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ABSTRACT

Compositional generalization is the algebraic capacity to understand and produce
large amount of novel combinations from known components. It is a key element of
human intelligence for out-of-distribution generalization. To equip neural networks
with such ability, many algorithms have been proposed to extract compositional
representations from the training distribution. However, it has not been discussed
whether the trained model can still extract such representations in the test distribu-
tion. In this paper, we argue that the extraction ability does not transfer naturally,
because the extraction network suffers from the divergence of distributions. To
address this problem, we propose to use an auxiliary reconstruction network with
regularized hidden representations as input, and optimize the representations during
inference. The proposed approach significantly improves accuracy, showing more
than a 20% absolute increase in various experiments compared with baselines.
To our best knowledge, this is the first work to focus on the transferability of
compositionality, and it is orthogonal to existing efforts of learning compositional
representations in training distribution. We hope this work will help to advance
compositional generalization and artificial intelligence research. The code is in
supplementary materials.

1 INTRODUCTION

Human intelligence (Minsky, 1986; Lake et al., 2017) exhibits compositional generalization, the
algebraic capacity to understand and produce large amount of novel combinations from known
components (Chomsky, 1957; Montague, 1970). This capacity helps humans to recognize the world
efficiently and to be imaginative. It is also beneficial to design machine learning algorithms with
compositional generalization skills. Current neural network models, however, generally lack such
ability. Compositional generalization is a type of out-of-distribution generalization (Bengio, 2017),
where the training and test distributions are different. A sample in such a setting is a combination of
several components, and the generalization is enabled by recombining the seen components of the
unseen combination during inference. In the image domain, an object is a combination of many parts
or properties. In the language domain, a compound word is a combination of multiple words. As an
example, we consider two digits are overlapped (Figure 1). Each digit is a component, and it appears
in training. A test example has a new combination of two digits.

The main approach for compositional generalization is to learn compositional representations (Ben-
gio, 2013), which contain several component representations. Each of them depends only on the
underlying generative factor, and does not change when other factors change. We call this the
compositionality property, and will formally introduce in Section 3. In the digit example, this means
that the representation of one digit does not change when the other digit changes.

Multiple approaches have been proposed to learn compositional representations in the train distribu-
tion. However, little discussion has focused on whether the model can still extract the representations
in the test distribution. We find that the extraction ability does not transfer naturally, because the
extraction network suffers from the divergence of distributions (Bengio, 2017; Pleiss et al., 2020), so
that each extracted representation shifts away from the corresponding one in training. Our experiment
on the digit example shows that the accuracy drops from 89.6% in training to 49.3% in test (Table 1
in Section 5).

To address the problem, we hope each representation is consistent with the training one while
reflecting the test sample. We use an auxiliary network, which has hidden representations as inputs,
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(a) Training samples (b) Test samples

Figure 1: Examples of compositional generalization with overlapping digits. Each sample is a
horizontal block with three images and two digits. The middle image X is input and the right two
digits Y = Y1, Y2 are output. The left two images X1, X2 are hidden components. X1 is in its
original form, and X2 is flipped over left-top to right-bottom diagonal. The sum of the digits is even
in train, and odd in test. We hope to learn a prediction model in training, and transfer it to test.

and the original input as output. For a test sample, we regularize each hidden representation in
its training manifold, and optimize them to recover the original input. Then we use the optimized
representations for prediction. Experimental results show that the proposed approach has more than a
20% absolute increase in various experiments compared to baselines, and even outperforms humans
on the overlapping digit task. Our contributions can be summarized as follows.

• We raise and investigate the problem of transferability of compositionality to test distribution.
This work is orthogonal to many efforts of learning compositionality in training distribution.

• We propose to address the problem by using an auxiliary reconstruction network with regu-
larized hidden representations as input, and optimize the representations during inference.

• We empirically show that the transferability problem exists and the proposed approach has
significant improvements over baselines.

