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ABSTRACT

We present a Neural Architecture Search (NAS) framework guided by feature
orthogonalization to improve Out-of-Distribution (OOD) Generalization on Object
Detection. Specifically, we attribute the failure of generalizing on OOD data to
the spurious correlations of category-related features and context-related features.
The category-related features describe the causal information for predicting the
target objects, e.g., “a car with four wheels”, while the context-related features
describe the non-causal information, e.g., “a car driving at night”, and the context-
related features are always mistaken for causal information due to the existence of
distinct data distribution between training and testing sets (OOD) to some degree.
Therefore, we aim at automatically discovering an optimal architecture that is able
to disentangle the category-related features and the context-related features with
a novel weight-based detector head. Both theoretical and experimental results
show that the proposed scheme is able to achieve the disentanglement and better
performance on both Independent-Identically-Distribution datasets (Pascal VOC
2012 and MS COCO) and OOD datasets (BDD100K-weather and BDD100K-time-
of-day).

1 INTRODUCTION

Object detection is a fundamental task in computer vision. However, the generalization ability of
object detection remains a challenging problem, especially for Out-of-Distribution (OOD) scenarios,
where data are sampled from novel unseen distributions. For example, imagine the following situation:
a self-driving car equipped with an object detection system to detect cars and pedestrians on the roads.
The performance of the object detection system can drop significantly when facing OOD scenarios,
for example, new city or weather scenes that do not exist in the training set. This may lead to serious
accidents as shown in worldwide news about self-driving car accidents that usually happen on scenes
rarely seen in training set (Law, 2021).

Among all efforts to improve the generalization ability of object detectors, neural architecture
search (NAS) methods have been proven to be an effective way when facing the Independent-
Identically-Distribution (IID) datasets. However, these methods’ performance may suffer from severe
performance degradation when facing OOD data due to the easily over-fitting nature of NAS methods
(Chen et al., 2019b; Cai et al., 2018; Jiang et al., 2020; Guo et al., 2020). On the other hand, recent
OOD challenges have sprung a series of works on improving the OOD generalization abilities of deep
neural networks (DNNs) (Bahng et al., 2020; Bai et al., 2020; Krueger et al., 2021a). These works
can be categorized into invariant risk regularization methods (Arjovsky et al., 2019; Ahuja et al.,
2020), domain generalization (DG) methods (Carlucci et al., 2019; Li et al., 2017; Dou et al., 2019; Li
et al., 2021; Krueger et al., 2021b; Pezeshki et al., 2020; Sagawa et al., 2019; Koyama & Yamaguchi,
2021), and disentangled representation methods (Liu et al., 2018b; Peng et al., 2019). However, these
works only show moderate performance improvement compared with the standard empirical risk
minimization, when evaluated on more practical datasets (Gulrajani & Lopez-Paz, 2020; Ye et al.,
2021), which are reliant on utopian hypotheses specifically designed for image classification tasks
only.

In this work, we focus on the OOD object detection task for improving the unseen domain performance
of object detectors trained on limited data distributions to generalize to different data distributions.
This is achieved by a differentiable NAS search for disentangling the extracted feature into the
category-related branch and the context-related branch via feature orthogonalization, where category
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Figure 1: OOD object detection aims at generalizing to the unseen testing distribution based on the
training distribution. Some evaluation examples of our proposed methods and baseline (SwinTrans-
former (Liu et al., 2021)).

information and context information are respectively captured by these two branches. Experimental
results show that our proposed head derives robust architecture and performs well in extreme OOD
environments (some examples in Figure 1), where there is a huge data distribution gap between the
training set and testing set. Our main contributions can be summarized as followed:

• We systematically analyze the performance improvement of existing OOD generalization
algorithms for object detection and demonstrate that most of them are not effective.

• We propose a novel differentiable neural architecture search framework on the backbone
network for object detection, namely NAS-DO, guided by feature orthogonalization to
disentangle the causal information for object detection and the non-causal information. The
proposed algorithmic framework has achieved the best performances on challenging OOD
scenarios with up to 20% improvement compared to baselines.

• We theoretically prove the effectiveness of feature orthogonalization constraint for category
and context feature disentanglement as well as the convergence of the proposed algorithm.

2 RELATED WORK

2.1 NAS ON OBJECT DETECTION

Compared with NAS works for the standard image classification tasks, the works of NAS for Object
Detection are relatively rare due to their intricacy. Existing works on NAS for Object Detection can
be generally divided into three genres according to the searched component in networks, including
backbone search, feature pyramid (FPN) network search, and joint detection head and FPN search.
For the backbone search type, Chen et al. searches for an efficient backbone by applying single-path
training to reduce approximation bias of super-net (Chen et al., 2019b) following (Cai et al., 2018;
Guo et al., 2020). Jiang et al. further improved it with a serial-to-parallel backbone searching strategy
(Jiang et al., 2020) to properly allocate the computation and better fuse high-level features into
low-level features (Wang et al., 2020a). For feature pyramid network search, Ghiasi et al. designed a
search space of scalable architecture to generate multi-scale feature representations (Ghiasi et al.,
2019). Liang et al. searches for efficient and more adaptive FPN from the pre-trained super-net
by proposing a one-shot NAS framework (Liang et al., 2021). The third one is the joint FPN and
detection head search. Xu et al. focuses on improving the feature fusion and detection head modules
to discover a task-specific network that can adapt well to any dataset (Xu et al., 2019). NAS-FCOS
aims to efficiently search for FPN as well as the prediction head by using a reinforcement learning
paradigm (Wang et al., 2020b). The existing NAS methods for object detection mainly focus on IID
setting and this limitation usually leads to over-fitting since the training set and the testing set are
derived from the same distribution, which motivates us to consider OOD generalizable NAS. Bai
et al. (2021) have developed a differentiable NAS framework for OOD generalization classification
with a conditional generator, however, it is generally hard to train the conditional generator for object
detection, as images usually involve more than one objects.

