
Robust and Effective Grammatical Error Correction with
Simple Cycle Self-Augmenting

Anonymous ACL submission

Abstract

Recent studies have revealed that grammati-001
cal error correction methods in the sequence-002
to-sequence paradigm are vulnerable to adver-003
sarial attack, and simply utilizing adversarial004
examples in the pre-training or post-training005
process can significantly enhance the robust-006
ness of GEC models to certain types of at-007
tack without suffering too much performance008
loss on clean data. In this paper, we further009
conduct a thorough robustness evaluation of010
cutting-edge GEC methods to four different011
types of adversarial attacks and propose a sim-012
ple yet very effective Cycle Self-Augmenting013
(CSA) method accordingly. By leveraging the014
augmenting data from the GEC models them-015
selves in the post-training process and intro-016
ducing regularization data for cycle training,017
our proposed method can effectively improve018
model robustness of well-trained GEC models019
with only a few more training epochs as the020
extra cost. Experiments on four benchmark021
datasets and seven strong models indicate that022
our proposed training method can significantly023
enhance the robustness to four types of attacks024
without using purposely built adversarial ex-025
amples in training. Evaluation results on clean026
data further confirm that our proposed CSA027
method significantly improves the performance028
of four baselines and yields nearly comparable029
results with other state-of-the-art models.1030

1 Introduction031

Grammatical error correction (GEC) is one of032

the most essential application tasks in the NLP033

community for its crucial values in many sce-034

narios including, but not limited to, writing as-035

sistant (Napoles et al., 2019; Fitria, 2021), au-036

tomatic speech recognition (Karat et al., 1999;037

Namazifar et al., 2021; Zhao et al., 2021; Wang038

et al., 2021; Zhang et al., 2021), information re-039

trieval (Gao et al., 2010; Duan and Hsu, 2011; Ha-040

1Our code is available in the supplementary .zip file, which
will be released after the anonymous period.

