
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROGRESSIVE KNOWLEDGE DISTILLATION (PKD): A
MODULAR APPROACH FOR ARCHITECTURE-AGNOSTIC
KNOWLEDGE DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge distillation (KD) is a key technique for training lightweight deep
neural networks, particularly in resource-constrained environments. While
existing KD methods utilize intermediate features to improve student models, they
often overlook the proper alignment between teacher-student layers and fail to
select the most informative data for training each student layer. These limitations
are especially pronounced in architecture-agnostic scenarios, where different
network architectures complicate knowledge transfer.
We propose PKD, a Progressive Knowledge Distillation framework that progres-
sively aligns teacher and student layers through feature-based modularization.
Each student module is trained using the most representative features from its
corresponding teacher module, starting with the shallowest layers and progres-
sively moving to deeper ones. This training method enables efficient, architecture-
agnostic knowledge transfer across a variety of model architectures. Experiments
on CIFAR-100 and ImageNet-1K demonstrate that PKD outperforms baseline
models, achieving performance improvements of up to 4.54% and 6.46%, respec-
tively, thereby validating its effectiveness in diverse neural network settings.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved unprecedented success across various domains, in-
cluding computer vision, natural language processing, and speech recognition. However, their
deployment in resource-constrained environments, such as mobile devices and embedded systems,
remains challenging due to their large computational and memory requirements. Knowledge Distil-
lation (KD), first introduced by (Hinton et al., 2015), offers a solution by enabling the transfer of
knowledge from a large, cumbersome teacher model to a smaller, more efficient student model,
without significantly compromising performance.

While most KD methods focus on transferring knowledge from the final output layer (Bucila et al.,
2006; Hinton et al., 2015), recent research has demonstrated that incorporating intermediate layer
representations can greatly improve the performance of the student model (Romero et al., 2015;
Zagoruyko & Komodakis, 2017). However, two major limitations persist in existing methods: (1)
the misalignment between teacher and student layers, particularly in heterogeneous architectures,
and (2) the suboptimal selection of informative training data for specific student layers. These
limitations are particularly problematic in architecture-agnostic distillation, where knowledge
must be transferred between models of different architectures (e.g., convolutional networks and
transformers) Hao et al. (2024); Wang et al. (2021).

We propose Progressive Knowledge Distillation (PKD), a novel framework that addresses these
challenges by progressively aligning and training student and teacher models in a modular and
sequential manner.

PKD introduces the following key innovations:

1. Progressive Modular and Sequential Training: PKD leverages a progressive, modular,
and sequential training strategy. Instead of training the entire student model at once, PKD
divides both the teacher and student networks into feature-based modules, which reflect

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the hierarchical structure of deep networks. Each module is responsible for learning specific
types of features, such as texture, shape, and high-level semantics. The training process in
PKD is both modular and sequential. It begins by training the shallowest student module
with the corresponding teacher module, ensuring that the most representative features
are transferred first. After the shallow layers are aligned, training proceeds progressively
to the deeper modules. This layer-wise training ensures optimal alignment at each stage,
mitigating the risks of parameter conflicts and knowledge loss that occur when training all
layers simultaneously.
This sequential mechanism is especially valuable in architecture-agnostic KD, where
student and teacher networks may have different architectures (e.g., CNNs vs. transformers).
By focusing on progressively aligning the modules of each network, PKD enables efficient
knowledge transfer across heterogeneous architectures, improving the performance of the
student model in a structured manner.

2. Novel Application of PCA for Module-Specific Features: PKD also introduces a novel
application of principal component analysis (PCA) for feature selection during distillation.
While PCA is commonly used for dimensionality reduction (Wold et al., 1987; Jolliffe, 2002),
we employ it to compute module-specific features. By extracting the most representative
features from the teacher’s modules, PKD ensures that the student model learns the most
relevant information at each stage of training, further enhancing the distillation process. This
targeted feature selection is critical in architecture-agnostic settings, reducing redundancy
and ensuring that the student network captures only the most informative data from the
teacher (Kornblith et al., 2019a).

PKD Framework: By integrating these innovations, PKD provides a flexible, architecture-agnostic
framework for knowledge distillation. It offers substantial improvements over traditional KD methods
that focus on final output logits or train all layers simultaneously. PKD’s modular and progressive
training process ensures efficient knowledge transfer, even when the student and teacher networks
have fundamentally different architectures. Our experiments on standard benchmarks such as
CIFAR-100 (Krizhevsky et al., 2012) and ImageNet-1K (Deng et al., 2009) demonstrate that PKD
significantly outperforms baseline methods, with improvements of up to 4.54% on CIFAR-100 and
6.46% on ImageNet-1K, validating its effectiveness in real-world settings.

2 RELATED WORK AND BACKGROUND

In this section, we explore knowledge distillation, a crucial technique for model optimization, and
Centered Kernel Alignment (CKA), a key tool used to measure the similarity between network
modules within our framework.

Knowledge Distillation (KD) has emerged as a powerful technique for compressing large models
by training a lightweight student model to mimic the output logits of a pre-trained teacher model
(Tang et al., 2022; Zhang et al., 2019; Phuong & Lampert, 2019; Luan et al., 2019; Tung & Mori,
2019; Zhu & Gong, 2018). The concept was introduced by (Bucila et al., 2006) and later refined
by (Hinton et al., 2015). Subsequent research has improved logits-based KD with enhancements
such as structural information (Guo et al., 2021; Park et al., 2019), model ensembles (Malinin et al.,
2020), and contrastive learning (Tian et al., 2020). For instance, (Touvron et al., 2021) proposed a
logits distillation method for training Vision Transformer (ViT) students, while (Huang et al., 2018)
introduced relaxed KL divergence loss for teacher-student models with significant capacity gaps.

Beyond logits, intermediate feature-based KD has gained traction. Hint-based distillation was first
proposed by (Romero et al., 2015), with extensions such as attention map mimicry (Zagoruyko
& Komodakis, 2017) and advanced feature distillation methods (Hao et al., 2022; Zhang et al.,
2020; Chen et al., 2021). ViTKD (Yang et al., 2022) explored feature-based KD for ViT models,
while VKD (Miles et al., 2024) introduced orthogonal projection and task-specific normalization for
transformers. KD-DETR (Wang et al., 2024), designed for DETR-based object detection, tackles
distillation point inconsistencies through shared and specialized queries, enabling effective distillation
for both homogeneous (DETR-to-DETR) and heterogeneous (DETR-to-CNN) setups. Similarly, (Liu
et al., 2022) proposed partially cross-attention and group-wise projectors to align features across
architectures, and ACMKD (Ni et al., 2024) leveraged multi-student mutual learning strategies for
diverse inductive biases, further refining cross-architecture KD.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

KD methods have also found applications beyond conventional domains. For instance, PCA-based
KD reduced photorealistic style transfer models by 20x while maintaining quality (Chiu & Gurari,
2022), and Margin-MSE loss enhanced KD for neural ranking architectures (Hofstätter et al., 2020).
Recent approaches like RdimKD (Guo et al., 2023) employed dimensionality reduction to improve
generality and flexibility in KD frameworks.

Despite these advancements, feature-based KD methods often neglect critical challenges such as
aligning teacher-student layer representations and selecting representative data for training specific
student layers. These limitations are especially pronounced in heterogeneous architectures, where dif-
fering model characteristics complicate hint-based distillation. Addressing these challenges remains
an open problem, particularly in ensuring robust and efficient training for diverse architectures.

Centered Kernel Alignment (CKA) is a feature similarity measurement allowing different repre-
sentations dimensions (Cortes et al., 2012; Kornblith et al., 2019b). In our work, we adopt CKA to
compare features extracted by different architectures (e.g., CNN, ViT, and MLP) and also different
network layers.