2.2 OUT-OF-DISTRIBUTION GENERALIZATION
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Figure 2: Results of Faster R-CNN (Ren et al.,
2015) with ResNet-50 (He et al., 2016) back-
bone +ERM (Vapnik, 1998), +IRM (Arjovsky
et al., 2019), +vREx (Krueger et al., 2021b), +GS
(Pezeshki et al., 2020), +GroupDRO (Sagawa et al.,
2019), +IGA (Koyama & Yamaguchi, 2021) on
BDD100K-weather.

Out-of-Distribution (OOD) Generalization, the
task of generalizing under such data distribution
shifts, has raised broad interest recently. These
works can be grouped into these categories, in-
cluding the domain generalization (Peng et al.,
2019; Bai et al., 2020; Dou et al., 2019; Ganin
et al., 2016), the causal inference methods (Pe-
ters et al., 2017), and the invariant learning
methods (Arjovsky et al., 2019; Ahuja et al.,
2020). For example, Peng et al. (Peng et al.,
2019) devise an auto-encoder model to disentan-
gle domain-specific features from class identity.
Dou et al. (Dou et al., 2019) improves the gen-
eralization performance by aligning a derived
confusion matrix of classification with preserved
general knowledge prior to inter-class relation-
ships. Motivated by learning the invariance from
the heterogeneity that existed in data for classi-
fication, the invariant risk minimization method
achieves OOD generalization by regularizing the
classifier to achieve similar performance across
different subsets of datasets (Arjovsky et al., 2019). Ahuja et al. further improve its stability due
to the strong regularization effects in optimization (Ahuja et al., 2020). However, it is not easy to
directly apply these methods for object detection tasks. For example, many domain generalization
algorithms rely on special structures for classification, such as mixup (Yan et al., 2020), which is
not applicable for object detection tasks as the inputs will be demolished by mixing objects with
backgrounds and the bounding boxes will be chaos. Besides, other methods without introducing
classification-specific structures, such as IRM (Arjovsky et al., 2019), introduce strong regularization
effects that hinder the optimization process for complex object detection tasks, which may even lead
to performance degeneration, as demonstrated in Figure 2. All of these indicate that it is a non-trivial
challenge to achieve OOD generalization for object detection. Pham et al. (2021) have proved that
generalizing to unseen testing distributions requires large models.

3 METHODOLOGY

3.1 PRELIMINARIES ON DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH

Conventional differentiable neural architecture search methods utilize a gradient-based optimization
to search the optimal sub-architecture (cell) of the super-net (Liu et al., 2018a; Yang et al., 2020). The
super-net is mainly stacked by several cells which are the computation units to be searched during the
training process. It can be represented by a directed acyclic graph (DAG). There are two types of cells,
including the normal cell and the reduction cell which down-samples the feature map. A cell consists
of n ordered nodes X = {x1, x2, . . . , xn} and edges between nodes E = {e(i,j)|1 ≤ i < j ≤ n}.
The output of each edge is the concatenation of m candidate operations O = {o1, o2, . . . , om}.
Binary variables α

(i,j)
k ∈ {0, 1} represent which operation(s) will be active. Thus, we have the

following formulations for each node:

xj =

j−1∑
i=1

m∑
k=1

α
(i,j)
k ok(xi) = αT

j oj (1)

where αT
j and oj are vectors formed by α

(i,j)
k and ok(xi) respectively. Since it is hard to optimize

discrete value in a differentiable manner, DARTS-based (Liu et al., 2018a) methods convert α(i,j)
k

into continuous relaxation with a softmax function:

s
(i,j)
k = exp(α

(i,j)
k )/

∑
k

exp(α
(i,j)
k ) (2)

xj =

j−1∑
i=1

m∑
k=1

s
(i,j)
k ok(xi) = sTj oj (3)
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Figure 3: Overview of the NAS-DO mainstream. The searching backbone is stacked by normal cells
and reduction cells, where normal cells have wiser channel output. Both normal and reduction cells
comprise several ordered nodes and each edge between pair of nodes represents the weighted sum of
candidate operations. Weights of category and context branch are orthogonal, therefore, the features
extracted by these branches are orthogonal as well.

s
(i,j)
k are trainable parameters and the problem is formulated as the following bi-level optimization

problem:

s∗ = argmin
s
Lval(ω

∗, s) (4)

