGt(πt)] .

Rearranging and combining the result with Proposition 1 yields the claim of the lemma.555
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We now turn our focus to the estimation error loss and relate it to the surrogate regret through the556

following lemma, whose proof is a straightforward application of Lemma 23.557

Lemma 12. For any t ≥ 1, β > 1, if βλt−1 ≤ 1, we have558

E
[

1

βλt−1
log

∫
Θ

exp(βλt−1∆(at, θ)) dQ
+
t (θ)

]
≤ E

[
2∆̂t(πt)

]
. (20)

B.1.4 Separation of the two losses: proof of Lemma 5559

We now make use of the fact that the Fenchel dual of Φ can be explicitly written as Φ∗(L) =560

log
∫
Θ
exp(L(θ)) dQ1(θ) . As a result, we have561

E

[
T∑

t=1

Φ∗(−η(L(1)
t (·)− L

(1)
t (θ0))− λt−1L

(2)
t (·))

λt−1
−

Φ∗(−η(L(1)
t−1(·)− L

(1)
t−1(θ0))− λt−1L

(2)
t−1(·))

λt−1

]

= E

 T∑
t=1

1

λt−1
log

∫
Θ

(
p(Yt|θ,at)
p(Yt|θ0,At)

)η
exp (λt−1∆(At, θ)) exp

(
−ηL(1)

t−1(θ)− λt−1L
(2)
t−1(θ)

)
dQ1(θ)∫

Θ
exp

(
−ηL(1)

t−1(θ)− λt−1L
(2)
t−1(θ)

)
dQ1(θ)


= E

[
T∑

t=1

1

λt−1
log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)η

exp (λt−1∆(At, θ)) dQ
+
t (θ)

]

≤ E

[
T∑

t=1

1

αλt−1
log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα

+
1

βλt−1
log

∫
Θ

exp (βλt−1∆(At, θ)) dQ
+
t (θ)

]
,

where the last equality is by definition of the optimistic posterior and the last inequality follows from562

using Hölder’s inequality with the two real numbers α, β > 1 that satisfy 1
α + 1

β = 1. Combining563

Lemma 11 and Lemma 12 with the choice α = β = 2, the fact that η = 1
4 and the last inequality564

yields the claim of the Lemma.565

B.2 Choice of the prior and comparator distribution: proof of Lemma 3566

In order to construct the prior Q1 and the comparator P for the regret analysis, we need to take into567

account two criteria: that DKL (P‖Q1) be controlled and that |〈P,L〉 − L(θ0)| be small. Note that568

the comparator should be a function of the unknown parameter θ0, and thus we denote it by P (θ0).569

As for the prior, it should take into account the sparsity level of the unknown θ0, but should have no570

access to its support.571

For the prior, we first design a distribution Π over the set of all subsets of [d] = {1, . . . , d}, which572

have cardinality at most s. We choose the distribution such that: a) the probability assigned to each573

subset depends only on its cardinality; b) the probability assigned to the set of all subsets of size k574

is proportional to 2−k, where 1 ≤ k ≤ s. In other words, we prefer smaller subsets and have no575

preference over which indices in [d] are included. The distribution that satisfies these requirements is576

Π(S) =
2−|S|(

d
|S|
)∑s

k=1 2
−k

. (21)

For S = ∅, we set Π(S) = 0. Doing so only complicates matters if the support of θ0 is empty (i.e.,577

θ0 = 0). However, in this case, the reward function is 0 everywhere, which means any algorithm578

would have 0 regret. We therefore continue under the assumption that θ0 6= 0. The most impor-579

tant property of this distribution, which we will use later, is that for any subset S of cardinality s,580

log(1/Π(S)) ≤ s log(2ed/s). For each subset S, we define QS to be the uniform distribution on581

ΘS . The prior is defined to be582

Q1 =
∑

S⊂[d]:|S|≤s

Π(S)QS .

As for the comparator distribution P (θ0), we would ideally like to take a Dirac measure on θ0, but583

this would make the KL divergence appearing in the bound blow up. Thus, we pick a comparator584

P which dilutes its mass around θ0. For any θ̄ ∈ Θ, with support S̄, and any ε ∈ (0, 1), we define585

the set (1 − ε)θ̄ + εΘS̄ = {(1 − ε)θ̄ + εθ′ : θ′ ∈ ΘS̄} ⊂ ΘS̄ . We will choose P to be the uniform586

distribution on (1− ε)θ0 + εΘS0
. We now bound Φ(P ) = DKL (P‖Q1) for this choice of P in the587

following lemma, from which the claim of Lemma 3 then directly follows.588
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Lemma 13. For any θ̄ ∈ Θ, let S̄ denote its support, and let |S̄| = s. If, for ε ∈ (0, 1), P =589

U((1− ε)θ̄ + εΘS̄) and Q1 =
∑

S⊂[d]:|S|=s Π(S)QS , then DKL (P‖Q1) ≤ s log 2ed
εs .590

Proof. We notice that (1− ε)θ̄+ εΘS̄ is an s-dimensional L1 ball of radius ε, which is contained in591

ΘS̄ . Therefore, on the support of P , dP
dQS̄

is equal to the ratio of the volumes of a unit L1 ball and592

an L1 ball of radius ε, which is (1/ε)s. Thus,593

DKL (P‖Q1) =

∫
log

dP∑
S Π(S)dQS

dP ≤
∫

log
dP

Π(S̄)dQS̄

dP ≤ s log
1

ε
+ log

1

Π(S̄)
.

Using the definition of Π and the bound
(
d
s

)
≤ ( eds )

s on the binomial coefficient, we have594

log
1

Π(S̄)
= log

(
d

s

)
+ s log(2) + log

s∑
k=1

2−k ≤ s log
2ed

s
.

Combining everything, we obtain595

DKL (P‖Q1) ≤ s log
1

ε
+ s log

2ed

s
= s log

2ed

εs
, (22)

as advertised.596

C Proof of the history-dependent part of Theorem 1597

We now focus on the case in which λt is allowed to depend on the history. Following the original598

analysis, we arrive again at equation 2599

∆(P, at) ≤
DKL (P‖Q1)

λT
+

Φ∗(−ηL(1)
T (·) + ηL

(1)
T (θT ) + λTL

(2)
T (·))

λT
+

η

λT
(P ·L(1)

T −L(1)
T (θT )),

where P ∈ ∆(Θ) can be any comparator distribution. Lemma 3 is still valid and we can chose the600

same prior as before. We can still choose a comparator distribution supported on an ε-ball around θ0.601

However, because λt depends on the history, we can no longer upper bound E
[
|P ·L(1)

T −L
(1)
T (θ0)|

λT−1

]
602

by E
[
2Tε
λT

]
. Using Lemma 21, we still have that L(2)

T (·) is 2T -Lipschitz and E
[
L
(1)
T (·)

]
is 2T -603

Lipschitz. Hence,604

E

[
|P · L(1)

T − L
(1)
T (θ0)|

λT−1

]
≤ 2TεC2,T , and

T∑
t=1

|∆(θ0, at)−∆(P, at)| ≤ 2Tε,

where we used C2,T , a deterministic upper bound on 1
λT−1

. Exactly the same telescoping of Φ∗ can605

be done, however because the learning rate is history-dependent, the difference between the negative606

log likelihood of θ0 and θt must be treated with more care. We have the following lemma607

Lemma 14. Let C1,T be a deterministic upper bound on
(

1
λt+1

− 1
λt

)
that holds for all t < T , then608

E

[
T∑

t=1

η

λt−1
(L

(1)
t (θt)− L

(1)
t (θ0) + L

(1)
t−1(θ0)− L

(1)
t−1(θt−1)) +

η

λT
(L

(1)
T (θ0)− L

(1)
T (θT ))

]

≤ E

η(12 + 3s log
2e2dT 2C2

1,T

s )

2λT−1

 . (23)

A complete proof of that result can be found in appendix E.2.1.609

Finally, as was the case in the history independent version the telescoping sum can be handled by610

looking at the explicit formula for Φ∗ and Lemma 5 still holds. Applying Lemma 5 and setting611

ε = 1
TC2,T

yields the claim of the theorem.612
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D Proof of Theorem 3613