Consider X ∈ Rn×d1 and Y ∈ Rn×d2 as features extracted by two different models, where n denotes
the mini-batch size, and d1 and d2 represent the feature dimensions of X and Y, respectively. CKA
quantifies their similarity using the following formula:

CKA(K,L) =
DHSIC(K,L)√

DHSIC(K,K)DHSIC(L,L)
, (1)

where L = XXT and K = YYT are Gram matrices of the features, and DHSIC is the Hilbert-
Schmidt independence criterion (Gretton et al., 2007), a non-parametric independence measure. The
empirical estimator of DHSIC can be formulated as: DHSIC(K,L) = 1

(n−1)2 tr(KHLH), where H

is the centering matrix Hn = In − 1
n11

T . In our PKD framework, we utilize CKA for network
modularization and modular feature alignment.

3 METHOD

This section presents our Progressive Knowledge Distillation (PKD) method. The PKD framework
focuses on two core aspects: (1) network modularization and (2) progressive modular feature
alignment. The key contribution of our approach lies in progressively aligning student modules
with the corresponding teacher modules based on their learned representations and utilizing module-
specific features for effective knowledge transfer.

3.1 NOTATIONS AND PROBLEM DEFINITION

Knowledge distillation (KD) traditionally involves training a smaller student model to learn from a
larger, pre-trained teacher model. The primary forms of knowledge transfer are logits and intermediate
feature representations. In our setting, logits represent the output probabilities across different classes,
while features are the internal learned representations across different layers. The objective is to align
these features across teacher and student models in a progressive manner. Our framework leverages
the following loss function:

LKT = λE(x, y) ∼ (X ,Y)[DCE(ps, y) + (1− λ)DKL(ps,pt)], (2)

where (X ,Y) denotes the sample and class label distribution (Hinton et al., 2015; Park et al., 2019;
Tian et al., 2020; Hao et al., 2024). ps and pt represent the predictions from the student and
teacher models, respectively, and DCE denote the cross-entropy loss function, and DKL signifies the
Kullback-Leibler divergence. λ is a hyperparameter that balances between one-hot label y and soft
label pt.

3.2 INSIGHT

Existing KD methods often assume that both teacher and student models share the same feature
hierarchy across layers. This assumption breaks down when dealing with heterogeneous architectures
(e.g., CNN as the student and ViT as the teacher). Such differences in architecture or scale often
hinder the performance of the student model if the same features are transferred without modification.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Comparison of different KD approaches: (a) Logits-based distillation: the student learns solely from the teacher’s final predictions.
(b) Feature-based distillation: the student learns from both the final predictions and intermediate features of the teacher. (c) PKD: the student
learns progressively while aligning its module representations to the corresponding teacher modules, using the most representative data from
corresponding teacher module. Only three modules are shown for simplicity; the actual number of modules varies by model.

Our insight is to address this by modularizing the network layers and progressively aligning the
student modules with corresponding teacher modules based on hierarchical representations.

3.3 PKD FRAMEWORK

3.3.1 NETWORK MODULARIZATION

We introduce a network modularization technique that organizes network layers into distinct
modules based on their feature similarity, quantified using Centered Kernel Alignment (CKA)
scores. Consecutive layers with high CKA scores (i.e., representing similar features) are grouped into
the same module, while layers with low CKA scores are assigned to different modules. For any two
consecutive layers i and j, the representation distance d(i, j) is defined as d(i, j) = 1− CKA(i, j).

Using the computed CKA scores for all layers, we distinguish two types of representation distances:
(1) dSM , the distance between consecutive layers within the same module (i.e., layers that exhibit
similar feature representations), and (2) dDM , the distance between layers assigned to different
modules (i.e., layers that have distinct feature representations). Layers with small distances dSM are
grouped into the same module, while layers with significantly larger distances dDM are assigned to
different modules. This process is illustrated in Figure 2.

Figure 2: Network Modularization Using CKA Score: The distance
metric (d) is utilized to determine the similarity between network layers.
The distance is defined as d(i, j) = 1− CKA(i, j), where i and j are
the indices of two consecutive layers. A large distance (d) indicates low
similarity between layers, guiding the allocation to different modules
(dDM) for modularization. Conversely, a small distance (d) between
consecutive layers indicates shared feature representation, suggesting
they belong to the same module (dSM).

In our experiments, we divided the network into
three or four modules, depending on its archi-
tecture and depth, following this modularization
strategy. This process is applied independently
to both the student and teacher networks, as their
architectures may differ.

Teacher Network Modularization: We calcu-
late the CKA score for consecutive layers and
group similar layers into the same module. This
results in a modular structure where each mod-
ule captures distinct feature hierarchies.

Student Network Modularization: Since the
student network is initially untrained, we per-
form a short preliminary training phase (e.g. 5 training epochs) to establish learning patterns. After
this phase, we apply the same modularization process using CKA scores to group similar layers into
modules.

3.3.2 MODULAR FEATURE ALIGNMENT

This section introduces a novel aspect of our training procedure, focusing on aligning student modules
with the most representative features extracted from the corresponding teacher modules. Our key
innovation is to align student modules with their corresponding teacher modules based on the teacher’s
module-specific features and utilize these features for effective knowledge distillation, ensuring that
the student’s learned representations closely match those of the teacher at the module level.

1) Module-Specific Features As discussed in Section 1, our approach leverages the hierarchical
feature representation of the network for knowledge distillation by modularizing the network. To

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

extract the module-specific features from the teacher network, we first perform a forward pass to
obtain the features from the penultimate layer of each teacher module. Algorithm 1, illustrated in
Figure 3, identifies the most important features, which we refer to as module-specific features.

For each teacher module Ti, we construct a representation matrix Rns×m
i , where ns denotes the

number of samples and m represents the feature dimension. We then apply principal component
analysis (PCA) yielding principal components (PCA-Components) along with their associated
variances. Components with higher variance explain more of the overall variance in the dataset and
are therefore more important. For more details regarding PCA, refer to Section H of the appendix. The
PCA-Components form a matrix with dimensions ncomponents × nfeatures, where ncomponents represents
the number of principal components, and nfeatures denotes the total number of features (m). To
evaluate the importance of features, we compute the mean variance (mv) of the features across the
principal components, as outlined in Equation (3). For a detailed explanation of this calculation,
please refer to Appendix, section I.4.

mv =
1

ns

ns∑
i=1

∣∣PCA(Rns×m
i)

∣∣ (3)

This provides a ranking of the features, which we sort in descending order to obtain the sorted indices
(SI). We then select the top k features based on a criterion where the mean variance changes smoothly
and the gradient of the mean variance approaches zero, indicating the most representative features.
Specifically, we select k such that |∆(mv)k| ≤ ϵth, indicating that the difference in mean variance
between the k and k + 1 features is less than a threshold ϵth. Here, ϵth is a predefined threshold
ensuring the diminishing variance of additional features. We calculate k as:

SI = argsort(mv, descending), (4)

k = min {k′ ∈ SI | |mv[k′]− mv[k′ + 1]| ≤ ϵth} . (5)

We store the top k indices in a vector denoted as KI (KI = SI[: k]) and use it to retain the corresponding
features of the input samples within the teacher module for training the student modules. The
unselected features are masked by setting their corresponding values in the representation matrix to
zero as follows:

Ri[:,MI] = 0,where MI = SI[k :]. (6)

with MI denoting the masked indices. This modified representation retains only the most important
features relevant to each module, which are used to train the student modules.

