Equivariant Modelling for Catalysis on 2D MXenes
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Abstract

Merging advanced computations with machine learning, we aim to accelerate the
exploration of catalytic behaviour in novel materials. We focus on two-dimensional
(2D) TipCT, MXenes, whose versatile surface chemistry makes them particu-
larly compelling candidates for catalysis. However, resolving their composition
and structure under realistic conditions requires going beyond the systems typi-
cally studied with density functional theory (DFT), as the computational cost of
such calculations limits accessible system sizes and timescales, calling instead
for more efficient approaches. To address this challenge, we generate a compre-
hensive dataset of 50,000 DFT calculations for training and 10,000 for testing,
encompassing both TioCT, MXene configurations and molecular systems, along
with an augmented dataset where systems are artificially repeated to investigate
how well models generalise to larger systems. Employing advances in geometric
deep learning, we train and validate an equivariant (i.e. symmetry-aware) model
(EquiformerV?2) that accurately predicts atomic forces and formation energies —
quantities that DFT must repeatedly compute for structural and catalytic investi-
gations — for these 2D materials. This combined DFT-ML framework achieves
computational acceleration of the order ~103-10* (on a CPU) while maintain-
ing DFT-level accuracy (~+45 meV/A for forces and ~+6 meV for per-atom
energies), paving the way for more efficient investigations of MXene catalytic
behaviour. Moreover, we confirm that the total energy prediction error of the model
grows linearly with the number of atoms in an input system, while the force error
remains the same, which, along with the equivariant model design, is a necessity
for a robust model. The dataset and the trained models with the code are available
athttps://github.com/CataliUst.

1 Introduction

A central challenge in computational catalysis is balancing accuracy and efficiency. Density functional
theory (DFT) provides a reliable description of surface chemistry, delivering energies and atomic
forces that can be used to model molecule-surface interactions and reaction pathways. However,
the computational cost of obtaining such data restricts simulations to relatively small systems and
short timescales — far from resembling realistic operating conditions of catalysts. This limitation
is particularly problematic because catalysts are inherently dynamic: their structure and reactivity
evolve under reaction conditions, and idealised models may risk missing the relevant chemistry.

Machine learning (ML) interatomic potentials (MLIP) [1]], often within the framework of geometric
deep learning (GDL) [2, 3], offer a promising way forward by approximating Density functional theory
(DFT)-calculated energies and forces with near-DFT accuracy while operating orders of magnitude
faster [4H7]]. This facilitates the study of catalytic systems under more realistic conditions, helping
to bridge the gap between idealised DFT models and experimental environments. Such simulations
can, in turn, identify structural motifs and environments that are truly representative, guiding more
focused and accurate mechanistic studies at the DFT level. While the existing benchmarks for related
catalysis problems [9,|10] involve metal oxides and metal-intermetallics, another group of materials
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Figure 1: Types of (a) systems and (b) DFT calculations included in the dataset. It comprises DFT
calculations of five different molecules adsorbed on TioCT,, MXenes with varying surface termination
configurations (denoted T,). The calculations include geometry optimisations, reaction pathways,
and high-temperature molecular dynamics simulations, providing a diverse set of configurations for
training. Atomic simulation environment (ASE) [8] was used for structural visualisation.
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for which the above considerations are particularly relevant is that of two-dimensional transition
metal carbides (MXenes). The surfaces of these materials are far from well-defined, as sluggish
adsorption processes during synthesis lead to a variety of stable surface functionalisations with
distinct chemical reactivities. At the same time, experimental studies have demonstrated promising
catalytic performance for MXenes, and DFT investigations have shown that the catalytic activity is
highly sensitive to the precise surface chemical environment. For example, for MXenes with mixed
O and OH terminations, the dehydrogenation of alkanes to olefins has a reactivity that decreases
linearly with increasing number of OH terminations [11,|12]. At the same time, MXenes with high
OH coverage have been predicted to have a high reactivity to COy reduction [[13]]. Thus, even for
MXenes in their idealised, well-defined form, the catalytic activity can be systematically tuned by
modifying the surface terminations.

However, despite their great promise in catalysis, very little is known about the actual state of MXenes
under operating conditions. Capturing how their surface terminations and reactivity evolve in reactive
environments requires simulations that are both accurate and computationally feasible — beyond
the scope of conventional DFT approaches. Although there have been ML approaches applied to
catalysis on MXenes — for example, to predict MXene-supported single-atom catalysts for oxygen
reduction and evolution reactions [[14] as well as ammonia synthesis [15]] — most work has focused
on static screening of catalytic activity. The application of ML models to capture the dynamic
surface chemistry and evolving reactivity of MXenes under operating conditions has largely been
overlooked. In this context, MLIP trained on high-quality DFT data provide a powerful route to
explore the dynamic surface chemistry of MXenes and to establish a more realistic understanding of
their catalytic behaviour under working conditions.