We turn our attention to data-dependent bounds (that will scale with the cumulative information614

ratio rather than the time horizon). Combining the second part of Theorem 1 with Lemma 6 and the615

choice λ = 64
3 λt−1, we have that for any non-increasing sequence of learning rates λt satisfying616

λ0 ≤ 1
2 , the following holds617

RT ≤ E

[
CT

λT−1
+min

(
T∑

t=1

32

3
λt−1IR

(2)
t (πt),

16

3
c∗3

√
3λt−1IR

(3)
t (πt)

)]
, (24)

where CT = 2+ s log
4e3d2T 3C2

1,TC2,T

s2 and C1,T , respectively C2,T are deterministic upper bounds618

on 1
λt

− 1
λt−1

, respectively 1
λT−1

.619

We let λ(2)t =
√

s

2d+
∑t

s=1 IR(2)
s (πs)

and λ(3)t =

(
s

3
√

6s√
Cmin

+
∑t

s=1

√
IR(3)

s (πs)

) 2
3

, and verify that λt =620

max(λ
(2)
t , λ

(3)
t ) is decreasing and always smaller than 1

2 . We also verify that C1,T = C2,T =
√

dT
s621

are valid upper bounds. As a result, we have the following upper bound622

CT = 2 + s log
4e3d2T 3C2

1,TC2,T

s2
≤ 2 + s log 4e3T 4.5

(
d

s

)3.5

≤ 2 + 5s log(
edT

s
). (25)

We know focus on bounding the sum containing the information ratios. Applying Lemma 7, we623

obtain that for all t ≥ 1, IR
(2)
t (πt) ≤ 2d and for any T ≥ 1624

T∑
t=1

λ
(2)
t−1IR

(2)
t (π) =

√
s

T∑
t=1

IR
(2)
t (πt)√

2d+
∑t−1

s=1

≤
√
s

T∑
t=1

IR
(2)
t (πt)√∑t

s=1 IR
(2)
s (πs)

≤ 2

√√√√s

T∑
t=1

IR
(2)
t (πt)

≤ 2

√√√√s

(
2d+

T−1∑
t=1

IR
(2)
t (πt)

)
,

where we applied Lemma 19 with the function f(x) = 1√
x

and ai = IR
(2)
i (πi) to get the second625

inequality. This can be seen as a generalization of the usual
∑T

t=1
1√
t
≤ 2

√
T inequality. We626

now define R(2)
T =

√
s
(
2d+

∑T−1
t=1 IR

(2)
t (πt)

)
, the constant-free regret rate associated to the 2-627

surrogate-information ratio.628
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We now turn our attention to the 3-information ratio. Applying Lemma 7 we obtain that for all629

t ≥ 1, IR
(3)
t (πt) ≤ 54 s

Cmin
≤ 54 s2

Cmin
and for any T ≥ 1630

T∑
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√
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1
3
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6s√

Cmin
+
∑t−1

s=1

√
IR

(3)
s (πs)

) 1
3

≤ s
1
3

T∑
t=1

√
IR

(3)
t (πt)(∑t
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√
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) 2
3
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2
s

1
3

(
3
√
6s√

Cmin

+

T−1∑
t=1

√
IR

(3)
t (πt)

)
,

where we applied Lemma 19 with the function f(x) = 1

x
1
3

and ai =

√
IR

(3)
i (πi) to get the631

second inequality. This can be seen as a generalization of the usual
∑T

t=1
1

t
1
3

≤ 3
2T

2
3 . We632

now define R(3)
T = s

1
3

(
3
√
6s√

Cmin
+
∑T−1

t=1

√
IR

(3)
t (πt)

) 2
3

, the constant-free regret rate associated633

to the 3-surrogate-information ratio. We now consider the last time that the learning rates λ(3)t634

and λ(2)t have been used. More specifically, we denote T2 = max{t ≤ T, λ
(2)
t−1 ≥ λ

(3)
t−1}, and635

T3 = max{t ≤ T, λ
(3)
t−1 ≥ λ

(2)
t−1}. Coming back to the bound of Equation 24 and using the defini-636

tion λt = max(λ
(2)
t , λ

(3)
t )), the following bound holds637
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+
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.

We can now separate the sum obtained at the last line based on which learning rate was used at time638

t.639
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We further bound
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32
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(2)
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3 R
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640

(Using the explicit value c∗3 = 2

3
3
2

).641

The crucial observation is that which of λ(3)T or λ(2)T is bigger will determine whether R(2)
T or642

R
(3)
T is the term of leading order (up to some constants). More specifically, Let T be such that643
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λ
(2)
T−1 ≥ λ

(3)
T−1 which means that

√
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ing, this implies that
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, which645

means that R(2)
T ≤ R

(3)
T . Following the exact same steps, we also have that λ(3)T−1 ≥ λ

(2)
T−1 implies646

that R(3)
T ≤ R

(2)
T . We apply this to the time T2 in which λ(2)T2−1 ≥ λ

(3)
T2−1 by definition. we have that647
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and putting this together with the previous bound, we have648
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where we use the fact that T → R
(2)
T and T → R

(3)
T are non-decreasing and T2 ≤ T, T3 ≤ T649

Similarly by definition of T3, we have that λ(3)T3−1 ≥ λ
(2)
T3−1 and we can conclude that R(3)

T3
≤ R

(2)
T3

.650

Putting this together, with the previous bound, we have651
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where we use the fact that T → R
(2)
T and T → R

(3)
T are non-decreasing and T2 ≤ T, T3 ≤ T .652

Putting both of those bounds together with Equation 25 yields the claim of the Theorem.653

E Maximum likelihood estimation654

The focus of this section is to bound the difference between the log-likelihoods associated with the655

true parameter and the maximum likelihood estimator (MLE). We start by establishing an upper656

bound that holds in expectation which suffices to handle history-independent learning rates. Then,657

we move on to high-probability bounds that will allow us to deal with data-dependent learning rates.658

E.1 Bound in expectation659

We start with the case in which the maximum likelihood estimator is computed on a finite subset of660

the parameter space Θ.661

Lemma 15. Let t ≥ 1, and Θ′ be a finite subset of Θ, we define the MLE over Θ′ as662

θMLE,t(Θ
′) = arg min

θ∈Θ′
L
(1)
t (θ).
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Then,663

E
[
L
(1)
t (θ0)− L

(1)
t (θMLE,t(Θ

′))
]
≤ log |Θ′| (26)

Proof. By the concavity of the logarithm and Jensen’s inequality, we have664

E
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L
(1)
t (θ0)− L

(1)
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By Lemma 25, we have that exp
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L
(1)
t (θ0)− L

(1)
t (θ)

)
=
∏t

s=1
p(Ys|θ,As)
p(Ys|θ0,As)

is a non-negative su-665

permartingale with respect to the filtration F ′
t = σ(Ft−1, At). That implies that each term in the666

sum is upper bounded by 1. Hence,667

E
[
L
(1)
t (θ0)− L

(1)
t (θMLE,t(Θ

′))
]
≤ log

∑
θ∈Θ′

1 = log |Θ′|,

which proves the claim.668

To extend the previous bound to the full parameter space, we use a covering argument. A subset669

Θ′ ⊂ Θ is said to be a valid ρ-covering of Θ with respect to the `1 norm if for every θ ∈ Θ, there670

exists a θ′ ∈ Θ′ such that ‖θ − θ′‖1 ≤ ρ. We denote by N (Θ, ‖ · ‖1, ρ) the smallest possible671

cardinality of a valid ρ covering. We have the following bound on this quantity.672

Lemma 16. For every ρ > 0,673

logN (Θ, ‖ · ‖1, ρ) ≤ log

(
d

s

)
(1 + 2

ρ )
s ≤ s log

ed(1 + 2/ρ)

s
.