gen et al., 2017; Zhuang and Zuccon, 2021), which 041

mainly aims to detect and correct various textual 042

errors, such as spelling, punctuation, grammati- 043

cal, word choice, and other article mistakes (Wang 044

et al., 2020). Existing solutions to tackle this 045

task can be roughly divided into two categories, 046

i.e., sequence-to-sequence generation (Seq2Seq) (Ji 047

et al., 2017; Chollampatt and Ng, 2018) and 048

sequence-to-editing (Seq2Edits) (Awasthi et al., 049

2019; Li and Shi, 2021). The former group per- 050

forms the translation from ungrammatical sen- 051

tences to the corresponding error-free sentences, 052

while the latter introduces tagging or sequence la- 053

beling to merely edit a small proportion of the input 054

sentences, remaining the rest part unchanged. 055

With the well-tested encoder-decoder frame- 056

work (Sutskever et al., 2014; Vaswani et al., 2017) 057

as the backbone, GEC methods in the Seq2Seq 058

paradigm can achieve promising performance but 059

is sensitive to the quality and scale of training data. 060

Thus, many recent works have studied the problem 061

of automatically obtaining high-quality paired data 062

to compensate for the lack of human-labeled data 063

pairs (Zhao et al., 2019; Kiyono et al., 2019; Ya- 064

sunaga et al., 2021). As for the Seq2Edits group, 065

it performs better and faster than Seq2Seq meth- 066

ods under limited data resources but requires la- 067

beled data for intermediate tasks, e.g., tagging, se- 068

quence labeling. Existing literature has also re- 069

vealed that incorporating large-scale pre-trained 070

language models (PLMs) can enhance the GEC 071

performance of both Seq2Seq (Kaneko et al., 2020) 072

and Seq2Edits (Malmi et al., 2019; Omelianchuk 073

et al., 2020) methods. However, recent studies 074

have disclosed that Seq2Seq GEC models (even 075

with data augmentation) are vulnerable to adver- 076

sarial examples (Wang and Zheng, 2020). Studies 077

on other classification tasks and PLMs further hint 078

at the possible vulnerability of PLMs-based GEC 079

methods (Li et al., 2021). In view of the above- 080

mentioned facts, it is imperative to conduct a sys- 081

1

tematical evaluation of existing GEC methods to ad-082

versarial attacks, especially for the under-explored083

Seq2Edits paradigm and PLMs-based models.084

To fill this gap, we propose to evaluate the ro-085

bustness of cutting-edge GEC models to differ-086

ent adversarial attacks. More concretely, we in-087

troduce four textual adversarial attack methods088

to construct different variants for each original089

test set, including back-translation (Xie et al.,090

2018), antonym substitution (Ma, 2019), mapping091

& rules (Wang and Zheng, 2020), synonyms substi-092

tution (Li et al., 2021). Resembling the observation093

on the previous Seq2Seq method attacked by map-094

ping & rules, cutting-edge GEC models are also095

very sensitive to the introduced attacks. Taking096

the BART-based method (Lewis et al., 2020; Kat-097

sumata and Komachi, 2020) for example, its per-098

formance (F0.5) on CoNLL-2014 (Ng et al., 2014)099

decreases sharply, from 62.6 to 36.8. Intuitively,100

the dramatic performance decline can be mitigated101

by pre-training or post-training with a great num-102

ber of adversarial examples for a certain type of103

attack (Wang and Zheng, 2020). However, such104

methods require preparing considerable data for105

each attack type in advance, which is infeasible106

for real-world scenarios. Another minor flaw of107

these methods is that the significant improvement108

in robustness is possibly accompanied by the per-109

formance decrease on clean data.110

To avoid these problems, we propose a simple111

yet very effective cycle self-augmenting (CSA)112

method. Concretely, our proposed CSA is only113

introduced in the post-training process of a con-114

verged GEC model and merely needs the original115

training data. Through utilizing self-augmenting116

data pairs and the regularization data sub-sets in117

cycle training, our proposed simple CSA can sig-118

nificantly improve model robustness with only a119

few more training epochs as the extra cost. Since120

our CSA no longer requires well-crafted adversar-121

ial examples for model training, it is more feasible122

in applications and can generalize well to different123

GEC frameworks. Experimental results on seven124

strong models (e.g., BERT-fuse, BART, RoBERTa,125

XLNET) and four benchmark datasets (i.e., BEA,126

CoNLL, FCE, JFLEG) demonstrate the effective-127

ness of our proposed simple method. Our CSA128

method achieves significant robustness improve-129

ment on all settings and at the same time yields130

meaningful performance improvement on clean131

data (four out of seven tested models), with nearly132

comparable results for the left three SOTA base- 133

lines. Besides, we also observe that the trade-off 134

between the robustness to attack and the perfor- 135

mance on clean data is associated with regulariza- 136

tion examples, where more regularization pairs in 137

training lead to better robustness but with perfor- 138

mance decline on clean data, and vise versa. 139

2 Preliminary 140

In this section, we briefly summarize the key com- 141

ponents of cutting-edge GEC methods and present 142

a few representative works correlated with the ro- 143

bustness of GEC models against adversarial attacks. 144

We first review some typical methods for obtaining 145

synthetic data and then introduce two most popu- 146

lar GEC model architectures in existing literature, 147

i.e., Seq2Seq and Seq2Edits, following with the pi- 148

lot studies of adversarial attack in GEC and a few 149

widely-used attack methods for other NLP tasks. 150

2.1 Synthetic Data 151

The recent success of GEC models highly re- 152

lies on the availability of massive training data 153

pairs (Koehn and Knowles, 2017). Considering that 154

human-labeled pairs are expensive to obtain, many 155

efforts have been devoted to exploring the auto- 156

matic generation of pseudo data pairs for GEC (Xie 157

et al., 2018; Ge et al., 2018; Lichtarge et al., 2019; 158

Awasthi et al., 2019; Grundkiewicz et al., 2019; 159

Náplava and Straka, 2019), and the combination of 160

synthetically generated data has almost been indis- 161

pensable for recently proposed GEC models (Kiy- 162

ono et al., 2019). Specifically, (Ge et al., 2018) 163

propose a fluency boost learning method during 164

the training stage to extend the dataset. Zhao et al. 165

propose to directly inject noise into grammatical 166

sentences. Xie et al.; Lichtarge et al.; Zhou et al. 167

use translation methods to automatically generate 168

the Poor-Good pairs. Wan et al. combine a clas- 169

sifier with a Seq2Seq model to generates specified 170

types of errors. (Yasunaga et al., 2021) leverage 171

a BIFI framework (Yasunaga and Liang, 2021) to 172

generate more realistic ungrammatical sentences. 173

2.2 Model Architecture 174

The goal of Grammatical Error Correction is to 175

map ungrammatical pieces xi into grammatical 176

ones yi with the use of Seq2Seq model archi- 177

tecture (Sutskever et al., 2014; Vaswani et al., 178

2017; Lewis et al., 2020) or Seq2Edits frame- 179

work (Awasthi et al., 2019; Devlin et al., 2019). 180

2

Seq2Seq Many researches (Xie et al., 2016; Yuan181

and Briscoe, 2016; Xie et al., 2018; Junczys-182

Dowmunt et al., 2018; Zhao et al., 2019; Sun183

et al., 2021; Kaneko et al., 2020) regard GEC as184

a natural language generation (NLG) task and uti-185

lize an encoder-decoder structure to complete the186

sequence-to-sequence (Seq2Seq) generation task.187

Given an input sentence x of N tokens, the en-188

coder first encodes it into the hidden representation189

hs1:N , and then the decoder outputs each token in190

an auto-regressive fashion. The output distribu-191

tion over the vocabulary at the k-th decoding step192

is conditioned on hs1:N from the encoder and the193

summarized representation of previously generated194

k-1 tokens ht1:k−1 from the decoder, formulated195

as Pr(yk|y<k,x) = Pr(yk|ht1:k−1, h
s
1:N). The train-196

ing objective of Seq2Seq model architecture is the197

negative log-likelihood, written by198

L(θ) = − 1

|D|
∑

x,y∈D
log(p(y|x)) (1)199

where θ refers to trainable model parameters. To200

get a optimal output, beam search decoding (Yuan201

and Briscoe, 2016; Chollampatt and Ng, 2018) and202

its variation are also utilized (Sun et al., 2021). This203

architecture can achieve promising performance204

with a huge amount of data but will sacrifice infer-205

ence efficiency owing to the iterative decoding.206

Seq2Edits To alleviate the embarrassed situation207

of inference speed and data hungry problems in208

Seq2Seq model architecture, Seq2Edits provides209

another alternative that casts GEC into a tagging210

problem (Awasthi et al., 2019; Omelianchuk et al.,211

2020; Malmi et al., 2019) along with the non-212

autoregressive sequence prediction (Li and Shi,213

2021). Instead of directly predicting the token,214

Seq2Edits architecture first predicts the edit oper-215

ation type ei for each input token xi and then per-216

form a series of transformation operations based on217

the predicted edit to realize the grammatical output.218

The training objective of tagging is formulated as,219

C(ϕ) = − 1

|D|
∑

x∈D,e∈E
log(p(e|x)) (2)220

where ϕ corresponds to model parameters to be221

trained. This architecture can achieve competitive222

performance and faster inference speed with lim-223

ited data but requires heuristic prior and human224

efforts to obtain labeled data for the tagging task.225

2.3 Adversarial Attack 226

Recent studies on the GEC task have revealed that 227

existing Seq2Seq methods are quite vulnerable to 228

adversarial examples under the white-box setting. 229

To obtain adversarial examples, Wan et al. pro- 230

pose to first identify the weak spots of a model and 231

then replace the vulnerable tokens with two differ- 232

ent strategies. One is to create a correct-to-error 233

mapping from the GEC training set. Another is to 234

present a series of substitution rules if there is no 235

candidate in the mapping. Hereafter, we denote this 236

method as Mapping & Rules for short. There are 237

also other popular adversarial example construc- 238

tion methods for PLMs and other tasks but are less 239

explored in GEC such as word substitutions (Ma, 240

2019; Dong et al., 2021; Li et al., 2021). 241

3 Cycle Self-Augmenting Method 242

In this section, we introduce our simple Cycle 243

Self-Augmenting Method (CSA). We illustrate how 244

Self-Augmenting and Cycle Training work under 245

our settings in Section 3.1 and Section 3.2, respec- 246

tively. In the cycle training process, We present the 247

concept of regularization data for GEC, which is 248

the key to robustness against adversarial attacks. 249

3.1 Self-Augmenting 250

To enhance model robustness, existing works 251

mainly create well-crafted adversarial examples of 252

considerable magnitude for certain types of adver- 253

sarial attacks and use these data in the pre-training 254

or/and post-training stages (Wang and Zheng, 2020; 255

Li et al., 2021). Instead of carefully designing ad- 256

versarial example generation strategies for each 257

type of attack, we leverage the GEC model itself to 258

perform self-augmenting to defend against various 259

types of attack, which is more efficient and can 260

generalize well to varied GEC models. To better 261

utilize the capability of GEC models, we introduce 262

our self-augmenting mechanism in post-training. 263

Concretely, the crux of Self-Augmenting is to 264

obtain augmenting data pairs for post-training, in 265

which the detailed process is illustrated in Figure 1. 266

Given a well-trained GEC model f(·) and the orig- 267

inal training dataset D={(X,Y)}, we feed each 268

input x into f(·) to obtain the corresponded output 269

y
′

(step ①-② in Figure 1). Then, we compare the 270

predicted y
′

with the golden sentence y of input x 271

(step ③). If y
′ ̸= y, we will collect (y

′
, y) as aug- 272

menting pairs to further post-train the GEC model 273

(step ④). After processing all the pairs in the origi- 274

3

Figure 1: The overall framework of our proposed Cycle Self-Augmenting (CSA). The Self-Augmenting mechanism
correlates with step ①-④. We launch cycle training in step ⑤, along with the utilization of regularization data.