In this work, we build on recent advances in geometric deep learning — in particular, equivariant (i.e.
symmetry-aware) modelling for interatomic potentials — to investigate its utility for catalysis on 2D
MXenes. Specifically, we summarise our contributions as follows:

(i) We generate a dataset for catalysis on Ti,CT, MXenes, CATALIUST TI2C-MXENE, comprising
50,000 DFT calculations for training and 10,000 for testing, including MXene configurations with
and without molecular adsorbates, along with an augmented dataset, in which systems are artificially
repeated to investigate how well our modelling generalises to larger systems.

(ii) We train an equivariant state-of-the-art model, EquiformerV2 [[16]], on the proposed dataset, and
evaluate its ability to generalise to larger atomic systems.
(iif) We integrate the trained model into a computational workflow, which achieves 1,113-8,848-fold

computational acceleration (on a CPU) compared to the DFT method while maintaining desired
accuracy and robustness, enabling more efficient studies of MXene catalytic behaviour.



2 Background
2.1 Density Functional Theory (DFT)

DFT is a first-principles method: given only the atomic species and coordinates, it computes the
total energy, forces on atoms, and other properties derived from the electron density. At its core,
DFT replaces the many-electron wave function with the electron density—a simpler quantity that, in
principle, contains all ground-state information about the system [[17,|18]].

In practice, however, DFT is approximate at several levels. The primary challenge lies in describing
the non-classical part of the electron-electron interaction, namely the exchange and correlation effects.
These contributions are encompassed in the so-called exchange—correlation (XC) functional. Since
the exact form of this functional is unknown, a range of approximations exist, each balancing accuracy
and computational cost. The predictive power of DFT therefore depends critically on how well the
chosen XC functional represents the relevant electronic interactions.

Accurately describing non-local dispersion forces, or van der Waals (vdW) interactions, is a particular
challenge, as generalised gradient approximation (GGA) functionals cannot capture them. To address
this, we employ the vdW density functional (vdW-DF) [19] in the form introduced by Hamada [20]
(rev-vdW-DF2). This functional accurately describes structural parameters of MXenes [21]], molec-
ular adsorption energies and distances [22], lattice parameters and interlayer binding energies in
graphite [20], and other weakly bonded layered systems [23]].

2.2 Equivariant Modelling with Geometric Deep Learning

Incorporating correct inductive biases in learning systems facilitates the learning process and enables
tractable learning as the space of transformations acting on the input grows [3]]. In general, symmetries,
both as (i) the transformations of an object (or its properties) that leave it unchanged (invariance) and
(ii) the transformations that change it in a predictable manner (equivariance), are powerful inductive
biases [24} 25]]. Note that (i) is a special case of (ii). More formally, GDL [3] uses the language of
group and representation theory and provides a framework for constructing neural network (NN)
architectures that adhere to the symmetries in the data the NNs are to model.

One such example in deep learning is convolutional neural networks (CNNs) [26H28]], which have
built-in translation equivariance, enabling the identification of objects in images regardless of their
shifted positions within the images. This is achieved thanks to the inherent properties of cross-
correlation being the central operation of CNNs. Thus, a CNN classifying images containing a
particular object should not change the class attribute if the object in the image is shifted. Another
example is models equivariant under rotations (encompassed by the group SO(n), where n is the
dimensionality of the space) [29-33]]. For instance, for a classification model taking in an input 3D
point cloud representing the surface of an object, rotating the point cloud should not affect the class
assignment produced by the model (invariance under rotations a.k.a. SO(3)-invariance) |34} 35]]. At
the same time, a model predicting forces acting on the object should output correspondingly rotated
force vectors if the input point cloud is rotated (SO(3)-equivariance). In the following section, we
show how the GDL framework is used in our work for catalysis on 2D MXenes.

3 Method

We aim to enable accelerated computational investigations of catalytic processes on 2D MXenes. To
attain this, we use first principles DFT calculations to produce a dataset of MXene systems, which
we later use to train a model to predict atomic forces and formation energy for each of the systems.

3.1 CATALIUST T1i2C-MXENE: DFT dataset of molecules interacting with MXene surfaces

While prominent ML catalysis efforts, such as the Open Catalyst Project [9,|10]], focus on screening
across a wide range of materials to identify promising candidates, here we adopt a complementary
approach. Instead of targeting broad screening, we focus on a single material — the Ti,CT,
MXene — chosen for its catalytic relevance and rich surface chemistry. This allows us to construct
a highly detailed and physically consistent dataset that captures the complexity of a single catalyst
under realistic conditions. Our dataset, called CATALTIUST T12C-MXENE, spans a large range of
surface terminations, from non-terminated to over-terminated configurations, including mixed O
and OH coverage. Furthermore, it includes configurations far from equilibrium obtained from high-
temperature molecular dynamics and reaction pathway calculations, enabling the model to capture
chemical environments encountered under operating conditions. The dataset covers molecules



relevant to COs reduction to formic acid, as well as other key catalytic processes such as the hydrogen
evolution reaction (HER) and the oxygen evolution reaction (OER).

