
Latent Spatial Dirichlet Allocation

Junsouk Choi
Department of Biostatistics

University of Michigan
Ann Arbor, MI 48109
junsouk@umich.edu

Jian Kang
Department of Biostatistics

University of Michigan
Ann Arbor, MI 48109
jiankang@umich.edu

Veerabhadran Baladandayuthapani
Department of Biostatistics

University of Michigan
Ann Arbor, MI 48109
veerab@umich.edu

Abstract

We propose a novel topic modeling approach, latent spatial Dirichlet allocation
(LSDA), which generalizes the latent Dirichlet allocation to spatial data. LSDA in-
tegrates spatial Gaussian processes within the LDA framework, thereby effectively
capturing complex spatial dependencies inherent in spatial data. We develop an
efficient Markov chain Monte Carlo algorithm, and applications to both real and
synthetic datasets successfully demonstrate the utility of LSDA.

1 Introduction

Latent Dirichlet allocation (LDA, Blei et al., 2003) is a Bayesian probabilistic model commonly used
in natural language processing to discover abstract topics that occur in a corpora of documents. The
LDA model assumes that the words of each document arise from a mixture of topics, where each
topic is a multinomial distribution over a fixed word vocabulary, suggesting a shared theme in the data.
Documents consist of multiple topics with varying proportions, implying that LDA is an instance
of mixed-membership models. LDA is a powerful tool in modeling hidden thematic structures in a
collection of documents, facilitating the organization and understanding of large volumes of text data.
The mixed-membership nature of the LDA model makes it popular in analyzing discrete data in other
settings, such as population genetics (Pritchard et al., 2000), network data (Airoldi et al., 2008) and
computer vision (Li & Perona, 2005; Russell et al., 2006).

However, the direct application of LDA or conventional LDA-based topic models to spatial data
analysis faces several challenges. First, LDA is a ‘bag of words’ model, which means that the words in
each document are assumed to be exchangeable within them. This assumption causes LDA to ignore
spatial structures within documents. Second, LDA assumes that topic distributions are independent
across documents. In the context of spatial analysis, where documents typically represent segments
of the entire spatial region, this assumption, along with the bag-of-words assumption, completely
disregards the spatial dependence structure inherent in spatial data. In practice, we expect that
topic distributions in neighboring spatial regions are correlated. To address such limitations, several
extensions of the LDA model have been developed to account for spatial information in diverse fields
of spatial data analysis. For instance, in the context of location-based social network data, spatial
topic models have been developed to identify regional communities (Van Canh & Gertz, 2013) and
assign semantic labels to locations of interest (He et al., 2017). In computer vision, topic models
such as the spatial LDA model (Wang & Grimson, 2007) and the spatially coherent latent topic model
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Figure 1: Probabilistic graphical representations of the conventional LDA (a) and the proposed
LSDA (b).

(Cao & Fei-Fei, 2007) have been proposed to incorporate spatial information, allowing the discovery
of object and scene categories from images. Chen et al. (2020) extended LDA to account for spatial
structure in multiplex imaging data from human tissues. Despite their advancements, these methods
are specifically designed for particular applications, which limits their generalizability across broad
spatial data analytic tasks.

We propose the latent spatial Dirichlet allocation (LSDA), a general topic modeling framework that
can be applied or easily extended to a broad range of spatial data classes and dependencies. Spatial
data (e.g., a multiplex image in Figure 2(a)) serve as input for the proposed LSDA method, which in
turn generates outputs that include spatial patterns of topics across the spatial region and estimates
of topics themselves (e.g., Figure 2(b)). Specifically, the proposed LSDA employs spatial Gaussian
processes (GPs) to incorporate spatial information into topic modeling, providing great flexibility
to model the inherent spatial correlation structures within spatial data. We also develop an efficient
Markov chain Monte Carlo (MCMC) algorithm for performing posterior inference for the LSDA
model, and demonstrate its effectiveness through applications to both real cancer imaging as well as
synthetic datasets.