2 RELATED WORK

Compositional generalization (Chomsky, 1957; Montague, 1970) is critical in human cognition (Min-
sky, 1986; Lake et al., 2017; Johnson & et al, 2017; Higgins & et al, 2018; Lake et al., 2019). It helps
humans to understand and produce large amount of novel combinations from known components.
Broadly speaking, compositional generalization is a type of out-of-distribution (o.o.d.) transferring or
generalization, which is also called domain adaptation (Redko et al., 2020) or concept drift (Gama
et al., 2014). This is different from traditional i.i.d. setting, where the training and the test distributions
are identical. The transferring requires prior knowledge of how the distribution is changed, and
compositional generalization has a particular form of such change, as mentioned in the later section.

Compositional generalization is also a desirable property for deep neural networks. Human-level com-
positional learning (Marcus, 2003; Lake & Baroni, 2018) has been an important open challenge (Yang
et al., 2019; Keysers & et al, 2020), although there is a long history of studying compositionality in
neural networks. Classic view (Fodor & Pylyshyn, 1988; Marcus, 1998; Fodor & Lepore, 2002) con-
siders conventional neural networks lack systematic compositionality. With the breakthroughs in deep
neural networks, there are more contemporary attempts to encode compositionality in deep neural
networks. Compositionality in neural networks is actively explored for systematic behaviour (Wong
& Wang, 2007; Brakel & Frank, 2009), counting ability (Rodriguez & Wiles, 1998; Weiss et al.,
2018) and sensitivity to hierarchical structure (Linzen et al., 2016). Researchers have also proposed
multiple related tasks (Lake & Baroni, 2018; Loula et al., 2018; Lake et al., 2019) and methods (Lake
et al., 2017; Lake & Baroni, 2018; Loula et al., 2018; Kliegl & Xu, 2018; Li et al., 2019; Lake, 2019;
Gorden et al., 2020) for learning compositionality in training distribution. Another line of related
work is independent disentangled representation learning (Higgins et al., 2017; Burgess et al., 2018;
Kim & Mnih, 2018; Chen et al., 2018; Kumar et al., 2017; Hsieh et al., 2018; Locatello et al., 2019;
2020). Its main assumption is that the expected components are statistically independent in training
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data. This setting does not have transferring problem in test, because all combinations have positive
joint probabilities in training (please see Section 3).

More recently, there have been approaches for better compositional learning in NLP tasks by
elaborating RNN models (Bastings et al., 2018), by using pointer networks (Kliegl & Xu, 2018),
or by using two representations of a sentence (Russin et al., 2019; Li et al., 2019). In these tasks,
the input can be divided into words, which have consistent information in different distributions.
However, such property is not always available, e.g. the overlapping digits. In this paper, we propose
to acquire the compositional representations with optimization during inference. We will discuss
more in the following sections.

3 COMPOSITIONALITY AND TRANSFERABILITY

In this section, we describe compositionality as a model property. We then argue that compositionality
may not transfer to test distribution, and discuss ideas of the proposed approach.

Compositionality Compositional generalization has different training and test distributions. Sam-
ples in both training and test data are combinations of K components. For example, in Figure 1,
input X has two digits X1, X2, and output Y has corresponding labels Y1, Y2. While a test sample’s
combination does not appear in training, each component of the test sample appears in training.

A key for compositional generalization is to have compositional representation, which has multiple
component representations. Each component representation corresponds to an underlying input
component, and it does not change when other components change. We call this property as
compositionality. A compositional representation is computed from an entangled input, and the
extraction network needs to output correct component representations. If the extraction network
transfers to test distribution, the representations can be correctly extracted in test, so that the
compositional generalization is enabled by recombining them.

Transferability As mentioned above, to enable compositional generalization, there is an assump-
tion that the property of compositionality should transfer to the test distribution. Since X1, . . . , XK

are entangled, the model has the entire X as input. However, input X has different distributions in
training and test, so the extraction network suffers from the divergence of distributions (Bengio, 2017;
Pleiss et al., 2020). Hence, even if the model is trained to fit the compositionality property in the
training distribution, the property is not guaranteed to transfer to the test distribution.

We propose to obtain compositional representations not from the extractor but reversely from an
auxiliary network. We extract compositional representations with optimization, and introduce
regularization to make each hidden representation in the corresponding training manifold. We then
use the optimized hidden representation for prediction. More details are provided in the next section.