ω∗ = argmin
ω

Ltrain(ω, s) (5)

s.t. ∥sj∥0 = a, 1 ≤ j ≤ n (6)

where s and ω denote architecture parameters and network weights respectively. Lval denotes
the validation loss and Ltrain denotes the training loss. Constant a is the sparseness, i.e., a = 2
indicates keeping the top-2 strongest dimensions for node j. During searching process, Lval and
Ltrain are optimized alternately (Liu et al., 2018a). However, there is an inconsistency between
high-performance super-net and target-net caused by the two-stage methods. Inspired by (Yang
et al., 2020), we apply a one-stage manner with the architecture parameters constraint satisfied
by formulating new architectures generating problem as a sparse coding problem to eliminate this
performance gap:

zj = argmin
z

1

2
∥Ajz − sj∥22 + λ∥z∥1, 1 ≤ j ≤ n (7)

where Aj ∈ Rpj×(j−1)m, pj ≤ (j − 1)m denotes the measurement matrix, sj ∈ R(j−1)m are
architecture parameters and zj is the sparse signal. The sub-net NS(z) of the super-net is derived
from the support set S(z) which is projected by zj .

3.2 SEARCH SPACE DESIGN

Normal cells and reduction cells are the smallest searched units and the whole searching space is
alternately stacked by these two types of cells. We extract the output of the last four cells as the
input of the feature pyramid network followed by detector heads to predict locations and categories.
Moreover, inspired by the success of the attention mechanism (Vaswani et al., 2017), we construct
the searching cells with two types of attention layers and the definitions of candidate operations
O = {o1, o2, . . . , om} are listed as follow:
Attention_layer_sparse(op0). Arguments include Cin(input channel), Cout(output channel),
kernel_size, stride and padding. The whole structure contains two sub-structures, the first one is
the basic layer (Liu et al., 2021) and the other is the convolution block which is applied to maintain
the channel of input and output tensor to be consistent with Cin and Cout. We set the dimension to
96, depth to 2 and head number to 2 for the basic layer.
Attention_layer_dense(op1). The difference between op0 and op1 is that op1 is deeper and wider
than op0 with 192 dimensions, 4 depth and 4 head number for basic layer.
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Algorithm 1: Object Detection with OOD Generalizable Neural Architecture Search

1: Input: training set D, batch size n, learning rate β, searching .
2: Output: An architecture with optimized parameters.
3: Initialize super-net N (ω, s) ; search_flag ← True.
4: while not converged do
5: if search_flag then
6: Recover z by solving Eq. 7 and project the support set S(z) = {i|z(i) ̸= 0}.
7: Derive the sub-net NS(z); znew := z.
8: if ∥znew − zold∥ ≤ ϵ then
9: search_flag ← False.

10: end if
11: end if
12: for enumerate train set do
13: Sample a batch of data {(xi, yi, y_ctxi)}ni=1.
14: Calculate Ltrain according to Eq. 10.
15: ω ← ω − β · ▽Ltrain(NS(z)(ω, s)).
16: s← s− β · ▽Ltrain(NS(z)(ω, s)).
17: end for
18: zold := znew.
19: end while

Skip_connect(op2) (Melis et al., 2017). If the current cell is a normal cell, then the size of the output
is the same as the input. If the current cell is a reduction cell, we use a convolutional layer with Cin

input channels and Cout output channels to maintain consistency.

3.3 ALGORITHM FRAMEWORK

Our searching process is outlined in Algorithm 1 and the overview of NAS-DO is visualized in
Figure 3. Firstly, a super-net backbone and heads are constructed for search. Then, we initialize the
super-net parameters, including network weights ω and architecture parameters s. To control the
searching loop, we use a termination condition when the z of two neighbor iterations are closed. z is
recovered by solving the sparse coding problem (Eq. 7) and then derive the sparse sub-net NS(z).
Lastly, network weights ω and architecture parameters s are optimized by descending gradients using
training loss.

Feature orthogonalization. To disentangle the extracted features, we design a two-branch detector
head (see the category and context identification in Figure 3), which is comprised of two classifiers to
predict category label and context label respectively and impose weight-based loss to constrain the
category branch weight Wcls and context branch weight Wctx to be orthogonal using context labels 1:

Lfeat_orth = ∥1(Wcls)
T
1(Wctx)∥F (8)

where 1(x) is the element-wise indicator function, 1(x) = 1, if x ̸= 0, otherwise, 1(x) = 0. ∥ · ∥F
is Frobenius Norm.

Overall loss. For the context branch, we adopt the same loss function as the category branch using
image context labels:

Lctx = CE(Yctx(X), Y ∗
ctx(X)) (9)

where CE refers to cross-entropy loss function; Yctx, Y ∗
ctx indicates the ground-truth context labels

and output context labels respectively. Thus, the overall training loss is defined as:

Ltrain = Lcls + Lreg + λctx · Lctx + λp · Lfeat_orth (10)

whereLcls andLreg are consistent with (Cai & Vasconcelos, 2018), λctx and λp are hyper-parameters.

1The context labels are actually the domain labels which indicate the domain where images are drawn from,
and using such labels is a very common practice in Domain Generalization researches (Section 2.2)
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Table 1: IID results comparisons on Pascal VOC2007 testing set and MS COCO val-set. All
models are trained from scratch. - indicates failures. R-50 and R-101 represent ResNet-50 and
ResNet-101 backbone respectively. X-101 represents ResNeXt-101. All models share 256 FPN
width. For baselines, we use models implemented by mmdetection (Chen et al., 2019a) and for
Swin Transformer, we use official implementation provided by authors. Note that NAS-DO has two
parameter sizes for the two datasets respectively.