2 LSDA Topic Model

To generalize topic models to spatial data analysis, it is essential to appropriately define “words” and
“documents” in the context of spatial data. Any low-level spatial objects characterized by discrete
values and observable locations can be considered as words. For instance, in the multiplex imaging
data shown in Figure 2(a), individual cells are observed with their specific types and locations.
These cells can be considered as the words for our LSDA model. For the definition of documents,
we consider distinct segments of the overall spatial region, where the locations of the segments
are observable. The segmentation of the spatial domain and the determination of the number of
segments are pre-processing steps that vary depending on the specific application. For example, in
multiplex imaging data analysis, biological prior knowledge can guide the segmentation process. In
the application presented in Section 3.1, we defined spatial segments based on the biological insight
that cell-to-cell interactions are typically negligible beyond a certain distance. In computer vision
tasks, spatial segments could be designed to include sufficient local pixels to capture relevant local
features while remaining smaller than object sizes in images. Let D denote the number of the spatial
segments, and wdi ∈ {1, . . . ,W}, i = 1, . . . , Nd, represent the multiple words within each segment,
where Nd is the number of words in the d-th spatial segment of the entire region.

Latent Dirichlet Allocation. LDA is a Bayesian hierarchical model for a collection of documents
(originally a corpora and, in our application, spatial data). Assume that there exist K topics and
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let zdi ∈ {1, . . . ,K} be a topic assignment latently associated with each word wdi. LDA assumes
the following generative process for a collection of documents. First, for each topic k, draw a
distribution over the vocabulary from a Dirichlet distribution, βk ∼ Dirichlet(γ). Next, for each
document d, draw a distribution over topics from a Dirichlet distribution, θd ∼ Dirichlet(α). Then,
for each word i in document d, draw a topic index from the document-specific topic distribution,
zdi ∼ Multinomial(θd), and draw the observed word from the word distribution corresponding to the
selected topic zdi, wdi ∼ Multinomial(βzdi). Here, γ and α are hyperparameters for the Dirichlet
distributions. A graphical representation of the generative process of LDA is shown in Figure 1(a).
A fundamental assumption of the LDA model is that the documents are independent of each other.
However, this assumption does not hold for spatial data, as topic distributions of nearby spatial
regions are expected to be correlated.

Latent Spatial Dirichlet Allocation. We generalize the LDA model to incorporate the spatial
information inherent in the spatial data. Specifically, to account for spatial dependence between
different segments of the entire spatial region, we introduce the spatial Dirichlet allocation process
(SDAP) for the segment-specific topic distribution θd := θ(sd) = {θ1(sd), . . . , θK(sd)}⊤ ∈ RK ,
where sd, d = 1, . . . , D, denote the observed locations of spatial segments. We define the SDAP on
θ(·) as

θ(·)|α(·) ∼ Dirichlet{α(·)}, logαk( · )
iid∼ GP{0, κ(·, ·)}, k = 1, . . . ,K,

where α(·) = {α1(·), . . . , αK(·)}⊤ and κ is the covariance kernel for the GPs. Here, at the location
sd of the d-th segment, α(sd) ∈ RK serves as the hyperparameters for the Dirichlet prior on the
segment-specific topic distribution θd = θ(sd). Since α(·) is spatially smoothed by the use of
GPs, if two spatial segments are nearby with locations sd1

and sd2
, the corresponding Dirichlet

hyperparameters α(sd1
) and α(sd2

) are likely to be similar. Since they determine the mean of
Dirichlet distribution with E{θk(sd)|α(sd)} = αk(sd)/

∑K
k=1 αk(sd), the similarity in α(sd1) and

α(sd2
) will result in similar segment-specific topic distributions θ(sd1

) and θ(sd2
). Hence, the

distribution over topics will be coherent across neighboring spatial regions. An illustrative example
of the proposed SDAP is provided in Appendix A.

The SDAP represents a novel spatial stochastic process for modeling spatially varying topic distribu-
tions within the topic modeling paradigm. It contrasts with related models such as the spatial Dirichlet
process mixture model (SDPM, Gelfand et al., 2005), which employs a Dirichlet process mixture
with a GP baseline to generate a random spatial process. Unlike the SDPM, which employs the
Dirichlet process to model continuous spatial data, our SDAP relies on a finite Dirichlet distribution,
producing spatially varying discrete distributions over topics rather than continuous spatial outcomes.

