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Abstract

Structural causal models (SCMs) are a widespread
formalism to deal with causal systems. A recent
direction of research has considered the problem
of relating formally SCMs at different levels of
abstraction, by defining maps between SCMs and
imposing a requirement of interventional consis-
tency. This paper offers a review of the solutions
proposed so far, focusing on the formal properties
of a map between SCMs, and highlighting the dif-
ferent layers (structural, distributional) at which
these properties may be enforced. This allows us
to distinguish families of abstractions that may or
may not be permitted by choosing to guarantee
certain properties instead of others. Such an un-
derstanding not only allows to distinguish among
proposal for causal abstraction with more aware-
ness, but it also allows to tailor the definition of
abstraction with respect to the forms of abstraction
relevant to specific applications.

1 INTRODUCTION

Modelling causal systems at different levels of abstraction is
a central feature in our understanding of the world and in our
scientific endeavours. Generating representations at the right
level of granularity is often the implicit goal of unsupervised
and representation learning; in the causal setup, learning
high-level causal representations is the central task of causal
representation learning (CRL) [Schölkopf et al., 2021].

A study of the formal properties of abstraction in the context
of structural causal models (SCM) has been proposed in
a few recent papers [Rubenstein et al., 2017, Beckers and
Halpern, 2019, Beckers et al., 2020, Rischel, 2020, Rischel
and Weichwald, 2021, Otsuka and Saigo, 2022]. All these
works have in common the presentation of abstraction as a
map between SCMs that would be consistent (or approxi-

mately consistent) with respect to interventions; that is, a
map that would commute (or approximately commute) with
respect to interventions, thus enforcing the intuition that
working first at the microlevel and then abstracting to the
macrolevel would produce the same result as immediately
switching to the macrolevel and then working there.

Yet SCMs are complex structured objects and the abstraction
maps proposed in the existing literature vary considerably
between them. This is reflected in the different nomencla-
ture (abstraction, transformation), theoretical background
(measure theory, category theory) and concrete mappings
that are allowed to be considered as abstractions. In this
paper, we focus only on definitions of abstractions, without
discussing explicitly the requirement of (interventional) con-
sistency. The objective is to reconcile existing formalisms in
terms of the layers at which an abstraction is defined and the
properties that are enforced. This will bring some immedi-
ate benefits, among which: (i) a better understanding of the
alternative formalisms being proposed; (ii) an insight into
which maps we would want to be considered as abstractions;
(iii) in a CRL framework, the ability to tailor the definition
according to the properties we actually want to hold.

The paper is organized as follows: in Section 2 we review
the definition of SCM and abstraction, and we summarize
relevant work in the literature; in Section 3 we analyze how
abstractions can be characterized on two different layers,
and which properties can be required; finally, in Section 4,
we discuss the implications of our analysis, summarizing
how properties on different layers may be used to restrict
the definition of an abstraction.

2 BACKGROUND

2.1 STRUCTURAL CAUSAL MODELS

A (semi-Markovian) SCM Pearl [2009], Peters et al. [2017]
M is a tuple ⟨X ,U ,F , P (U)⟩ where:
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• X is a set of N endogenous variables, that is, observed
variables of interest in the model; each variable Xi ∈
X is defined on a finite domain M[Xi];

• U is a set of N exogenous variables, that is, unobserved
variables accounting for factors beyond the scope of the
model; each variable Ui ∈ U is defined on a domain
M[Ui];

• F is a set of N modular and measurable structural
functions, one for each endogenous variable Xi; the
value assumed by an endogenous node is determin-
istically computed as Xi = fi(pa(Xi), Ui), where
pa(Xi) ⊆ X \{Xi} is the set of endogenous variables
directly affecting Xi;

• P (U) is a probability distributions over the exogenous
variables.

A SCM admits an underlying acyclic graph GM = ⟨V, S⟩
whose set of vertices V is given by the endogenous vari-
ables in X and the set of edges E is given by the structural
functions [Pearl, 2009].

Our definition of SCM makes a few assumption about the
causal model such as: (a) finite number of endogenous vari-
ables; (b) finite domains for the endogenous variables; (c)
unique exogenous variable per endogenous variable; (d)
exogenous variables not necessarily independent; (e) modu-
larity and measurability of structural functions; (f) acyclic
underlying graph. All these assumptions are discussed at
length in the literature [Pearl, 2009, Peters et al., 2017],
and they represent a minimum shared set of assumptions
between the existing proposals for abstraction. In the follow-
ing, we will therefore assume that our SCMs always comply
with these assumptions, unless otherwise stated.

Thanks to the assumptions above, it is possible to pushfor-
ward probability distributions from the exogenous variables
onto the endogenous variables. Furthermore, we can con-
veniently represent a SCM as a collection of sets and a
collection of mechanisms M[ϕXi

], one for each endoge-
nous variable, encoded as a stochastic matrix (or Markov
kernel) [Rischel, 2020].