The diversity and depth of configurations are made possible through systematic DFT calculations,
which form the foundation of the dataset. Each data point corresponds to a static DFT calculation
that provides the total energy of the system and the forces acting on its atoms. For the energy, we use
the formation energy, defined as

A¢E = Eppr (system) — Z E,f (atom,), e

where Eppr (system) is the total DFT energy and E..¢ (atom;) is the reference energy of atom 7 in
the system, which contains the positions, i.e. coordinates, pos and atomic species (numbers) of the
atoms. Reference energies are taken as the energies of the respective elemental phases — graphitic C,
hep Ti, O gas, and Hy gas — normalised per atom.

Note that A ¢ F is the formation energy of the complete unit cell representing a system, and can be
viewed as its total potential energy with a shifted reference relative to the raw DFT energy. In contrast
to reporting adsorption energies for specific adsorbates, formation energies provide a consistent
physical reference independent of the number or identity of adsorbates, enabling comparisons across
different structures and chemical environments, while still allowing derivation of meaningful energy
differences — such as adsorption energies, as well as reaction and activation energies — all relevant
in catalysis. The data, outlined in Figure|l} comprise DFT calculations for:

¢ Individual molecules (Hy, CO5, HyO, Oo, HCOOH).

* Ti,CT, MXenes with various surface termination configurations (denoted T,). Both the
coverage of surface terminations (value of y) and the types of terminations (O and/or OH)
are considered to capture the diversity of MXene surface chemistry.

* Molecules adsorbed on the different MXene surfaces.
The data originate from several calculation types:

1. Geometry optimisations
Configurations correspond largely to local minima, where atomic forces are generally small.

2. Reaction pathway calculations
These probe reaction mechanisms by optimising along a reaction coordinate (using the
nudged elastic band method). Forces are not necessarily small, as these configurations
represent specific regions of the potential energy surface connecting local minima.

3. High temperature molecular dynamics (MD) simulations (>1000 K)
These explore configurations far from local minima and reaction coordinates. This diverse
dataset spans a broader portion of configurational space, compelling the model to learn
system behaviour far from ideal conditions — a crucial capability for accurately describing
catalysts under realistic operating conditions.

Notably, our dataset contains only four atom types, but the complexity of the system is amplified
by the diversity of their chemical environments. In contrast to systems with a larger number of
distinct elements, where surface and molecular species are inherently distinguished, here each element
appears in multiple, chemically distinct bonding motifs. For example, a carbon atom in a MXene —
coordinated to six titanium atoms — is fundamentally different from a carbon atom in a molecule,
and carbon atoms in different molecules also differ significantly in bonding. Likewise, oxygen
behaves very differently when bound as a surface termination to titanium atoms compared to when
participating in various molecular configurations. This rich variety in the chemical surrounding of
different atom types greatly increases the challenge for any model.

To augment the training and test datasets, we generated replicated systems by repeating each original
system along the three unit cell vectors defining the periodic boundary conditions. Repetition factors
ny, ne, ng were randomly chosen with equal probability, with ny,no € {1,2, 3} along the in-plane
lattice vectors and n3 € {1,2} along the out-of-plane vector. The total energy of each augmented
system was scaled by n; X no X ng, while atomic forces for repeated atoms were copied directly
from the original system. This augmented dataset serves as a benchmark for testing the ability of
the model to generalise with an increase in the size of input molecular systems, without adding new
chemical environments. This constitutes separate training and test datasets with the same number of
systems as in the original dataset, denoted with repetitions.

4



D f
ataset Number of atoms Number of systems

Repetitions Split min  median max mean =+ std

Train 2 98.0 156 86.7 £ 38.2 50,000
w/o rep.

Test 2 96.0 158 86.4 £ 36.1 10,000

Train 2 396.0 2808  519.1 £ 466.6 50,000
w/ rep. (R 6X)

Test 2 396.0 2844  521.6 £ 465.4 10,000

Table 1: Number of atoms in the molecular systems in datasets without and with repetitions (which
contains, on average, ~=6x larger systems).

Energy Distribution Energy Distribution
0.10 train 0.0030 train
test 0.0025 test
0.08
2 20.0020
£ 0.06 2
g é 0.0015
0.04 0.0010
0.02 0.0005
0.00 —200 -150 -100 =50 0 0.0000 —4000 —3000 —2000 -1000 0
Energy [eV] Energy [eV]
(a) Energies (without repetitions) (b) Energies (with repetitions)
Distribution of Number of Atoms Mean Force Magnitude Distribution
R 3.0 .
0.20 train train
test 2.5 test
?0 15 _‘?2.0
2 215
Sl
go.10
1.0
0.05 05 ‘ ‘
0.0
00055 50 75 100 135 130 0 2 a 6 8 10
# Atoms Per System Mean ||Forces|| Per System [eV/A]
(c) Number of atoms (without repetitions) (d) Forces (without and with repetitions)

Figure 2: Distributions for energies, number of atoms, and mean force magnitudes across training
and test sets. By definition, the L2-norm of atomic forces will be the same for the two datasets.