4 APPROACH

In this section, we introduce the proposed approach from model architecture, training and inference
perspectives. The architecture contains three modules, trained with routine end-to-end optimization.
The inference, different from conventional procedure, includes three steps: extracts initial hidden
representations; optimizes hidden representations as module input; predicts output. Figure 2 contains
overall flowcharts, and Algorithm 1 is a summary for the approach. We describe details here.

4.1 MODEL ARCHITECTURE

The model takes a sample with input X and label Y . We have a representation extractor g with
parameter φ, which takes X as input, and outputs K hidden representations H = H1, . . . ,HK : H =
g(X;φ). We also have a prediction network f with parameter θ, which takes hidden representations
H as input, and outputs Ŷ : Ŷ = f(H; θ). These networks can be some existing networks for
compositionality learning. In addition to them, we have an auxiliary network h with parameters ψ,
which takes hidden representations H as input, and combines them to output X̂: X̂ = h(H;ψ).
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g(X;φ)

h(H;ψ)

f(H; θ)

(a) Training flowchart. The three mod-
ules are trained with end-to-end opti-
mization.

X H X H H Y
g(X;φ)

h(H;ψ)

f(H; θ)

(b) Inference flowchart. (Left) initial hidden representations extrac-
tion. (Middle) optimization of hidden representations as module
input. (Right) output prediction.

Figure 2: Flowcharts of the proposed approach. X is input, Y is output, and H is hidden representa-
tion. The architecture has three modules: g, h, f .

Algorithm 1 The proposed approach for training (left) and inference (right). α, β, γ, η are hyper
parameters. K is the number of components. M is the number of instances in memory.

Training sample: X,Y
1: H = H1, . . . ,HK = g(X;φ)
2: H ′ = H + ηε, ε ∈ N (0, I)

3: Ŷ = f(H ′; θ), X̂ = h(H ′;ψ)

4: Ltrain = CE(Y, Ŷ ) +αL2(X, X̂) + βL2(H)

5: θ̂, φ̂, ψ̂ = argminθ,φ,ψ Ltrain(X,Y, θ, φ, ψ)

6: Memm = g(Xm; φ̂),m = 1, . . . ,M

Inference sample: X
1: H init = g(X; φ̂)

2: X̂ = h(H; ψ̂)

3: Lmanf(H) =
∑K
k=1 minm L2(Hk,Memm

k )

4: Linfer(X,H) = L2(X, X̂) + γLmanf(H)

5: Ĥ = argminH Linfer(X,H), H0 = H init

6: Ŷ = f(Ĥ; θ̂)

4.2 TRAINING

In training, we sequentially use the extractor g and predictor f , by setting the output of the extractor
H as input of the predictor. We have a loss Loriginal (containing regularization terms) , such as cross
entropy: CE(Y, Ŷ ), to train a model with compositionality by existing algorithms.

On top of that, we train ψ with H as inputs and X̂ as output. We set auxiliary loss as the difference
(L2 distance) between X and X̂: Lauxiliary = L2(X, X̂). We also regularize the L2 norm of H ,
Lhidden = L2(H), and add noise, H ′ = H + ηε, ε ∈ N (0, I), to avoid remembering X . η is a hyper
parameter. The whole train loss Ltrain is the combination of the original loss, auxiliary loss Lauxiliary,
and regularization Lhidden, with coefficients α, β.

Ltrain = Loriginal + αLauxiliary + βLhidden

We train the model in end-to-end manner. This can be a standard training for neural networks.

θ̂, φ̂, ψ̂ = argmin
θ,φ,ψ

Ltrain(X,Y, θ, φ, ψ)

After training, we store hidden representations for M training samples. They are used to restrict test
representation manifold during inference.

Memm = g(Xm; φ̂), ∀m = 1, . . . ,M

4.3 INFERENCE

We use optimization to acquire hidden representations during inference. Given a test sample X , the
model predicts its output Ŷ . We use the auxiliary network h(H; ψ̂) to search for hidden represen-
tations H so that h can output X̂ that is close to the original intput X . This can be achieved by
optimization on H with auxiliary loss Lauxiliary. The initial value H init is the output of extractor g:
H init = g(X; φ̂).

We also add a manifold regularization term Lmanf to constrain each hidden representation to lie in the
corresponding training manifold. For a test sample, we compute the minimum of L2 distance between
each of its hidden representation Hk and the corresponding representations in memory Memm

k . We
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then use the sum of the distances as regularization.