nal training dataset D, we can obtain a new dataset275

DAug, comprising of augmenting pairs.276

Intuitively, one can simply collect (x, y) as aug-277

menting pair to perform further training or collect278

(x, y
′
) for self-distillation (Mobahi et al., 2020).279

However, post-training converged GEC model with280

part of the original dataset D can lead to over-281

fitting, and self-distillation is not applicable for the282

GEC task, i.e., the target is to obtain grammatical283

outputs. Instead, utilizing (y
′
, y) for post-training284

can provide more feasible training pairs and is more285

tally with the GEC task, i.e., only part of the input286

sentence is edited. Besides, such a strategy enables287

GEC models to perform multiple refinements at288

inference by post-editing the unexpected output y
′

289

as golden sentence y. We will show the superiority290

of our self-augmenting in Section 5.2.291

3.2 Cycle Training292

To effectively utilize augmenting pairs from the293

above introduced self-augmenting process, we fur-294

ther present a cycle training strategy, which is295

sketched out in step ⑤ of Figure 1. Specifically,296

we use the self-augmenting mechanism to con-297

struct a new dataset Dk
Aug in each cycle k, where298

0 <k≤ ϵ. Thus, we can leverage ϵ augment-299

ing datasets (D1
Aug,. . . ,Dk

Aug,. . . ,Dϵ
Aug) in cycle300

training, where these datasets are divided into two301

groups for different training stages.302

In Stage I, the obtained augmenting datasets con-303

tain many unseen data pairs in the original training304

dataset, which can be simply used by conducting305

further training to improve both model performance306

and robustness. Accordingly, we adopt the follow-307

ing training process for each cycle at the early stage,308

i.e., when 0 <k≤ P:309

• Perform training on Dk
Aug until convergence. 310

• Conduct further tuning on a small high-quality 311

GEC dataset Dtune to prevent over-fitting on 312

the augmenting dataset. 313

Note that the improvement of performance and 314

robustness is not caused by merely using the small 315

dataset, which is discussed in Section 5.3. 316

Along with the model training, there are fewer 317

and fewer unseen data pairs in the augmenting 318

datasets. Simply utilizing the augmenting dataset 319

in each cycle for model training might yield over- 320

fitting on these datasets. Thus, we turn to focus on 321

these hard-to-learn data, i.e., these data pairs that 322

have not been learned after P cycles. Inspired by 323

previous work (Zhou et al., 2021) that names some 324

specific samples that are negatively associated with 325

the performance of knowledge distillation as reg- 326

ularization examples, we treat these hard-to-learn 327

data as Regularization Data for the GEC task. 328

When P ≤k< ϵ, the regularization data of the k-th 329

cycle is obtained as Dk
Reg=Dk−p+1

Aug ∩ · · · ∩ Dk
Aug. 330

In this stage (Stage II), the trained GEC model 331

from Stage I is further trained as below: 332

• Perform training on Dk
Reg until convergence. 333

• Conduct further tuning on a small high-quality 334

GEC dataset Dtune. 335

The benefits of launching further training on regu- 336

larization data are four-folds: 1) it prevents over- 337

fitting on the easy-to-learn data pairs in the aug- 338

menting datasets; 2) it can reduce model capacity 339

to improve its generalization ability and robustness; 340

3) it gives more opportunities for the model to ad- 341

dress hard-to-learn pairs; 4) it can accelerate each 342

training cycle by using fewer data pairs. More anal- 343

ysis of regularization data is given in Section 5.4. 344

4

4 Experiments345

We conduct experiments on both clean data and346

attack sets to evaluate the effectiveness of our pro-347

posed CSA method. We first present necessary348

details about datasets and evaluations, following349

with the description of baselines and concrete im-350

plementation settings of all models. We then give351

the evaluation results on clean data and attack sets.352

4.1 Datasets and Evaluations353

Train Sets Table 1 describes all the datasets that354

are utilized in model training. Following the previ-355

ous study (Omelianchuk et al., 2020), we leverage356

these datasets in two different training phases:357

• Pre-Training. In this phase, we use 9M358

pseudo parallel sentences with synthetic er-359

rors for pre-training (Awasthi et al., 2019)2.360

• Fine-Tuning. During the fine-tuning phase,361

we use the official corpora from BEA-2019362

shared task (Bryant et al., 2019)3 for fine-363

tuning, which comprises four datasets, i.e.,364

Lang-8 Corpus of Learner English (Lang-8)365

(Mizumoto et al., 2011; Tajiri et al., 2012),366

National University of Singapore Corpus of367

Learner English (NUCLE) (Dahlmeier et al.,368

2013), the First Certificate in English (FCE)369

(Yannakoudakis et al., 2011), and Cambridge370

English Write & Improve + LOCNESS Cor-371

pus (W&I+LOCNESS) (Granger, 1998; Yan-372

nakoudakis et al., 2018).373

We split out validation data by random sampling374

from the official training corpora with a ratio of375

2/98 and decompose the fine-tuning phase into376

two stages. In stage I, the model is fine-tuned on377

errorful-only sentences. In stage II, the model is378

tuned on a high-quality and more realistic dataset as379

in (Kiyono et al., 2019; Omelianchuk et al., 2020).380

Attack Sets The core of building adversarial ex-381

amples is to confuse the model. For this purpose,382

we introduce four textual adversarial attack meth-383

ods to construct different variants for each origi-384

nal test sets, including back-translation (Xie et al.,385

2018), mapping & rules (Wang and Zheng, 2020),386

antonym substitution (Ma, 2019) and synonyms387

substitution (Li et al., 2021). The construction de-388

tails of adversarial examples are as follows:389

2https://drive.google.com/open?id=
1bl5reJ-XhPEfEaPjvO45M7w0yN-0XGOA

3https://www.cl.cam.ac.uk/research/nl/
bea2019st/

Dataset #Sentences Errors (%) Usage

PIE-synthetic 9,000,000 100.0 % Pre-training

Lang-8 1,102,868 51.1 % Fine-tuning †

FCE 34,490 62.6 % Fine-tuning †

NUCLE 57,151 38.2 % Fine-tuning †

W&I+LOCNESS 34,308 66.3 % Fine-tuning ‡

Table 1: Statistics of datasets used in our experiments.
“†” denotes data used in fine-tuning stage I, while “‡”
refers to data used in both fine-tuning stage I and II.

• Back-Translation. We reverse the examples 390

from pre-training datasets to train a back- 391

translation model which can generate errorful 392

examples from a clean corpus. Then we imple- 393

ment a back-translation method variant (Xie 394

et al., 2018) which adds rβrandom to penalize 395

every hypothesis during the beam search step, 396

where r is drawn uniformly from the inter- 397

val [0, 1] and βrandom is a hyper-parameter 398

sampling from R. We follow the previous 399

work (Kiyono et al., 2019) to set βrandom = 6. 400

• Mapping & Rules. We first build a Poor 7→ 401

Good mapping from training datasets. Then, 402

we utilize the method in previous work (Wan 403

et al., 2020) to apply word substitution-based 404

perturbations to each corpus. 405

• Antonym and Synonyms Substitutions. We 406

detect the vulnerable tokens by using the 407

method proposed by Wan et al. and simply use 408

the open source tools NLPAug (Ma, 2019)4 409

to substitute opposite meaning word accord- 410

ing to WordNet antonym (Miller, 1995) or 411

substitute similar word according to Word- 412

Net/PPDB (of Hertfordshire, 2007) synonym. 413

Evaluations We report results on the test sets 414

of BEA, CoNLL-2014 (Ng et al., 2014), FCE, 415

and JFLEG (Napoles et al., 2017). We mea- 416

sure the results of CoNLL-2014 and FCE by M2 417

scorer (Dahlmeier and Ng, 2012). For JELEG re- 418

sults, we use the GLEU metric (Napoles et al., 419

2015, 2016). We report the scores measured by 420

ERRANT (Bryant et al., 2017; Felice et al., 2016) 421

for BEA-test. As the reference of the BEA-test are 422

unavailable, we report results from CodaLab5. 423

We utilize the obtained attack sets for each test 424

set to evaluate the defense capability of different 425

models. As each variant of the attack set is con- 426

structed from the original test set, we leverage the 427

4https://github.com/makcedward/nlpaug
5https://competitions.codalab.org/

competitions/20228

5

https://drive.google.com/open?id=1bl5reJ-XhPEfEaPjvO45M7w0yN-0XGOA
https://drive.google.com/open?id=1bl5reJ-XhPEfEaPjvO45M7w0yN-0XGOA
https://www.cl.cam.ac.uk/research/nl/bea2019st/
https://www.cl.cam.ac.uk/research/nl/bea2019st/
https://github.com/makcedward/nlpaug
https://competitions.codalab.org/competitions/20228
https://competitions.codalab.org/competitions/20228

Model BEA (ERRANT) CoNLL-2014 (M2) FCE (M2) JELEG

Prec. Rec. F_0.5 Prec. Rec. F_0.5 Prec. Rec. F_0.5 GLEU

Transformer (Kiyono et al., 2019) 65.5 59.4 64.2 68.9 43.9 61.8 59.4∗ 39.5∗ 54.0∗ 59.7
+ Ours (4 Cycles) 68.4 65.5 67.9 67.5 49.4 62.9 60.5 43.4 56.1 61.4

BERT-fuse (Kaneko et al., 2020) 67.1 60.1 65.6 69.2 45.6 62.6 59.8 46.9 56.7 61.3
+ Ours (3 Cycles) 68.9 64.5 68.0 69.4 49.8 64.4 64.4 46.6 59.9 62.5

BART (Katsumata and Komachi, 2020) 68.3 57.1 65.6 69.3 45.0 62.6 59.6∗ 40.3∗ 54.4∗ 57.3
+ Ours (2 Cycles) 68.8 63.4 67.7 68.8 48.6 63.5 65.2 34.4 55.3 59.4

RoBERTa(Omelianchuk et al., 2020) 68.4 60.8 66.8 68.7 47.2 62.9 61.6∗ 45.3∗ 57.5∗ 59.1∗
+ Ours (1 Cycle) 68.8 60.3 66.9 68.0 46.9 62.4 62.7 44.8 58.0 58.6

BERT(Omelianchuk et al., 2020) 71.5 55.7 67.6 72.1 42.0 63.0 66.2∗ 42.0∗ 59.4∗ 57.5∗