We denote our spatial Dirichlet allocation process as θ(·) ∼ SDAP(κ). Then, the complete data
generating process of LSDA is given as follows. The first step is same with the standard LDA. For
k = 1, . . . ,K, draw per-topic word distributions from a Dirichlet distribution, βk ∼ Dirichlet(γ).
However, the procedure diverges in the subsequent step. For the segments d = 1, . . . , D of the entire
spatial region, we set their topic distributions at θd = θ(sd), where θ(·) ∼ SDAP(κ). The spatial
Dirichlet allocation induces spatially coherent topic distributions across neighboring spatial locations.
Given βk’s and θd’s, for word i in segment d, we draw a topic index from zdi ∼ Multinomial(θd),
and draw the observed word from the selected topic zdi, wdi ∼ Multinomial(βzdi). A probabilistic
graphical representation of the proposed LSDA is provided in Figure 1(b).

Posterior Computation of LSDA. For posterior inference on the proposed LSDA, we develop a
computationally efficient MCMC algorithm to simulate the joint posterior distribution of all model
parameters, including logαk(·), to which we assign a GP prior. A major challenge in our posterior
computation is that sampling logαk(·) from the GP posterior requires substantial computing resources
because it requires us to invert increasingly large covariance matrices as the number of documents (i.e.
spatial locations) increases. To address this problem, we adopt an approximation of the GP through the
eigendecomposition of the covariance kernel. According to the Karhunen–Loève theorem, logαk(s),
which follows a GP, can be equivalently represented as a linear combination of the eigenfunctions.
Given the spatial smoothness assumption of logαk(·) in our LSDA framework, we require only
a limited number of eigenfunctions L, much smaller than the number of spatial segments D, to
adequately approximate logαk(·). This reduction leads to efficient posterior computation. Therefore,
leveraging this GP approximation, we develop a Metropolis-Hastings within Gibbs sampler for our
GP-based LSDA model. Our sampler utilizes Gibbs sampling for updating βk and θd, while collapsed
Gibbs sampling is employed for updating zij . The basis coefficients for the eigenfunctions, which
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Figure 2: (a) Selected ovarian cancer image. (b) LSDA results: Dominant topics across spatial
segments of the ovarian cancer image, along with estimated topics β̂k.

approximate the GPs, are updated using the stochastic gradient Hamiltonian Monte Carlo approach
proposed by Chen et al. (2014). Further details of our MCMC sampling schemes are provided in
Appendix B.

3 Experiments

3.1 Application to Cancer Multiplex Imaging Data

We demonstrate the utility of the proposed LSDA with a multiplex imaging dataset of high grade
serous ovarian cancer (Steinhart et al., 2021). The ovarian cancer multiplex imaging dataset consists
of segmented and phenotyped multiplex images of tumor regions collected from 128 patients with
ovarian cancer. In each image, the spatial locations and types of tumor and immune cells were
observed, with cells in the dataset classified into W = 6 types: Cytotoxic T cell, Macrophage, Tumor
cell, B cell, T Helper cell, and Other. We aimed to uncover spatial tissue architecture by identifying
biologically significant tumor microenvironments where specific cell types co-localize.

We applied our proposed LSDA to an image with the highest cell count that also contained at least
30 cells per type, shown in Figure 2(a). Since the number of topics was unknown in this analysis,
we considered multiple numbers of topics K = 2, 3, 4, 5, and utilized the deviance information
criterion (DIC, (Li et al., 2020)) to select the optimal number of topics. According to the DIC,
K = 4 was selected. Figure 2(b) displays the estimates of topics β̂k, k = 1, . . . , 4, and the
dominant topics across spatial segments, identified by the highest topic probability estimate θ̂kd
across segments. Detailed information on the implementation of our LSDA approach can be found
in Appendix C. In this application, topics represents the co-localization of various cell types with
varying degrees, each corresponding to a distinct tumor microenvironment. Specifically, Topic 2
indicates a microenvironment where B cells and cytotoxic T cells co-localize. In ovarian cancer, this
aggregation is known to enhance tumor immunity and improve patient survival, as B cells act as
antigen-presenting cells that help activate cytotoxic T cells and contribute to the antitumor response
(Montfort et al., 2017; Zhang et al., 2023).