MODEL BACKBONE PARAMS(M) PASCAL VOC MS COCO
AP AP50 AP75 AP AP50 AP75

CASCADE RCNN

X-101

127 5.5 13.2 3.5 - - -
RETINANET 94 21.2 39.5 19.8 - - -
NAS-FPN 116 31.5 53.8 32.1 13.3 22.8 13.4
NAS-FCOS 96 10.5 21.4 9.1 2.0 4.8 1.4

CASCADE RCNN

R-50

69 2.1 5.7 1.0 - - -
RETINANET 37 16.9 33.5 14.7 - - -
NAS-FPN 59 41.7 64.8 44.4 11.5 20.7 11.3
NAS-FCOS 38 10.7 23.5 8.5 1.8 4.4 1.3

CASCADE RCNN

R-101

88 2.4 6.6 1.2 - - -
RETINANET 55 16.0 32.1 13.9 - - -
NAS-FPN 78 40.9 63.9 43.3 12.2 21.3 12.1
NAS-FCOS 57 10.4 22.8 8.3 1.8 4.5 1.2

SWIN-T
SWIN

86 31.9 54.8 32.6 9.0 16.7 8.6
SWIN-S 107 45.7 69.8 49.4 11.9 21.5 11.6
SWIN-B 145 45.6 69.5 49.2 13.2 23.2 13.2

NAS-DO NAS SPACE 153 & 143 46.6 70.9 49.6 17.3 28.1 18.0

3.4 THEORETICAL ANALYSIS

Feature orthogonalization for object detection
Considering in real practice, the category-related features are independent of the context, e.g., wheels
of a car are not causal to the weather, thus, we have the following assumption:
Assumption 3.1. The category features Bcls and the context features Bctx are independent
Bcls |= Bctx, and Bcls is independent to the context label Yctx, that is Bcls |= Yctx.

Intuitively, it is reasonable that the extracted features can be disentangled into causal and non-causal
features, which indicates that the features can be written as a combination of category-related features
and context-related features, then we have the following assumption:
Assumption 3.2. The input of the classifiers can be written as a concatenation (i.e. XC =
[XT

C,cls, X
T
C,ctx]

T ), where XC,cls is a function of the hidden category feature Bcls, (i.e. ∃fcls :

RB,cls → RNC,cls , XC,cls = fcls(Bcls)), and XC,ctx is a function of the hidden context feature
Bctx, (i.e. ∃fctx : RB,ctx → RNC,ctx , XC,ctx = fctx(Bctx)).
Constraint 3.3. The weights of the category and context classifiers are orthogonal, that is

1(Wcls)
T
1(Wctx) = 0 (11)

Theorem 3.4. (1) Theorem 3.1 and Theorem 3.2 hold; (2) the activation function is Lipschitz
continuous; (3) the derivatives of the loss corresponding to the classifier outputs YC,cls and YC,ctx,
and the derivative of the activation function are stochastically bounded during the training; (4) the
network width goes to infinity; (5) the sample size goes to infinity. Then, Theorem 3.3 is a sufficient
condition for YC,cls |= Yctx.

We prove Theorem 3.4 by using NTK (Neural Tangent Kernel) theorem, where conditions (2) to (4)
are the conditions of NTK and are consistent with the conditions in (Jacot et al., 2018). Condition (5)
guarantees the empirical distribution is close to the real distribution according to the Law of Large
Number. Proof can be found in Appendix A.1.1.
Convergence of neural architecture search
Theorem 3.5. Let Ltrain(ω, s) be continuous on s and max Ltrain ≤ ∞, then the sequence {z}
generated by Alg. 1 has limited points.
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Table 2: OOD results comparisons on BDD100K-weather and BDD100K-time-of-day. All models are
trained from scratch. NAS-DO @ a-b-c represent the hyper-parameters of the searching space, which
are a layers, b steps, c sparseness. APL and ARL represent the average precision and average recall
for objects with area > 962, where the area is measured as the number of pixels in the segmentation
mask.

MODEL BACKBONE PARAMS(M) WEATHER TIME OF DAY
APL ARL APL ARL

CASCADE RCNN

RESNEXT-101

127 3.1 5.5 1.5 5.3
RETINANET 94 4.0 10.4 3.6 11.5
NAS-FPN 116 15.1 28.2 14.3 24.8
NAS-FCOS 96 9.1 23.4 8.4 20.0

CASCADE RCNN

RESNET-101

88 1.2 3.2 0.4 3.3
RETINANET 55 5.1 13.4 4.6 12.0
NAS-FPN 78 24.6 33.9 23.7 33.4
NAS-FCOS 57 5.8 17.1 5.3 16.7

SWIN-S SWIN
107 32.1 44.4 32.6 50.1

SWIN-B 145 33.5 46.0 34.7 51.8

NAS-DO (OURS) @ 4-4-2 λctx = 0 109 & 152 50.4 58.1 36.5 44.8
NAS-DO (OURS) @ 4-2-2 λctx = 0.5 101 & 109 51.1 59.1 37.4 46.8
NAS-DO (OURS) @ 4-4-2 λctx = 0.5 166 & 150 52.9 59.8 39.8 54.9

COMPARE TO SWIN-B +19.4 +13.8 +5.1 +3.1

The convergence of NAS-DO can be guaranteed in Theorem 3.5. Proof can be found in Ap-
pendix A.1.2.