+ Ours (1 Cycle) 67.7 57.2 65.3 70.0 44.3 62.3 64.0 43.1 58.3 57.8

XLNet (Omelianchuk et al., 2020) 79.2 53.9 72.4 77.5 40.1 65.3 71.9∗ 41.3∗ 62.7∗ 56.0∗

+ Ours (1 Cycle) 77.8 55.0 71.8 75.3 41.6 64.8 71.5 42.7 63.1 56.5

LM-Critic (Yasunaga et al., 2021) 51.6 24.7 42.4 64.4 35.6 55.5 49.6∗ 24.6∗ 41.2∗ 51.4∗

+ Ours (2 Cycles) 67.0 46.5 61.6 65.7 47.4 61.0 58.0 39.6 53.1 59.1

Table 2: Evaluation results on clean data. The numbers labeled with “*” refer to the results tested by ourselves with
the released checkpoints from the original papers, while all the left numbers are copied from the original papers. We
also present the cycle times for each model. The blackened fonts are the optimal performance of each comparison.

same metrics to calibrate model robustness, i.e.,428

M2 scorer, GLEU metric, and ERRANT.429

4.2 Baselines and Settings430

Note that our proposed CSA method is a post-431

training strategy, which can be utilized upon any432

neural GEC model. We leverage seven cutting-433

edge models as our baselines to conduct experi-434

ments under the supervised setting. It should be435

clarified that if there exists a publicly available436

checkpoint for each baseline model, we will use437

it directly. Otherwise, we will follow the original438

settings to train a model by ourselves. Specifically,439

we carry out experiments on Transformer (Kiyono440

et al., 2019)6, BERT-fuse (Kaneko et al., 2020)7,441

BART large (Katsumata and Komachi, 2020)8,442

three model variants (RoBERTa, BERT, XLNet)443

based on large-scale pre-trained language models444

in GECToR (Omelianchuk et al., 2020)9, and the445

LM-Critic method (Yasunaga et al., 2021)10. As446

for CSA, we set max cycle times ϵ = 5 and patience447

P = 2. If the model performance does not improve448

over two consecutive cycles, the training process is449

stopped. During the post-training stage, all hyper-450

parameter settings are the same with baselines.451

6https://github.com/butsugiri/
gec-pseudodata

7https://github.com/bert-nmt/bert-nmt
8https://github.com/Katsumata420/

generic-pretrained-GEC
9https://github.com/grammarly/gector

10https://github.com/michiyasunaga/
LM-Critic

4.3 Main Results 452

GEC Results We first present the experimental 453

results on four clean sets to calibrate the influence 454

of our proposed CSA to baseline models, where the 455

detailed numbers are shown in Table 2. It can be 456

seen that our proposed simple CSA method yields 457

impressive performance improvement on four base- 458

lines, i.e., Transformer, BERT-fuse, BART, and 459

LM-Critic. For the rest three strong baselines, our 460

proposed method also does not degrade model per- 461

formance by achieving comparable scores 11. 462

Attack Results In table 3, we report the eval- 463

uation results on the attack sets. Recall that we 464

construct four variants of attack sets with different 465

methods for each original test set. To better show 466

the effectiveness of our proposed CSA method, we 467

utilize the averaged results of four attack sets for 468

each original test set, where more detailed results 469

are given in the Appendix. It can be observed that 470

our proposed simple CSA method yields robustness 471

improvement on all baseline methods. In particular, 472

our CSA leads to the improvements of 4.9 (F0.5) 473

points over BERT-fuse and 5.1 (F0.5) points over 474

the BART model on the CoNLL-2014 attack sets. 475

5 Analysis and Discussion 476

In this section, we conduct extensive studies from 477

different perspectives to better understand our CSA 478

11The released checkpoints of baselines have already been
meticulously trained on existing datasets, and any further post-
training may hurt their performance.

6

https://github.com/butsugiri/gec-pseudodata
https://github.com/butsugiri/gec-pseudodata
https://github.com/bert-nmt/bert-nmt
https://github.com/Katsumata420/generic-pretrained-GEC
https://github.com/Katsumata420/generic-pretrained-GEC
https://github.com/grammarly/gector
https://github.com/michiyasunaga/LM-Critic
https://github.com/michiyasunaga/LM-Critic

Model BEA (ERRANT) CoNLL-2014 (M2) FCE (M2) JFLEG

Prec. Rec. F_0.5 Prec. Rec. F_0.5 Prec. Rec. F_0.5 GLEU

Transformer (Kiyono et al., 2019) 21.0 48.0 23.4 34.1 39.7 34.9 29.7 34.2 30.3 45.4
+ Ours (4 Cycles) 23.7 53.2 26.4 37.7 45.5 38.9 32.5 38.8 33.5 46.5

BERT-fuse (Kaneko et al., 2020) 20.4 46.1 22.6 33.5 38.2 34.1 31.0 34.5 31.4 45.4
+ Ours (3 Cycles) 23.8 53.7 26.6 37.9 45.5 39.0 33.7 40.0 34.6 47.0

BART (Katsumata and Komachi, 2020) 20.9 44.7 23.0 34.5 38.8 35.0 30.1 31.5 30.0 43.8
+ Ours (2 Cycles) 25.0 53.9 27.7 39.1 46.1 40.1 32.1 37.5 32.8 45.8

RoBERTa (Omelianchuk et al., 2020) 24.8 52.4 27.4 38.2 44.1 39.0 33.9 39.9 34.8 46.3
+ Ours (1 Cycle) 24.9 52.7 27.5 38.7 44.5 39.5 34.3 40.3 35.2 46.5

BERT (Omelianchuk et al., 2020) 23.1 50.2 25.7 35.6 42.9 37.4 33.2 39.4 34.2 45.7
+ Ours (1 Cycle) 23.4 51.2 26.0 37.3 41.8 38.3 33.7 40.3 34.7 45.9

XLNet (Omelianchuk et al., 2020) 25.7 54.6 28.4 38.9 46.6 40.1 36.5 44.9 37.7 47.3
+ Ours (1 Cycle) 25.8 54.8 28.6 39.0 46.6 40.1 36.6 44.9 37.9 47.5

LM-Critic (Yasunaga et al., 2021) 18.6 39.0 20.5 34.5 35.9 34.5 23.6 24.7 23.5 41.1
+ Ours (2 Cycles) 24.6 52.1 27.2 41.1 46.1 41.8 31.9 36.2 32.5 46.1

Table 3: The average of evaluation results on four attack sets (i.e., each test set corresponds to four variants for
attack), where the detailed evaluation results against attack sets are given in the Appendix . We also give the cycle
times for each model. The blackened fonts indicate the optimal performance of each comparison.

method. We first compare the defense capability of479

CSA with a recently proposed defense method for480

the GEC task (Wan et al., 2020). We then conduct481

experiments to study the effects of self-augmenting,482

followed by hyper-parameter analysis and a prelim-483

inary study for regularization data. These stud-484

ies are mainly taken on CoNLL-2014, and its cor-485

related attack set constructed by the Mapping &486

Rules unless there is a clear explanation. All the487

experiments are launched on the Transformer.488

5.1 Defence Capability Comparison489

(a) Antonym (b) Synonym

(c) Mapping & Rules (d) Back-Translation

Figure 2: Comparison between our CSA and the adver-
sarial training method on four different attack sets.