674

Proof. For each subset S ⊂ [d] of cardinality |S| = s, there is a surjective isometric embedding675

from (ΘS , ‖ · ‖1) to (Bs
1(1), ‖ · ‖1). In particular, to embed θ ∈ ΘS into Bs

1(1), one can simply676

remove all the components of θ corresponding to indices not in S. Therefore, for every ρ > 0,677

N (ΘS , ‖ · ‖1, ρ) ≤ N (Bs
1(1), ‖ · ‖1, ρ). Moreover, via a standard argument, we have N (Bs

1(1), ‖ ·678

‖1, ρ) ≤ (1 + 2
ρ )

s (see, e.g., Lemma 5.7 in Wainwright, 2019). Now, let ΘS,ρ denote any minimal679

ρ-covering of ΘS and notice that for an arbitrary θ ∈ Θ with support S, there exists a subset S̃680

such that S ⊆ S̃ and |S̃| = s. Therefore, there exists θ̃ ∈ ΘS̃,ρ such that ‖θ − θ̃‖1 ≤ ρ. Hence,681

∪S⊂[d]:|S|=sΘS,ρ forms a valid ρ-covering of Θ and its cardinality is bounded by682

N (Θ, ‖ · ‖1, ρ) ≤
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ρ

)s
=

(
d

s

)(
1 + 2

ρ

)s
.

and we conclude by the elementary inequality
(
d
s

)
≤
(
de
s

)s
.683

E.1.1 Proof of Lemma 10684

We bound the difference between the log-likelihood of the true parameter and that of the maximum685

likelihood estimator on the full parameter space. To this end, let ρ > 0 and Θ′ be a minimal valid686

ρ-cover of Θ as is defined in Lemma 16, and θ′ ∈ Θ′ be such that ‖θ′ − θt‖ ≤ ρ, which exists by687
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definition of a ρ-covering. Then,688

E
[
L
(1)
t (θ0)− L

(1)
t (θt)

]
=E

[
L
(1)
t (θ0)− L

(1)
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L
(1)
t (θ′)− L(1)(θt)

]
≤ log(N (Θ, ‖·‖1 , ρ) + 0 + 2ρt,

where the first term is bounded by Lemma 26, the second term is non-positive by definition of689

the maximum likelihood estimator because θ′ ∈ Θ′ and the third term is bounded because the690

mapping θ 7→ E
[
L
(1)
t (θ)

]
is 2t-Lipschitz with respect to the 1-norm by Lemma 21. Finally applying691

Lemma 16 and setting ρ = 2
t yields the desired bound.692

E.2 High-probability bounds693

We begin with the case where the maximum likelihood estimator is computed over a finite subset of694

the parameter space Θ and provide a corresponding high-probability bound.695

Lemma 17. Let Θ′ be a finite subset of Θ, we define θMLE,t(Θ
′) = arg minθ∈Θ′ L

(1)
t (θ). Then696

P
[
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(1)
t (θ0)− L

(1)
t (θMLE,t(Θ

′)) ≥ log
|Θ′|
δ

]
≤ δ. (27)

Proof. Fix θ ∈ Θ′. By Lemma 25, we have that exp
(
L
(1)
t (θ0)− L

(1)
t (θ)

)
=
∏t

s=1
p(Ys|θ,As)
p(Ys|θ0,As)

is a697

non-negative supermartingale with respect to the filtration F ′
t = σ(Ft−1, At), allowing us to invoke698

Ville’s inequality to get the following guarantee:699

P
[
∃t ≥ 1, exp(L

(1)
t (θ0)− L

(1)
t (θ)) ≥ 1

δ

]
≤ δ.

Taking the logarithm and a union bound on Θ′ yields the desired result.700

We now provide a bound on the expected product of a bounded random variable with the differenece701

in log-likelihood between the true parameter and the maximum likelihood estimator.702

Lemma 18. Let B ∈ R and X be a random variable satisfying 0 ≤ X ≤ B almost surely. Then703

for any t ≥ 1,704

E
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1

T

]
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Proof. Let δ, ρ > 0 and Θ′ be a minimal valid ρ-cover of Θ as defined in Lemma 16, N = |Θ′|,705

let θ′ = θMLE,t(Θ
′) and let θ̄ ∈ Θ′ be such that

∥∥θ̄ − θt
∥∥ ≤ ρ, which exists by definition of a valid706

ρ-cover. We have the following decomposition:707
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The first term is upper bounded by E
[
X log N

δ

]
, the third term is upper bounded by 2Bρt because708

E
[
L
(1)
t (·)

]
is 2t-Lipschitz by Lemma 21. The fourth term is non-positive because θ′ minimizes the709

negative log likelihood on Θ′. Finally, we turn our attention to the second term. To simplify the710
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computations, we let Y = L
(1)
t (θ0) − L

(1)
t (θ′), and compute E

[
Y 1{Y >log N

δ }

]
. Conditionting on711

wheter ε is larger or smaller than log N
δ yields the following identity712

P
[
Y 1{Y≥log N

δ } ≥ ε
]
=

{
P [Y ≥ ε] if ε ≥ log N

δ ,

P
[
Y ≥ log N

δ

]
otherwise.

We can now upper bound the expectation as follows713

E
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]
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P
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≤ δ log
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δ
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where we used the change of variable ε = log N
δ′ and used P

[
Y ≥ log N

δ

]
≤ δ by Lemma 17.714

Finally, putting everything together and using N ≤ N (Θ, ‖·‖1 , ρ) ≤
(

ed(1+ 2
ρ )

s

)s
, by Lemma 16,715

we get716

E
[
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To balance the trade-off between the approximation error and the covering complexity, we choose717

ρ = 2
BT , and δ = 1

BT which yields the desired form of the logarithmic factors. Subsituting these718

into the bound completes the proof.719

E.2.1 Proof of Lemma 14720

As was noted in the analysis, since λT is not used by the algorithm, we can replace λT by λT−1 in721

our computations. We have722

E
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Let C1,T be a deterministic upper bound on
(
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− 1
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)
. Applying Lemma 28 to X =723 (

1
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)
and telescoping, we get724
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where in the last step, we used 1 ≤ 1
2λT

which implies 1
λT

+ 1 ≤ 3
2λT

. This finishes the proof.725

F Bounding the surrogate information ratio726

F.1 Proof of Lemma 6727

The surrogate regret of a policy is directly related to its 2- and 3-information ratio by definition728

∆̂t(π) =

√
IGt(π)IR

(2)
t (π) =

(
IGt(π)IR

(3)
t (π)

) 1
3

.

By the AM-GM inequality, we have that for any λ > 0, the surrogate regret is controlled as follows729

∆̂t(π) ≤
IGt(π)

λ
+
λ

4
IR

(2)
t (π).

Similarly, by Lemma 27 which generalizes the AM-GM inequality, we can obtain the following730

regret bound731

∆̂t(π) ≤
IGt(π)

λ
+ c∗3

√
λIR

(3)
t (π),

where c∗3 < 2 is an absolute constant defined in Lemma 27. This concludes the proof.732

F.2 Proof of Lemma 1733

The proof of Lemma 1 is essentially the same as the proof of Lemma 5.6 in Hao et al. [2021], but we734

state it here for completeness. Throughout this proof, we use 〈p, f〉 =
∑

a∈A p(a)f(a) to denote735

the inner product between a signed measure p on A and a function f : A → R. Using this notation,736

we can, for example, write the generalized surrogate information ratio as IR
(γ)
t (π) = 〈π, IR(γ)

t 〉.737

We define π(γ)
t ∈ arg minπ∈∆(A) IR

(γ)
t (π) to be any minimizer of the generalized surrogate infor-738

mation ratio with parameter γ ≥ 2. First, we observe that739

∇πIR
(2)
t (π) =

2〈π, ∆̂t〉∆̂t

〈π, IGt〉
− (〈π, ∆̂t〉)2IGt

(〈π, IGt〉)2
.

Therefore, from the first-order optimality condition for convex constrained minimization (and the740

fact that IR
(2)
t is convex on ∆(A)), we have741

∀π ∈ ∆(A), 0 ≤ 〈π − π
(SOIDS)
t ,∇πIR

(2)
t (π

(SOIDS)
t )〉 .

In particular,742

0 ≤ 2〈π(SOIDS)
t , ∆̂t〉〈π(γ)

t − π(SOIDS), ∆̂t〉
〈π(SOIDS)

t , IGt〉
− (〈π(SOIDS)

t , ∆̂t〉)2〈π(γ)
t − π(SOIDS), IGt〉

(〈π(SOIDS)
t , IGt〉)2

.

This inequality is equivalent to743
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(
1 +

〈π(γ)
t , IGt〉
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t , IGt〉

)
≥ 〈π(SOIDS)

t , ∆̂t〉 .