SCMs can be modified via intervention through the ι :
do(X = x) operator which fixes a set of endogenous vari-
ables X ⊆ X to the values x [Pearl, 2009]. An intervention
ι on a SCM M produces a new post-interventional model
Mι.

2.2 ABSTRACTIONS

Given two SCMs Mm = ⟨X ,U ,F , P (U)⟩ and MM =
⟨X ′,U ′,F ′, P (U ′)⟩, an abstraction is a map α : Mm →
MM between the two SCMs. For simplicity, we will refer
to the model Mm in the domain of α as the micromodel, or
the low-level model, and to the model MM in the codomain
of α as the macromodel, or the high-level model.

Characterizing an abstraction requires a concrete specifi-
cation of the map α : Mm → MM , together with the
properties that this map must satisfy. We can distinguish
two forms of properties that are usually required: (i) formal
properties regarding the map itself, that statically constrain
the map (e.g.: surjectivity); and (ii) consistency properties
guaranteeing that working either with the micromodel or
the macromodel would lead to consistent results. The re-
quirement of consistency often takes the form of (perfect or
approximate) commutativity with respect to interventions,
which translates the understanding that the results observed
from the micromodel and the macromodel should be con-
sistent when we intervene on them. In the next sections we
will focus on formal properties, leaving a detailed study of
the property of consistency for future work.

2.3 RELATED WORK

A first definition of abstraction between SCMs (for which
assumption (b) and (f) are not necessarily required) has
been put forth by Rubenstein et al. [2017]: a (τ -ω)-
transformation is a map τ : Mm[X ] → MM [X ′] from
the joint domain of the outcomes of all the microvariables to
the joint domain of the outcomes of all the macrovariables,
which is interventionally consistent with respect to a set of
interventions of interest I.

Dealing with deterministic SCMs, Beckers and Halpern
[2019] build over this work by presenting the notion of
uniform (τ -ω)-transformation as a map τ : Mm[X ] →
MM [X ′] that would satisfy interventional consistency for
any choice of distribution over the exogenous variables
in Mm. Further, they also offer a stronger defintion of
τ -abstraction as a surjective function τ : Mm[X ] →
MM [X ′] with an associated surjective function between
exogenous nodes of the micromodel and the macromodel,
and an associated function between set of interventions in
the micromodel and the macromodel.

Relying on category theory, Rischel [2020], Rischel and
Weichwald [2021] suggest a more detailed definition of an
abstraction. An abstraction α is a a tuple ⟨R, a, αX′⟩ given
by a set of relevant nodes in the micromodel R ⊆ X , a sur-
jective map between variables in the micromodel and macro-
model a : R → X ′, and a collection of surjective maps
αX′ , one for each macrovariable: αX′ : Mm[a−1(X ′

i)] →
MM [X ′

i]; consistency is evaluated with respect to interven-
tions.

Finally, Otsuka and Saigo [2022] offers an alternative
category-theoretical definition, by requiring an abstraction
α to be defined by first finding a graph homomorphism
from GMm to GMM , expressing the micromodel Mm and
the macromodel MM as functors, and finally by seeing the
abstraction as a natural transformation between the two func-
tors. Interventions, once again used to enforce interventional



consistency, take the form of endofuctors.

3 CHARACTERIZING ABSTRACTIONS

In the previous section we have briefly reviewed different
specifications of abstractions. Here, we want to bring all
these definitions together by reviewing how they satisfy
different types of properties on different layers.

3.1 LAYERS OF AN ABSTRACTION

A SCM is a mathematical object that brings together two
types of information: the statistical data-driven behaviour
of a set of variables in a given model (which could be either
the pre-interventional M or a post-interventional Mι), and
the causal assumption-driven structure connecting variables
(through causal links) and models (through interventions).

Although these two types of information are not indepen-
dent, it can be useful, when specifying an abstraction, to
define explicitly how the abstraction behaves with respect
to them. We can therefore distinguish these two layers:

1. A structural layer which deals with a map GMm →
GMM , that is, how the underlying graph GMm of a
micromodel is transformed through the abstraction α.
This layer is concerned with maps between nodes and,
possibly, edges. The structural layer accounts for how
an abstraction can transfrom the identity of the causes,
and how it can affect flow and the directionality of
causes and effects.

2. A distributional layer which deals with maps
Mm[X] → MM [X′], X ⊆ X ,X′ ⊆ X ′, that is,
how outcomes and distributions implied by a micro-
model are transformed through the abstraction α. This
layer may define a single map Mm[X ] → MM [X ′]
relating the whole joint outcome spaces of the models
[Rubenstein et al., 2017, Beckers and Halpern, 2019],
or a collection of maps, such as Mm[Xi] → MM [X ′

i],
relating the outcome space of single or subsets of vari-
ables [Rischel, 2020]. These maps implicitly define
pushforward maps from the probability measure over
the set Mm[X] onto the probability measure over the
set MM [X′]. The distributional layer thus accounts for
how an abstraction can affect the representation and
the strengths of relationships of cause and effect.