To evaluate our LSDA, we compared our results with two benchmarks: standard LDA (Blei et al.,
2003), which does not incorporate spatial information, and Spatial-LDA (Chen et al., 2020), which
leverages an adjacency-based spatial similarity prior to account for spatial structures in multiplex
imaging data. The results of applying LDA and Spatial-LDA with K = 4 to the same ovarian cancer
image are shown in Figures 5 and 6 (Appendix C). Our LSDA demonstrated clear advantages in
analyzing cancer multiplex imaging data. Compared to the benchmarks, LSDA better captured diverse
co-localizations of cell types while maintaining spatial coherence of the estimated topics across tissue
regions. Notably, only LSDA successfully identified the co-localization of B cells and cytotoxic T
cells (Topic 2 in Figure 2(b)), a tumor microenvironment that neither LDA nor Spatial-LDA was able
to capture. This highlights the superior flexibility of LSDA in uncovering spatially correlated hidden
tumor microenvironments from multiplex imaging data.
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Figure 3: Boxplots of ARIs for true vs. estimated dominant topics across 50 synthetic data replicates
for LSDA, LDA, and Spatial-LDA under different SNR scenarios.

3.2 Synthetic data

We also conducted a comparative evaluation of the empirical performance of LSDA using synthetic
data generated based on the real data discussed in Section 3.1. Synthetic datasets were generated
from the LSDA model using fixed cell locations from the ovarian cancer multiplex image, with
W = 6 and K = 4 as in Section 3.1. We set αk = α̂k (fitted GPs from the ovarain data), and
considered three different settings of βk corresponding to varying signal-to-noise ratios (SNRs):
βk = (1− ρ)β̂k + ρ( 1

W 1W ), where β̂k is the estimate from the ovarian data and 1W is a vector of
ones of length W . As ρ increases, topics get less distinct, indicating the SNR decreases. We varied ρ
across three settings: 0.5, 0.25, and 0, labeled as SNRlow, SNRmed, and SNRhigh, respectively.

We implemented our LSDA, and compared its performance against the standard LDA and Spatial-
LDA as in Section 3.1. The effectiveness of these methods in identifying spatial patterns of topics
was compared by calculating the adjusted rand index (ARI, Hubert & Arabie, 1985) between the true
and estimated segment-specific dominant topics for each method. Detailed information about our
synthetic data experiment, including the calculation of the ARI, is provided in Appendix C. In Figure
3, we present boxplots of the ARI values (from 50 replicates) for LSDA, LDA, and Spatial-LDA
across different SNR levels. LSDA consistently outperformed all the alternatives in identifying
dominant topics. Additionally, as the SNR decreased, the performance gap between models that
account for spatial dependencies (LSDA and Spatial-LDA) and the standard LDA model widened,
which emphasizes the importance of accounting for spatial dependence structures when applying
topic models to spatial analysis.

4 Conclusion

We propose LSDA, a novel topic modeling framework for spatial data, which integrates GPs within the
LDA model to effectively account for complex spatial dependencies inherent in such data. Through
simulations, we demonstrate that incorporating GPs allows for greater flexibility in modeling complex
spatial dependency patterns, outperforming existing spatial topic models that rely on a specific
assumption of spatial smoothness (e.g., adjacency-based similarity). Our analysis of cancer multiplex
imaging data shows the effectiveness of our LSDA in discovering tumor microenvironments with
biological significance. Given its flexibility, the proposed LSDA framework can also be applied to a
wide range of spatial data, including computer vision and geographical data.

Currently, LSDA focuses on categorical spatial data, where each spatial unit is assigned a categorical
label. The current framework is not directly applicable to continuous spatial data; while discretization
of continuous data is a possible workaround, it inevitably leads to a loss of information. To address
this, we plan to extend our model to accommodate continuous spatial data in future work. Another
promising direction for future research is improving the scalability of the LSDA method. Although
the current fully Bayesian approach, based on MCMC, naturally provides uncertainty quantification,
it can be computationally intensive. To improve scalability, we plan to explore alternative posterior
inference methods, such as variational Bayes.
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A Illustration of the SDAP