Algorithm 1 Module i specific (MS) Features Computation

1: function Compute-MS(data, module index)
2: i← module index
3: pca← PCA()
4: Ri←Modulei(data)
5: pca-components← pca.fit (Ri)

Aggregate importance (variance) across all principal components.
6: mean-variance←Mean(abs(pca-components), axis=0)

Sort the features based on their importance.
7: sorted-mean-variance← Sort(mean-variance, descending)
8: sorted-indices← argsort(mean-variance, descending)
9: k← diminish-variance(sorted-mean-variance, threshold)

Get k important indices.
10: KI← sorted-indices[:k]
11: MI← [KI]’
12: Ri[:, MI]← 0
13: return Ri

14: end function

2) Progressive Modular Alignment After identifying the module-specific features for each teacher
module, the next step is to train the corresponding student modules using these features.

To address this, we employ a progressive approach that systematically selects each teacher module
and provides its module-specific data to the student network. This process begins with the shallowest

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: This figure illustrates the two main procedures of our method: (a) Module-specific feature computation, where PCA is used to
extract the most important features of the teacher module, masking non-important features with zeros. (b) Progressive modular alignment, where
each student module i is trained with the corresponding teacher module i, using the most representative data computed in (a).

teacher module and gradually moves to deeper modules. The key challenge here is to assign the
appropriate student modules for distillation, ensuring that the student modules learn effectively from
their corresponding teacher counterparts.

Module Selection via Binary Vector We assume the student network (S) consists of s modules. To
manage the distillation process, we introduce an s-dimensional binary vector c ∈ C = {0, 1}s, where
each element c(m) determines whether the m-th student module participate in distillation process or
remains inactive (frozen). For example, a binary vector c = [1, 1, 0, 0] means that student modules
1 and 2 are active in distillation while modules 3 and 4 remain frozen. For each teacher module i,
we compute its most specific representation MS[i] as detailed in algorithm 2. By leveraging this
representation, we pass the corresponding data through the forward phase of the teacher network. The
student module is then trained under various configuration of the binary vector c for a few epochs.
This allows us to explore different configurations and select the best corresponding student modules.

Optimizing Module Representations Our objective is to discern the configuration c that maximizes
the representation distance between consecutive student modules. This is important to ensure
that student modules develop unique and diverse representations, minimizing overlap in the
knowledge learned. The distance between two successive modules i and i + 1 is computed as
d = 1 − CKA(i, i + 1) where CKA is the Centered Kernel Alignment score, which measures the
similarity between the feature representations of two modules. By maximizing the representation
distance, we ensure that each student module captures distinct aspects of the teacher’s knowledge.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Cross-Validation and Student Configuration Vector (SCV) To determine the optimal binary vector
configuration, we use cross-validation to compute the vector (c) that maximizes the average distance
between consecutive student modules. This is calculated as:

SCV = argmax
c∈C

(
1

s− 1

s−1∑
i=1

di

)
. (7)

where di is the distance between consecutive student modules i and i+ 1, and s is the total number
of student modules. Once the Student Configuration Vector (SCV) is identified, it is applied to
the student network S. Modules that are indicated by 1 in the SCV undergo optimization, while the
remaining modules remain frozen:

S′ = Freeze(S[m]) if SCV[m] == 0, ∀m ∈ S. (8)
where Freeze(p) : p.requires grad = False. (9)

This ensures that only the selected student modules are optimized, preserving the modular structure
of the network.

Final Training and CKA Convergence Through this selective optimization process, each student
module is aligned with its corresponding teacher module using the module-specific data. The
training continues until the CKA similarity score between the representations of the student and
teacher modules exceeds a predefined threshold (e.g., 0.90), indicating high similarity and successful
alignment.

To achieve this, we compute the CKA score between the entire representation of teacher module i
and corresponding student modules every few training runs (e.g., every 5 iterations). If the CKA
score exceeds the threshold (e.g., 0.90), training of student modules are stopped, as the modules have
sufficiently learned from the corresponding teacher module. We then freeze this student module/s
and proceed to the next teacher module, identify the corresponding student modules, and train them
by aligning their representations with the teacher module.

This iterative process is repeated for each module, progressively aligning the student network to
the teacher network. This approach ensures that each student module effectively captures the
critical knowledge from the corresponding teacher module while maintaining distinct and unique
representations across the entire network. For enhanced clarity, this procedure is illustrated in Figure
4b and detailed in Algorithm 2.

Algorithm 2 Progressive Modular Alignment

Require: Teacher-modules (T), Student-modules (S), Threshold (th)
1: c← binary-vector(len(S))
2: C ← compute-permutations(c)
3: for i ≤ len(T) do
4: MS[i]← compute-MS(data, i)

Please see Alogrithm 1 for more details regarding compute-MS.
5: SCV← argmaxc∈C

(
1

s−1

∑s−1
i=1 di

)
,

#where di = 1− CKA(i, i+ 1), k < len(S)
6: S′ ← Freeze(S[m]) if SCV[m] == 0 ∀m ∈ S

#Freezes student modules not corresponding to teacher module i
7: OI← {m ∈ S : SCV[m] == 1 }

OI includes student modules indices corresponding to teacher module i
8: while LKL and CKA(T[i], S′[OI]) ≤ th do
9: KD (T(MS[i]), S′(data)))

#The corresponding student modules to teacher module i are trained using teacher-module i
specific features.

10: end while
11: Freeze(S[OI]) # Once the training of the student modules corresponding to teacher module i is

completed, those student modules are frozen.
12: end for

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We conducted extensive experiments to evaluate the proposed PKD framework. This section provides
a concise summary of our experimental configurations; further details available in Appendix sections
D and E. All experiments were performed on NVIDIA RTX 4090 GPUs. In our experiments, we
followed the OFA experiments and included their baselines for consistency. For a fair comparison,
we focused on KD methods specifically designed for heterogeneous architectures. Although we
list self-distillation and homogeneous KD methods in our tables for comprehensiveness, we do not
compare directly with them, as they differ significantly from our approach. Additionally, ablation
studies are reported in the last section and Appendix section B.

Architectures We evaluated a variety of models with heterogeneous architectures. Specifically, our
experiments included ResNet (He et al., 2016), MobileNet v2 (Sandler et al., 2018), and ConvNeXt
(Liu et al., 2021) as CNN models, ViT (Dosovitskiy et al., 2021), DeiT (Touvron et al., 2021), and
Swin (Liu et al., 2021) as ViT models, and MLP-Mixer (Tolstikhin et al., 2021) and ResMLP (Touvron
et al., 2021)as MLP models. Notably, when Swin-T was used as the student model, it outperformed
several teachers when trained from scratch, such as surpassing Mixer-B/16 on the ImageNet-1K
dataset. To enable comparisons with these teacher-student pairings, we used two adapted versions of
Swin-T: Swin-Nano and Swin-Pico, denoted as Swin-N and Swin-P, following (Hao et al., 2024).

Datasets For evaluation, we used the CIFAR-100 dataset (Krizhevsky et al., 2012), consisting of
50K training samples and 10K testing samples with a resolution of 32x32, and the ImageNet-1K
dataset (Deng et al., 2009), which contains 1.2 million training samples and 50,000 validation samples
with a resolution of 224x224. Since ViTs and MLPs require image patches as input, we upsampled
CIFAR-100 images to a resolution of 224x224 to facilitate the patch embedding process.

Baselines We employed both logits-based and hint-based KD techniques as our baselines. The
hint-based methods included FitNet (Romero et al., 2015), CC (Peng et al., 2019), RKD (Park et al.,
2019), and CRD (Tian et al., 2020), while the logits-based baselines included KD (Hinton et al.,
2015), DKD (Zhao et al., 2022), DIST (Huang et al., 2022), VKD (Miles et al., 2024), ViTKD (Yang
et al., 2022) and OFA (Hao et al., 2024).