Details of DFT calculations Periodic density functional theory calculations are performed with the
VASP code [36]], using the project-augmented wave method [37}38]], and with a plane wave basis
expanded to a kinetic energy cutoff of 400 eV. The MXenes are represented in p (4 X 4) unit cell
together with a I"-point only k-point sampling.

Dataset statistics Each system is stored as a row in an HDF5 file containing atomic numbers,
number of atoms, atomic positions, forces, formation energy, and unit cell. Table E] summarises the
atomic composition of the datasets without and with repetitions (which contains, on average, ~6x
larger systems). Some systems contain up to 2,844 atoms, making the prediction task particularly
challenging. Figure 2]shows the distributions of formation energies, average L2-norms of atomic
forces, and the number of atoms per system for the training and test sets. As seen in both Figures[2a]
and [2b] the energy distributions differ between the training and test sets, whereas Figure 2d|reveals
that many training structures are close to equilibrium (with low mean force magnitudes). Similar
to the energies, certain force ranges are absent in the test data, further emphasising the difficulty of
generalisation to unseen configurations. A comparison of the proposed dataset with OC20 [9] is
presented in Appendix [A]

3.2 Combined DFT and ML approach

To unlock the possibility of simulating MXenes under realistic conditions, we approximate DFT
by modelling forces f € R™V*3 and energies £ € R of MXene systems, with the atomic positions
represented as the point set systempos = {pos; }¥; € RY*3 with pos; € R? being the (z,y, 2)-
coordinates of atom;, and NV being the number of atoms in the system. Note that despite the two-
dimensional periodic structure of MXenes, the atomic positions are still defined in three-dimensional
Euclidean space R3.



Training Validation Test
Model (size) & Training set time

Energy MAE Force MAE Energy MAE Force MAE
GPU h o o

(GPU hours) (meV) | (meV/A) | (meV) | (meV/A) |
Original (30.8M) w/o ep. 253.6 490+ 12(477)  58+01(56) 4729+ 90 @464.6) 43.5+ 0.4 (43.0)
Original PT (30.8M) wlorep. 2537 840+ 153 (63.8) 6540.5(59) 4679+ 152 (452.0) 339 + 0.3 (33.6)
Small (4.8M) wio rep. 1413 238.64+432(1954) 11.0+02(10.8) 512.0 4358 (477.0) 44.9 + 0.7 (44.3)
Small (4.8M) w/ rep. (R=6X) 457.6 729.2 £8.5(720.8) 11.1 &0.5(10.5) 2922.3 + 29.3 (2881.2) 44.5 £ 0.5 (44.0)

Table 2: The performance of EquiformerV2 on the proposed dataset. W/ rep. refers to the augmenta-
tion of the original proposed dataset (w/o rep.) performed by artificially repeating the systems (see
details in the text). The final model is selected based on the validation performance. Mean and std
over 3 runs are presented with the best result in parentheses. PT denotes models that were pre-trained
on the OC20 dataset. Validation and test sets are w/ rep. for small trained on w/ rep.

When the coordinate system of systemp.s is rotated, the forces f, acting on the atoms, rotate
accordingly, exhibiting the rotation equivariance of the system. That is, for a rotation-equivariant
function My : RV*3 — RN>3 and any rotation R € SO(3) represented as a matrix in R3*3,

M (systempos R) = Mi(systempos) R 2)

Simultaneously, this does not affect the energy of system, i.e. the energy is rotation-invariant in this
context. That is, for a rotation-invariant function Mg : RV*3 5 R,

MEg (systempos R) = Mp(systemyos) - 3)

There is a plethora of work demonstrating that incorporating rotation equivariance as an inductive
bias into the model operating on point sets is useful [30,[39H44]]. One such model is EquiformerV2,
which integrates these SO(3)-symmetries by design, simultaneously approximating forces and energy
in accordance with Eqgs. (Z) and (3)), respectively, and exhibits state-of-the-art performance in the
related applications [[16], which is why we consider it as a primary method for our experiments.

We argue that, beyond being robust to different coordinate system orientations, a model approximating
atomic forces and energies must also generalise to systems containing a larger number of atoms. We
investigate this property in the case of EquiformerV2 in the experiments presented in the following
section.

4 Experiments and Results

We conduct experiments using two variants of EquiformerV2: the 31M-parameter model from the
original paper [16] (referred to as original), as well as its version pretrained on the OC20 dataset
(original PT), and a smaller 4.8M-parameter model (referred to as small). Among others, the main
changes between original and small were reducing the number of layers from 8 to 5 and the number
of attention heads from 8 to 4. For the dataset with artificial repetitions, we report results only with
the small model, since the original model could not be trained due to GPU memory constraints.