Lmanf(H) =

K∑
k=1

min
m=1,...,M

L2(Hk,Memm
k )

Inference loss Linfer is the combination of auxiliary loss and the regularization, with γ as a coefficient.

Linfer(X,H) = Lauxiliary(X, X̂) + γLmanf(H)

Then, we obtain the hidden representations by optimization.

Ĥ = argmin
H

Linfer(X,H), H0 = H init

We get prediction from the optimized hidden representations: Ŷ = f(Ĥ; θ̂).

5 EXPERIMENTS

In this section, we show examples that, given a model with compositionality in training distribution,
the compositionality does not transfer to test distributions, and how the proposed approach is applied
to these cases. As our focus is orthogonal with learning compositional model in training distribution,
we obtain this model by directly providing true labels for each compositional component during
training. Then we evaluate the transferability to test distribution.

Since this is the first work for the transferability problem of compositionality, we do not have previous
baselines, so that we use standard deep neural network models as baselines, and also compare with
variations of the proposed approach. The main changes of the proposed approach include using noise,
auxiliary network and manifold regularization. A variation removes one of these changes, so it is
also an ablation experiment. The details of hyper parameters and experiment settings can be found in
Appendix A. For all the experiments, we use accuracy as metric. A prediction is correct if and only if
all the components are correctly predicted. We repeat each experiment five times and report mean
and variance.

Overlapping digits Compound words Colored digits
Method Test dist. Train dist. Test dist. Train dist. Test dist. Train dist.
Human 10.0 ± 7.7 - - - - -
Standard DNN 49.3 ± 0.9 89.6 ± 0.3 27.0 ± 6.7 100.0 ± 0.0 48.8 ± 4.3 99.0 ± 0.2
Variation -noise 44.2 ± 0.9 79.8 ± 0.9 11.3 ± 6.2 100.0 ± 0.0 37.7 ± 4.0 96.9 ± 0.6
Variation -auxiliary 51.1 ± 0.7 88.7 ± 1.1 46.8 ± 3.7 100.0 ± 0.0 10.6 ± 3.5 98.7 ± 0.3
Variation -manifold 60.8 ± 3.7 69.8 ± 2.3 51.9 ± 3.3 99.8 ± 0.5 81.8 ± 1.4 92.4 ± 1.0
Proposed 69.4 ± 0.3 81.1 ± 1.0 51.2 ± 3.0 100.0 ± 0.0 91.2 ± 0.6 96.2 ± 0.4

Table 1: Evaluation accuracy (%). We see that the proposed method has significant improvement
over the standard DNN on three datasets and outperforms human on overlapping digit dataset.

5.1 EXPERIMENTS ON OVERLAPPING DIGITS

The first experiment is on overlapping hand written digit recognition, as shown in Figure 1. We
construct the dataset from MNIST (LeCun et al., 1998). A sample is made by overlapping and taking
the average of two original images, the first one in its original form, and the second flipped over up-left
to down-right diagonal. The output is a vector of the two labels Y = Y1, Y2 (not exchangeable). Each
original label has 10 possible values, so the output has 100 possible values. To evaluate compositional
generalization, we use different distributions in training and test. In train, the sum of the two labels is
even, i.e. (Y1 + Y2) mod 2 = 0. In test, the sum is odd.

As a baseline, we use a standard neural network with two sub networks, each for an output. Each of
the network is a three layer convolutional neural network. We train the model with cross entropy on
both outputs.

The proposed method uses an auxiliary network that takes hidden layer as input and outputs the
reconstruction of the original input. The auxiliary network has two sub-networks each with one
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Input Outputs Hidden
januarymarch 0, 2 january march
februaryoctober 1, 9 february october
januaryfebruary 0, 1 january february
augustmay 7, 4 august may

Table 2: Examples of compound word experi-
ments. The output labels align with corresponding
hidden words. Upper is train, lower is test.

Figure 3: Examples of input for colored digits
experiments. Output is the digit label and color
label. Upper is train, lower is test.

hidden representation as input. Each sub-network is a three layer trans-convolutional neural network,
and we average the outputs to recover the original input. We use L2 loss as the auxiliary loss.