This separation of concerns is already implicitly present in
Rischel [2020], Rischel and Weichwald [2021] where an
abstraction is defined on two layers, as a mapping a between
variables and a collection of mappings αX′ between out-
comes. This distinction is given stronger emphasis in Otsuka
and Saigo [2022] where an explicit mapping between graphs
(via a graph homomorphism) and a mapping between out-
comes (via a natural transformation) are required; this setup

follows from the category-theoretical approach of represent-
ing a model (e.g., a casual model in Jacobs et al. [2019] or
a database in Spivak [2014]) at a syntactic level capturing
the underlying structure (in a free category generated from
a graph) and at a semantic level (as a functor to a category
that instantiates specific values).

3.2 PROPERTIES OF AN ABSTRACTION

Relying on the distinction between the two layers above, we
now analyze what specific properties may be required on
each layer, and what forms of abstraction they entail.

Properties on the structural layer. Let us first consider
a map GMm → GMM . First of all, notice that between
two graphs we can typically establish a function on nodes
Xm → XM , or a stricter structure-preserving functor
CMm → CMM , where CMm , CMM are the free categories
generated from the DAGs of the micromodel and the macro-
model [Otsuka and Saigo, 2022]. Other solutions, such as a
function on edges, are not considered in the literature. Let
us now analyze these two approaches and the connected
properties, starting from the functional map:

• Functionality: a function on the nodes requires a map-
ping of all the nodes of GMm onto the nodes of GMM .
This is a property expressing the requirement that each
node in the micromodel is abstracted, and no node can
be ignored. This translates the idea of abstraction as
a strict coarsening of the variables in a micromodel;
structural functionality is implied by functoriality in
Otsuka and Saigo [2022] .
On the other hand, dropping this requirement means
that microvariables may just be ignored; this may hap-
pen when we want to consider abstractions that capture
or synthesize only a sub-part of a micromodel, discard-
ing irrelevant information or indirectly relegating it
over the exogenous variables; this is the case in Rischel
[2020] where the mapping a between variables has, as
its domain, the restriction of Xm to relevant variables
R ⊆ Xm.

• Functional surjectivity: functional surjectivity requires
a mapping such that all the nodes of GMM are mapped
from the nodes of GMm . This reflects the understand-
ing that all the variables in a macromodel are explained
by one or more variables in the micromodel. Functional
surjectivity is explicitly required by Rischel [2020].
Dropping this condition is equivalent to accepting that
a macromodel may include variables that have no ex-
planation in the micromodel; this allows for forms of
abstractions akin to compression and embedding, or
cases in which exogenous factors of variance in the
micromodel have implicitly become endogenous in the
macromodel; this choice is made in Rubenstein et al.
[2017] and Otsuka and Saigo [2022].



• Functional injectivity: functional injectivity requires a
mapping such that all the nodes of Mm are mapped to
distinct nodes of MM . This would encode the desider-
atum that our abstraction guarantees that no variables
are collapsed together. Functional injectivity allows
for forms of abstractions such as embeddings, or ab-
stractions in which variables are identical, but their
domains and dynamics may be simplified. No work in
the literature enforces this property. Without functional
injectivity, coarsening and collapsing of variables from
the micromodel to the macromodel is allowed.

• Functional bijectivity: a trivial property of functional
bijection follows by enforcing surjectivity and injec-
tivity. This would allow only for abstractions where
there is an isomorphism (an identity or a permutation)
between the nodes. No work in the literature enforces
this property.

A functorial map implies a more structured map, and it may
allow for analogous properties:

• Functoriality: a structure-preserving functor requires
an explicit mapping of nodes and edges in Mm, such
that composition is preserved1. This is a strong re-
quirement implying that we want to deal only with
abstractions that preserve the directionality of causes
and that do not arbitrarily drop any causal link; this is
enforced in Otsuka and Saigo [2022] by requiring a
graph homomorphism between GMm and GMM .
Violating this property means that we accept abstrac-
tions that may arbitrarily drop some causal connections
or even reverse them; this may be acceptable for some
types of abstractions, such as macromodels that may
ignore causal connections with a strength under a cer-
tain threshold [Janzing et al., 2013]. Non-functoriality
is accepted in Rischel [2020], where the mapping a
between variables does not express any constraints be-
tween edges in the micromodel and macromodel.