4.1 Training setup

We first split the training set into training and validation sets with the 80/20 ratio, aiming at having
a similar distribution of system sizes (the validation indices will be provided in the dataset). We
then utilise the official PyTorch [45]] implementation of EquiformerV2|'|and train all the models
end-to-end for 100 epochs, with batch size set to 1. The learning rate is initially set to 4 - 10~* with a
cosine annealing decay down to 4 - 10~ at the last epoch, with the AdamW optimiser and the mean
absolute error (MAE) objective

1 1 t e
Low = Le+ M Li = | B = Eved| 4 Ao ZZ 5 — 7] )

21]1

where gt and pred are respectively ground-truth and predicted quantities, N is the number of atoms in
the system, and A\ = 25 is the weight we experimentally find to work well. We train all the models
on NVIDIA A100 (40GB), and for the small model trained on the dataset with repetitions (with the
maximum number of atoms per system being as great as 2808 in the training set), we had to use A100
fat (with twice as much memory) to make sure the input can fit into the memory.

"https://github.com/atomicarchitects/equiformer_v2


https://github.com/atomicarchitects/equiformer_v2

Inference time (CPU) Inference time (GPU)

Test set Model
DFT MLIP DFT MLIP
Original (30.8M) 890 s 0.80s - 0.07 s
wio rep. Small (4.8M) ‘ 0.29's - 0.04 5
w/ rep. (R 6X) Small (4.8M) 10,264 s 1.16s - 0.06 s

Table 3: Comparison of CPU (Intel Xeon Gold 6130 CPU @ 2.10GHz) and GPU (A100 fat) inference
times between traditional DFT calculations and MLIP-based predictions using EquiformerV2. The
inference time is calculated for a median-sized sample in w/o rep. (96 atoms) and w/ rep. (396 atoms)
test sets, respectively.

. Test w/o rep., MAE Test w/ rep. (=~ 6x), MAE
Training Model
set Energy Energy/atom Force Energy Energy/atom Force
(meV) | (meV) | (meV/A) | (meV) | (meV)|  (meV/A) |
Small (4.8M) 512.0 £35.8 594+04 449 £0.7 3063.6 £ 215.0 59+04 447 +£0.9
wlo rep. mak (3. (477.0) (5.5) (44.3) (2853.3) (5.5) (43.9)
488.3 £ 34 5.6+0.0 449405 292234293 5.6 £0.1 445405
wirep. (&6x)  Small (48M) 403 6) (5.6) (44.3) (2881.2) .5) (44.0)

Table 4: Cross-evaluation of EquiformerV2 small on test data without and with artificial repetitions.
Reported are the mean and standard deviation over three runs, with the best result in parentheses.

4.2 Results

Table [2] summarises the results on the two datasets where energy MAE and force MAE refer to £
and L, respectively, in Eq. (4) additionally averaged over all the systems in the corresponding dataset.
The evaluation on the test set is conducted using the models with the best validation performance.

We observe that the relative performance of the models differs on the validation and test sets. For
example, original PT exhibits lower performance on validation compared to original, but better on the
test set. Notably, all the models performed worse on the test set in comparison to the validation set. We
attribute this to the challenge posed by the different distributions of systems in the training/validation
and test sets (see Figure[2).

Generalisation to larger systems To assess the ability of the model to generalise to larger systems,
we perform cross-evaluation using the small model. Specifically, we train the model on one version of
the dataset (with or without artificial repetitions) and evaluate it on the other. Due to the GPU memory
constraints, we are not able to perform this analysis on the original model. The results are summarised
in Table[d] where the energy MAE is also further averaged by the number of atoms (energy/atom).
Comparing the performance of the small model trained on the dataset without repetitions on the test
sets without and with repetitions, we observe that, albeit increased, the energy error of EquiformerV2
scales linearly with the number of atoms (see the energy/atom MAE column), while the force error
remains virtually the same. At the same time, the energy error of the small model trained on the
data with repetitions, on average, improves over small w/o rep. by 4.63% on the test data without
repetitions, and by 4.61% on the test data with repetitions, while the energy/atom MAE in both cases
reduces by 5.08%.

Overall, this indicates that the model trained on the data without repetitions does not require training
with augmentation (artificially repeated systems) to maintain the per-atom energy prediction accuracy.
Besides, training with system size augmentation (with repetitions) yields only modest improvements
in energy/atom and total energy prediction accuracy on average, although it considerably reduces
variance across runs, which comes at the cost of prolonged training (see Table 2).

Speed comparison We display the comparison between the inference time of the trained models
and DFT in Table[3] We note that even on a CPU, both the original and small models run significantly
faster than DFT: 1113 and 3069 times, respectively, for a median-sized sample in the original dataset,
and 8848 times for a median-sized sample in the larger-system dataset (small model).

Qualitative results In our computational workflow, DFT calculations are replaced by the trained
EquiformerV2 model for the analysis of 2D MXenes. As shown in Figure[3] the model accurately
reproduces DFT geometry optimisation trajectories. The agreement is particularly strong for HCOOH
and CO4 adsorption, while minor systematic energy deviations are observed for HoO adsorption and
the pristine MXene, with force predictions remaining consistent with DFT throughout. Additional
results and analysis are presented in Appendix
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Figure 3: Formation energies and maximum atomic forces along the trained EquiformerV2 (original,
trained on data w/o rep.) geometry optimisation trajectories for four test systems (shown as insets) — (a)
HCOOH, (b) CO; and (c) H20 adsorbed on TipCT, MXenes with different termination configurations,
and (d) TioCT, MXene distorted from its equilibrium geometry — benchmarked against static DFT
calculations performed at each step. The comparison illustrates the model’s accuracy in reproducing
DFT energetics and forces during relaxation. ASE [8] was used for structural visualisation.