This section presents an illustrative example of our proposed SDAP. Figure 4(a) displays realizations
of logαk(·) ∼ GP{0, κ(·, ·)}, k = 1, . . . ,K with K = 3. Here, for the covariance kernel κ, we
employ the modified squared exponential kernel described in Appendix C.2, with hyperparameters
set to a = 0.01 and b = 1. Given the realizations of logαk(·), Figure 4(b) demonstrates the expected
spatially varying topic distribution, E(θk(·)|α(·)), k = 1, 2, 3, which reveals spatial coherence across
neighboring regions. Taken together, this example illustrates how GP-based spatial smoothing
applied to the spatially varying Dirichlet hyperparameters logαk(·) induces spatial coherence in the
segment-specific topic distributions across different regions.
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Figure 4: (a) Realizations of logαk(·) ∼ GP{0, κ(·, ·)} for k = 1, 2, 3. (b) Corresponding expected
spatially varying distribution E(θk(·)|α(·)) for k = 1, 2, 3.

B The MCMC Algorithm

In this section, we provide the detailed description of our MCMC algorithm for the LSDA model. To
alleviate the computational burden of sampling from the GP posterior, we consider an approximation
of the GP using the eigendecomposition of the covariance kernel κ, as described below.

B.1 GP Approximation

Consider the eigendecomposition of the covariance kernel κ(s, s′) =
∑∞

l=1 λlϕl(s)ϕl(s
′), where

{λl}∞l=1 is the set of eigenvalues with λ1 ≥ · · · ≥ λl ≥ λl+1 ≥ · · · , and {ϕl(s)}∞l=1 is the set of
orthonormal eigenfunctions such that

∫
ϕl(s)ϕl′(s)ds = 1(l = l′) for any l, l′ ∈ {1, 2, . . .}. The

Karhunen–Loève theorem implies that logαk(s), modeled as a GP, can be equivalently represented
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as a linear combination of the eigenfunctions, logαk(s) =
∑∞

l=1 bklϕl(s), where bkl
iid∼ N(0, 1).

Hence, we can approximate logαk(s) by truncating the summation at a sufficiently large number of
components L: logαk(s) ≈

∑L
l=1 bklϕl(s). Since our LSDA model assumes logαk(·) is spatially

smooth, the required number of eigenfunctions L to achieve a good approximation of logαk(·) is
still much smaller than the number of spatial segments D, leading to efficient posterior computation.

B.2 Markov chain Monte Carlo

To fit the GP-based LSDA model, we develop a Metropolis-Hastings within Gibbs sampler to draw
samples from the posterior distribution. For βk and θd, the full conditional distributions have closed
forms, leading to efficient Gibbs sampling update schemes. For zij , we use the collapsed Gibbs
sampling, marginalizing out βk’s and θd’s from our target posterior distribution. Updating the
basis coefficients B = (bkl)k,l, which approximate GPs over logαk(·), k = 1, . . . ,K, is the most
challenging part in our MCMC algorithm, because of their high-dimensionality and the complexity
of the full conditional density that involves the log transformation. Therefore, we adopt the stochastic
gradient Hamiltonian Monte Carlo (SGHMC) approach proposed by Chen et al. (2014) to update B.
The detailed steps of our sampler are given as follows:

Update Z. Sample zdi from its conditional posterior Pr(zdi = k̃|Z−di, B,X), marginalizing out β
and θ,

Pr(zdi = k̃|Z−di, B,X) ∝
n
(−di)

k̃xdi
+ γxdi∑W

w=1(n
(−di)

k̃w
+ γw)

N
(−di)

dk̃
+ θk̃(sd)∑K

k=1(N
(−di)
dk + θk(sd))

, (1)

where nkw is the number of times word w is assigned to topic k, Ndk is the number of words in
document d assigned to topic k, and the superscript (−di) indicates that the corresponding datum has
been disregarded when calculating nkw and Ndk.

Update β. Sample βk independently from its full conditional

π(βk|Z,X) ∝ Dirichlet (nk1 + γ1, . . . , nkW + γW ) . (2)

Update θ. Sample θd independently from its full conditional

π(θd|Z,B,X) ∝ Dirichlet (Nd1 + α1(sd), . . . , NdK + αK(sd)) , (3)

where αk(sd) = exp
(∑L

l=1 bklϕl(sd)
)

.