4 EXPERIMENTS

In this section, we conduct numerical experiments to evaluate the effectiveness of NAS-DO on Pascal
VOC (Everingham et al., 2010) and MS COCO (Lin et al., 2014) for standard IID performance
evaluation and on BDD100K (Yu et al., 2018) for OOD scenarios. For the ablation study, we compare
different search hyper-parameters of our search space and the weight of feature orthogonalization
to find a balance between OOD generalization performance and algorithm complexity. Finally, we
display the discovered architectures and some of the inference results in Appendix A.5. We also
visualize the converged weights of the two-branch to illustrate the feature disentanglement during the
optimization process.

4.1 IMPLEMENTATION DETAILS

We use a server with eight NVIDIA Tesla V100 GPUs for experiments. Since the pre-trained strategy
may have the privileged knowledge of the testing distribution, all models are trained from scratch
without loading any pre-trained weights to better evaluate the OOD generalization ability. The
evaluation metrics—Average Precision (AP) and Average Recall (AR) are used, following the setting
of MS COCO (Lin et al., 2014). For the Pascal VOC experiment, we follow the common setting of
using VOC2007 trainval + VOC2012 trainval as our training set and VOC2007 test as our testing set
to evaluate IID performance. For MS COCO, we randomly sample 10K images from MS COCO
training set to optimize model parameters and evaluate on MS COCO val-set. Specifically, all training
images from MS COCO are scaled to 640x640. And for BDD100K, which is comprised of 100K
images for 1.8M objects of 10 categories, we use the image attribute labels to split OOD environments,
where the train-test domains are non-overlapping. We choose 1K images from each training domain
and 0.5K images from each test domain (more details can be found in Appendix A.2).

4.2 QUANTITATIVE RESULTS

IID dataset results. As illustrated in Table 1, we use Swin Transformer (Liu et al., 2021) as our
baseline and compare our method to Cascade RCNN (Cai & Vasconcelos, 2018), RetinaNet (Lin
et al., 2017), NAS-FPN (Ghiasi et al., 2019) and NAS-FCOS (Wang et al., 2020b) with ResNeXt-101
(Xie et al., 2017), ResNet-50 and ResNet-101 (He et al., 2016), respectively. Our method achieves
the best performance of 46.6% AP with 153M parameters and 17.3% AP with 143M parameters on
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Figure 4: Performance of NAS-DO on BDD100K-weather with different context branch and feature
orthogonalization weights, while super-net layer and step are set 4 and sparseness is 2. left: Context
branch weight λctx is equal to feature orthogonalization weight λp. middle: λctx is fixed by 0.5.
right: λp is fixed by 0.5.

Table 3: Ablation study for search space design on BDD100K-weather. Both context branch weight
and feature orthogonalization weight are set to 0.5. Column P measures the searched backbone
parameter size (M). For layer, step and sparseness are fixed by 4 and 1. For step, layer and sparseness
are fixed by 4 and 2. For sparseness, layer and step are fixed by 4.

(a) Results of layer

Layer P APL ARL

4 139 46.0 56.3
5 110 42.9 51.7
6 103 50.0 59.7

(b) Results of step

Step P APL ARL

2 57 51.1 59.1
3 70 48.8 57.6
4 122 52.9 59.8

(c) Results of sparseness

Sparse P APL ARL

1 139 46.0 56.3
2 122 52.9 59.8

Pascal VOC and MS COCO, respectively.
OOD dataset results. As illustrated in Table 2, the proposed NAS-DO achieves the best performance
of 52.9% APL on BDD100K-weather and outperforms baselines by nearly 20%. It also achieves
the best performance of 39.8% APL on BDD100K-time-of-day and outperforms baselines 5.1%
simultaneously. For the IID train-test split of BDD100K, we report the results in Appendix A.3 and
NAS-DO consistently outperforms baseline methods with higher fps. Considering the comparative
performance on IID and the outstanding generalization ability on OOD, we deduce that our searching
strategy is able to find the optimal architecture with remarkable OOD generalization performance and
reasonable model size since Pham et al. (2021) suggest there is a trade-off between model complexity
and generalization ability and it needs larger models to achieve better OOD performance.

4.3 ABLATION STUDY

Ablation studies are conducted to answer the following questions.
Q1: The robustness of NAS-DO.
A1: We study this by conducting corruption experiments where we train on clean data and test on
corrupted data using image corruption tool-kits (Michaelis et al., 2019). The experimental results can
be found in Appendix A.4, and it shows that NAS-DO achieves the best robustness among various
corruption operations on our MS COCO benchmark.
Q2: How much does the feature orthogonalization contribute to the improvement of generalization?
A2: As shown in Figure 4, NAS-DO with 0.5 λctx and λp, brings the generalization ability on
BDD100K-weather up to 52.9% APL. Moreover, we set the λctx and λp to 0 to learn the OOD
generalization improvement contributed by feature orthogonalization and as shown in Table 2, NAS-
DO outperforms baselines yet accuracy drops by 2.5% and 3.3% comparing to NAS-DO with 0.5
λctx and λp on BDD100K-weather and time-of-day, respectively.