Optimization In our implementation, all CNN students were trained using the SGD optimizer, while
those with ViT or MLP architectures were trained using the AdamW optimizer. For the CIFAR-100
dataset, all baseline models were trained for 300 epochs, whereas our PKD method required only
225 epochs. For the ImageNet-1K dataset, CNN-based baselines were trained for 100 epochs, and
ViT and MLP-based baselines were trained for 300 epochs. In contrast, we trained PKD for 75
epochs on CNN-based models and 240 epochs on ViT and MLP-based models. This demonstrates the
efficiency of our method, as it requires fewer training epochs, thereby offsetting the computational
costs associated with PCA and modularization.

PCA Computation and Sensitivity Analysis In PKD, PCA is computed only for the teacher modules,
as a pre-processing step before training. Since the teacher network is pretrained, PCA is performed
once per module to identify the most informative masked indices, which are then used during student
training. Using just 25 randomly selected samples per class was sufficient for accurate index selection,
and with four modules, only four PCA computations were required, ensuring computational efficiency.
The variance threshold (ϵth) is set to 1 × 10−4. To evaluate the robustness of our approach, we
repeated the ImageNet and CIFAR experiments five times, respectively, using different random
sample selections in each run. We report the average accuracy and standard deviation, demonstrating
the stability of our method despite variations in feature selection.

4.2 DISTILLATION RESULTS ON IMAGENET-1K
We first conducted experiments on the ImageNet-1K dataset. To provide a comprehensive compari-
son, we used five student models and five teacher models from three distinct architecture families,
evaluating KD methods across fifteen different teacher-student pairings. The results are presented in
Table 1.

Compared to previous KD methods, our PKD framework exhibits significant performance improve-
ments. For CNN-based students, our approach yields gains ranging from 0.61% to 6.46% over the
second-best baseline methods. Similarly, for ViT and MLP-based students, our PKD framework
achieves substantial accuracy improvements, with maximum gains of 3.21%. While OFA (Hao

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Teacher Student From Scratch hint-based Logits-based

T. S. FitNet CC RKD CRD KD DKD DIST VKD ViTKD NKD OFA PKD

CNN-based students

DeiT-T ResNet18 72.17 69.75 70.44 69.77 69.47 69.25 70.22 69.39 70.64 69.33 68.51 69.81 71.34 71.97 ± 0.23
Swin-T ResNet18 81.38 69.75 71.18 70.07 68.89 69.09 71.14 71.10 70.91 69.57 71.19 71.23 71.85 78.31 ± 0.31

Mixer-B/16 ResNet18 76.62 69.75 70.78 70.05 69.46 68.40 70.89 69.89 70.66 69.14* 70.08* 70.21* 71.38 75.81 ± 0.39
DeiT-T MobileNetV2 72.17 68.87 70.95 70.69 69.72 69.60 70.87 70.14 71.08 71.31* 71.26* 71.34* 71.39 72.00 ± 0.17
Swin-T MobileNetV2 81.38 68.87 71.75 70.69 67.52 69.58 72.05 71.71 71.76 71.12* 71.37* 71.85* 72.32 74.78 ± 0.29

Mixer-B/16 MobileNetV2 76.62 68.87 71.59 70.79 69.86 68.89 71.92 70.93 71.74 71.24* 70.98* 71.13* 72.12 73.96 ± 0.36

ViT-based students

ResNet50 DeiT-T 80.38 72.17 75.84 72.56 72.06 68.53 75.10 75.60 75.13 68.51 75.22 75.31 76.55 78.08 ± 0.19
ConvNeXt-T DeiT-T 82.05 72.17 70.45 73.12 71.47 69.18 74.00 73.95 74.07 69.27 74.10 74.26 74.41 77.62 ± 0.10
Mixer-B/16 DeiT-T 76.62 72.17 74.38 72.82 72.24 68.23 74.16 72.82 74.22 69.11* 73.98* 74.05* 74.46 75.09 ± 0.21
ResNet50 Swin-N 80.38 75.53 78.33 76.05 75.90 73.90 77.58 78.23 77.95 77.06* 77.19* 77.42* 78.64 79.13 ± 0.29

ConvNeXt-T Swin-N 82.05 75.53 74.81 75.79 75.48 74.15 77.15 77.00 77.25 77.39* 77.21* 77.13* 77.50 80.43 ± 0.11
Mixer-B/16 Swin-N 76.62 75.53 76.17 75.81 75.52 73.38 76.26 75.03 76.54 76.18* 76.12* 76.19* 76.63 76.58 ± 0.08

MLP-based students

ResNet50 ResMLP-S12 80.38 76.65 78.13 76.21 75.45 73.23 77.41 78.23 77.71 74.62 78.23 77.54 78.53 79.83 ± 0.32
ConvNeXt-T ResMLP-S12 82.05 76.65 74.69 75.79 75.28 73.57 76.84 77.23 77.24 73.84 73.97 77.28 77.53 80.29 ± 0.20

Swin-T ResMLP-S12 81.38 76.65 76.48 76.15 75.10 73.40 76.67 76.99 77.25 74.26* 74.31* 75.04* 77.31 79.95 ± 0.38

Table 1: Comparison of KD methods across different teacher-student architecture pairings on the ImageNet-1K dataset. Our proposed PKD
framework demonstrates significant performance improvements, outperforming all baseline methods. Results marked with * are generated using
the authors’ provided code. The results for the other baselines are sourced directly from their respective original papers or Hao et al. (2024).

Teacher Student From Scratch hint-based Logits-based

T. S. FitNet CC RKD CRD KD DKD DIST VKD ViTKD NKD OFA PKD

CNN-based students

Swin-T ResNet18 89.26 74.01 78.87 74.19 74.11 77.63 78.74 80.26 77.75 77.89 75.42 76.53 80.54 84.38 ± 0.27
ViT-S ResNet18 92.04 74.01 77.71 74.26 73.72 76.60 77.26 78.10 76.49 76.79 77.42 78.27 80.15 84.69 ± 0.31

Mixer-B/16 ResNet18 87.29 74.01 77.15 74.26 73.75 76.42 77.79 78.67 76.36 76.91* 76.79* 76.44* 79.39 83.28 ± 0.27
Swin-T MobileNetV2 89.26 73.68 74.28 71.19 69.00 79.80 74.68 71.07 72.89 74.39* 73.78* 73.62* 80.98 84.46 ± 0.24
ViT-S MobileNetV2 92.04 73.68 73.54 70.67 68.46 78.14 72.77 69.80 72.54 72.67* 72.54* 73.04* 78.45 82.24 ± 0.15

Mixer-B/16 MobileNetV2 87.29 73.68 73.78 70.73 68.95 78.15 73.33 70.20 73.26 73.61* 73.71* 74.12* 78.78 81.47 ± 0.22

ViT-based students

ConvNeXt-T DeiT-T 88.41 68.00 60.78 68.01 69.79 65.94 72.99 74.60 73.55 73.09 74.17 74.11 75.76 78.32 ± 0.16
Mixer-B/16 DeiT-T 87.29 68.00 71.05 68.13 69.89 65.35 71.36 73.44 71.67 71.63* 71.59* 73.29* 73.90 75.54 ± 0.31

ConvNeXt-T Swin-P 88.41 72.63 24.06 72.63 71.73 67.09 76.44 76.80 76.41 76.44* 76.37* 76.86* 78.32 81.26 ± 0.19
Mixer-B/16 Swin-P 87.29 72.63 75.20 73.32 70.82 67.03 75.93 76.39 75.85 74.92* 75.57* 75.29* 78.93 80.47 ± 0.31

MLP-based students

ConvNeXt-T ResMLP-S12 88.41 66.56 45.47 67.70 65.82 63.35 72.25 73.22 71.93 72.21 72.51 73.03 81.22 84.91 ± 0.27
Swin-T ResMLP-S12 89.26 66.56 63.12 68.37 64.66 61.72 - - - 71.89 72.82 11.05 80.63 83.88 ± 0.09

Table 2: PKD method consistently outperforms the baseline methods, achieving accuracy improvements ranging from 1.50% to 4.54% over
the second-best approaches. Comparison of KD methods across different teacher-student architecture pairings on the CIFAR-100 dataset. Results
marked with * are generated using the authors’ provided code. The results for the other baselines are sourced directly from their respective
original papers or Hao et al. (2024).

et al., 2024) performed well as the second-best logits-based method, PKD outperformed all baseline
methods across all scenarios, demonstrating its effectiveness in architecture-agnostic distillation.