To calibrate the capability of our CSA against 490

adversarial attacks, we introduce the Mapping & 491

Rules method (Wan et al., 2020) for comparison. 492

Figure 2 presents the evaluation results on four 493

test sets under the aforementioned four types of 494

adversarial attack. We can clearly observe that our 495

CSA has better defense capability than the baseline 496

model under three types of attack and achieves 497

comparable results under the Mapping & Rules 498

attack, which is also the data augmentation strategy 499

for the baseline model. In other words, our CSA 500

can achieve competitive results with the defense 501

method that uses well-crafted adversarial examples 502

at scale for the same type of attack. For other 503

attacks without specifically designed adversarial 504

training examples, our CSA achieves much better 505

model robustness. These results demonstrate the 506

effectiveness and generalization ability of our CSA. 507

5.2 The Effects of Self-Augmenting 508

As mentioned before, there are different strategies 509

during the self-augmenting process. One is to di- 510

rectly use the failed pairs (x, y) from the original 511

training datasets to re-train the model, which serves 512

as the baseline. The other is to utilize the outputs y
′

513

from the well-trained GEC model as new ungram- 514

matical input sentences to generate augmenting 515

pairs (y
′
, y), which is used in our CSA. We imple- 516

ment these two strategies under the same settings, 517

and the results on clean data are reported in table 4. 518

We find that the baseline model can improve GEC 519

7

Strategies #Cycles #Pairs CoNLL-2014 (M2)

Prec. Rec. F_0.5

x 7→ y
0 625,467 68.9 43.9 61.8
1 511,006 66.5 51.1 62.6
2 436,229 65.2 46.3 60.3

y
′
7→ y

0 625,467 68.9 43.9 61.8
1 506,572 67.2 49.4 62.6
2 263,993 67.3 49.3 62.7

Table 4: Results of two strategies for self-augmenting.
The first group refers to the strategy of using failed pairs
(x 7→ y) from the original training sets D to re-train the
model. The second group corresponds to our strategy of
using the model outputs to construct (y

′ 7→ y) pairs.

#Cycles 0 1 2 3 4 5

Clean Data 61.8 56.2 57.0 56.5 57.1 55.2
+ Ours 61.8 62.5 62.6 62.7 62.9 62.7

Attack Set 36.7 37.4 37.0 36.6 37.0 37.1
+ Ours 36.7 42.2 41.3 41.6 41.8 42.2

Table 5: Comparison between re-training the GEC
model on D ∪Dtune with the same epochs as our CSA.

performance after the first training cycle but will520

decrease model performance with one more train-521

ing cycle. As for our introduced strategy in the522

self-augmenting process, the model performance523

rises continuously after two training cycles, using524

fewer pairs than the baseline method. The reason525

behind this is the baseline method will cause over-526

fitting on the original training datasets by simply527

re-training the model with part of the same data.528

5.3 Hyper-Parameter Analysis529

Table 5 presents the results of different training cy-530

cles, which correlates with the hyper-parameters of531

ϵ. We can see that, with the increasing of training532

cycles, our CSA continuously achieves better per-533

formance than the last training cycle on the attack534

set, i.e., better robustness, with stable performance535

on the clean data. To explore whether the perfor-536

mance improvement in cycle training is from the537

introduced small dataset Dtune, we train the base-538

line model on D ∪ Dtune with the same training539

epochs as our CSA. The dramatic performance de-540

crease of baseline along with the cycle training541

proves that the performance gains are not brought542

by Dtune in the cycle training process. Table 6543

shows the influence of patience P to model per-544

formance. It can be seen that P=2 is sufficient to545

achieve competitive performance, which is used as546

the standard setting in our implementations.547

P CoNLL-2014 CoNLL-2014 (ATK)

Prec. Rec. F_0.5 Prec. Rec. F_0.5

- 67.9 44.1 61.3 34.1 39.7 34.9
2 67.2 49.4 62.6 40.6 44.3 41.3
3 68.1 48.5 63.2 40.3 43.6 40.9
4 68.2 48.9 63.2 40.6 43.7 41.2
5 68.6 48.6 63.4 40.0 43.4 40.7
6 66.2 48.9 61.8 40.2 43.2 40.8

Table 6: The influence of P to model performance. “-”
denotes baseline, and (ATK) refers to the attack set.

Reserving
Rates (%)

CoNLL-2014 (M2) CoNLL-2014 (ATK)

P R F_0.5 P R F_0.5

0 % 68.6 48.6 63.4 40.0 43.4 40.7
25 % 68.5 48.6 63.3 40.1 43.3 40.7
50 % 68.3 48.8 63.2 40.3 43.7 40.9
75 % 68.3 48.5 63.1 40.5 43.8 41.1

100 % 67.5 49.4 62.9 40.9 44.5 41.6

Table 7: The influence of regularization data amount to
model performance and defence capability.

5.4 The Influence of Regularization Data 548

We launch a preliminary experiment to show the 549

correlation between regularization data and the 550

trade-off of model performance and robustness. Ta- 551

ble 7 presents the experimental results of removing 552

different proportions of regularization data in the 553

last training cycle. It can be seen that more regular- 554

ization data can improve the model robustness but 555

suffer performance decreases on the clean data. 556

6 Conclusion 557

In this paper, we further study the robustness of ad- 558

vanced GEC models to various types of adversarial 559

attacks and put forward a simple yet very effec- 560

tive cycle self-augmenting method accordingly to 561

improve model robustness. By only utilizing self- 562

augmenting data pairs from a well-learned GEC 563

model and its original training set, our proposed 564

method can improve model performance and ro- 565

bustness without requiring well-crafted adversarial 566

examples at scale for a specific type of adversarial 567

attack. Through leveraging the regularization sub- 568

set of the self-augmenting data in the cycle training 569

process, our presented method gains additional ro- 570

bustness improvement. Experimental results on 571

seven strong baselines and four benchmark test sets 572

as well as four types of adversarial attacks confirm 573

the effectiveness of our proposed method, which 574

can generalize well to various GEC models with 575

only a few more training epochs as the extra cost. 576

8

References577

Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,578
Sabyasachi Ghosh, and Vihari Piratla. 2019. Parallel579
iterative edit models for local sequence transduction.580
In Proceedings of the 2019 Conference on Empirical581
Methods in Natural Language Processing and the 9th582
International Joint Conference on Natural Language583
Processing (EMNLP-IJCNLP), pages 4260–4270.584

Christopher Bryant, Mariano Felice, Øistein E. Ander-585
sen, and Ted Briscoe. 2019. The BEA-2019 shared586
task on grammatical error correction. In Proceedings587
of the Fourteenth Workshop on Innovative Use of NLP588
for Building Educational Applications, pages 52–75,589
Florence, Italy. Association for Computational Lin-590
guistics.591

Christopher Bryant, Mariano Felice, and Ted Briscoe.592
2017. Automatic annotation and evaluation of error593
types for grammatical error correction. In Proceed-594
ings of the 55th Annual Meeting of the Association for595
Computational Linguistics (Volume 1: Long Papers),596
pages 793–805.597

Shamil Chollampatt and Hwee Tou Ng. 2018. A multi-598
layer convolutional encoder-decoder neural network599
for grammatical error correction. In Proceedings of600
the AAAI Conference on Artificial Intelligence, vol-601
ume 32.602

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better603
evaluation for grammatical error correction. In Pro-604
ceedings of the 2012 Conference of the North Amer-605
ican Chapter of the Association for Computational606
Linguistics: Human Language Technologies, pages607
568–572.608

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.609
2013. Building a large annotated corpus of learner610
english: The nus corpus of learner english. In Pro-611
ceedings of the eighth workshop on innovative use612
of NLP for building educational applications, pages613
22–31.614

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and615
Kristina Toutanova. 2019. Bert: Pre-training of deep616
bidirectional transformers for language understand-617
ing. In Proceedings of the 2019 Conference of the618
North American Chapter of the Association for Com-619
putational Linguistics: Human Language Technolo-620
gies, Volume 1 (Long and Short Papers), pages 4171–621
4186.622

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong623
Liu. 2021. Towards robustness against natural lan-624
guage word substitutions. International Conference625
of Representation Learning.626

Huizhong Duan and Bo-June Hsu. 2011. Online627
spelling correction for query completion. In Proceed-628
ings of the 20th international conference on World629
wide web, pages 117–126.630

Mariano Felice, Christopher Bryant, and Ted Briscoe.631
2016. Automatic extraction of learner errors in esl632

sentences using linguistically enhanced alignments. 633
In Proceedings of COLING 2016, the 26th Inter- 634
national Conference on Computational Linguistics: 635
Technical Papers, pages 825–835. 636

Tira Nur Fitria. 2021. Grammarly as ai-powered english 637
writing assistant: Students’ alternative for writing 638
english. Metathesis: Journal of English Language, 639
Literature, and Teaching, 5(1):65–78. 640