Q3: What are the optimal weights of context branch and feature orthogonalization penalty?

A3: We study the generalization impact of different λctx and λp by setting the same value for both
λctx and λp, fixing one parameter and controlling the value of the other. Obviously, the results
reported in Figure 4 demonstrate that when λctx and λp are both set to 0.5, model achieves the
optimal generalization ability.

Q4: How much does the neural architecture search contribute to the improvement of generalization
ability?
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Figure 5: Ablation study of gradient-based
searching strategy on BDD100K-time-of-
day. #X indicates different random seeds.

A4: We study this by randomly sampling five archi-
tectures using different random seeds. As shown in
Figure 5, model performance is limited under 32% APL
without NAS, while optimal architecture converged by
NAS brings the APL up to 39.8% with relatively lower
parameter size.

Q5: How do the width and the depth of super-net influ-
ence the searching process and performance?

A5: First, as shown in Table 3(a), model performance
achieves 50.0% APL with optimal 103M parameters
in 6 layers and this turns out that deeper search space
which means more sub-architectures is much more likely
to discover not only the best function for fitting but
also lesser parameters by doing variational optimization.
Second, although models can reach the highest APL
with step 4 (Table 3(b)), there exists a trade-off between
complexity and performance. Lastly, Table 3(c) suggests
that when increasing the sparseness which refers to more candidate sub-architectures, the model
achieves the best performance when sparseness is set to 2.
Q6: How do other OOD generalization algorithms work?
A6: We use a Faster-RCNN with ResNet-50 backbone for detection and train the detection model with
ERM and other OOD generalization algorithms, including IRM, vREx, GS, GroupDRO, and IGA on
BDD100K-weather. The result is shown in Figure 2 and we can observe that the improvements of
OOD generalization algorithms are only marginal over ERM. This further demonstrates the challenge
of OOD generalization in object detection compared with the image classification task.

4.4 DISENTANGLEMENT OF CATEGORY-RELATED AND CONTEXT-RELATED FEATURES

Figure 6: (Top) Wcls and Wctx are initial-
ized. (Middle, Bottom) Wcls and Wctx

are fixed after training under weather and
time-of-day.

We plot W = 1 − mean(1(Wcls ̸= 0)) ·
mean(1(Wctx ̸= 0)) in Figure 6 to analyze whether
the feature orthogonalization successfully disentangle
the category-related and context-related features, where
mean(·) is element-wise mean function. Suppose we
input a feature Fi, i = 1, . . . , n with n channels to the
category branch and the context branch. If W i

cls = 0
then (W i

cls)
T · Fi will be zero in category branch, while

if W i
cls ̸= 0 then Fi can be used to predict the cate-

gory labels. Same as W i
ctx. Wi = 1 indicates that Fi

is disentangled into the category branch or the context
branch since, W i

cls ̸= 0 and W i
ctx = 0, or, W i

cls = 0
and W i

ctx ̸= 0 (we neglect both W i
cls and W i

ctx = 0
because this situation rarely happens). Wi = 0 indicates
that Fi is used both to predict category label and con-
text label (W i

cls ̸= 0 and W i
ctx ̸= 0) which means the

feature has not been disentangled. It is obvious to see
that at initialization, Wcls and Wctx are hardly able to
disentangle features since most channels of W are zero, after the training process finishes, Wcls and
Wctx can almost classify whether a feature is category-related or context-related as most channels of
W are one compared to the initiation.

5 CONCLUSION AND DISCUSSION

In this paper, we propose NAS-DO, a novel feature-based neural architecture search framework
for OOD object detection. We design a differentiable backbone super-net to search for the optimal
detection backbone with the best OOD generalization ability guided by an orthogonal constraint on
gradients of detector classifier heads to disentangle the category-related and context-related features.
To the best of our knowledge, this is the first attempt to address NAS on OOD generalization object
detection and simultaneously achieve the best performance. For future work, we will extend our
method for real deployments.

9
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A APPENDIX

A.1 PROOFS

A.1.1 PROOF OF THEOREM A.4

Figure 7: Illustration of the feature orthogonalization mechanism. Black dotted lines indicate the
backward gradient. Blue blocks is the category features and Red blocks is the context features.

For completeness, the constraint, assumptions and main theorem are restated as followed. See Figure
7 for better understanding.

Assumption A.1. The category features Bcls and the context features Bctx are independent
Bcls |= Bctx, and Bcls is independent to the context label Yctx, that is Bcls |= Yctx.

Assumption A.2. The input of the classifiers can be written as a concatenation (i.e. XC =
[XT

C,cls, X
T
C,ctx]

T ), where XC,cls is a function of the hidden category feature Bcls, (i.e. ∃fcls :

RB,cls → RNC,cls , XC,cls = fcls(Bcls)), and XC,ctx is a function of the hidden context feature
Bctx, (i.e. ∃fctx : RB,ctx → RNC,ctx , XC,ctx = fctx(Bctx)).