5 Conclusions

In this work, we have generated a dataset for catalysis on TioCT, MXenes, called CATALIUST T12C-
MXENE, comprising a total of 60,000 DFT calculations — 50,000 for training and 10,000 for testing
— as well as its version with artificially repeated systems. Using this dataset, we have performed
equivariant modelling for interatomic potentials (i.e. predicting atomic forces and formation energies
of molecular systems) using EquiformerV2, and accelerated our computational workflow for catalysis
on 2D MXenes 1113 — 8848-fold (on a CPU), while maintaining the desired quality that the DFT
method provides. Furthermore, we have shown that the energy error of the trained model scales
linearly with the size of the input systems, while the force error remains the same, which is a necessity
for a robust model approximating DFT.

Limitations In this work, we have focused exclusively on the EquiformerV2 model due to its
state-of-the-art performance on the OC20 dataset. Future studies could explore other variants or
extensions of EquiformerV2, such as integrating DeNS [46], which might come with additional
computational requirements. Besides, there exist competing methods on other benchmarks, such
as GotenNet [44] for molecular systems; however, adopting it for our application might not be a
trivial task. Additionally, the hyperparameter search we have conducted is non-exhaustive due to
computational limitations. In generating the DFT training data, we balanced numerical accuracy and
computational cost by adopting a moderate k-point sampling density, which is particularly important
for total energies. Although a denser grid would shift the absolute formation energies, the correction
is expected to be smaller than the current model’s energy loss. If higher energy accuracy is required,
the dataset should be recalculated with tighter k-point convergence. Another limitation concerns
the molecular systems included. The chosen molecules represent prototypical catalytic reactions,
providing chemically meaningful examples for MXene interactions. Future work could extend the
molecular scope to additional reactants and intermediates relevant to other catalytic processes.
Broader impact This work accelerates the analysis of catalysis on 2D MXenes while maintaining
robustness through the trained model. Faster evaluations of MXene catalysis open opportunities for
identifying more efficient catalysts, supporting efforts to reduce the carbon footprint of the chemical
industry. In addition, the generated dataset provides a resource for the community to develop and
benchmark models for catalysis on TioCT, MXenes and related materials.

Acknowledgments

This work was supported by the Wallenberg Al, Autonomous Systems and Software Program (WASP) and the
Wallenberg Initiative Materials Science for Sustainability (WISE), by the Swedish Research Council through a
grant for the project Uncertainty-Aware Transformers for Regression Tasks in Computer Vision (2022-04266),
and the strategic research environment ELLIIT. The computations were enabled by resources provided by the
National Academic Infrastructure for Supercomputing in Sweden (NAISS) partially funded by the Swedish
Research Council through grant agreement no. 2022-06725, and by the Berzelius resource provided by the Knut
and Alice Wallenberg Foundation at the National Supercomputer Centre.



References

1
(@3]
3
(C))
(&)
(6)

(O]

(®)
()]
(10)
an
(12)
13)

(14)

15)

(16)

a7

(18)

19)

(20)
2n

(22)
(23)
(24)
(25)
(26)

@7

Wang, G.; Wang, C.; Zhang, X.; Li, Z.; Zhou, J.; Sun, Z. Machine learning interatomic potential: Bridge
the gap between small-scale models and realistic device-scale simulations. Iscience 2024, 27.
Bronstein, M. M.; Bruna, J.; LeCun, Y.; Szlam, A.; Vandergheynst, P. Geometric deep learning: going
beyond Euclidean data. IEEE Signal Processing Magazine 2017, 34, 18-42.

Bronstein, M. M.; Bruna, J.; Cohen, T.; Velickovi¢, P. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. arXiv preprint arXiv:2104.13478 2021.

Deringer, V. L.; Caro, M. A.; Csdnyi, G. Machine learning interatomic potentials as emerging tools for
materials science. Adv. Mater. 2019, 31, 1902765.

Chen, C.; Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat.
Comput. Sci. 2022, 2, 718-728.

Yang, H.; Hu, C.; Zhou, Y.; Liu, X.; Shi, Y.; Li, J.; Li, G.; Chen, Z.; Chen, S.; Zeni, C., et al. Mat-
terSim: A deep learning atomistic model across elements, temperatures and pressures. arXiv preprint
arXiv:2405.04967 2024.

Batzner, S.; Musaelian, A.; Sun, L.; Geiger, M.; Mailoa, J. P.; Kornbluth, M.; Molinari, N.; Smidt, T. E.;
Kozinsky, B. E (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.
Nat. Commun. 2022, 13, 2453.

Larsen, A. H. et al. The atomic simulation environment—a Python library for working with atoms. J.
Phys. Condens. Matter 2017, 29, 273002.