Jianfeng Gao, Xiaolong Li, Daniel Micol, Chris Quirk, 641
and Xu Sun. 2010. A large scale ranker-based system 642
for search query spelling correction. In Proceedings 643
of the 23rd International Conference on Computa- 644
tional Linguistics (Coling 2010), pages 358–366. 645

Tao Ge, Furu Wei, and Ming Zhou. 2018. Fluency boost 646
learning and inference for neural grammatical error 647
correction. In Proceedings of the 56th Annual Meet- 648
ing of the Association for Computational Linguistics 649
(Volume 1: Long Papers), pages 1055–1065. 650

Sylviane Granger. 1998. Prefabricated patterns in ad- 651
vanced efl writing: Collocations and lexical phrases. 652
Phraseology: Theory, analysis and applications, 653
pages 145–160. 654

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and 655
Kenneth Heafield. 2019. Neural grammatical error 656
correction systems with unsupervised pre-training 657
on synthetic data. In Proceedings of the Fourteenth 658
Workshop on Innovative Use of NLP for Building 659
Educational Applications, pages 252–263. 660

Matthias Hagen, Martin Potthast, Marcel Gohsen, Anja 661
Rathgeber, and Benno Stein. 2017. A large-scale 662
query spelling correction corpus. In Proceedings of 663
the 40th International ACM SIGIR Conference on 664
Research and Development in Information Retrieval, 665
pages 1261–1264. 666

Jianshu Ji, Qinlong Wang, Kristina Toutanova, Yongen 667
Gong, Steven Truong, and Jianfeng Gao. 2017. A 668
nested attention neural hybrid model for grammatical 669
error correction. In Proceedings of the 55th Annual 670
Meeting of the Association for Computational Lin- 671
guistics (Volume 1: Long Papers), pages 753–762. 672

Marcin Junczys-Dowmunt, Roman Grundkiewicz, 673
Shubha Guha, and Kenneth Heafield. 2018. Ap- 674
proaching neural grammatical error correction as a 675
low-resource machine translation task. In Proceed- 676
ings of the 2018 Conference of the North American 677
Chapter of the Association for Computational Lin- 678
guistics: Human Language Technologies, Volume 1 679
(Long Papers), pages 595–606. 680

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun 681
Suzuki, and Kentaro Inui. 2020. Encoder-decoder 682
models can benefit from pre-trained masked language 683
models in grammatical error correction. In Proceed- 684
ings of the 58th Annual Meeting of the Association 685
for Computational Linguistics, pages 4248–4254. 686

9

https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406

Clare-Marie Karat, Christine Halverson, Daniel Horn,687
and John Karat. 1999. Patterns of entry and correc-688
tion in large vocabulary continuous speech recogni-689
tion systems. In Proceedings of the SIGCHI confer-690
ence on Human Factors in Computing Systems, pages691
568–575.692

Satoru Katsumata and Mamoru Komachi. 2020.693
Stronger baselines for grammatical error correction694
using a pretrained encoder-decoder model. In Pro-695
ceedings of the 1st Conference of the Asia-Pacific696
Chapter of the Association for Computational Lin-697
guistics and the 10th International Joint Conference698
on Natural Language Processing, pages 827–832.699

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu-700
moto, and Kentaro Inui. 2019. An empirical study of701
incorporating pseudo data into grammatical error cor-702
rection. In Proceedings of the 2019 Conference on703
Empirical Methods in Natural Language Processing704
and the 9th International Joint Conference on Natu-705
ral Language Processing (EMNLP-IJCNLP), pages706
1236–1242.707

Philipp Koehn and Rebecca Knowles. 2017. Six chal-708
lenges for neural machine translation. In Proceedings709
of the First Workshop on Neural Machine Translation,710
pages 28–39.711

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan712
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,713
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:714
Denoising sequence-to-sequence pre-training for nat-715
ural language generation, translation, and comprehen-716
sion. In Proceedings of the 58th Annual Meeting of717
the Association for Computational Linguistics, pages718
7871–7880.719

Piji Li and Shuming Shi. 2021. Tail-to-tail non-720
autoregressive sequence prediction for Chinese gram-721
matical error correction. In Proceedings of the 59th722
Annual Meeting of the Association for Computational723
Linguistics and the 11th International Joint Confer-724
ence on Natural Language Processing (Volume 1:725
Long Papers), pages 4973–4984.726

Zongyi Li, Jianhan Xu, Jiehang Zeng, Linyang Li, Xiao-727
qing Zheng, Qi Zhang, Kai-Wei Chang, and Cho-Jui728
Hsieh. 2021. Searching for an effective defender:729
Benchmarking defense against adversarial word sub-730
stitution. In Proceedings of the 2021 Conference on731
Empirical Methods in Natural Language Processing,732
pages 3137–3147.733

Jared Lichtarge, Chris Alberti, Shankar Kumar, Noam734
Shazeer, Niki Parmar, and Simon Tong. 2019. Cor-735
pora generation for grammatical error correction. In736
Proceedings of the 2019 Conference of the North737
American Chapter of the Association for Computa-738
tional Linguistics: Human Language Technologies,739
Volume 1 (Long and Short Papers), pages 3291–3301.740

Edward Ma. 2019. Nlp augmentation.741
https://github.com/makcedward/nlpaug.742

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil 743
Mirylenka, and Aliaksei Severyn. 2019. Encode, tag, 744
realize: High-precision text editing. In Proceedings 745
of the 2019 Conference on Empirical Methods in Nat- 746
ural Language Processing and the 9th International 747
Joint Conference on Natural Language Processing 748
(EMNLP-IJCNLP), pages 5054–5065. 749

George A Miller. 1995. Wordnet: a lexical database for 750
english. Communications of the ACM, 38(11):39–41. 751

Tomoya Mizumoto, Mamoru Komachi, Masaaki Na- 752
gata, and Yuji Matsumoto. 2011. Mining revision log 753
of language learning sns for automated japanese error 754
correction of second language learners. In Proceed- 755
ings of 5th International Joint Conference on Natural 756
Language Processing, pages 147–155. 757

Hossein Mobahi, Mehrdad Farajtabar, and Peter L 758
Bartlett. 2020. Self-distillation amplifies reg- 759
ularization in hilbert space. arXiv preprint 760
arXiv:2002.05715. 761

Mahdi Namazifar, John Malik, Li Erran Li, Gokhan 762
Tur, and Dilek Hakkani Tür. 2021. Correcting Auto- 763
mated and Manual Speech Transcription Errors Us- 764
ing Warped Language Models. In Proc. Interspeech 765
2021, pages 2037–2041. 766

Jakub Náplava and Milan Straka. 2019. Grammatical er- 767
ror correction in low-resource scenarios. In Proceed- 768
ings of the 5th Workshop on Noisy User-generated 769
Text (W-NUT 2019), pages 346–356. 770

Courtney Napoles, Maria Nădejde, and Joel Tetreault. 771
2019. Enabling robust grammatical error correction 772
in new domains: Data sets, metrics, and analyses. 773
Transactions of the Association for Computational 774
Linguistics, 7:551–566. 775

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and 776
Joel Tetreault. 2015. Ground truth for grammatical 777
error correction metrics. In Proceedings of the 53rd 778
Annual Meeting of the Association for Computational 779
Linguistics and the 7th International Joint Confer- 780
ence on Natural Language Processing (Volume 2: 781
Short Papers), pages 588–593. 782

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and 783
Joel Tetreault. 2016. Gleu without tuning. arXiv 784
preprint arXiv:1605.02592. 785

Courtney Napoles, Keisuke Sakaguchi, and Joel 786
Tetreault. 2017. Jfleg: A fluency corpus and bench- 787
mark for grammatical error correction. EACL 2017, 788
page 229. 789

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian 790
Hadiwinoto, Raymond Hendy Susanto, and Christo- 791
pher Bryant. 2014. The conll-2014 shared task on 792
grammatical error correction. In Proceedings of the 793
Eighteenth Conference on Computational Natural 794
Language Learning: Shared Task, pages 1–14. 795

University of Hertfordshire. 2007. Ppdb: Pesticide prop- 796
erties database. 797