We also collect human performance data through crowd sourcing. There are 27 participants, and each
person works on 20 fixed samples randomly selected from test data. Please refer to Appendix B for
more details.

The results in Table 1 (left) show that the proposed method has significant improvement over the
baseline by about 20% absolute increase, and it also outperforms humans. The ablation study shows
that performances drop in the experiments, indicating that all the modifications in the proposed
approach are necessary to achieve the result.

5.2 EXPERIMENTS ON COMPOUND WORDS

We also conduct experiments for language processing. Language has natural units of words, which
have consistent information across different distributions. So we design a setting that we cannot use
this property. We consider a problem that converts a compound word to two words. We construct
compound words from two month names (January to October), e.g. “julyfebruary”. The output label
is the zero-based index of the month (0 for January). We have each character as an input unit, and
assign a one-hot representation to it. Other problem settings are the same as previous one. Please see
Table 2 for more examples.

In baseline, We use two feed forward neural networks, each for an output. For the auxiliary network,
we also use two feed forward neural networks, and average their outputs. Each feed forward network
has three hidden layers. The training and other settings for baseline, proposed approach and ablations
are the same as the previous experiment.

The results listed in Table 1 (middle) demonstrate that the proposed method is significantly better
than the baseline by around 24% absolute increase. We find removing manifold regularization in
ablation study shows slight improvement over the proposed approach. Other ablation experiments
have significant reductions. This might be because regularizing manifold is not important when
inputs (characters) are discrete.

5.3 EXPERIMENTS ON COLORED DIGITS

We also explore the capability of the proposed approach to another hand written digit problem with
different types of components: digits and colors. We construct the dataset from MNIST (LeCun et al.,
1998) by changing the color of digits. We use digit label Y1 as a component (0-9), and color label
Y2 as another (0-2). Color label is 0, 1, 2 for red, blue, green, respectively. In training, we use label
combinations with: Y1 mod 3 6= Y2. In test, we use the rest of the combinations. Please refer to
Figure 3 for examples.

We use two compositional neural networks for each output, respectively. Each network has three
hidden layers. For the auxiliary network, we concatenated the hidden representation as input, and use
a three layer trans-convolutional neural network. Other settings for the methods and ablation are the
same as the overlapping digit experiment.

The results shown in Table 1 (right) demonstrate that the proposed method is significantly better
than the baseline by more than 40% absolute increase. It also outperforms the ablations, indicating
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Figure 4: Out-of-distribution problem has differ-
ent distributions in training and test. We hope to
learn a model in training distribution (blue), and
use it in test distribution (orange).
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Figure 5: Transfer Error Rate (TER) during in-
ference optimization. 100% is upper bound by
definition. 50% means errors are balanced for
in-distribution and out-of-distribution.

that all the modifications are necessary. Among them, auxiliary network contributes the most to the
performance improvement.

6 DISCUSSIONS

In this section, we perform visualization and error analysis to better understand the experimental
results and the behavior of the proposed approach.

6.1 DISTRIBUTION VISUALIZATION

We visualize hidden representations of both baseline and the proposed approach for overlapping
digit experiments (Figure 6). We use t-SNE (Maaten & Hinton, 2008) to reduce each of two hidden
representations to one dimension, and jointly plot them along horizontal and vertical coordinates,
respectively. Training samples are blue, and test samples are orange.

Our expectation is a chess board like distribution, similar to the true underlying distribution (Figure 4).
Note that though there are 10 labels, the expected results may not be 10× 10 colored blocks, because
the labels, along with the representation, may not be in order (e.g. switching label 5, 6 reduces two
blocks lines), and the first and the second hidden representations may differ for the same digit.

We find the visualization of the proposed approach (Figure 6b) is closer to the expectation than
the baseline one (Figure 6a). The proposed approach has less empty areas, indicating that it can
recombine the components in the out-of-distribution setting. This analysis demonstrates that the
proposed approach works in the expected way.

6.2 SAMPLE VISUALIZATION

We also hope to visualize concrete samples for the proposed approach. Since we have the auxiliary
network with two sub-networks for each hidden component representation, we visualize their outputs,
and compare with the ground-truth (Figure 7). The result shows that the original input and hidden
components are reasonably recovered for both training and test samples. This means that the proposed
approach is able to extract information for each component in training distribution, and transfer the
ability in test distribution.