• Functorial fullness: functorial fullness requires sur-
jectivity between the sets of edges of the micromodel
and the macromodel; that is, if X ′

i and X ′
j are two

nodes in the macromodel mapped respectively from
Xi and Xj , then we want a surjective map between
edges going from Xi to Xj in the micromodel and
edges going from X ′

i to X ′
j in the macromodel. This

reflects the understanding that every causal link, either
direct or mediated (given by composition of edges), in
the macromodel must have a corresponding causal link
in the micromodel. No work in the literature enforces
this property. No fullness implies the possible presence
of additional relationships of cause and effects in the
macromodel which are absent in the micromodel.

1This is formally a functor between CMm → CMM that maps
objects and morphisms (or hom-sets), while preserving identity
and composition.

• Funtorial faithfulness: functorial faithfullness requires
injectivity between the sets of edges of the micromodel
and the macromodel; that is, if X ′

i and X ′
j are two

nodes in the macromodel mapped respectively from
Xi and Xj , then we want an injective map between
edges going from Xi to Xj in the micromodel and
edges going from X ′

i to X ′
j in the macromodel. This

implies that every causal link, either direct or mediated
(given by composition of edges), in the micromodel
has a corresponding causal link in the macromodel. No
work in the literature enforces this property. Without
functorial faithfulness, collapsing of edges is possible.

• Functorial fully faithfulness: a trivial property of fully
faithfulness follows by enforcing fullness and faithful-
ness. Together with bijectivity on nodes, this would
allow only for strictly structure-preserving abstractions
expressing an isomorphism (an identity) between nodes
and edges. No work in the literature enforces this prop-
erty.

A derived property that is sometimes discussed is the in-
vertibility of the map GMm → GMM ; it immediately fol-
lows that functional bijectivity allows perfect invertibility
on nodes; functional surjectivity allows set-invertibility on
nodes; functorial fully faithfulness allows perfect invertibil-
ity on edges; and, functorial fullness allows set-invertibility
on edges2.

Finally, there are two important properties that are com-
monly taken for granted, but which could be changed or
relaxed, thus providing abstractions with different degrees
of freedom:

• Micro-to-macro: it seems a reasonable assumption
that the directionality of an abstraction should be
GMm → GMM , as we normally move from micro-
models to macromodels by reducing their complexity.
In some contexts, it may be of interest to consider pos-
sibly stochastic maps GMM → GMm going from a
macromodel to a micromodel.

• Determinism: the mapping from the microlevel to the
macrolevel is often interpreted as a deterministic super-
venient map. However, in case of limited knowledge
and uncertainty, the overall requirement of functoriality
or functionality may be dropped by requiring the map
GMm → GMM to be a stochastic map. This would al-
low for forms of abstraction in which the contribution
of a microvariable may be split among a collection of
macrovariables. This actually happens in Rubenstein
et al. [2017], where outcomes of a microlevel variable
may be mapped to outcomes of diffferent macrolevel
variables, thus implying a splitting of the contribution
of a microvariable across many macrovariables.

2Invertibility on edges is always with reference to edges be-
tween nodes that are mapped under CMm → CMM .



Properties on the distributional layer. Let us move on to
consider the map Mm[X] → MM [X′]. Differently from
the previous map between graphs, we are now dealing with
a map between sets that takes the form of a function. As
before, let us investigate the properties that can be enforced
on this map:

• Functionality: this property requires all the outcomes
of the micromodel Mm to be mapped onto outcomes
of the macromodel MM ; there is no microlevel out-
come, no matter how unlikely, that can be dropped and
ignored in the macrolevel outcomes. Beyond a concep-
tual justification, a mathematical reason underpins this
setup: a (measurable) function is necessary to guaran-
tee a proper pushforward of the probability distribution
over the outcomes of the micromodel Mm onto the
outcomes of the macromodel MM ; Functionality is
a common assumption shared so far by all works on
abstraction.
Dropping this assumption would possibly require us
to define a set of relevant outcomes to be mapped (in
analogy with the definition of a set of relevant vari-
able R as a domain for the structural-layer mapping a
between variables in Rischel [2020]), together with a
renormalization before or after the pushforward. This
form of abstraction may reflect a mapping in which we
capture the behaviour of a micromodel over a specific
domain of outcomes, ignoring perhaps limit cases.

• (Functional) surjectivity: surjectivity requires that ev-
ery outcome of the macromodel MM is mapped from
the domain of outcomes of the micromodel Mm.
This expresses the understanding that all possible
macrolevel outcomes are explained at the microlevel.
This property is usually considered a staple of abstrac-
tion, and for this reason it is introduced by Beckers and
Halpern [2019] in their definition of τ -abstraction, and
it is enforced from the beginning in Rischel [2020].
Dropping surjectivity allows for some macrolevel out-
comes without an explanation in the micromodel. This
is accepted in Rubenstein et al. [2017] and, implicitly,
in Otsuka and Saigo [2022].