Chanussot, L. et al. Open catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 2021, 11,
6059-6072.

Tran, R. et al. The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts. ACS
Catal. 2023, 13, 3066-3084.

Niu, K.; Chi, L.; Rosen, J.; Bjork, J. C—H activation of light alkanes on MXenes predicted by hydrogen
affinity. Phys. Chem. Chem. Phys. 2020, 22, 18622-18630.

Niu, K.; Chi, L.; Rosen, J.; Bjork, J. Structure-activity correlation of Ti,CT, MXenes for C-H activation.
J. Phys. Condens. Matter 2021, 33, 235201.

Parui, A.; Srivastava, P.; Singh, A. K. Selective reduction of CO; on Ti,C(OH), MXene through sponta-
neous crossing of transition states. ACS Appl. Mater. Interfaces 2022, 14, 40913-40920.

Guo, H.; Lee, S. G. Machine learning-guided discovery of thermodynamically stable single-atom catalysts
on functionalized MXenes for enhanced oxygen reduction and evolution reactions. J. Mater: Chem. A
2025, 13, 22730-22744.

Lin, G.; Guo, T.; Lin, W.; Fan, H.; Guo, L.; Zhang, Z.; Li, B.; Wang, J.; Ji, H.; Song, W.; Fu, J. Machine
learning accelerated screening advanced single-atom anchored MXenes electrocatalyst for nitrogen
fixation. ACS Catal. 2025, 15, 13534-13548.

Liao, Y.-L.; Wood, B.; Das, A.; Smidt, T. EquiformerV2: Improved Equivariant Transformer for Scaling
to Higher-Degree Representations. The Twelfth International Conference on Learning Representations
2024.

Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B§64-B871.

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev.
1965, 140, A1133-A1138.

Dion, M.; Rydberg, H.; Schroder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional
for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

Hamada, I. van der Waals density functional made accurate. Phys. Rev. B 2014, 89, 121103.

Niu, K.; Bjork, J.; Rosen, J. First-principles exploration of Sc- and Y-based MXenes with halogen
terminations. npj 2D Mater. Appl. 2025, 9, 69.

Chen, L.; Rosen, J.; Bjork, J. A density functional benchmark for dehydrogenation and dehalogenation
reactions on coinage metal surfaces. ChemPhysChem 2025, 26, €202400865.

Tran, F.; Kalantari, L.; Traoré, B.; Rocquefelte, X.; Blaha, P. Nonlocal van der Waals functionals for
solids: Choosing an appropriate one. Phys. Rev. Materials 2019, 3, 063602.

Van Gool, L.; Moons, T.; Pauwels, E.; Oosterlinck, A. Vision and Lie’s approach to invariance. Image
and vision computing 1995, 13, 259-277.

Weiler, M.; Forré, P.; Verlinde, E.; Welling, M. Equivariant and coordinate independent convolutional
networks. A Gauge Field Theory of Neural Networks 2023, 110.

Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biological cybernetics 1980, 36, 193-202.

Zhang, W.; Tanida, J.; Itoh, K.; Ichioka, Y. Shift-invariant pattern recognition neural network and its
optical architecture. Proceedings of annual conference of the Japan Society of Applied Physics 1988, 564.



(28)

(29)

(30)

€29

(32)
(33)

(34)

(35)

(36)

(37
(33)

(39)
(40)

(41)

(42)

(43)

(44)

(45)

(46)

LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R. E.; Hubbard, W.; Jackel, L. D. Backprop-
agation applied to handwritten zip code recognition. Neural computation 1989, 1, 541-551.

Weiler, M.; Geiger, M.; Welling, M.; Boomsma, W.; Cohen, T. S. 3D steerable CNNs: Learning rotationally
equivariant features in volumetric data. Advances in Neural Information Processing Systems 2018, 10381—
10392.

Anderson, B.; Hy, T. S.; Kondor, R. Cormorant: Covariant molecular neural networks. Advances in Neural
Information Processing Systems 2019, 14510-14519.

Bokman, G.; Kahl, F,; Flinth, A. Zz-net: A universal rotation equivariant architecture for 2d point clouds.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2022, 10976—
10985.

Cohen, T. S.; Geiger, M.; Kohler, J.; Welling, M. Spherical CNNs. arXiv preprint arXiv:1801.10130
2018.

Esteves, C.; Allen-Blanchette, C.; Makadia, A.; Daniilidis, K. Learning SO(3) Equivariant Representations
With Spherical CNNs. CoRR 2017.

Fuchs, F.; Worrall, D.; Fischer, V.; Welling, M. SE(3)-Transformers: 3D Roto-Translation Equivariant
Attention Networks. Advances in Neural Information Processing Systems 2020, 33, ed. by Larochelle, H.;
Ranzato, M.; Hadsell, R.; Balcan, M. F.; Lin, H., 1970-1981.

Melnyk, P.; Robinson, A.; Felsberg, M.; Wadenbick, M. TetraSphere: A Neural Descriptor for O(3)-
Invariant Point Cloud Analysis. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) 2024, 5620-5630.