4.3 DISTILLATION RESULTS ON CIFAR-100

In addition to the ImageNet-1K dataset, we evaluated the proposed PKD method on the CIFAR-100
dataset. We conducted experiments with twelve different configurations of teacher and student
models, and the results are summarized in Table 2.

On this smaller dataset, hint-based methods demonstrated weaker performance, especially when the
student model was based on ViT or MLP architectures, highlighting their limitations in handling
heterogeneous architectures. For example, FitNet achieved only 24.06% accuracy when paired with
a ConvNeXt-T teacher and a Swin-P student. In contrast, the PKD method consistently outperformed
the baseline methods, delivering performance improvements ranging from 1.50% to 4.54% over the
second-best approaches.

Interestingly, while DIST ranked third on the ImageNet-1K dataset, DKD often achieved the third-
best results on CIFAR-100. This difference stems from the fact that DIST, which relaxes prediction
emulation via correlation mimicry, is more effective with a robust teacher model trained on ImageNet-
1K. On the other hand, DKD, which amplifies latent knowledge in teacher predictions, is more suited
for scenarios involving smaller teachers, such as those trained on CIFAR-100. Despite these variations,
our PKD method adaptively enhances target information, enabling the student model to consistently
achieve optimal performance. OFA (Hao et al., 2024) secured the second-best performance, with
improvements over third-best baseline methods ranging from 0.28% to 8.00%.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.4 ABLATION STUDIES

4.4.1 PKD WITHOUT MODULE-SPECIFIC FEATURE COMPUTATION (PKD-PROGRESSIVE)
In this configuration, we progressively trained the student modules without using PCA-based module-
specific features, relying on all features instead. As shown in Table 3, while this approach outperforms
training from scratch, the performance gains are modest, highlighting the importance of module-
specific feature computation for improved knowledge transfer.

4.4.2 PKD WITHOUT MODULARIZATION (PKD-PCA)
Here, we skipped modularization and computed PCA features over all data passing through the last
layerof the teacher network. These features were used for distillation without splitting the network
into modules. As reflected in Table 3, this method shows better performance than PKD-progressive
but remains inferior to the fully modularized approach, indicating the critical role of modularization.

4.4.3 PKD WITH TWO MODULES (PKD-2 MODULES)
We divided the network into two main modules—the last layer as one module and the rest of the
network as the other—and applied PKD. Table 3 shows that this setup performs better than both
PKD-progressive and PKD-PCA, but still falls short of the full PKD, underscoring the benefit of finer
modularization.

4.4.4 FULL PKD
The fully modularized version of PKD achieves the best results across all configurations, as seen
in Table 3. This confirms that combining modularization with PCA-based feature computation
significantly enhances the knowledge distillation process. For more experiments, please refer to
Appendix, section B. In conclusion, the ablation results demonstrate that both modularization and
module-specific feature computation are key to achieving optimal performance in PKD.

Teacher Student From Scratch Method

T. S. PKD-progressive PKD-PCA PKD-2 modules PKD

CNN-based students

DeiT-T ResNet18 72.17 69.75 70.53 70.71 71.33 71.97 ± 0.23
Swin-T ResNet18 81.38 69.75 74.16 76.08 77.11 78.31 ± 0.31

Mixer-B/16 ResNet18 76.62 69.75 71.24 71.19 73.29 75.81 ± 0.39
DeiT-T MobileNetV2 72.17 68.87 71.53 71.62 71.73 72.00 ± 0.17
Swin-T MobileNetV2 81.38 68.87 70.11 72.09 71.96 74.78 ± 0.29

Mixer-B/16 MobileNetV2 76.62 68.87 72.11 73.37 73.40 73.96 ± 0.36

ViT-based students

ResNet50 DeiT-T 80.38 72.17 76.53 76.38 77.45 78.08 ± 0.19
ConvNeXt-T DeiT-T 82.05 72.17 75.36 75.12 75.93 77.62 ± 0.10
Mixer-B/16 DeiT-T 76.62 72.17 71.28 72.71 73.69 75.09 ± 0.21
ResNet50 Swin-N 80.38 75.53 74.38 74.61 76.29 79.13 ± 0.29

ConvNeXt-T Swin-N 82.05 75.53 74.63 75.09 76.87 80.43 ± 0.11
Mixer-B/16 Swin-N 76.62 75.53 74.20 75.07 76.09 76.58 ± 0.08

MLP-based students

ResNet50 ResMLP-S12 80.38 76.65 78.89 78.76 79.23 79.83 ± 0.32
ConvNeXt-T ResMLP-S12 82.05 76.65 77.74 78.39 79.08 80.29 ± 0.20

Swin-T ResMLP-S12 81.38 76.65 76.81 77.37 77.98 79.95 ± 0.38

Table 3: Performance comparison of PKD variations on ImageNet-1K. ”PKD-progressive” uses all features without module-specific
computation, ”PKD-PCA” skips modularization, ”PKD-2 modules” applies two modules, and ”PKD” is the fully modularized approach. Full
PKD consistently delivers the best results across all configurations.

5 CONCLUSION

This paper presents a novel method for architecture-agnostic knowledge distillation, based on a
progressive modular representation framework. Our approach groups network layers with similar
feature representations into modules and aligns these representations between the teacher and student
networks to facilitate optimal knowledge transfer. By selecting the most representative data from
each teacher module for distillation, this method ensures that the student network learns the most
relevant information, regardless of differences in architecture. Extensive experiments on CIFAR-100
and ImageNet-1K demonstrate the effectiveness of our method, showing significant improvements in
knowledge transfer and student network performance across a wide range of architectures.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In ACM
SIGKDD, pp. 535–541, 2006.

Hanting Chen, Tianyu Guo, Chang Xu, Wenshuo Li, Chunjing Xu, Chao Xu, and Yunhe Wang.
Learning student networks in the wild. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021.

Tai-Yin Chiu and Danna Gurari. Pca-based knowledge distillation towards lightweight and content-
style balanced photorealistic style transfer models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 7844–7853, 2022.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based on
centered alignment. J. Mach. Learn. Res., 13:795–828, 2012.

Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for machine learning.
Cambridge University Press, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Arthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le Song, Bernhard Schölkopf, and Alexander J.
Smola. A kernel statistical test of independence. In Neural Information Processing Systems, pp.
585–592, 2007.

Jianyuan Guo, Kai Han, Yunhe Wang, Han Wu, Xinghao Chen, Chunjing Xu, and Chang Xu.
Distilling object detectors via decoupled features. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021.

Yi Guo, Yiqian He, Xiaoyang Li, Haotong Qin, Van Tung Pham, Yang Zhang, and Shouda
Liu. Rdimkd: Generic distillation paradigm by dimensionality reduction. arXiv preprint
arXiv:2312.08700, 2023.

Zhiwei Hao, Jianyuan Guo, Ding Jia, Kai Han, Yehui Tang, Chao Zhang, Han Hu, and Yunhe Wang.
Learning efficient vision transformers via fine-grained manifold distillation. In Advances in Neural
Information Processing Systems, 2022.