From this inequality, we obtain744
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t , IGt〉

=
(〈π(SOIDS)
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= 2γ−2 min
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IR
(γ)
t (π) ,

thus proving the claim.745
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F.3 Proof of Lemma 7746

This section is focused on bounding the information ratios of the sparse optimistic information747

directed sampling policy. As is widely done in the information directed sampling literature, we will748

introduce a “forerunner” algorithm with controlled surrogate information ratio. By Lemma 1, the749

sOIDS policy will then automatically inherit the bound of the forerunner.750

As one of our forerunners, we will make use of the “Feel-Good Thompson Sampling” first intro-751

duced by Zhang [2022]. Letting θ̃t ∼ Q+
t , the FGTS policy is defined as752

π
(FGTS)
t (a) = Pt

[
a∗(θ̃t) = a

]
. (29)

Which can be seen as the policy obtained by sampling a parameter θ̃t ∼ Q+
t and then picking the753

optimal action under this parameter. Compared to the usual Thompson Sampling policy, this boils754

down to replacing the Bayesian posterior by the optimistic posterior. Whenever the optimal action755

for θ is non-unique, we define a∗(θ) to be any optimal action with minimal 0-norm. If there are756

multiple optimal actions with minimal 0-norm, ties can be broken arbitrarily.757

For the bound on the surrogate 3-information ratio, we assume that the prior Q+
1 and the action set758

A are such that for all θ in the support of the prior, there exists a′ ∈ arg maxa∈A r(a, θ) such that759

‖a′‖0 ≤ s. We refer to this as the sparse optimal action property. Since the support of our prior Q+
1760

only contains s-sparse vectors, the sparse optimal action property is satisfied whenever the action761

set is a a unit `p ball. Note also that the hard instances in both the
√
sdT lower bound in Theorem762

24.3 of Lattimore and Szepesvári [2020] and the s2/3T 2/3 lower bound in Theorem 5 of Jang et al.763

[2022] satisfy the sparse optimal action property2. Therefore, even with this addtional assumption,764

the lower bounds for both the data-rich and data-poor regimes remain meanginful. Whenever the765

optimal action for θ is non-unique, we define a∗(θ) to be any optimal action with minimal 0-norm,766

with ties broken arbitrarily.767

F.3.1 Bounding the two information ratio768

We will now prove the first part of lemma 7, by showing that the information ratio of the FGTS769

policy is bounded by the dimension. The proof is exactly the same as in the Bayesian setting as770

is done in Proposition 5 of Russo and Roy [2016], Lemma 7 of Lemma 7 in Neu et al. [2022] or771

in Lemma 5.7 of Hao et al. [2021], except the Bayesian posterior is replaced with the optimistic772

posterior. We provide the proof here for completeness.773

Since we defined the surrogate information gain in terms of the model θ, as opposed to the optimal774

action a∗(θ), we follow the proof of Lemma 7 in Neu et al. [2022]. For brevity, we let αa =775

π
(FGTS)
t (a) = Pt

[
a∗(θ̃t) = a

]
. We define the |A| × |A| matrix M by776

Ma,a′ =
√
αaαa′(Et[r(a, θ̃t)|a∗(θ̃t) = a′]− r(a, θ̄(Q+

t ))) .

Next, we relate the surrogate information gain and the surrogate regret to the Frobenius norm and777

the trace of M . First, we can lower bound the surrogate information gain of FGTS as778

IGt(π
(FGTS)
t ) =

1

2

∑
a∈A

αa

∫
Θ

(r(a, θ̄(Q+
t ))− r(a, θ))2dQ+

t (θ)

=
1

2

∑
a∈A

αa

∫
Θ

∑
a′∈A

1{a∗(θ)=a′}(r(a, θ̄(Q
+
t ))− r(a, θ))2dQ+

t (θ)

=
1

2

∑
a∈A

∑
a′∈A

αa

∫
Θ

1{a∗(θ)=a′}dQ
+
t (θ)Et[(r(a, θ̄(Q

+
t ))− r(a, θ̃t)|a∗(θ̃t) = a′]

≥ 1

2

∑
a∈A

∑
a′∈A

αaαa′

(
r(a, θ̄(Q+

t ))− Et[r(a, θ̃t)|a∗(θ̃t) = a′]
)2

=
1

2

∑
a∈A

∑
a′∈A

M2
a,a′ =

1

2
‖M‖2F .

2The optimal actions in the hard instance used to prove Theorem 5 in Jang et al. [2022] are 2s-sparse, which
still allows us to prove the same bound on the surrogate 3-information ratio, up to constant factors.
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Next, we can re-write the surrogate regret of FGTS as779

∆̂t(π
(FGTS)
t ) =

∫
Θ

r(a∗(θ), θ)dQ+
t (θ)−

∑
a∈A

αa

∫
Θ

r(a, θ)dQ+
t (30)

=

∫
Θ

∑
a∈A

1{a∗(θ)=a}r(a
∗(θ), θ)dQ+

t (θ)−
∑
a∈A

αar(a, θ̄(Q
+
t ))

=
∑
a∈A

αaEt[r(a, θ̃t)|a∗(θ̃t) = a]−
∑
a∈A

αar(a, θ̄(Q
+
t ))

= tr(M) .

Using Fact 10 from Russo and Roy [2016], we bound IR
(2)
t (π

(FGTS)
t ) as780

IR
(2)
t (π

(FGTS)
t ) =

(∆̂t(π
(FGTS)
t ))2

IGt(π
(FGTS)
t )

≤ 2(tr(M))2

‖M‖2F
≤ 2 · rank(M) .

All the remains is to show that M has rank at most d. Enumerate the actions as A = {a1, . . . , a|A|},781

and let µi = Et[θ̃t|a∗(θ̃t) = ai]. By linearity of expectation (and of the reward function), we can782

write783

Mi,j =
√
αiαj〈µi − θ̄(Q+

t ), aj〉 .
Therefore, M can be factorised as784

M =


√
α1(µ1 − θ̄(Q+

t ))
>

...√
α|A|(µ|A| − θ̄(Q+

t ))
>

 [√α1a1 · · · √
α|A|a|A|

]
.

Since M is the product of a K × d matrix and a d×K matrix, it must have rank at most min(K, d).785

F.3.2 Bounding the three information ratio786

To bound the 3 information ratio we follow Hao et al. [2021] and we introduce the exploratory policy787

µ = arg max
π∈∆(A)

σmin

(∑
a∈A

π(a)aaT

)
. (31)

We define the mixture policy π(mix)
t = (1−γ)π(FGTS)

t +γµ where γ ≥ 0 will be determined later.788

First, we lower bound the surrogate information gain of the mixture policy in the same way that we789

lower bounded the surrogate information gain of the FGTS policy previously. This time, we obtain790

the lower bound791

IGt(π
(mix)
t ) ≥ 1

2

∑
a∈A

π
(mix)
t (a)

∑
a′∈A

Pt(a
∗(θ̃t) = a′)(r(a, θ̄(Q+

t ))− Et[r(a, θ̃t)|a∗(θ̃t) = a′])2

=
1

2

∑
a∈A

π
(mix)
t (a)

∑
a′∈A

Pt(a
∗(θ̃t) = a′)〈µa′ − θ̄(Q+

t ), a〉2 ,

where µa′ = Et[θ̃t|a∗(θ̃t) = a′]. From the inequality π(mix)
t (a) ≥ γµ(a), and the definition of792

Cmin, we have793

IGt(π
(mix)
t ) ≥ γ

2

∑
a′∈A

Pt(a
∗(θ̃t) = a′)

∑
a∈A

µ(a)(µa′ − θ̄(Q+
t ))

>aa>(µa′ − θ̄(Q+
t ))

≥ γ

2

∑
a′∈A

Pt(a
∗(θ̃t) = a′)Cmin‖µa′ − θ̄(Q+

t )‖22 .