• (Functional) injectivity: injectivity requires all the out-
comes of the micromodel Mm to be mapped to dif-
ferent outcomes in the macromodel MM . This leads
to a form of abstraction where the outcomes at mi-
crolevel are embedded into the set of outcomes at the
macrolevel. No work in the literature enforces this
property.

• (Functional) bijectivity: a trivial property of bijectivity
follows from surjectivity and injectivity. This would
allow for abstractions where there is an isomorphism
(an identity or a permutation) between micromodel and
macromodel outcomes. Every outcome in the micro-
model would have a unique corresponding outcome in
the macromodel with the exact same probability. No

work in the literature enforces this property.

A property of invertibility would follow from bijectivity and
surjectivity; furthermore, as before, two additional proper-
ties, normally taken for granted, are:

• Micro-to-macro: instead of assuming the directional-
ity of an abstraction being Mm[X] → MM [X′], we
could consider possibly stochastic maps MM [X′] →
Mm[X] going from the outcomes of the macromodels
to the (sets of) outcomes of the micromodel.

• Determinism: the assumption of determinism reflects
the understanding that the mapping from outcomes in
the micromodel to outcomes in the macromodel ex-
presses an exact deterministic relationship; if we were
to drop this assumption, such as in the case in which
we were to have limited knowledge, we could express
the map Mm[X] → MM [X′] as a stochastic map.
This would allow for forms of abstraction in which the
contribution of an outcome in the micromodel would
be split among a collection of outcomes in the macro-
model; this could capture, for instance, our uncertainty
on how an outcome at the microlevel would correspond
to an outcome at the macrolevel.

4 DISCUSSION

Abstractions, like SCMs, are complex mathematical objects
encoding not just statistical information but also causal as-
sumptions normally expressed in the form of a DAG. Rely-
ing on a definition of an abstraction on the structural and dis-
tributional layer (as proposed by Otsuka and Saigo [2022],
Rischel [2020], Rischel and Weichwald [2021]) guarantees
a more fine-grained control on the definition of the form of
an abstraction compared to approaches that focus only on
the distributional layer (as done by Rubenstein et al. [2017],
Beckers and Halpern [2019], Beckers et al. [2020]).

Although some definitions of abstraction do not explicitly
characterize the abstraction on the structural layer, informa-
tion about the structure of the graphs underlying the SCMs
is not generally discarded but mediated by consistency. In
Rubenstein et al. [2017], although knowledge of the struc-
ture of the SCM is not necessary, the distributions over the
intervened models generated by the set I of interventions
of interest force the structure of the SCM Mm in the I-
Markov equivalence class [Hauser and Bühlmann, 2015];
moreover, correspondence between distributions as required
by consistency impose a further constraint on the form of
the micrograph and the macrograph. However, the struc-
tural relationship is left implicit, and no formal properties
may be requested for a mapping on the structural layer. The
progressive strengthening in Beckers and Halpern [2019]
of the original definition of (τ -ω)-abstraction may be seen
as a way to sufficiently constrain the distributional-layer



definition so that undesired mappings between incompati-
ble models whose distributions had been artificially set to
satisfy the requirement of consistency are ruled out.

By explicitly considering the structural and the distributional
layer, we have seen how enforcing different properties on
the two layers of an abstraction may allow us to enlarge or
restrict the family of transformations that can be considered
as legitimate abstractions. Table 1 and 2 in Appendix A.1
summarize the properties that we defined and the types of
abstractions that would be admitted by adding or dropping
specific requirements. For instance, requesting the property
of functoriality on the structural layer rules out the possibil-
ity that an abstraction could simplify a model by dropping
causal links with limited strength. If such a simplification
does not fit our understanding of abstraction, the property
of functoriality could be part of the definition of abstraction.
Appendix A.2 provides a list of illustrative examples of
abstractions. The present treatment has highlighted which
types of transformations would be preserved or rejected
through the enforcement of specific properties, but it does
not argue which ones should be selected.

Furthermore, the distinction between the structural and dis-
tributional layers also brings clarity on how an abstraction
could independently act on the two layers to produce dif-
ferent results. Coarsening is a term often used as a generic
synonym for abstraction. Yet, a coarsening may act on the
structural or distributional layer. A coarsening on the struc-
tural layer implies a reduction in the number of observables.
A coarsening on the distributional layer implies a reduction
in the resolution of the observables. Similarly, a coarsening
on the structural layer may be paired with an identity on
the distributional layer; this would mean that the number of
observables is reduced, but the resolution or the dimension-
ality of the new macrolevel observables is large enough that
we can have a one-to-one map of microlevel outcomes to
macrolevel outcomes.