Kresse, G.; Furthmiiller, J. Efficient iterative schemes for ab initio total-energy calculations using a
plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys.
Rev. B1999, 59, 1758-17175.

Liao, Y.-L.; Smidt, T. Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs.
The Eleventh International Conference on Learning Representations 2023.

Ruhe, D.; Brandstetter, J.; Forré, P. Clifford Group Equivariant Neural Networks. Thirty-seventh Confer-
ence on Neural Information Processing Systems 2023.

Melnyk, P.; Felsberg, M.; Wadenbick, M.; Robinson, A.; Le, C. On Learning Deep O(n)-Equivariant
Hyperspheres. Proceedings of the 41st International Conference on Machine Learning 2024, 235, 35324—
35339.

Satorras, V. G.; Hoogeboom, E.; Welling, M. E(n) equivariant graph neural networks. International
conference on machine learning 2021, 9323-9332.

Passaro, S.; Zitnick, C. L. Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs.
Proceedings of the 40th International Conference on Machine Learning 2023, 202, ed. by Krause, A.;
Brunskill, E.; Cho, K.; Engelhardt, B.; Sabato, S.; Scarlett, J., 27420-27438.

Aykent, S.; Xia, T. Gotennet: Rethinking efficient 3d equivariant graph neural networks. The Thirteenth
International Conference on Learning Representations 2025.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.;
Antiga, L., et al. PyTorch: An imperative style, high-performance deep learning library. Advances in
Neural Information Processing Systems 2019, 8024—-8035.

Liao, Y.-L.; Smidt, T.; Shuaibi, M.; Das, A. Generalizing Denoising to Non-Equilibrium Structures
Improves Equivariant Force Fields. Transactions on Machine Learning Research 2024.

10



A Comparison with the OC20 dataset

In Figure we compare the training and validation splits of OC2 with the corresponding splits
of the proposed CATALIUST T12C-MXENE (without repetitions). This comparison is limited to
the training and validation subsets, as the OC20 test set is private, and the labels are not publicly
available. Additional details about OC20 can be found in [9].

A key distinction between the CATALIUST T12C-MXENE and OC20 datasets lies in the chemical
nature of the systems they contain. OC20 primarily focuses on molecules adsorbed on extended
periodic catalyst slabs representing bulk surfaces, whereas CATALTUST T12C-MXENE contains
2D Ti,C MXenes interacting with molecular species. The surface chemistry of MXenes depends
strongly on the configuration of surface terminations, which our dataset explicitly samples, enabling
the description of MXene chemistry under diverse conditions. Furthermore, elements such as oxygen
and carbon appear both as part of the solid MXene and in molecular adsorbates, introducing an
additional level of complexity. This diversity requires the model to distinguish between chemically
identical atoms in different environments, which is less pronounced in OC20.

The most informative distinction between the datasets is in the force distributions. Unlike the energy
histograms, which are strongly influenced by system size and composition, force magnitudes reflect
how far configurations are from equilibrium. CATALIUST T12C-MXENE exhibits substantially larger
forces compared to OC20, indicating that the dataset samples geometries further from local minima.
This diversity is advantageous for model training, as it allows learning of far-from-equilibrium
chemistry, in contrast to OC20 where most adsorbates lie near relaxed surface sites. Regarding system
size, OC20 is heterogeneous, with configurations ranging widely in atom count, while our dataset is
more homogeneous, with most systems around /100 atoms. Thus, the train/val mismatch is more
noticeable in OC20, with our dataset presenting a more consistent split. In the absence of the OC20
test set, it is difficult to draw additional conclusions about the relative dataset difficulty.

>The OC20 dataset can be downloaded at https://github.com/facebookresearch/fairchem/blob/
main/docs/catalysts/datasets/oc20.md. The histograms were computed from the S2EF table, using all
of the validation data, and the 20M training set.
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B Additional Qualitative Results

In Figure [5] we present qualitative results alike those in Figure [3] but for the rest of the models
trained on the data without repetitions. Similar to the results showcased for the original model in
Figure[3] the small model (see Figure[5] bottom) can also quite accurately reproduce DFT geometry
optimisation trajectories for HCOOH and CO, adsorption. However, for HoO adsorption and the
pristine MXene, the force predictions of the small model are notably poor—significantly worse than
the overall force error observed for the small model evaluated on the test set—indicating that these
errors are system-specific rather than general model limitations. Systematic energy deviations are
also observed in these cases. In either case, the original model can be employed for consistently
accurate force prediction.
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Figure 5: Formation energies and maximum atomic forces along the trained EquiformerV2 (top:
original PT, bottom: small, both trained on data w/o rep.) geometry optimisation trajectories for four
test systems (shown as insets) — (a) HCOOH, (b) CO; and (c) H>O adsorbed on TioCT, MXenes
with different termination configurations, and (d) TioCT, MXene distorted from its equilibrium
geometry — benchmarked against static DFT calculations performed at each step. ASE [8]] was used
for structural visualisation.
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