Using the expression for the surrogate regret of FGTS in (30), we obtain794

∆̂t(π
(FGTS)
t ) =

∑
a∈A

Pt(a
∗(θ̃t) = a)(Et[〈θ̃t), a〉|a∗(θ̃t) = a]− 〈θ̄(Q+

t ), a〉)

≤
√∑

a∈A
Pt(a∗(θ̃t) = a)(Et[〈θ̃t, a〉|a∗(θ̃t) = a]− 〈θ̄(Q+

t ), a〉)2 ,
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where in the last the line we used the Cathy-Schwarz inequality. Due to the sparse optimal action795

property, all actions for which Pt(a
∗(θ̃t) = a) > 0 have at most s non-zero elements. Therefore,796 ∑

a∈A
Pt(a

∗(θ̃t) = a)(Et[〈θ̃t, a〉|a∗(θ̃t) = a]−〈θ̄(Q+
t ), a〉)2 ≤

∑
a∈A

Pt(a
∗(θ̃t) = a)s‖µa−θ̄(Q+

t )‖22 .

This, combined with the lower bound on IGt(π
(mix)
t ) means that797

∆̂t(π
(FGTS)
t ) ≤

√∑
a∈A

Pt(a∗(θ̃t) = a)s‖µa − θ̄(Q+
t )‖22

=

√
2s

γCmin

γ

2

∑
a∈A

Pt(a∗(θ̃t) = a)Cmin‖µa − θ̄(Q+
t )‖22

≤
√

2s

γCmin
IGt(π

(mix)
t ) .

Choosing γ = 1, this tells us that798

(∆̂t(π
(FGTS)
t ))2 ≤ 2s

Cmin
IGt(µ) .

We bound the information ratio in three cases. First, suppose that ∆̂t(µ) ≤ ∆̂t(π
(FGTS)
t ). In this799

case,800

IR
(3)
t (µ) =

∆̂t(µ)(∆̂t(µ))
2

IGt(µ)
≤ 2(∆̂t(π

(FGTS)
t ))2

IGt(µ)
≤ 4s

Cmin
.

Next, we consider the case where ∆̂t(µ) > ∆̂t(π
(FGTS)
t ). For any γ ∈ (0, 1],801

IR
(3)
t (π

(mix)
t ) =

((1− γ)∆̂t(π
(FGTS)
t ) + γ∆̂t(µ))

3

(1− γ)IGt(π
(FGTS)
t ) + γIGt(µ)

≤ ((1− γ)∆̂t(π
(FGTS)
t ) + γ∆̂t(µ))

3

γIGt(µ)
.

We define f(γ) = ((1 − γ)∆̂t(π
(FGTS)
t ) + γ∆̂t(µ))

3/(γIGt(µ)) to be the RHS of the previous802

equation. One can verify that the derivative of f(γ) is803

f ′(γ) =
((1− γ)∆̂t(π

(FGTS)
t ) + γ∆̂t(µ))

2

γ2IGt(µ)

[
2γ(∆̂t(µ)− ∆̂t(π

(FGTS)
t ))− ∆̂t(π

(FGTS)
t )

]
,

and that f(γ) is minimised w.r.t. γ > 0 at γ̂, where γ̂ is the positive solution of f ′(γ̂) = 0, which is804

γ̂ =
∆̂t(π

(FGTS)
t )

2(∆̂t(µ)− ∆̂t(π
(FGTS)
t ))

.

That γ̂ is always positive follows from the fact that ∆̂t(µ) > ∆̂t(π
(FGTS)
t ). If γ̂ ≤ 1, then we can805

take the forerunner to be the mixture policy with γ = γ̂. In this case,806

IR
(3)
t (π

(mix)
t ) =

( 32 )
32(∆̂t(µ)− ∆̂t(π

(FGTS)
t ))∆̂t(π

(FGTS)
t )2

IGt(µ)

≤
( 32 )

38s

Cmin
=

27s

Cmin
.

Otherwise, if γ̂ > 1, then807

∆̂t(µ) ≤
3

2
∆̂t(π

(FGTS)
t ) .

In this case, we can take the forerunner to be µ. The surrogate 3-information ratio can then be upper808

bounded as809

IR
(3)
t (µ) =

∆̂t(µ)(∆̂t(µ))
2

IGt(µ)
≤

2( 32 )
2(∆̂t(π

(FGTS)
t ))2

IGt(µ)
≤

( 32 )
24s

Cmin
=

9s

Cmin
.

Therefore, one can always find a value of γ ∈ (0, 1] such that810

IR
(3)
t (π

(mix)
t ) ≤ 27s

Cmin
.
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G Choosing the learning rates811

This section is focused on the choice of the learning rates required to obtain the bound of Theorem 2.812

G.1 Technical tools813

We start by a collection of technical results to help with choosing a time-dependent learning rate.814

Lemma 19. Let ai ≥ 0 and f : [0,∞) → [0,∞) be a nonincreasing function. Then815

T∑
t=1

atf

(
t∑

i=0

ai

)
≤
∫ ∑T

t=0 at

a0

f(x) dx. (32)

The proof follows from elementary manipulations comparing sums and integrals. The result is taken816

from Lemma 4.13 of Orabona [2019], where a complete proof is also supplied. The following817

lemma ensures that the learning rates are non-increasing.818

Lemma 20. Let C1 > e,C2 > 0 and define λt =
log(C1t)

C2t
, then λt is a non-decreasing sequence.819

Proof. Let t > 0, we have820

log(C1(t+ 1))

log(C1t)
=

log
(
C1t

(
t+1
t

))
log(C1t)

=
log(C1t) + log

(
t+1
t

)
log(C1t)

≤ 1 +
1

t log(C1t)
≤ 1 +

1

t
,

where the first inequality uses log(1 + x) ≤ x for any x > −1 and the second inequality uses821

log(C1t) ≥ log(C1) ≥ 1 because we assumed C1 ≥ e. Since C2(t+1)
C2t

= 1 + 1
t , we can conclude822

that the sequence λt is non-increasing.823

G.2 Data-rich regime: Proof of Lemma 8824

We start by focusing on the data rich regime, and we bound the following part of the regret bound825

given in Equation (12):826

CT

λT−1
+

32

3

T∑
t=1

λt−1IR
(2)
t (πt).

Here, CT = 5 + 2s log edT
s . To proceed, we let λt = α

√
Ct+1

d(t+1) , where α > 0 is a constant that we827

will optimize later. Because t → Ct is increasing, we get that λt−1 ≤ α
√

CT

dt . By Lemma 7, we828

know that for all t ≥ 1, IR
(2)
t (πt) ≤ 2d, hence829

CT

λT−1
+

32

3

T∑
t=1

λt−1IR
(2)
t (πt) ≤

1

α

√
CT dT +

64

3
α
√
CT

T∑
t=1

d√
dt

≤ 1

α

√
CT dT +

128

3
α
√
CT dT

≤
(
1

α
+

128

3
α

)√
CT dT

≤ 16

√
2

3
CT dT ,

where the second line uses the standard inequality
∑T

t=1
1√
t
≤ 2

√
T , and the last line is obtained by830

optimizing the expression
(
1
α + 128

3 α
)

with the optimal choice α =
√

3
128 which yields the value831

16
√

2
3 . This concludes the proof of the claim.832
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G.3 Data-poor regime: proof of Lemma 8833

We now focus on the data-poor regime and specifically on bounding the following part of the bound834

given in Equation (12):835

CT

λT−1
+

16

3
c∗3

T∑
t=1

√
3λt−1IR

(3)
t (πt).

Here, CT = 5 + 2s log edT
s . Now, we let λt = α

(
Ct+1

√
Cmin

(t+1)
√
s

) 2
3

, where α > 0 is a constant that836

we will optimize later. Because t → Ct is increasing, we get that λt−1 ≤ α
(

CT

√
Cmin

ts

) 2
3

. By837

Lemma 7, the 3-surrogate-information ratio is bounded for all t ≥ 1 as IR
(3)
t (πt) ≤ 54s

Cmin
. Hence,838

the following holds:839

CT

λT−1
+

16

3
c∗3

T∑
t=1

√
3λt−1IR

(3)
t (πt) ≤

1

α
(CT )

1
3

(
T
√
s√

Cmin

) 2
3

+ 48c∗3
√
2α(CT )

1
3

( √
s√

Cmin

) 2
3

T∑
t=1

1

t
1
3

≤ 1

α
(CT )

1
3

(
T
√
s√

Cmin

) 2
3

+ 72c∗3
√
2α(CT )

1
3

(
T
√
s√

Cmin

) 2
3

≤
(
1

α
+ 72c∗3

√
2α

)
(CT )

1
3

(
T
√
s√

Cmin

) 2
3

≤ 12 · 6 1
3 (CT )

1
3

(
T
√
s√

Cmin

) 2
3

.