Interestingly, the discussion on abstraction has focused on
graphs and sets, and never explicitly on distributions and
mechanisms. Distributions are complex objects to map, and
focusing on the underlying set simplifies the problem; a
map between microlevel and macrolevel sets entails an au-
tomatic pushforward of the microlevel distributions. Mech-
anisms are instead completely underdetermined; in its def-
inition, an abstraction does not express any constraint on
the macrolevel mechanisms; possible constraints are instead
introduced via the requirement of consistency.

Indeed, a complete operative specification of abstraction
can not preclude a definition of the consistency properties
that an abstraction is supposed to guarantee. However, this
paper has highlighted that even restricting our attention
to the formal properties of an abstraction, there is a wide
degree of freedom in defining what class of transformations
should be considered an abstraction. This understanding

has practical consequences: selecting the right properties
would be relevant in any learning effort, as this may reduce
the space of functions (or functors) over which we want to
search for an abstraction.
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A APPENDIX

A.1 SUMMARY OF PROPERTIES

Table 1 and 2 at the end of this appendix provide a quick
visual summary of the properties we discusses and the types
of abstractions they allow.

A.2 EXAMPLES OF ABSTRACTIONS

This section provides examples of abstractions satisfying or
contravening the properties discussed in the paper. We will
use as a reference simple SCMs representing toy models for
a lung cancer scenario. All examples are purely illustrative,
and do not claim any scientific validity.

A.2.1 Structural properties with respect to the nodes

We first present examples concerned with structural prop-
erties among nodes. Both the base model Mm and the
abstracted model MM will be defined on sets of variables
including smoking habit (S, S′), tar deposits (T, T ′), lung
cancer (C,C ′), air pollution (P, P ′), environmental factors
(E,E′).

Functionality. Figure 1 shows examples of abstraction
concerned with the property of functionality among the
nodes. The abstraction in Figure 1a is defined by the follow-
ing mappings between the nodes: S 7→ S′, T 7→ S′, C 7→
C ′. This abstraction satisfies functionality as every node in
the base model is mapped to a node in the abstracted model.
This abstraction is also surjective and non-injective. The ab-
straction in Figure 1b, is defined, instead, by the abstraction
mapping between the nodes: S 7→ S′, C 7→ C ′. As such, it
is not a function, since the mediating node T is ignored and
not explicitly mapped onto any high-level variable. Restrict-
ing our abstraction map to the set of mapped nodes (S,C),
this abstraction is surjective and injective.

S T C

S’ C’

(a)

S T C

S’ C’

(b)

Figure 1: Functionality

Functionality expresses whether all the variables contribute
to the definition of the high-level model (as in Figure 1a), or
whether some of them may simply be ignored (as in Figure
1b).

Functional surjectivity. Figure 2 shows examples of ab-
straction concerned with the property of functional surjectiv-
ity among the nodes. The abstraction in Figure 2a is defined
by the following mappings between nodes: S 7→ S′, P 7→
S′, C 7→ C ′. This abstraction satisfies surjectivity as ev-
ery node in the abstracted model (S′, C ′) is determined by
one or more nodes in the base model. However, with re-
spect to all the nodes in the base model, this abstraction
is non-functional; with respect to the set of mapped nodes
(P, S,C), instead, it is also non-injective. The abstraction
in Figure 2b is defined, instead, by the abstraction mapping
between nodes: S 7→ S′, C 7→ C ′. As such, it does not satis-
fies surjectivity, since a confounding node in the abstracted
model (E′) is not explicitly mapped by any low-level vari-
able. Again, this abstraction is, in general, non-functional;
with respect to the set of mapped nodes (S,C), however, it
is injective.

S

P
T C

S’ C’

(a)

S

P
T C

S’ C’

E’

(b)

Figure 2: Surjectivity

Functional surjectivity expresses whether all the high-level
variables are determined by low-level variables (as in Figure
2a), or whether some of them may have no corresponding
variable in the low-level model (as in Figure 2b).

Functional injectivity. Figure 3 shows examples of ab-
straction concerned with the property of functional injec-
tivity among the nodes. The abstraction in Figure 3a is
defined by the following mappings between the nodes:
S 7→ T ′, T 7→ S′, C 7→ C ′. This abstraction satisfies injec-
tivity as every node in the base model (S, T, C) is mapped
onto a different node in the abstracted model (T ′, S′, C ′).
This abstraction is also functional and surjective. The ab-
straction in Figure 3b is defined, instead, by the abstraction
mapping between nodes: S 7→ S′, T 7→ S′, C 7→ C ′. As
such, it does not satisfies injectivity since two low-level
variables (S, T ) are mapped on the same high-level variable
(S′). This abstraction is also functional and surjective.

Functional injectivity expresses whether all the low-level
variables are mapped to a distinct high-level variables (as in
Figure 3a), or whether collapsing of variables is allowed (as
in Figure 3b).