Zhiwei Hao, Jianyuan Guo, Kai Han, Yehui Tang, Han Hu, Yunhe Wang, and Chang Xu. One-for-all:
Bridge the gap between heterogeneous architectures in knowledge distillation. Advances in Neural
Information Processing Systems, 36, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and Allan Hanbury.
Improving efficient neural ranking models with cross-architecture knowledge distillation. arXiv
preprint arXiv:2010.02666, 2020.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q. Weinberger.
Multi-scale dense networks for resource efficient image classification. In International Conference
on Learning Representations, 2018.

Tao Huang, Shan You, Fei Wang, Chen Qian, and Chang Xu. Knowledge distillation from a stronger
teacher. In Advances in Neural Information Processing Systems, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ian T Jolliffe. Principal component analysis for special types of data. Springer, 2002.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–3529.
PMLR, 2019a.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey E. Hinton. Similarity of neural
network representations revisited. In International Conference on Machine Learning, volume 97,
pp. 3519–3529, 2019b.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25:1097–1105,
2012.

Yufan Liu, Jiajiong Cao, Bing Li, Weiming Hu, Jingting Ding, and Liang Li. Cross-architecture
knowledge distillation. In Proceedings of the Asian conference on computer vision, pp. 3396–3411,
2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In International
Conference on Computer Vision, pp. 9992–10002, 2021.

Yunteng Luan, Hanyu Zhao, Zhi Yang, and Yafei Dai. Msd: Multi-self-distillation learning via
multi-classifiers within deep neural networks. arXiv preprint arXiv:1911.09418, 2019.

Andrey Malinin, Bruno Mlodozeniec, and Mark J. F. Gales. Ensemble distribution distillation. In
International Conference on Learning Representations, 2020.

Roy Miles, Ismail Elezi, and Jiankang Deng. Vkd: Improving knowledge distillation using orthogonal
projections. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15720–15730, 2024.

Jianyuan Ni, Hao Tang, Yuzhang Shang, Bin Duan, and Yan Yan. Adaptive cross-architecture mutual
knowledge distillation. In 2024 IEEE 18th International Conference on Automatic Face and
Gesture Recognition (FG), pp. 1–5, 2024. doi: 10.1109/FG59268.2024.10581969.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

Baoyun Peng, Xiao Jin, Jiaheng Liu, Dongsheng Li, Yichao Wu, Yu Liu, Shunfeng Zhou, and
Zhaoning Zhang. Correlation congruence for knowledge distillation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 5007–5016, 2019.

Mary Phuong and Christoph H Lampert. Distillation-based training for multi-exit architectures. In
Proceedings of the IEEE/CVF international conference on computer vision, 2019.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. In International Conference on Learning
Representations, 2015.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Computer Vision and Pattern Recognition,
pp. 4510–4520, 2018.

Jonathon Shlens. A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100, 2014.

Yehui Tang, Kai Han, Yunhe Wang, Chang Xu, Jianyuan Guo, Chunjing Xu, and Dacheng Tao.
Patch slimming for efficient vision transformers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In IEEE/CVF
International Conference on Learning Representations, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In Neural Information
Processing Systems, pp. 24261–24272, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
Conference on Machine Learning, volume 139, pp. 10347–10357, 2021.

Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing Systems,
pp. 5998–6008, 2017.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In International Conference on Computer Vision, pp. 548–558, 2021.

Yu Wang, Xin Li, Shengzhao Weng, Gang Zhang, Haixiao Yue, Haocheng Feng, Junyu Han, and
Errui Ding. Kd-detr: Knowledge distillation for detection transformer with consistent distillation
points sampling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16016–16025, 2024.

Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics and
intelligent laboratory systems, 2(1-3):37–52, 1987.

Zhendong Yang, Zhe Li, Ailing Zeng, Zexian Li, Chun Yuan, and Yu Li. Vitkd: Practical guidelines
for vit feature knowledge distillation. arXiv preprint arXiv:2209.02432, 2022.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. In International Conference
on Learning Representations, 2017.

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your
own teacher: Improve the performance of convolutional neural networks via self distillation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019.

Linfeng Zhang, Yukang Shi, Zuoqiang Shi, Kaisheng Ma, and Chenglong Bao. Task-oriented feature
distillation. In Neural Information Processing Systems, 2020.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

Xiatian Zhu and Shaogang Gong. Knowledge distillation by on-the-fly native ensemble. In Advances
in neural information processing systems, volume 31, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

This supplementary material provides in-depth information on the following topics:

• More experiments and ablation studies.

• Impact of mini-batch variability on network modularization.

• Architecture of Swin-Nano and Swin-Pico.

• Optimization.

• Related works - Architectures.

• Principal Component Analysis (PCA).

• Principal Component Analysis for Mean Variance Computation.

Each section offers detailed insights into the respective topic for a comprehensive understanding.

B MORE EXPERIMENTS AND ABLATION STUDIES

These findings will be included in the final manuscript to highlight the robustness of our method.

B.1 ABLATION STUDY: COMPARISON WITH ONE-TO-ONE MAPPING

Below is an ablation study comparing our method (PKD) with one-to-one mapping (PKD-1to1),
where teacher modules were identified using CKA scores, and student modules matched their number.
All other phases of PKD were kept consistent:

Teacher Student PKD PKD-1to1
CNN-based students

DeiT-T ResNet18 71.97± 0.23 71.28
Swin-T ResNet18 78.31± 0.31 76.71
DeiT-T MobileNetV2 72.00± 0.17 71.58

ViT-based students
ResNet50 DeiT-T 78.08± 0.19 77.28

ConvNeXt-T DeiT-T 77.62± 0.10 76.00
ResNet50 Swin-N 79.13± 0.29 76.42

Table 4: Comparison of PKD with PKD-1to1, demonstrating the superiority of our modular strategy.
Results indicate that PKD consistently outperforms PKD-1to1 across all teacher-student configura-
tions.

The results in Table 4 highlight the benefits of PKD’s modular and progressive strategy over the
simpler one-to-one mapping approach (PKD-1to1). Specifically:

• CNN-based students: PKD outperforms PKD-1to1 across all teacher-student pairs, with
improvements ranging from +0.42% (DeiT-T → MobileNetV2) to +1.60% (Swin-T →
ResNet18). This indicates that PKD’s progressive alignment enables more effective knowl-
edge transfer, especially in heterogeneous setups.

• ViT-based students: PKD demonstrates even larger gains, such as +2.71% (ResNet50 →
Swin-N) and +1.62% (ConvNeXt-T → DeiT-T). This shows that PKD’s flexible modular-
ization adapts better to diverse architectures.

The performance gap can be attributed to PKD’s ability to align student modules progressively
and effectively extract hierarchical representations, compared to the rigid one-to-one mapping in
PKD-1to1. PKD also benefits from selectively training student modules while freezing others, which
improves efficiency and avoids overfitting.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.2 ABLATION STUDY: EVALUATING MODULARIZATION USING FEATURE MAP RESOLUTION

To evaluate the impact of modularization methods, we compared our proposed method (PKD) with
an alternative approach that uses feature map resolution for modularization, referred to as PKD-res.
In PKD-res, modules are identified based on the resolution of feature maps at different layers rather
than using CKA scores. This method groups layers with the same resolution into the same module.

The experiments were conducted on a variety of teacher-student configurations for CNN, ViT, and
MLP architectures across CIFAR-100 and ImageNet-1K datasets. The performance was compared
using metrics such as final accuracy and modularization strategy. The results are presented in the
following tables.