Here, we have applied Lemma 19 with the function f(x) = x
1
3 and ai = 1 to bound

∑T
t=1 t

−1/3 ≤840

3
2T

2
3 in the second line, the last line comes from the choice α = 1

4·6
1
3

which optimizes the constant841 (
1
α + 144c∗3

√
2α
)

(as per Lemma 27). This proves the statement.842

G.4 Joint learning rates, end of the proof of Theorem 2843

In the section below, we present the technical derivation related to choosing the choice of learning844

rate λt = min( 12 ,max(λ
(2)
t , λ

(3)
t )), where λ(2)t =

√
3Ct+1

128d(t+1) and λ(3)t = 1

4·6
1
3

(
Ct+1

√
Cmin

(t+1)
√
s

) 2
3

,845

with Ct = 5+ 2s log edt
s . This choice interpolates between the data-rich and data-poor regimes. As846

a first step, we start by confirming via Lemma 20 that both λ(2)t and λ(3)t are non-increasing and the847

bound of Theorem 1 holds with our choice of λt.848

First, note that our choice of learning rates ensures that λt ≤ 1
2 holds as long as T is larger than849

an absolute constant, and thus we focus on this case here (and relegate the complete details of850

establishing this absolute constant to Appendix G.5). To proceed, we define the (constant-free)851

regret rates R(2)
t =

√
Ctdt and R(3)

t =
(
t
√
s Ct

Cmin

) 2
3

and note that they correspond to the regret852

bounds obtained when using the respective learning rates λ(2)t and λ(3)t , as per Lemma 8.853

We now consider the last time that the learning rates λ(3)t and λ(2)t have been used. More specifically,854

we denote T2 = max{t ≤ T, λ
(2)
t−1 ≥ λ

(3)
t−1}, and T3 = max{t ≤ T, λ

(3)
t−1 ≥ λ

(2)
t−1}. Combining the855

bound of Equation 12 and using the definition λt = min( 12 ,max(λ
(2)
t , λ

(3)
t )), the following bound856

30



holds857

RT

≤ E

[
CT

λT−1
+

T∑
t=1

min

(
32

3
λt−1IR

(2)
t (πt),

16

3
c∗3

√
3λt−1IR

(3)
t (πt)

)]

= E

[
CT

min( 12 ,max(λ
(2)
T−1, λ

(3)
T−1))

+

T∑
t=1

min

(
32

3
min(

1

2
,max(λ

(2)
t−1, λ

(3)
t−1))IR

(2)
t (πt),

16

3
c∗3

√
3min(

1

2
,max(λ

(2)
t−1, λ

(3)
t−1))IR

(3)
t (πt)

)]

≤ E

[
CT min

(
1

λ
(2)
T−1

,
1

λ
(3)
T−1

)
+

T∑
t=1

min

(
32

3
max(λ

(2)
t−1, λ

(3)
t−1)IR

(2)
t (πt),

16

3
c∗3

√
3max(λ

(2)
t−1, λ

(3)
t−1)IR

(3)
t (πt)

)]
.

We can now separate the sum obtained at the last line based on which learning rate was used at time858

t.859

T∑
t=1

min

(
32

3
max(λ

(2)
t−1, λ

(3)
t−1)IR

(2)
t (πt),

16

3
c∗3

√
3max(λ

(2)
t−1, λ

(3)
t−1)IR

(3)
t (πt)

)
≤

∑
λ
(2)
t ≥λ

(3)
t

32

3
λ
(2)
t−1IR

(2)
t (πt) +

∑
λ
(3)
t ≥λ

(2)
t

16

3
c∗3

√
3λ

(3)
t−1IR

(3)
t (πt)

≤
T2∑
t=1

32

3
λ
(2)
t−1IR

(2)
t (πt) +

T3∑
t=1

16

3
c∗3

√
3λ

(3)
t−1IR

(3)
t (πt).

Following exactly the same step as in the proof of Lemma 8, we further bound860 ∑T2

t=1
32
3 λ

(2)
t−1IR

(2)
t (πt) ≤ 8

√
2
3R

(2)
T2

and
∑T3

t=1
16
3 c

∗
3

√
3λ

(3)
t−1IR

(3)
t (πt) ≤ 8 · 6 1

3R
(3)
T3

.861

The crucial observation is that which of λ(3)T or λ(2)T is bigger will determine whether R(2)
T or R(3)

T862

is the term of leading order (up to some constants). More specifically, Let T be such that λ(2)T−1 ≥863

λ
(3)
T−1 which means that

√
3CT

128dT ≥ 1

4·6
1
3

(
CT

√
Cmin

T
√
s

) 2
3

. Rearraging, this implies that
√
CT dT ≤864

6
5
6

4

(
T
√
s CT

Cmin

) 2
3

, which means that R(2)
T ≤ 6

5
6

4 R
(3)
T . Following the exact same steps, we also865

have that λ(3)T−1 ≥ λ
(2)
T−1 implies that R(3)

T ≤ 4

6
5
6
R

(2)
T . We apply this to the time T2 in which866

λ
(2)
T2−1 ≥ λ

(3)
T2−1 by definition. we have that R(2)

T2
≤ 6

5
6

4 R
(3)
T2

and putting this together with the867

previous bound, we have868

RT ≤ CT

λ
(3)
T−1

+ 8

√
2

3
R

(2)
T2

+ 8 · 6 1
3R

(3)
T3

≤ 4 · 6 1
3R

(3)
T + 8

√
2

3
· 6

5
6

4
R

(2)
T2

+ 8 · 6 1
3R

(3)
T3

≤ 4 · 6 1
3R

(3)
T + 4 · 6 1

3R
(3)
T2

+ 8 · 6 1
3R

(3)
T3

≤ 4 · 6 1
3R

(3)
T + 4 · 6 1

3R
(3)
T + 8 · 6 1

3R
(3)
T

≤ 16 · 6 1
3R

(3)
T ,

where we use the fact that T → R
(3)
T is increasing and T2 ≤ T, T3 ≤ T .869

Using the same argument as before, we have that λ(3)T3−1 ≥ λ
(2)
T3−1, and we can conclude that R(3)

T3
≤870

4

6
5
6
R

(2)
T3

.871

31



Putting this together, with the previous bound, we have872

RT ≤ CT

λ
(2)
T−1

+ 8

√
2

3
R

(2)
T2

+ 8 · 6 1
3R

(3)
T3

≤ 8

√
2

3
R

(2)
T + 8

√
2

3
R

(2)
T2

+ 8 · 6 1
3 · 4

6
5
6

R
(3)
T3

≤ 8

√
2

3
R

(2)
T + 8

√
2

3
R

(2)
T2

+ 16

√
2

3
R

(2)
T3

≤ 8

√
2

3
R

(2)
T + 8

√
2

3
R

(2)
T + 16

√
2

3
R

(2)
T

≤ 32

√
2

3
R

(2)
T ,

where we use the fact that T → R
(3)
T is increasing and T2 ≤ T, T3 ≤ T . Evaluating the constants873

numerically yields 16 · 6 1
3 ≈ 29.07 ≤ 30 and 32

√
2
3 ≈ 26.13 ≤ 27.874

G.5 Upper bound on the learning rates875

We now consider the case where the learning rates exceed 1
2 , and show that this only holds for small876

values of T . First, we have that λ(2)T−1 ≤ 1
2 if877 √

3CT

128dT
≤ 1

2
.

Rearranging the inequality and recalling CT = 5 + 2s log edT
s , this is equivalent to878

T ≥ 15

32d
+

3s

16d
log

edT

s
.

Using the loose inequality log edT
s ≤ dT

s , we get that this condition is satisfied for any T ≥ 1.879

Similarly, we have that λ(3)T−1 ≤ 1
2 if880

1

4 · 6 1
3

(
CT

√
Cmin

T
√
s

) 2
3

≤ 1

2
.