Functional bijectivity. Figure 4 shows examples of ab-
straction concerned with the property of functional bijec-



S T C

S’ T’ C’

(a)

S T C

S’ C’

(b)

Figure 3: Injectivity

tivity among the nodes. The abstraction in Figure 4a is
defined by the following mappings between the nodes:
S 7→ S′, T 7→ T ′, C 7→ C ′. This abstraction satisfies bijec-
tivity as we have a one-to-one mapping between the low-
level and high-level nodes. The abstraction in Figure 4b is
defined, instead, by the abstraction mapping between nodes:
S 7→ S′, C 7→ C ′. As such, it does not satisfies bijectivity
because of a lack of a one-to-one correspondence.

S T C

S’ T’ C’

(a)

S T C

S’ C’

(b)

Figure 4: Bijectivity

Functional bijectivity expresses whether there should be
a strict one-to-one correspondence between nodes in the
low-level and high-level model (as in Figure 4a), or whether
differences are allowed (as in Figure 4b). Notice that, in
case of bijection among the nodes, an abstraction can lead
to a simplification of the low-level model with respect to
the outcomes of the macro-variables or the form of the
mechanisms in the macromodel.

A.2.2 Structural properties with respect to the edges

We now move to examine examples concerned with struc-
tural properties among edges. For simplicity, we will denote
arrows in the base model Mm and the abstracted model
MM using an exponential notation: for instance, with refer-
ence to Figure 4a, we use ST to represent the edge from S to
T , TT to represent the identity edge from T to T , and STC

to represent the edge from S to C given by the composition
of ST and TC .

Functoriality. Figure 5 shows examples of abstraction
concerned with the property of functoriality. In Figure 5a,
let the abstraction mapping between the nodes be defined
as in the case of Figure 4b. In the base model, the hom-
set of relevant edges (relatively to the mapped nodes) is
{SS , STC

, CC}; in the abstracted model the hom-set of

edges is {S′S′
, S′C′

, C ′C′}. Let the mapping between edges
be defined as follows: SS 7→ S′S′

, STS 7→ S′C′
, CC 7→

C ′C′
. This abstraction satisfies functoriality as every edge

in the base model is mapped and composition is preserved.
Furthermore, this abstraction is full and faithful. Let the
abstraction in Figure 5b be defined, instead, by the mapping
between nodes SS 7→ S′S′

, STS 7→ C ′S′
, CC 7→ C ′C′

.
This abstraction is not functorial because composition is not
preserved due to the different directionality of the arrows in
the macromodel.

S T C

S’ C’

(a)

S T C

S’ C’

(b)

Figure 5: Functoriality

Functoriality expresses whether all the cause-effects links
in the base model must be mapped and preserved in their
directionality (as in Figure 5a), or whether some of them
may be dropped or reversed (as in Figure 5b).

Functorial fullness. Figure 6 shows examples of abstrac-
tion concerned with the property of functorial fullness. In
Figure 6a, let the abstraction mapping between the nodes be
defined as in the case of Figure 4a. Let the abstraction be-
tween edges be defined as follows: SS 7→ S′S′

, ST 7→
S′T ′

, TT 7→ T ′T ′
, TC 7→ T ′C′

, CC 7→ C ′C′
, STC 7→

S′T ′C′

. The abstraction is fully functorial because it is func-
torial, and the mapping between edges is surjective. Let the
abstraction in Figure 6b be defined by the same mapping on
nodes and edges. This abstraction is not fully functorial be-
cause the hom-set of the abstracted model contains an edge
S′C′

which is not mapped by any edge in the base model.
Notice that this additional edge represent a direct effect S′C′

which is different from the mediated effect S′T ′C′

.

S T C

S’ T’ C’

(a)

S T C

S’ T’ C’

(b)

Figure 6: Functorial faithfullness

Full functoriality expresses whether the existence and di-
rection of all high-level edges are determined by low-level
edges (as in Figure 6a), or whether some of them may have
no corresponding edge in the low-level model (as in Figure
6b).



Functorial faithfullness. Figure 7 shows examples of
abstraction concerned with the property of functorial faith-
fullness. In Figure 7a, let the abstraction mapping between
the nodes be defined as in the case of Figure 5a. In particu-
lar, let the abstraction between edges be defined as follows:
SS 7→ S′S′

, STS 7→ S′C′
, CC 7→ C ′C′

. The abstraction is
faithfully functorial because it is functorial, and the map-
ping between edges is injective. Let the abstraction in Fig-
ure 7b be defined by the following mapping between edges:
SS 7→ S′S′

, ST 7→ S′S′
, TT 7→ S′S′

, TC 7→ S′C′
, CC 7→

C ′C′
, STS 7→ S′C′

. This abstraction is not faithfully functo-
rial because the hom-set of the base model contains multiple
edges (SS , TT , ST ) mapped onto the same abstracted edge
(S′S′

).