Teacher Student OFA PKD PKD-res
CNN-based students

DeiT-T ResNet18 71.34 71.97 70.26
Swin-T ResNet18 72.31 78.31 71.98
DeiT-T MobileNetV2 71.39 72.00 71.35
Swin-T MobileNetV2 72.32 74.78 71.96

ViT-based students
ResNet50 DeiT-T 76.55 78.08 ± 0.19 76.08

ConvNeXt-T DeiT-T 74.41 77.62 ± 0.10 75.47
ResNet50 Swin-N 78.64 79.13 ± 0.29 78.91

ConvNeXt-T Swin-N 77.50 80.43 ± 0.11 78.29
MLP-based students

ResNet50 ResMLP-S12 78.53 79.83 ± 0.32 78.94
ConvNeXt-T ResMLP-S12 77.53 80.29 ± 0.20 78.53

Table 5: Teacher modularization based on feature map resolution (PKD-res) compared to OFA and
PKD on ViT and MLP-based students.

The results in Tables 5 demonstrates the following key findings:

• Performance Superiority of PKD: Across all configurations, PKD consistently outperforms
both OFA and PKD-res. This highlights the effectiveness of CKA-based modularization in
identifying meaningful layer groupings that facilitate efficient knowledge transfer.

• Limitations of Feature Map Resolution: While PKD-res provides a straightforward
approach to modularization, it performs worse than PKD in all cases. For instance, in the
ResNet50 → DeiT-T configuration, PKD achieves an accuracy of 78.08%, while PKD-
res falls to 76.08%. Similarly, for Swin-T → ResNet18, PKD achieves 78.31%, whereas
PKD-res reaches only 71.98%.

• Impact on Modularization Strategy: The feature map resolution method (PKD-res) groups
layers solely based on spatial resolution, which may fail to capture deeper representational
similarities critical for effective distillation. In contrast, PKD leverages CKA scores to align
features more precisely, leading to better modularization and improved performance.

• MLP and ViT Architectures: The performance gap between PKD and PKD-res is more
pronounced for MLP and ViT-based students, likely due to the unique feature hierarchies in
these architectures that are better captured by CKA-based modularization.

These results underscore the importance of using meaningful similarity metrics like CKA for modular-
ization, as opposed to simpler metrics such as feature map resolution, to achieve superior performance
in knowledge distillation.

B.3 ABLATION STUDY: MISALIGNED MODULARIZATION

To evaluate the impact of modular alignment on knowledge transfer, we conducted experiments with
two variations of misaligned modularization compared to our proposed PKD approach:

1. Misaligned Modules: We combined two middle student modules into a single module, creating a
mismatch with the teacher’s modular structure. This resulted in misaligned modularization, as the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

number and composition of student modules did not align with the teacher. 2. Shifted Modules: One
module from each group (except the first) was shifted to the previous group. This introduced minor
structural shifts in the modularization, testing the robustness of PKD to small changes.

Both approaches were compared with OFA and PKD. The results are presented in Table 6.

Teacher Student OFA PKD PKD-Misaligned
CNN-based students

DeiT-T ResNet18 71.34 71.97 ± 0.37 71.54
Swin-T ResNet18 71.85 78.31 ± 0.31 75.26

ViT-based students
ResNet50 DeiT-T 76.55 78.08 ± 0.19 77.04

ConvNeXt-T DeiT-T 74.41 77.62 ± 0.10 75.83
ResNet50 Swin-N 78.64 79.13 ± 0.29 79.08

ConvNeXt-T Swin-N 77.50 80.43 ± 0.11 78.37
MLP-based students

ResNet50 ResMLP-S12 78.53 79.83 ± 0.32 78.96
ConvNeXt-T ResMLP-S12 77.53 80.29 ± 0.20 78.79

Table 6: Comparison of teacher-student modularization methods: Aligned (PKD) vs. Misaligned
(PKD-Misaligned).

The results in Table 6 reveal the following insights:

1. Aligned Modularization Advantage: PKD consistently outperforms both OFA and PKD-Misaligned
across all teacher-student configurations, demonstrating the importance of aligned modularization in
facilitating effective knowledge transfer. 2. Impact of Misaligned Modules: Combining two middle
student modules led to noticeable performance degradation compared to PKD. For instance, in the
Swin-T → ResNet18 configuration, PKD achieves 78.31% accuracy, while PKD-Misaligned drops to
75.26%. 3. Robustness to Minor Shifts: Shifting modules caused no significant accuracy change,
suggesting PKD’s robustness to minor modularization variations. 4. Performance Retention: Despite
misalignment, PKD-Misaligned still outperforms OFA in most configurations, indicating the inherent
strength of the PKD framework even when modularization is imperfect.

These findings emphasize the importance of accurate modular alignment in PKD for achieving
optimal performance while highlighting its robustness to small modularization shifts.

B.4 KNOWLEDGE TRANSFER IN CONSISTENT ARCHITECTURES.
We employ the widely recognized pairing of a ResNet34 teacher and a ResNet18 student on the
ImageNet-1K dataset to further showcase the efficacy of our method within consistent architectures.
As depicted in Table 7, the PKD technique yields results comparable to the top-performing distillation
baseline.

T. S. KD OFD Review CRD DKD DIST OFA PKD (ours)

Accuracy 73.62 69.90 70.66 70.81 71.61 71.17 71.70 72.07 72.10 73.51 ± 0.18

Table 7: KD methods with homogeneous architectures on ImageNet-1K. T: ResNet34, S: ResNet18.

Teacher T. S.(ResNet50) RKD Review CRD DKD DIST OFA PKD (ours)

ResNet152 82.83 79.86 79.53 80.06 79.33 80.49 80.55 80.64 82.75 ± 0.30
ViT-B 86.53 79.86 79.38 79.32 79.48 80.76 80.90 81.33 84.67 ± 0.22

Table 8: Comparison of homogeneous and heterogeneous teacher on ImageNet-1K.

B.5 CONSISTENT vs. DIVERSE TEACHER MODELS

To evaluate the influence of employing a larger diverse teacher model, we train a ResNet50 student
with both a ResNet152 teacher (consistent architecture) and a ViT-B teacher (diverse architecture).
As illustrated in Table 8, our PKD approach achieves a significant improvement in performance
when utilizing the ViT-B teacher compared to the ResNet152 teacher. This finding underscores the
importance of architecture-agnostic knowledge distillation (KD) in striving for enhanced performance
gains.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.6 KD WITH LAST LAYER MODULE-SPECIFIC FEATURES

In this experiment, we utilize the OFA method to examine the impact of using only module-specific
features from the last layer, specifically extracting the most important features from this layer. For
modularization, we divided the student and teacher networks into four modules, as outlined in the
OFA method by (Hao et al., 2024). Initially, we trained the first two modules by leveraging the most
important features while keeping the last two modules (the deeper layers) frozen. The rationale is
that the shallow layers of the network learn the most critical features and semantics (class-specific
features).

After training the first two modules, we proceeded to train the deeper modules using data where
the indices corresponding to the most important features were masked by zero. The experimental
results, presented in Table 9 labeled as OFA+MS, demonstrate an improvement over the OFA method,
highlighting the significance of utilizing the appropriate features to train different layers or modules
of the network.

B.7 ENHANCED DKD PERFORMANCE WITH PKD

We conduct further experiments to assess the effectiveness of our PKD method, particularly the
progressive modular alignment, on other knowledge distillation techniques. Specifically, we integrate
our method with DKD. In this setup, we adhere to the primary DKD methodology and incorporate
modularization along with progressive modular training. The experimental outcomes are presented
as (DKD+PKD) in Table 9, highlighted as gray. As shown in the table, our approach enhances the
performance of DKD.