We note that881

Cmin = max
µ∈∆(A)

σmin(EA∼µ

[
AAT

]
) ≤ max

µ∈∆(A)

Tr(EA∼µ

[
AAT

]
)

d
≤ 1,

where the first inequality uses that the trace of a matrix is always bigger than d-times its smallest882

eigenvalue and the second inequality uses the fact that for any matrix A, we have Tr(AAT ) =883 ∑d
i=1 a

2
i ≤ dmaxi |ai| ≤ d because we assumed that all the actions are bounded in infinity norm.884

Hence the previous inequality will be satisfied if885

1

4 · 6 1
3

(
CT

T
√
s

) 2
3

≤ 1

2
.

Rearranging the inequality, this is equivalent to886

T ≥ 4

√
3

s
Ct = 8

√
3s log(eT ) +

√
3s

(
20

s
+ 8 log

d

s

)
.

Applying Lemma 24 with a = 8
√
3s and b =

√
3s
(
20
s + 8 log(ds )

)
, we find that the previous887

inequality is satisfied for all888

T ≥ 2a log ea+ 2b = 40

√
3

s
+ 16

√
3s log

8e
√
3d√
s

.
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Thus, letting Tmin = 40
√

3
s + 16

√
3s log 8e

√
3d√
s

be the constant given above, both learning rates889

stay upper bounded by 1
2 for all T ≥ Tmin and the upper bound on the regret given the previous890

subsection holds. Otherwise, we upper bound the instantaneous regret by 2 and this leads to an891

additional 2Tmin = O(
√
s log d√

s
) in the regret. Putting this together with the bound proved in the892

previous section, we thus have that the following regret bound is valid for any T ≥ 1:893

RT ≤ min

(
27

√(
5 + 2s log

edT

s

)
dT , 30

(
5 + 2s log

edT

s

) 1
3
(

T
√
s√

Cmin

) 2
3

)
+O

(√
s log

d√
s

)
.

This concludes the proof of Theorem 2.894

I Technical Results895

In this section, we state and prove the remaining technical results.896

Lemma 21. Let π ∈ ∆(A), the function θ → ∆(π, θ) is 2-Lipschitz with respect to the 1 norm. Let897

t ≥ 1, the function θ → E
[
log
(

1
pt(Yt|θ,At)

)]
is 2-Lipschitz with respect to the 1 norm.898

Proof. Let θ, θ′ ∈ Θ, we have899

|r(π, θ)− r(π, θ′)| =

∣∣∣∣∣∑
a∈A

π(a)〈θ − θ′, a〉

∣∣∣∣∣
≤
∑
a∈A

π(a)|〈θ − θ′, a〉|

≤
∑
a∈A

π(a) ‖θ − θ′‖1 ‖a‖∞

≤ ‖θ − θ′‖1 .

Similarly,900

|r∗(θ)− r∗(θ′)| = |max
a∈A

r(a, θ)−max
a∈A

r(a, θ′)| ≤ max
a∈A

|r(θ, a)− r(a, θ′)| ≤ ‖θ − θ′‖1 .

Finally901

|∆(π, θ)−∆(π, θ′)| = |r∗(θ)− r∗(θ′) + r(π, θ′)− r(π, θ)| ≤ 2 ‖θ − θ′‖1 .

For the negative log-likelihood, for simplicity, we let r = 〈θ,At〉, r′ = 〈θ′, At〉 and r0 = 〈θ0, At〉,902

E
[
log

(
1

p(Yt|θ,At)

)
− log

(
1

p(Yt|θ′, At)

)]
=

1

2
E
[
(〈θ,At〉 − Yt)

2 − (〈θ′, At〉 − Yt)
2
]

=
1

2
E
[
(r − Yt)

2 − (r′ − Yt)
2
]

=
1

2
E [(r − r′)(r + r′ − 2Yt)]

=
1

2
E [(r − r′)(r + r′ − 2r0)]

≤ 2 ‖θ − θ′‖1 .

903

Lemma 22. (Hoeffding’s Lemma) Let X be a bounded real random variable such that X ∈ [a, b]904

almost surely. Let η 6= 0, then we have905

1

η
logE [exp (ηX)] ≤ E [X] +

η(b− a)2

8
. (33)

Proof. See for instance Chapter 2 in Boucheron et al. [2013].906
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We now provide a data dependent version of Hoeffding’s lemma that is used in the analysis of the907

gaps in the optimistic posterior.908

Lemma 23. (A data dependent version of Hoeffding’s Lemma) Let X be a real random variable909

and η 6= 0 be such that ηX ≤ 1 almost surely, then we have910

1

η
logE [exp (ηX)] ≤ E [X] + ηE

[
X2
]
≤ 2E [X] . (34)

Proof. Using the elementary inequalities log(x) ≤ x− 1 for x > 0 and ex ≤ 1+ x+ x2 for x ≤ 1,911

we get that912

1

η
logE [exp (ηX)] ≤ 1

η
E [exp(ηX)− 1]

≤ 1

η
E
[
ηX + η2X2

]
≤ E [X] + ηE

[
X2
]
.

913

The following lemmas help us to analyze when the learning rates are smaller or bigger than 1
2 .914

Lemma 24. Let a ≥ 1, b ≥ 0, then, the equation t ≥ a log et+b is verified for any t ≥ 2a log ea+2b915

.916

Proof. We let f(t) = t − a log et − b, we have that f ′(t) ≥ 0 on [a,+∞) and f(a) ≤ 0. Hence917

f(t) = 0 has a unique solution α on [a,∞) such that f(t) ≥ 0 if t ≥ α. We now focus on upper918

bounding α. The equation f(α) = 0 is equivalent to919

logα =
α− b

a
− 1.

Now taking the exponential and reordering this is also equivalent to920

−α
a

exp

(
−α
a

)
=

exp
(
−a+b

a

)
a

.

Let921

g : (−∞,−1] −→ [−1

e
, 0)

x 7−→ xex.

The previous equation can be rewritten g
(−α

a

)
= −

exp
(
− a+b

a

)
a .922

We define W−1 : [− 1
e , 0) −→ (−∞, 1] as the(functional) inverse of g. g is the −1 branch of the923

Lambert W function.924

We have that for any x ≤ −1, W−1(xe
x) = x and that for any y ≥ e, −W−1(− 1

y ) ≤ 2 log(y).925

Since g is decreasing on its domain,W−1 is well-defined and decreasing. Moreover, for any x ≤ −1926

, W−1(g(x)) = x . In particular, we have that α = aW−1

(
−

exp
(
− a+b

a

)
a

)
. We will use that927

formulation to find an upper bound on α.928

We fix some y ≥ e. We have −2 log(y) ≤ −1 hence W−1

(
−2 log(y)e(−2 log(y))

)
= −2 log(y),929

which means that 2 log(y) = −W−1(− 1
y∗ ) where y∗ = e(2 log(y))

2 log(y) = y2

2 log(y) .930

Because of the elementary inequality 2 log(x) ≤ x for x > 0, we conclude that y ≤ y∗. Since931

y −→ −W−1(− 1
y ) is an increasing function we finally have that for any y ≥ e932

W−1

(
−1

y

)
≤W−1

(
− 1

y∗

)
= 2 log(y).
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Applying this to y = a exp
(
a+b
a

)
≥ e, we get933

α =W−1

(
−1

y

)
≤ 2 log(y) = 2a log ea+ 2b.

Since any t ≥ α will satisfy f(t) ≥ 0, this concludes our proof.934

935

Lemma 25. Let θ ∈ Θ, then Mt = exp(L
(1)
t (θ0)− L

(1)
t (θ)) =

∏t
s=1

p(Yt|θ,At)
p(Yt|θ0,At)

is a supermartin-936

gale with respect to the filration Ft.937

Proof. We have938

E
[
p(Yt|θ,At)

p(Yt|θ0, At)

∣∣∣∣Ft−1, At

]
= E

[
exp

(
(〈θ0, At〉 − Yt)

2 − (〈θ,At〉 − Y 2
t )

2

)∣∣∣∣Ft−1, At

]
= E

[
exp

(
ε2t − (〈θ − θ0, At〉 − εt)

2

2

)∣∣∣∣Ft−1, At

]
= exp

(
− (〈θ − θ0, At〉)2

2

)
E [exp (εt〈θ − θ0, At〉)|Ft−1, At]

≤ exp

(
− (〈θ − θ0, At〉)2

2

)
· exp

(
(〈θ − θ0, At〉)2

2

)
= 1,

where the inequality comes from the conditional subgaussianity of εt. Finally, by the tower rule of939

conditional expectations940

E
[
p(Yt|θ,At)

p(Yt|θ0, At)

∣∣∣∣Ft−1

]
= E

[
E
[
p(Yt|θ,At)

p(Yt|θ0, At)

∣∣∣∣Ft−1, At

]∣∣∣∣Ft−1

]
≤ 1.