Constraint A.3. The weights of the category and context classifiers are orthogonal, that is

1(Wcls)
T
1(Wctx) = 0 (12)

Theorem A.4. (1) Theorem A.1 and Theorem A.2 hold; (2) the activation function is Lipschitz
continuous; (3) the derivatives of the loss corresponding to the classifier outputs YC,cls and YC,ctx,
and the derivative of the activation function are stochastically bounded during the training; (4) the
network widths goes to infinity; (5) the sample size goes to infinity. Then, Theorem A.3 is a sufficient
condition for YC,cls |= Yctx.

Proof. Firstly, according to NTK theorem Jacot et al. (2018), we use Wcls(t) and Wctx(t) denote
the Wcls and Wctx at time t respectively for the purpose of representing the variation of the element
in Wcls and Wctx during the training process, then the dynamic of Wcls(t) and Wctx(t) can be
formulated as followed:

∂tWcls(t) = −[
∂Ltrain(t)

∂Wcls(t)
]T (13)

∂tWctx(t) = −[
∂Ltrain(t)

∂Wctx(t)
]T (14)

Ltrain = Lcls + Lreg + Lctx + Lfeat_orth (15)

To simplify, we ignore the λctx and λp in Ltrain and it is obvious that with the Theorem A.3,
Lfeat_orth equals 0.
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Secondly, we have the following deduction:

∂Lreg(t)

∂Wcls(t)
=

∂Lreg(t)

∂Wctx(t)
= 0 (16)

∂Ltrain(t)

∂Wcls(t)
=XC(t)

TXC(t)Wcls(t)−XC(t)
TYcls (17)

∂Ltrain(t)

∂Wctx(t)
=XC(t)

TXC(t)Wctx(t)−XC(t)
TYctx (18)

(19)

and the weights matrices can be written as:

Wcls(t) = e−XT
CXCWcls(0) +

∫ t

o

e−XT
CXCτdτXC(t)

TYcls (20)

Wctx(t) = e−XT
CXCWctx(0) +

∫ t

o

e−XT
CXCτdτXC(t)

TYctx (21)

(22)

as t→∞, we have:

Wcls(∞) =(XT
LXL)

−1XT
LYcls (23)

Wctx(∞) =(XT
LXL)

−1XT
LYctx (24)

Thirdly, according to Theorem A.1 and Theorem A.2, we have XC,cls |= Yctx, based on the Law
of Large Number, XC,cls |= Yctx indicates XT

C,clsYctx = 0, thus as t → ∞, we can write Wctx as
following:

Wctx =

[
0

[fctx(Bctx)
T fctx(Bctx)]

−1fctx(Bctx)
TYctx

]
=

[
0

[BT
ctxBctx]

−1BT
ctxYctx

]
(25)

After modifying Theorem A.3, Wcls can be written as:

Wcls =

[
[BT

clsBcls]
−1BT

clsYcls

0

]
(26)

Therefore, we have demonstrated that category prediction will not use the context information and
Theorem A.3 is a sufficient condition for YC,cls |= Yctx.

A.1.2 PROOF OF THEOREM A.5

Theorem A.5. Let Ltrain(ω, s) be continuous on s and max Ltrain ≤ ∞, then the sequence {z}
generated by Alg. 1 has limited points.

Proof. For boundedness, it’s obvious that 0 ≤ Ltrain ≤ max Ltrain ≤ ∞, thus Ltrain is bounded
and Ltrain is closed set as well. For closedness, basically, Ltrain(ω, s) is continuous on s, then
the inverse image {s|Ltrain(ω, s)} of a closed set Ltrain(ω, s) is closed. According to Heine-Borel
Theorem, s is constrained within a compact sub-level set, then sequence {s} has limited points, thus
sequence {z} generated by {s} has limited points.

A.2 EXPERIMENTAL DETAILS OF BDD100K

The original BDD100K contains 80000 labeled images (70000 for training and 10000 for validation)
and each image has three attribute labels. We remove the images with the undefined attribute label
and separate the rest into two OOD environments based on these attribute labels. See Table 5 for
more details.

For optimization, We use SGD with 0.025 learning rate, 0.9 momentum and 0.0003 weight decay
for optimizing network weights ω. We apply Adam (Kingma & Ba, 2014) with 0.0003 learning
rate and 0.001 weight decay for optimizing architecture parameters s. We use one sample per GPU,
accounting for a batch size of eight. Object detectors are trained for 500 epochs on all experiments
for convergence.
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Table 4: More results on BDD100K datasets.

DETECTOR OOD ENVIRONMENTS PARAMS(M) APL ARL FPS

SWIN-B (LIU ET AL., 2021) IID 145 36.5 45.0 11.6
NAS-DO 124 42.3 50.3 13.0

SWIN-B (LIU ET AL., 2021) WEATHER
145 33.5 46.0 11.6

NAS-DO 166 52.9 59.8 9.3

SWIN-B (LIU ET AL., 2021) TIME OF DAY
145 34.7 51.8 11.6

NAS-DO 150 39.8 54.9 9.2

Table 5: Details of BDD100K OOD environments training and testing set. Sample quantity indicates
the number of the specific domain data sampled and Quantity indicates the total number of data in
the original dataset. For training domains, we randomly sample at most 1500 pairs of data while at
most 500 pairs for testing domains .