S T C

S’ C’

(a)

S T C

S’ C’

(b)

Figure 7: Functorial fullness

Faithful functoriality expresses whether all low-level edges
are mapped to distinct high-level edges (as in Figure 7a), or
whether collapsing of edges is allowed (as in Figure 7b).

Functorial full faithfullness. Figure 8 shows examples
of abstraction concerned with the property of functorial
full faithfullness. In Figure 8a, let the abstraction mapping
between the nodes be defined as in the case of Figure 6a.
The abstraction is fully faithful because it is functorial, and
the mapping between edges is bijective. Let the abstraction
in Figure 8b be defined as in the case of Figure 7b. This
abstraction is not fully faithful because there is not bijection
between the hom-set of edges in the low-level model and
the high-level model.

S T C

S’ T’ C’

(a)

S T C

S’ C’

(b)

Figure 8: Functorial full faithfullness

Fully faithful functoriality expresses whether there should
be a one-to-one mapping between edges (as in Figure 8a),
or whether a non-bijective map is allowed (as in Figure
8b). Similarly to the case of bijection among nodes, fully
faithful functoriality narrowly constrains the form of the
abstracted model; simplification of the base model is still
possible, though, in terms of a reduction of the outcome

space of the macro-variables or the form of mechanisms in
the macromodel.

A.2.3 Distributional properties

Let us finally consider mappings on the distributional layer.
We will here consider a single mapping between the domain
M[S] of the smoking variable in the base model and the
domain M′[S′] of the smoking variable in the abstracted
model; we will take into consideration both binary domains
(simply representing whether a subject is a smoker or not)
or multi-value domains (encoding the amount of smoking
of a subject on a pre-defined scale).

Functionality. Figure 9 shows examples of abstraction
concerned with the property of functionality among the out-
comes. The abstraction in Figure 9a is defined by the follow-
ing mappings between the outcomes: 0 7→ 0, 1 7→ 0, 2 7→ 1.
This abstraction satisfies functionality as every outcome in
the base model is mapped to an outcome in the abstracted
model. Furthermore, this abstraction is also surjective and
non-injective. The abstraction in Figure 9b instead is not
a function, since the outcome 0 in the base model is not
mapped onto any high-level outcome. Restricting our ab-
straction map to the set of mapped outcomes (1, 2), this
abstraction is surjective and injective.

0

1

2

0

1

(a)

0

1

2

0

1

(b)

Figure 9: Functionality

Functionality expresses whether all the outcomes are re-
flected in the high-level model (as in Figure 9a), or whether
some of them may be dropped (as in Figure 9b).

Surjectivity. Figure 10 shows examples of abstraction
concerned with the property of surjectivity among the out-
comes. The abstraction in Figure 10a satisfies functionality
as every outcome in the abstracted model is mapped from
one or more outcomes in the base model. This abstraction is
also non-injective. The abstraction in Figure 10b instead is
not surjective, since the outcome 2 in the abstracted model
is not mapped by any low-level outcome. This abstraction
is also non-injective.

Surjectivity expresses expresses whether all the high-level
outcomes are determined by low-level outcomes (as in Fig-
ure 10a), or whether some of them may have no correspond-
ing outcome in the low-level model (as in Figure 10b).



0

1

2

0

1

(a)

0

1

2

0

1

2

(b)

Figure 10: Surjectivity

Injectivity. Figure 11 shows examples of abstraction con-
cerned with the property of injectivity among the outcomes.
The abstraction in Figure 11a satisfies injectivity as every
outcome in the base model is mapped to a distinct out-
come in the abstracted model. This abstraction is also non-
surjective. The abstraction in Figure 11b instead is not injec-
tive, since two outcomes 0, 1 in the base model are mapped
onto the same low-level outcome 0. This abstraction is also
non-surjective.

0

1

0

1

2

(a)

0

1

2

0

1

2

(b)

Figure 11: Injectivity

Injectivity expresses whether all the low-level outcomes are
mapped to a distinct high-level outcome (as in Figure 11a),
or whether collapsing of outcomes is allowed (as in Figure
11b).

Bijectivity. Figure 12 shows examples of abstraction con-
cerned with the property of bijectivity among the outcomes.
The abstraction in Figure 12a satisfies bijectivity because of
the one-to-one mapping of outcomes in the base model and
the abstracted model. The abstraction in Figure 12b instead
is not bijective, because of the lack of injectivity among the
outcomes.

0

1

2

0

1

2

(a)

0

1

2

0

1

2

(b)

Figure 12: Bijectivity

Bijectivity expresses whether there should be a strict one-
to-one correspondence between nodes in the low-level and

high-level model (as in Figure 12a), or whether differences
are allowed (as in Figure 12b). Notice that, in case of bijec-
tion among the outcomes, an abstraction still allows room
for simplification in the form of the mechanisms of the
macromodel.
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