10

https://doi.org/10.21437/Interspeech.2021-591
https://doi.org/10.21437/Interspeech.2021-591
https://doi.org/10.21437/Interspeech.2021-591
https://doi.org/10.21437/Interspeech.2021-591
https://doi.org/10.21437/Interspeech.2021-591

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem798
Chernodub, and Oleksandr Skurzhanskyi. 2020.799
Gector–grammatical error correction: Tag, not800
rewrite. ACL 2020, page 163.801

Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang.802
2021. Instantaneous grammatical error correction803
with shallow aggressive decoding. arXiv preprint804
arXiv:2106.04970.805

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-806
quence to sequence learning with neural networks. In807
Advances in neural information processing systems,808
pages 3104–3112.809

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-810
sumoto. 2012. Tense and aspect error correction811
for esl learners using global context. In Proceedings812
of the 50th Annual Meeting of the Association for813
Computational Linguistics (Volume 2: Short Papers),814
pages 198–202.815

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob816
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz817
Kaiser, and Illia Polosukhin. 2017. Attention is all818
you need. In Proceedings of the 31st International819
Conference on Neural Information Processing Sys-820
tems, pages 6000–6010.821

Zhaohong Wan, Xiaojun Wan, and Wenguang Wang.822
2020. Improving grammatical error correction with823
data augmentation by editing latent representation.824
In Proceedings of the 28th International Conference825
on Computational Linguistics, pages 2202–2212.826

Lihao Wang and Xiaoqing Zheng. 2020. Improving827
grammatical error correction models with purpose-828
built adversarial examples. In Proceedings of the829
2020 Conference on Empirical Methods in Natural830
Language Processing (EMNLP), pages 2858–2869.831

Xiaoqiang Wang, Yanqing Liu, Sheng Zhao, and Jinyu832
Li. 2021. A Light-Weight Contextual Spelling Cor-833
rection Model for Customizing Transducer-Based834
Speech Recognition Systems. In Proc. Interspeech835
2021, pages 1982–1986.836

Yu Wang, Yuelin Wang, Jie Liu, and Zhuo Liu. 2020. A837
comprehensive survey of grammar error correction.838
arXiv preprint arXiv:2005.06600.839

Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Ju-840
rafsky, and Andrew Y Ng. 2016. Neural language841
correction with character-based attention. arXiv842
preprint arXiv:1603.09727.843

Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew Y844
Ng, and Dan Jurafsky. 2018. Noising and denois-845
ing natural language: Diverse backtranslation for846
grammar correction. In Proceedings of the 2018847
Conference of the North American Chapter of the848
Association for Computational Linguistics: Human849
Language Technologies, Volume 1 (Long Papers),850
pages 619–628.851

Helen Yannakoudakis, Øistein E Andersen, Ardeshir 852
Geranpayeh, Ted Briscoe, and Diane Nicholls. 2018. 853
Developing an automated writing placement system 854
for esl learners. Applied Measurement in Education, 855
31(3):251–267. 856

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock. 857
2011. A new dataset and method for automatically 858
grading esol texts. In Proceedings of the 49th annual 859
meeting of the association for computational linguis- 860
tics: human language technologies, pages 180–189. 861

Michihiro Yasunaga, Jure Leskovec, and Percy Liang. 862
2021. Lm-critic: Language models for unsuper- 863
vised grammatical error correction. arXiv preprint 864
arXiv:2109.06822. 865

Michihiro Yasunaga and Percy Liang. 2021. Break- 866
it-fix-it: Unsupervised learning for program repair. 867
arXiv preprint arXiv:2106.06600. 868

Zheng Yuan and Ted Briscoe. 2016. Grammatical er- 869
ror correction using neural machine translation. In 870
Proceedings of the 2016 Conference of the North 871
American Chapter of the Association for Computa- 872
tional Linguistics: Human Language Technologies, 873
pages 380–386. 874

Shuai Zhang, Jiangyan Yi, Zhengkun Tian, Ye Bai, Jian- 875
hua Tao, Xuefei Liu, and Zhengqi Wen. 2021. End- 876
to-End Spelling Correction Conditioned on Acoustic 877
Feature for Code-Switching Speech Recognition. In 878
Proc. Interspeech 2021, pages 266–270. 879

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and 880
Jingming Liu. 2019. Improving grammatical error 881
correction via pre-training a copy-augmented archi- 882
tecture with unlabeled data. In Proceedings of the 883
2019 Conference of the North American Chapter of 884
the Association for Computational Linguistics: Hu- 885
man Language Technologies, Volume 1 (Long and 886
Short Papers), pages 156–165. 887

Yun Zhao, Xuerui Yang, Jinchao Wang, Yongyu Gao, 888
Chao Yan, and Yuanfu Zhou. 2021. BART Based 889
Semantic Correction for Mandarin Automatic Speech 890
Recognition System. In Proc. Interspeech 2021, 891
pages 2017–2021. 892

Helong Zhou, Liangchen Song, Jiajie Chen, Ye Zhou, 893
Guoli Wang, Junsong Yuan, and Qian Zhang. 2021. 894
Rethinking soft labels for knowledge distillation: A 895
bias-variance tradeoff perspective. arXiv preprint 896
arXiv:2102.00650. 897

Wangchunshu Zhou, Tao Ge, Chang Mu, Ke Xu, Furu 898
Wei, and Ming Zhou. 2020. Improving grammatical 899
error correction with machine translation pairs. In 900
Proceedings of the 2020 Conference on Empirical 901
Methods in Natural Language Processing: Findings, 902
pages 318–328. 903

Shengyao Zhuang and Guido Zuccon. 2021. Dealing 904
with typos for bert-based passage retrieval and rank- 905
ing. In Proceedings of the 2021 Conference on Em- 906
pirical Methods in Natural Language Processing, 907
pages 2836–2842. 908

11

https://doi.org/10.21437/Interspeech.2021-379
https://doi.org/10.21437/Interspeech.2021-379
https://doi.org/10.21437/Interspeech.2021-379
https://doi.org/10.21437/Interspeech.2021-379
https://doi.org/10.21437/Interspeech.2021-379
https://doi.org/10.21437/Interspeech.2021-1242
https://doi.org/10.21437/Interspeech.2021-1242
https://doi.org/10.21437/Interspeech.2021-1242
https://doi.org/10.21437/Interspeech.2021-1242
https://doi.org/10.21437/Interspeech.2021-1242
https://doi.org/10.21437/Interspeech.2021-739
https://doi.org/10.21437/Interspeech.2021-739
https://doi.org/10.21437/Interspeech.2021-739
https://doi.org/10.21437/Interspeech.2021-739
https://doi.org/10.21437/Interspeech.2021-739

Examples of Regularization Data

Poor: I thought it was a very good idea .
Reg: I thought it was a very good idea .
Good: I think it was a very good idea .

Poor: I hope you ’ll attend my suggestions .
Reg: I hope you ’ll follow my suggestions .
Good: I hope you ’ll act on my suggestions .

Poor: I was very frethend , but I knew , that I should do something .
Reg: I was very free , but I knew that I should do something .
Good: I was very frightened , but I knew that I had to do something .

Table 8: Examples of regularization data, where Poor, Reg and Good represent for ungrammatical sentence,
regularization data and grammatical sentence respectively. We set patience P = 10 and store augmenting dataset in
each cycle. Finally, we sample the regularization data from the intersection of those stored datasets. We summarize
three main types of regularization data. (a) The golden sentences are mislabeled as shown in the first group of the
table. (b) The augmenting data have a similar meaning with the golden sentences as shown in the second group of
the table. (c) The augmenting data are grammatically correct but lack context as shown in the third group of the
table.