Update B. It is infeasible to directly sample from the full conditional distribution of B

π(B|θ,X) ∝
D∏

d=1

1

B (α1(sd), . . . , αK(sd))
θ
α1(sd)−1
d1 · · · θαK(sd)−1

dK

K∏
k=1

L∏
l=1

exp

(
−1

2
b2kl

)
, (4)

where αk(sd) = exp
(∑L

l=1 bklϕl(sd)
)

and B(c1, . . . , cK) is the beta function. Hence, we adopt
SGHMC (Chen et al., 2014) to draw samples from (4). Hamiltonian Monte Carlo (HMC) is an efficient
sampling approach which shows a higher acceptance rate compared to the standard Metropolis-
Hastings sampling. SGHMC extends HMC by using stochastic gradients to improve efficiency,
allowing it to avoid evaluating the entire dataset. Additionally, SGHMC eliminates the need for
the Metropolis-Hastings step after each proposal by introducing an additional friction term in the
momentum update. Specifically, at t-th MCMC iteration, we update B through Algorithm 1.

Given the sample of other parameters at the t-th iteration θ(t)d , we compute the stochastic gradient of
U(B) = − log π(B|θ,X) by subsampling the indices of documents, that is, we calculate

∂Ũ(B)

∂bkl
=

D

|D|
∑
d∈D

{
ψ (αk(sd))− ψ

(
K∑

k=1

αk(sd)

)
− log(θ

(t)
dk )

}
αk(sd)ϕl(sd) + bkl, (5)

where ψ(·) is the digamma function and the index set D is a random subset of the indices of documents
(spatial segments) {d}Dd=1.
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Algorithm 1 SGHMC for updating B at the t-th MCMC iteration
1: Input: the number of leapfrog steps M , the learning rate η and the momentum tuning parameter

(1− α).
2: optionally, resample momentum r from the matrix normal distribution r ∼MNK×L(0, I, ηI);
3: set (B0, r0) = (B(t−1), r(t−1);
4: for h = 1, . . . ,M do
5: update Bh = Bh−1 + rh−1;
6: sample ϵh ∼MNK×L(0, I, 2αηI);
7: sample D ⊂ {d}Dd=1;
8: update rh = (1− α)rh−1 − η∇Ũ(Bh;D) + ϵh;
9: end for

10: set (B(t), r(t)) = (BM , rM );

C LSDA Implementation for the Experiments

In this section, we provide additional results and details for the experiments in Section 3, including
the implementation our LSDA approach on cancer multiplex imaging data.

C.1 Segmentation of Multiplex Image

The first step in implementing our LSDA on the multiplex imaging data was segmenting the given
multiplex image to define documents for our LSDA framework. We achieved the segmentation by
applying Voronoi tessellation over a systemically arranged grid of points. Each grid point serves as
the location of each segments (i.e., sd), and the arrangement of this grid was designed to maintain
inter-cellular distances within each spatial segment under 40 µm, a threshold beyond which cell-
to-cell interactions are typically considered insignificant (Mohammed et al., 2024). This process
resulted in 1,328 spatial segments for the selected ovarian cancer image.

C.2 Hyperparameters

To implement the proposed LSDA method, we should specify the covariance kernel κ for the GP
over logαk(·). In this work, we used the modified squared exponential covariance kernel, which
allows for straightforward computation of eigenfunctions and eigenvalues through the use of Hermite
polynomials. The modified squared exponential covariance kernel is defined as

κ(s, s′) = exp{−a(||s||22 + ||s′||22)− b||s− s′||22}, (6)

where || · ||2 denotes the Euclidean norm, and a > 0 and b > 0 are hyperparameters. When logαk(·)
follows a GP with mean zero and the modified exponential covariance kernel, the hyperparameter a
controls the rate at which the variance Var{logαk(s)} decays relative to Var{logαk(0)}. On the
other hand, the hyperparameter b determines the smoothness of the GP; smaller values of b result
in smoother GPs. In our LSDA implementation for the experiments in Section 3, we set a = 0.01
and b = 1 as the default values. To further improve performance of the proposed method, these
hyperparameters can also be selected using a suitable model selection criterion, such as the DIC (Li
et al., 2020).

C.3 Posterior Inference

In Section 3, which includes applications to both real cancer imaging data and synthetic data, we
run our proposed MCMC algorithm for 20,000 iterations, of which the first 10,000 iterations were
discarded as burn-in. Based on the MCMC samples, we calculated the posterior mean β̂k and θ̂d of
βk and θd, and identified the dominant topic for each spatial segment by determining which topic had
the highest probability, that is, k̂d = argmaxkθ̂kd.