OOD ENVIRONMENTS TRAIN TEST SAMPLE QUANTITY QUANTITY

CLEAR

WEATHER

√
1500 42690

OVERCAST
√

1500 10009
FOGGY

√
143 143

PARTLY CLOUDY
√

500 5619
RAINY

√
500 5808

SNOWY
√

500 6318

DAYTIME
TIME OF DAY

√
1500 41986

DAWN DUSK
√

1500 5805
NIGHT

√
500 31900

A.3 MORE EXPERIMENTAL RESULTS

Table 4 presents more experimental results on BDD100K (Yu et al., 2018) and the IID is the subset,
with 10K for the training set and 5K for the testing set, of the original train-test split of BDD100K
which is independent identically distributed.

A.4 CORRUPTION EXPERIMENTS

Table 6 presents the experimental results using image corruption tool-kits Michaelis et al. (2019) on
MS COCO val-set corrupted by gaussian noise, shot noise, impulse noise, motion blur, zoom blur,
brightness and contrast.

A.5 VISUALIZATION OF THE RESULTS

As illustrated in Figure 8, we present the details of the searched normal cell and reduction cell
of NAS-DO. A cell contains two input nodes, four intermediate nodes and a concatenate layer.
Each intermediate node has two edges pointed from the previous nodes and the chosen operation is
presented on each edge in different colors. Moreover, the outputs of the four intermediate nodes are
aggregated to the concatenate layer. Figure 9 presents some inference results on BDD100K-weather.
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Table 6: Corruption experiment results on MS COCO val-set with various corruption methods.
R-101 represents ResNet-101 backbone and X-101 represents ResNeXt-101.

MODEL CORRUPTION AP AP50 AP75 APS APM APL

NAS-FPN @ X-101

GAUSSIAN NOISE

9.4 16.5 9.1 2.7 9.5 15.0
NAS-FPN @ R-101 8.6 15.5 8.5 3.4 8.9 13.8
SWIN-S 5.9 10.6 5.9 3.3 7.0 7.7
SWIN-B 5.9 10.3 5.9 3.2 6.8 8.5
NAS-DO (OURS) 12.0 21.3 11.5 0.4 6.2 20.8

NAS-FPN @ X-101

SHOT NOISE

9.7 16.9 9.6 2.4 9.8 15.6
NAS-FPN @ R-101 8.8 15.9 8.7 2.5 9.1 14.3
SWIN-S 6.3 11.3 6.2 3.0 7.2 8.5
SWIN-B 6.4 11.5 6.4 3.0 7.2 9.4
NAS-DO (OURS) 12.6 22.6 11.9 0.5 6.6 22.2

NAS-FPN @ X-101

IMPULSE NOISE

7.6 13.3 7.6 2.0 7.8 12.2
NAS-FPN @ R-101 6.9 12.5 6.7 2.6 7.0 11.4
SWIN-S 5.0 9.0 4.8 2.6 6.1 6.8
SWIN-B 5.1 8.9 5.2 3.7 6.3 7.2
NAS-DO (OURS) 10.1 17.8 9.8 0.3 4.9 18.3

NAS-FPN @ X-101

MOTION BLUR

11.9 20.9 11.9 3.0 11.8 19.2
NAS-FPN @ R-101 10.8 19.3 10.6 3.3 11.0 17.8
SWIN-S 7.7 14.6 7.3 2.8 8.1 11.8
SWIN-B 8.1 15.1 7.8 3.1 8.3 12.6
NAS-DO (OURS) 13.8 24.4 13.4 0.4 6.9 24.3

NAS-FPN @ X-101

ZOOM BLUR

5.7 11.9 5.0 1.9 4.8 10.2
NAS-FPN @ R-101 4.7 10.0 4.0 1.2 4.3 8.3
SWIN-S 2.3 5.0 1.8 1.0 2.3 4.0
SWIN-B 2.3 5.0 1.9 1.0 2.4 3.8
NAS-DO (OURS) 5.8 12.5 4.3 0.2 2.4 10.4

NAS-FPN @ X-101

BRIGHTNESS

12.7 21.9 12.7 3.6 12.8 19.7
NAS-FPN @ R-101 11.8 20.7 11.6 4.0 12.4 19.0
SWIN-S 11.1 20.1 10.9 5.5 11.6 15.0
SWIN-B 12.2 21.8 12.1 6.2 12.8 16.4
NAS-DO (OURS) 15.1 26.0 14.9 0.5 8.0 26.2

NAS-FPN @ X-101

CONTRAST

9.2 16.1 8.9 2.4 9.3 14.5
NAS-FPN @ R-101 8.2 14.5 8.0 2.7 8.7 13.6
SWIN-S 7.9 14.3 7.7 4.0 8.3 11.1
SWIN-B 8.2 14.7 8.1 4.1 8.8 11.3
NAS-DO (OURS) 11.3 20.0 11.2 0.5 6.5 19.5

(a) Weather (b) Time-of-Day

Figure 8: The searched normal cell (first row of each sub-figure) and reduce cell (second row of
each sub-figure) of NAS-DO on BDD100K OOD environments. Red lines, green lines and blue
lines represent op0∼2, respectively. Black dotted lines represent the output data flows. Better view in
zoom-in mode.
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(a) Swin Transformer (Baseline) (b) NAS-DO

Figure 9: Inference results of Swin Transformer and NAS-DO on BDD100K-weather environment
with confidence threshold 0.7. Better view in zoom-in mode.
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