Model BEA (ERRANT) CoNLL (M2) FCE (M2) JFLEG

Prec. Rec. F_0.5 Prec. Rec. F_0.5 Prec. Rec. F_0.5 GLEU

Transformer (Kiyono et al., 2019) 24.3 57.1 27.4 33.0 48.9 35.3 31.3 42.7 33.1 46.3
+ Ours 25.3 57.9 28.4 33.7 49.8 36.0 31.9 42.9 33.6 46.8

Bert-fuse (Kaneko et al., 2020) 24.2 56.6 27.3 32.6 48.2 34.9 31.8 43.1 33.6 46.6
+ Ours 25.2 58.6 28.5 33.7 50.3 36.1 32.5 44.5 34.4 47.1

BART (Katsumata and Komachi, 2020) 24.2 57.2 27.4 33.2 48.9 35.5 31.2 42.0 32.9 46.3
+ Ours 25.4 59.8 28.7 34.2 51.2 36.6 31.9 43.7 33.7 46.6

RoBERTa (Omelianchuk et al., 2020) 25.4 59.3 28.7 34.4 51.1 36.8 32.7 45.1 34.6 46.5
+ Ours 25.5 59.4 28.8 34.6 51.3 37.0 33.1 45.1 34.9 46.7

BERT (Omelianchuk et al., 2020) 24.7 58.8 28.0 33.5 50.2 35.9 32.5 45.0 34.5 46.7
+ Ours 24.9 58.7 28.2 33.8 50.6 36.2 32.8 45.7 34.8 46.8

XLNet (Omelianchuk et al., 2020) 25.8 60.0 29.1 34.4 51.8 36.9 33.8 47.5 35.8 47.5
+ Ours 25.7 60.8 29.2 34.6 52.0 37.1 34.1 47.3 36.1 47.8

lm (Yasunaga et al., 2021) 23.9 56.7 27.0 32.9 49.1 35.3 30.2 41.7 32.0 46.0
+ Ours 25.0 58.8 28.3 34.2 50.6 36.5 32.1 44.2 34.0 47.1

Table 9: Evaluation results on Back-Translation attack sets. We generate the attack sets by using Back-Translation
method as aforementioned.

12

Model BEA (ERRANT) CoNLL (M2) FCE (M2) JFLEG

Prec. Rec. F_0.5 Prec. Rec. F_0.5 Prec. Rec. F_0.5 GLEU

Transformer (Kiyono et al., 2019) 8.4 37.3 9.9 36.5 37.8 36.7 19.7 27.1 20.8 37.7
+ Ours 11.0 44.2 12.9 41.3 45.9 42.1 22.8 32.5 24.3 38.6

Bert-fuse (Kaneko et al., 2020) 7.9 36.0 9.3 36.7 37.5 36.9 19.9 27.5 21.1 37.4
+ Ours 11.3 45.5 13.3 41.5 45.0 42.1 23.9 34.3 25.4 38.6

BART (Katsumata and Komachi, 2020) 8.1 34.8 9.6 36.7 37.4 36.8 18.7 24.9 19.7 35.8
+ Ours 12.1 46.65 14.2 42.3 45.7 43.0 22.8 32.7 24.3 37.7

RoBERTa (Omelianchuk et al., 2020) 11.8 43.8 13.8 41.3 42.6 41.6 24.5 34.2 26.0 40.0
+ Ours 12.1 44.5 14.2 42.0 43.3 42.2 24.6 34.6 26.1 40.2

BERT (Omelianchuk et al., 2020) 10.8 40.9 12.7 35.6 41.6 39.9 23.9 34.0 25.4 39.0
+ Ours 11.4 42.5 13.4 40.3 43.2 40.8 24.7 34.8 26.2 39.2

XLNet (Omelianchuk et al., 2020) 13.2 46.8 15.4 42.1 45.3 42.7 27.4 39.3 29.1 40.7
+ Ours 13.4 47.3 15.7 42.2 45.9 42.9 27.4 39.4 29.2 40.8

lm (Yasunaga et al., 2021) 6.4 26.7 7.6 33.1 30.8 32.6 14.0 17.1 14.5 34.4
+ Ours 11.4 43.1 13.3 40.7 43.9 41.3 21.9 29.8 23.1 38.6

Table 10: Evaluation results on Mapping & Rules attack sets. We generate the attack sets by using Mapping & Rules
method as aforementioned.

Model BEA (ERRANT) CoNLL (M2) FCE (M2) JFLEG

Prec. Rec. F_0.5 Prec. Rec. F_0.5 Prec. Rec. F_0.5 GLEU

Transformer (Kiyono et al., 2019) 35.3 53.4 37.8 42.9 39.0 42.0 41.5 36.0 40.3 53.7
+ Ours 39.7 59.9 42.6 46.1 45.5 46.0 46.3 44.3 46.0 55.4

Bert-fuse (Kaneko et al., 2020) 34.6 50.3 36.9 41.8 36.2 40.5 46.1 37.5 44.1 53.5
+ Ours 39.4 59.5 42.3 46.5 45.8 46.3 48.3 44.0 47.4 56.3

BART (Katsumata and Komachi, 2020) 36.0 47.3 37.8 44.9 37.6 43.2 45.2 32.0 41.7 51.2
+ Ours 42.0 58.7 44.5 48.8 45.7 48.1 44.8 38.9 43.5 54.2

RoBERTa (Omelianchuk et al., 2020) 42.1 57.0 44.4 48.1 43.8 47.2 47.8 42.8 46.7 53.9
+ Ours 42.0 57.4 44.4 48.4 44.0 47.5 48.2 43.5 47.2 54.3

BERT (Omelianchuk et al., 2020) 38.8 54.5 41.1 45.9 42.3 45.1 46.6 41.9 45.6 53.3
+ Ours 38.7 55.9 41.3 46.5 44.1 46.0 46.6 43.0 45.9 53.6

XLNet (Omelianchuk et al., 2020) 43.0 60.3 45.6 48.3 47.1 48.1 50.6 49.5 50.4 55.4
+ Ours 43.1 60.3 45.7 48.4 46.7 48.1 50.8 49.5 50.5 55.5

lm (Yasunaga et al., 2021) 32.3 41.3 33.8 38.9 32.3 37.3 32.2 21.7 29.4 46.4
+ Ours 42.2 57.5 44.6 48.7 45.8 48.0 45.5 38.1 43.8 54.5

Table 11: Evaluation results on Antonym Substitutions attack sets. We generate the attack sets by using Antonym
Substitutions method as aforementioned.

13

Model BEA (ERRANT) CoNLL (M2) FCE (M2) JELEG

Prec. Rec. F_0.5 Prec. Rec. F_0.5 Prec. Rec. F_0.5 GLEU

Transformer (Kiyono et al., 2019) 15.9 44.3 18.3 24.1 33.1 25.5 26.3 31.0 27.1 43.8
+ Ours 19.3 50.7 22.1 29.6 40.6 31.3 28.8 35.3 29.9 45.1

Bert-fuse (Kaneko et al., 2020) 14.8 41.4 17.0 22.7 31.0 24.0 26.2 29.8 26.9 44.0
+ Ours 19.3 51.1 22.1 29.7 40.9 31.4 30.1 37.0 31.3 45.8

BART (Katsumata and Komachi, 2020) 15.1 39.4 17.3 23.1 31.2 24.4 25.1 27.0 25.5 41.8
+ Ours 20.5 50.5 23.3 30.9 41.8 32.6 28.8 34.5 29.8 44.5

RoBERTa (Omelianchuk et al., 2020) 19.8 49.3 22.5 28.9 38.8 30.5 30.7 37.3 31.8 44.6
+ Ours 19.9 49.4 22.6 29.6 39.3 31.1 31.2 38.1 32.4 44.8

BERT (Omelianchuk et al., 2020) 18.2 46.7 20.8 27.3 37.3 28.8 29.9 36.6 31.1 43.6
+ Ours 18.6 47.8 21.2 28.7 29.3 30.3 30.5 37.6 31.7 43.8

XLNet (Omelianchuk et al., 2020) 20.8 51.1 23.6 30.7 42.0 32.5 34.0 43.2 35.5 45.7
+ Ours 20.8 50.9 23.6 30.7 41.9 32.4 34.1 43.2 35.6 45.9

lm (Yasunaga et al., 2021) 11.7 31.4 13.4 33.0 31.3 32.7 17.8 18.4 17.9 37.7
+ Ours 19.7 49.1 22.4 40.7 43.9 41.3 28.1 32.7 29.0 44.2

Table 12: Evaluation results on Synonyms Substitutions attack sets. We generate the attack sets by using Synonyms
Substitutions method as aforementioned.

14