6.3 TRANSFER ERROR ANALYSIS

We analyze errors to show that the inference optimization process helps addressing the transfer
problem. When the model makes mistakes in test, the predicted output may correspond to in-
distribution or out-of-distribution label pairs. We investigate how frequent errors are associated with
the distribution transfer. We define a metric of Transfer Error Rate (TER) to measure this. It is the
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(a) Baseline approach (b) Proposed approach

Figure 6: Visualization of hidden representations. Each representation is reduced to one dimension
via t-SNE (Maaten & Hinton, 2008). We plot them jointly, training in blue, and test in orange. The
proposed approach (b) is close to expected chess board like result, similar to Figure 4.

Train samples Test samples

Figure 7: Visualization for the proposed approach. The first row is ground truth. The second row is
recovered images from auxiliary network. The first column is the overlapping image. The second and
third columns are the images for the first and the second components, respectively. The results show
that the proposed approach is able to learn and transfer the ability to extract correct components.

number of errors predicted to be in wrong distribution, over all errors. In this setting, the sum of labels
is odd in test, and even in training, so TER is the number of errors with even predicted label sum over
all errors. If this rate is high (100% is upper bound by definition), it means that most of errors are
associated with transfer. If it is around 50%, it means that the errors are balanced in distributions.

TER is 89.5±0.7% for baseline, and 68.3±2.8% for the proposed approach, with 500 test samples.
Also, before the inference optimization in the proposed approach, the value is 88.8±2.0%. The
results show that the baseline has most of the errors to be transfer error, and the propose approach
reduces it significantly. Also, the reduction is during optimization in inference, because the value is
close to baseline before optimization. This indicates that the proposed approach is effective to reduce
TER, and optimization is an important factor for it. Please refer to Figure 5 for more details.

7 CONCLUSION

In this paper, we discuss our finding that compositionality does not transfer naturally from training to
test data distributions. We further propose to address this problem with an auxiliary reconstruction
network and a regularized optimization procedure during the inference stage. Experimental results
show that the proposed approach has more than 20% absolute increase in various experiments
comparing with baselines, and even outperforms human on the overlapping digit recognition task.
We hope this work would reshape our thoughts on transferability of compositionality and help to
advance compositional generalization and artificial intelligence research.
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A EXPERIMENT SETTINGS

A.1 EXPERIMENTS ON OVERLAPPING DIGITS

The data of overlapping digits experiment are generated from MNIST dataset (LeCun et al., 1998),
which contains 60,000 training data and 10,000 test data. We use the original training data in training
and the original test data in test. In training, we use the combinations with even label sum. In test, we
use the combinations with odd label sum (evaluation on test distribution). As a reference, we also use
the combinations with even label sum (evaluation on training distribution).

Each input image has a shape of 28× 28× 3 for height, width and depth. Extraction network g(·;φ)
has two convolutional neural sub-networks. Each of them has three convolutional layers. The first
convolutional layer has 3 × 3 kernel and 1 × 1 strides with 32 depth and ReLU activation. It is
followed by a max pooling layer with 2× 2 kernel and 1× 1 strides. The second convolutional layer
has 3×3 kernel and 1×1 strides with 64 depth and ReLU activation. Then the representation is flatten
and fed to a fully connected neural network with 32 hidden nodes and linear activation. Prediction
network f(·; θ) has a single layer fully connected neural network with Softmax activation for each
pair of hidden representation and output. Auxiliary network h(·;ψ) has two trans-convolutional
neural networks. A hidden representation is converted to 7× 7× 32 representation (width, height,
depth) by a fully connected neural network with ReLU activation. The first trans-convolutional layer
has 3× 3 kernel and 2× 2 strides with 64 depth, SAME padding and ReLU activation. The second
trans-convolutional layer has 3× 3 kernel and 2× 2 strides with 32 depth, SAME padding and ReLU
activation. The third trans-convolutional layer has 3× 3 kernel and 1× 1 strides with 1 depth, SAME
padding and linear activation.