C.4 Benchmarking on Cancer Multiplex Imaging Data

For comparison, we applied two baseline methods– standard LDA (Blei et al., 2003) and Spatial-
LDA (Chen et al., 2020)–to the ovarian cancer image in Section 3.1, using the same number of
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Figure 5: LDA results: Estimated topics and dominant topics with the highest posterior probabilities
assigned to spatial segments of the ovarian cancer image.

41500

42000

42500

11500 12000 12500 13000

Topic 1 Topic 2 Topic 3 Topic 4

0.595 0.023 0 0.116

0.271 0.001 0.056 0.005

0.001 0.001 0.169 0.002

0.006 0.915 0 0.038

0.002 0.001 0 0.688

0.124 0.06 0.775 0.152

Cytotoxic T

Macrophage

Tumor

B Cell

T Helper

Other

Topic 1 Topic 2 Topic 3 Topic 4

(a)

41500

42000

42500

11500 12000 12500 13000

Topic 1 Topic 2 Topic 3 Topic 4

0.105 0.088 0.003 0.552

0.878 0.001 0.009 0.01

0.005 0.001 0.177 0.002

0 0.897 0 0.014

0 0.001 0 0.164

0.012 0.012 0.811 0.257

Cytotoxic T

Macrophage

Tumor

B Cell

T Helper

Other

Topic 1 Topic 2 Topic 3 Topic 4

(b)

41500

42000

42500

11500 12000 12500 13000

Topic 1 Topic 2 Topic 3 Topic 4

0.282 0.093 0.007 0.061

0.564 0.001 0.025 0.023

0.038 0 0.174 0.035

0 0.865 0 0.003

0.019 0.02 0 0.119

0.097 0.021 0.793 0.759

Cytotoxic T

Macrophage

Tumor

B Cell

T Helper

Other

Topic 1 Topic 2 Topic 3 Topic 4

(c)

Figure 6: Spatial-LDA results: Estimated topics and dominant topic assignments across spatial
segments for different values of the tuning parameter dij : dij = 2.5× 10−2 (a), dij = 2.5 (b), and
dij = 2.5× 102 (c).

topics K = 4 as in LSDA. Figure 5 illustrates the topics estimated by LDA and the dominant topic
assignments across spatial segments, while Figure 6 presents the results obtained from Spatial-LDA.
The Spatial-LDA approach relies on a tuning parameter dij that controls the spatial similarity between
adjacent regions, with smaller values of dij implying stronger similarity in topic distributions. Thus,
we evaluated Spatial-LDA with multiple values dij ∈ {2.5× 10−2, 2.5, 2.5× 102}.

As expected, LDA produced a more scattered distribution of topics due to its its lack of spatial model-
ing capabilities. Although Spatial-LDA incorporates spatial information, the resulting clusters were
predominantly dominated by a single topic enriched with “Other” cells, failing to yield informative
spatial clustering patterns comparable to LSDA.
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C.5 Additional Details on the Synthetic Data Experiment

This section provides further details on our synthetic data experiment in Section 3.2. Specifically, for
Spatial-LDA, we tested multiple values of the tuning parameter dij ∈ {2.5× 10−2, 2.5, 2.5× 102},
consistent with Section 3.1, and present results for the setting that achieved the highest ARI.

In the synthetic data experiment in Section 3.2, the ARI (Hubert & Arabie, 1985) is defined by

ARI =

∑
ij

(
Dij

2

)
−
[∑

i

(
Di

2

)∑
j

(
Dj

2

)]/ (
D
2

)
1
2

[∑
i

(
Di

2

)
+
∑

j

(
Dj

2

)]
−
[∑

i

(
Di

2

)∑
j

(
Dj

2

)]/ (
D
2

) ,
where n is the total number of spatial segments, Dij is the number of segments where the estimated
dominant topic is i and the true dominant topic is j, Di is the total number of segments assigned
to the estimated dominant topic i, and Dj is the total number of segments associated with the true
dominant topic j. The ARI generally ranges from 0 to 1, where 1 indicates perfect agreement between
the estimated and true clusterings (dominant topics), and 0 corresponds to random assignments.
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