941

I.1 Proof of Proposition 1942

This is coming from the fact that the mean is the constant minimizing the mean squared error. We943

remind the reader of the definition of the surrogate information gain and the true information gain944

for a policy π ∈ ∆(A)945

IGt(π) =
1

2

∑
a∈A

π(a)

∫
Θ

(〈θ − θ̄(Q+
t ), a〉)2 dQ(θ), (35)

where θ̄(Q+
t ) = Eθ∼Q+

t
[θ] is the mean parameter under the optimistic posterior Q+

t .946

IGt(π) =
1

2

∑
a∈A

π(a)

∫
Θ

(〈θ, a〉 − 〈θ0, a〉)2 dQ+
t (θ), (36)

Let’s fix a ∈ A, we have that947

(〈θ − θ0, a〉)2 = (〈θ − θ̄(Q+
t ) + θ̄(Q+

t )− θ0, a〉)2

= (〈θ − θ̄(Q+
t ), a〉)2 + 2〈θ − θ̄(Q+

t ), a〉〈θ̄(Q+
t )− θ0, a〉+ (〈θ̄(Q+

t )− θ0, a〉)2

≥ (〈θ − θ̄(Q+
t ), a〉)2 + 2〈θ − θ̄(Q+

t ), a〉〈θ̄(Q+
t )− θ0, a〉

Now using that θ̄(Q+
t ) =

∫
Θ
θ dQ+

t (θ) and integrating, we get948 ∫
Θ

(〈θ − θ0, a〉)2 dQ+
t (θ) ≥

∫
Θ

(〈θ − θ̄(Q+
t ), a〉)2 dQ+

t (θ).

Multiplying by π(a) and summing over actions, we get the claim of the lemma.949
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I.2 Generalization of the AM-GM inequality950

Dealing with the generalized information ratio requires bounding the cubic root of products. While951

one could use Hölder’s inequality to deal directly with products, we find it more flexible to use a952

variational form of this inequality. In all that follows, we let p > 1 be a real number and q be such953

that 1
p + 1

q = 1. It is not hard to check that q = p
p−1 . We start by stating a direct consequence of the954

Fenchel-Young Inequality which can be seen as an extension of the AM-GM inequality.955

Lemma 26. Let x, y ≥ 0, then956

xy ≤ xp

p
+
yq

q
. (37)

With equality if and only if pxp−1 = y957

Proof. One can check that the Fenchel dual of the function958

f :R+ −→ R

x 7−→ xp

p

is exactly f∗(y) = 1
q |y|

qsgn(y). Then the Lemma is a direct consequence of the Fenchel Young959

inequality and of its equality case.960

Refining a bit this Lemma, we get the following variational form of the previous inequality :961

Lemma 27. Let x, y ≥ 0, λ > 0, then962

p
√
xy ≤ x

λ
+ c∗p(λy)

1
p−1 (38)

where c∗p = (p− 1) 1p

p
p−1 with equality if and only if x = y = 0 or λ = px

p−1
p

y
1
p

.963

Proof. We apply the previous lemma to p
√

px
λ and p

√
λy
p .964

In order to go from the variational form to the product form, we may use the following result.965

Lemma 28. Let α, β > 0, then966

inf
λ>0

α

λ
+ βλ

1
p−1 = cpα

1
p β

p−1
p , (39)

where cp = p 1
p−1

p−1
p satisfies cp ·c∗p

p−1
p = 1, and the minimum is reached at λ∗ = (p−1)

p−1
p α

p−1
p

β
p−1
p

.967

Proof. Applying the previous Lemma to x = α and y = c
p

p−1
p βp−1 yields the result.968

Remark An alternative is to pick λ to make both terms equals resulting in the same result but with969

2 as a leading constant. Now970

cp = p
1
p

p

p− 1

p−1
p

= exp

(
1

p
log p+

p− 1

p
log

p

p− 1

)
≤ 1

p
· p+ p− 1

p
· p

p− 1

= 2.

With equality if and only if p = 2. So, the choice of cp always yields a better leading constant.971

However, c3 ' 1.88 so one could argue that the gain is small. Since we will usually use Lemma 27,972

c∗p will naturally appear and cp will cancel it, ultimately making the leading constant as simple as973

possible.974
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J Experimental details975

Here, we describe our implementation of the SOIDS algorithm in more detail, as well as the hy-976

perparameters of all the methods used in our experiments. To run the SOIDS algorithm, one must977

minimise IR
(2)
t (π) w.r.t. π in each round t. This is not straightforward, because IR

(2)
t (π) contains978

expectations w.r.t. the optimistic posterior Q+
t . When we use the Spike-and-Slab prior in Appendix979

B.2, we are not aware of any efficient method that can be used to maximise IR
(2)
t (π). Instead, we980

draw (approximate) samples θ(1), . . . , θ(M) from Q+
t to produce the estimates ∆̃t(π) and ĨGt(π)981

for the surrogate regret and the surrogate information respectively, where982

∆̃t(π) =
∑
a∈A

π(a)
1

M

M∑
i=1

∆(a, θ(i)), ĨGt(π) =
1

2

∑
a∈A

π(a)
1

M

M∑
i=1

(
〈θ(i) − θ̄M , a〉

)2
.

Here, θ̄M is the sample mean 1
M

∑M
i=1 θ

(i). We then maximimse the approximate surrogate infor-983

mation ratio ĨR
(2)

t (π), where984

ĨR
(2)

t (π) =
(∆̃t(π))

2

ĨGt(π)
.

To draw the samples θ(1), . . . , θ(M), we use the empirical Bayesian sparse sampling procedure pro-985

posed by Hao et al. [2021], which is designed to draw samples from the Bayesian posterior. To986

sample from the optimistic posterior, we incorporate the optimistic adjustment into the likelihood.987

This method replaces the theoretically sound spike-and-slab prior with a relaxation in which the988

“spikes” are Laplace distributions with small variance, and the “slabs” are Gaussian distributions989

with large variance. In particular, the density of this prior is990

q1(θ) =
∑

γ∈{0,1}d

p(γ)

d∏
j=1

[γjψ1(θj) + (1− γj)ψ0(θj)] .

Here, ψ1(θ) is the density function of a univariate Gaussian distribution, with mean 0 and vari-991

ance ρ1, and ψ0 is the density function of a univariate Laplace distribution, with mean 0 and scale992

parameter ρ0. p(γ) is a product of Bernoulli distributions with mean β. In our experiments, we993

always use ρ1 = 10, ρ0 = 0.1 and β = 0.1. Also, we set the learning rates to η = 1/2 and994

λt = min( 12 ,
1
10 max(

√
s log(edt/s)

dt , ( log(edt/s)t )2/3)).995

Implementing the OTCS baseline exactly would require us to compute the means of the distributions996

played by an exponentially weighted average forecaster with a sparsity prior. These distributions are997

the same as the optimistic posterior, except λt = 0 (i.e. there is no optimistic adjustment). In our998

implementation of the OTCS baseline, we draw samples using the same empirical Bayesian sparse999

sampling procedure, and then replace the exact means with the sample means. We use the same1000

choices for the parameters η, ρ1, ρ0 and β. We set the radii of the confidence sets to the values given1001

in Theorem 4.7 of Clerico et al. [2025]1002

For the LinUCB baseline, we set the radii of the confidence sets to the values given in Theorem 2 of1003

Abbasi-Yadkori et al. [2011]. For the ESTC baseline, we set the exploration length T1 to 50 when1004

d = 20, 100 when d = 40 and d = 100. These values were chosen based on a small amount of trial1005

and error. The theoretically motivated values in Theorem 4.2 of Hao et al. [2020] are much larger1006

than these values. Also for ESTC, we set the LASSO regularisation parameter to λ = 4
√
log(d)/T1,1007

which is the value given in Theorem 4.2 of Hao et al. [2020].1008
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