For the hyper parameters, we use α = 1, β = 0.3, γ = 0.03, η = 1, M = 500. In training
optimization, we use Adam optimizer (Kingma & Ba, 2014) for 1,000 steps with batch size 500 and
learning rate 0.001. In inference optimization, we also use Adam optimizer for 100 steps with batch
size 500 and learning rate 0.3. We find the memory size M does not change the result significantly.
We have 69.0±0.6% for M = 100, 68.2±1.0% for 300, 69.4±0.3% for 500 (reported), 69.6±0.5%
for 700 and 69.9±0.4% for 900 (Figure 8).

Figure 8: Evaluation accuracy for different memory sizes in the proposed method.

A.2 EXPERIMENTS ON COMPOUND WORDS

In the compound words experiment, we have inputs with different lengths. We first patch an additional
character symbol to make all inputs the same length of 18. Then, we convert each character to a one-
hot representation with size 27. we use three layer fully connected neural networks as sub-networks
for extractor. The input is flatten and fed to each sub-network. The first layer has 96 hidden nodes
with ReLU activation. The second layer has 64 hidden nodes with ReLU activation. The third layer
has 32 hidden nodes with linear activation. Prediction network is a single layer fully connected
network with Softmax activation for each pair of hidden representation and output. The auxiliary
network also has two three layer fully connected sub-networks. The first layer has 64 hidden nodes
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with ReLU activation. The second layer has 96 hidden nodes with ReLU activation. The third layer
has 486 hidden nodes with linear activation. Then the nodes are reshaped to 18× 27.

For the hyper parameters, we use α = 1, β = 0.1, γ = 0.01, η = 1, M = 500. In training
optimization, we use Adam optimizer for 1,000 steps with batch size 500 and learning rate 0.001. In
inference optimization, we also use Adam optimizer for 100 steps with batch size 500 and learning
rate 0.3.

A.3 EXPERIMENTS ON COLORED DIGITS

The data for colored digits experiment are created from MNIST dataset. Each input image is in
shape of 28 × 28 × 3 for height, width and depth. The extractor has two sub-networks, each has
three convolutional layers. The first convolutional layer has 3× 3 kernel and 1× 1 strides with 32
depth and ReLU activation. A max pooling layer follows it with 2× 2 kernel and 1× 1 strides. The
second convolutional layer has 3× 3 kernel and 1× 1 strides with 64 depth and ReLU activation.
Then the representation is flatten and fed to a fully connected neural network with 32 hidden nodes
with linear activation. Prediction network has a fully connected network for each pair of hidden
representation and output with Softmax activation. For auxiliary network, we first concatenate the
hidden representations to have 64 nodes. It is then converted to 7 × 7 × 32 representation (width,
height, depth) by a fully connected neural network with ReLU activation. The first trans-convolutional
layer has 3× 3 kernel and 2× 2 strides with 64 depth, SAME padding and ReLU activation. The
second trans-convolutional layer has 3× 3 kernel and 2× 2 strides with 32 depth, SAME padding
and ReLU activation. The third trans-convolutional layer has 3× 3 kernel and 1× 1 strides with 3
depth, SAME padding and linear activation.

For the hyper parameters, we use α = 1, β = 0.3, γ = 0.03, η = 1, M = 500. In training
optimization, we use Adam optimizer for 1,000 steps with batch size 500 and learning rate 0.001. In
inference optimization, we also use Adam optimizer for 100 steps with batch size 500 and learning
rate 0.3.

B CROWD SOURCING FOR HUMAN PERFORMANCE

We collect data on human performance through crowd-sourced survey. The survey has training and
test sections. We select 20 images uniformly at random from the training distribution as training data.
We also select 20 images uniformly at random from the test distribution as test data (Figure 9). In
the training section we state that each picture is an overlap of two pictures containing two numbers.
Then we ask survey takers to discover the rule through the training examples before they answer
questions. In the test section we put up test images, and two multiple-selection (0-9) list boxes under
each image. Then we ask the survey takers to identify the correct answers. In this survey we had 27
responses. The mean test accuracy is 10.0% with standard deviation of 7.7%.

Figure 9: Test samples and corresponding component images for crowd sourcing. Each sample is a
horizontal block with three images. The left two images are hidden components. The right image is
the overlapping of them. Only the overlapping image is shown to participants.
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