Teacher Student From Scratch Logits-based

T. S. KD DKD DKD +PKD DIST OFA OFA+MS PKD

CNN-based students

DeiT-T ResNet18 72.17 69.75 70.22 69.39 73.56 70.64 71.34 72.11 71.97 ± 0.23
Swin-T ResNet18 81.38 69.75 71.14 71.10 78.46 70.91 71.85 74.09 78.31 ± 0.31
DeiT-T MobileNetV2 72.17 68.87 70.87 70.14 71.28 71.08 71.39 71.63 72.00 ± 0.17

ViT-based students

ResNet50 DeiT-T 80.38 72.17 75.10 75.60 78.02 75.13 76.55 77.23 78.08 ± 0.19
ConvNeXt-T DeiT-T 82.05 72.17 74.00 73.95 75.94 74.07 74.41 74.83 77.62 ± 0.10

MLP-based students

ResNet50 ResMLP-S12 80.38 76.65 77.41 78.23 79.61 77.71 78.53 79.17 79.83 ± 0.32
ConvNeXt-T ResMLP-S12 82.05 76.65 76.84 77.23 80.38 77.24 77.53 76.68 80.29 ± 0.20

Table 9: Applying our PKD method on top of the DKD method improves performance on ImageNet-1K. Applying MS procedures on OFA
last layer , OFA+MS, improves its performance.

B.8 IMPACT OF THE THRESHOLD IN EQUATION 5

To better understand the impact of the threshold parameter ϵth in Equation 5 on performance, we
conducted an ablation study. This experiment systematically evaluated different values of ϵth and
their effect on the accuracy of our method. The results of this ablation are presented in Table 10,
where we report the performance of the PKD model with varying threshold values.

As shown in Table 10, our method consistently outperforms the OFA baseline across all tested
thresholds. Notably, ϵth values of 1e − 4 and 5e − 4 yield the best performance, suggesting that
fine-tuning the threshold in this range is critical for maximizing model accuracy. These results

Teacher Student PKD considering different ϵth
2e− 5 5e− 5 1e− 4 5e− 4 2e− 3 5e− 3 1e− 3 OFA

DeiT-T ResNet18 71.91 72.04 71.97 71.92 71.86 71.80 71.81 71.34
Swin-T ResNet18 78.00 78.03 78.31 78.26 78.17 78.14 78.09 71.85

ResNet50 DeiT-T 77.86 77.99 78.08 78.03 77.91 77.83 77.80 76.55

Table 10: Performance comparison of PKD using different threshold values ϵth in Equation 5, with varying teacher-student model pairs on
the ImageNet dataset. Our method consistently outperforms the OFA baseline across all tested values.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

validate the robustness of our approach and demonstrate the importance of selecting an appropriate
threshold value for optimal knowledge distillation performance.

C IMPACT OF MINI-BATCH VARIABILITY ON NETWORK MODULARIZATION

In our PKD framework, network modularization is not based on individual mini-batches, but rather
on a subset of the data to manage computational costs efficiently. Specifically, we randomly select a
limited number of samples per class (e.g., 25) for CKA (Centered Kernel Alignment) computations.
Through extensive experimentation, we found that this approach produces modularization results
comparable to using the entire dataset.

To account for variability when considering all training data, we compute the average CKA score
across mini-batches. This ensures consistency in the modularization process while maintaining
computational efficiency, as the use of a subset of data for CKA calculation reduces the overall
computational burden without sacrificing accuracy in the modularization results.

D ARCHITECTURE OF SWIN-NANO AND SWIN-PICO

To ensure that the teacher models surpass the performance of the student model, (Hao et al., 2024)
presented two modified versions of Swin-Tiny (Liu et al., 2021), named Swin-Nano and Swin-Pico.
Swin-Nano features an embedding dimension of 64, while Swin-Pico has an embedding dimension of
48, in contrast to the original Swin-Tiny’s embedding dimension of 96. Additionally, Swin-Tiny has
layer depths of (2, 2, 6, 2) and numbers of heads of (3, 6, 12, 24), whereas the two modified models
share the same configurations for depths and numbers of heads, which are (2, 2, 2, 2) and (2, 4, 8,
16), respectively.

E OPTIMIZATION

For training models with diverse architectures on the ImageNet-1K and CIFAR-100 datasets, we
employ distinct optimization settings. The comprehensive settings are provided in Table 11.

ImageNet-1k CIFAR-100
CNN ViT/ MLP CNN ViT/MLP

Epochs 100 300 300 300
Batch size 512 1024 300 300
Initial LR 0.1 5e-4 5e-2 5e-4

Minimum LR 1e-6 1e-6 1e-3 1e-5
Optimizer SGD AdamW SGD AdamW

Weight decay 1e-4 5e-2 2e-3 5e-2
LR schedule ×0.1 at [30,60,90] Cosine Cosine Cosine

Warmup 3 20 3 20
EMA - 0.99996 - -

RandAugment - 9/0.5 - 9/0.5
Mixup - 0.8 - 0.8
Cutmix - 1.0 - 1.0
RE prob - 0.25 - 0.25

Table 11: Optimization settings details.

F OVERALL PERFORMANCE AND TRAINING EFFICIENCY

F.1 TRAINING EFFICIENCY

To compare performance and training efficiency, we conducted experiments with PKD, OFA, and
DKD under identical setups:

Key Observations:

• Final Performance: PKD consistently achieves superior accuracy, with improvements such
as +6.46% on CIFAR-100 and +1.53% on ImageNet-1K compared to OFA.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Dataset Teacher-Student Pair Method Final Accuracy (%) Total Training Time (hrs) Avg. Time/Epoch (min) Epochs

CIFAR-100
Swin-T → ResNet18 OFA 71.85 14.2 2.84 300

DKD 71.10 14.4 2.88 300
PKD 78.31 ± 0.31 11.4 3.04 225

ImageNet-1K
ResNet50 → DeiT-T OFA 76.55 110.0 22.0 300

DKD 75.60 112.5 22.5 300
PKD 78.08 ± 0.19 74.0 18.5 240

Table 12: Comparison of training efficiency and final performance for PKD, OFA, and DKD under
identical setups.

• Training Budget: PKD reduces total training time by 20%–30%, thanks to faster conver-
gence and fewer required epochs.

• Training Efficiency: PKD’s modularization slightly increases time per epoch but achieves
overall faster training due to reduced epochs.

F.2 SCALABILITY CHALLENGES

Although PKD introduces additional steps such as PCA and CKA-based modularization, several
design choices address scalability:

• Subset-Based PCA: PCA is performed on a small subset (e.g., 25 samples per class),
significantly reducing computational overhead while preserving performance.

• Batch-Based CKA: Modularization uses averaged mini-batch CKA scores, reducing mem-
ory requirements and enabling scalability for larger models.

• Progressive Training: Modules are trained sequentially, avoiding simultaneous optimiza-
tion of the entire network and reducing effective model size during training.

Proposed Solutions for Enhanced Scalability:

• Low-Rank Approximations for PCA: Techniques like randomized SVD can further reduce
computational costs.

• Approximation Methods for CKA: Nyström approximations or sketching techniques can
compute Gram Matrices efficiently for deeper architectures.

• Parallel and Distributed Training: PKD’s modular structure is inherently parallelizable,
allowing multi-GPU setups.

• Hierarchical Modularization: For very deep networks, hierarchical grouping of layers into
coarse modules can further reduce complexity.

F.3 PERFORMANCE GAP AND TRAINING BUDGET

The impact of simplifications in PKD on performance and training budget is summarized below:

• Subset-Based PCA: PCA is performed on a small subset of data, leading to:
– Performance Gap: Minimal difference (≤ 0.2%) compared to full-dataset PCA, as

shown in ablation studies.
– Training Budget Impact: Reduces preprocessing time by 80%–90%, making it

computationally efficient.
• Variance Threshold (ϵth): Features are selected based on their variance, ensuring only the

most representative features are retained:
– Performance Gap: Negligible differences (≤ 0.2%) with optimal thresholds

(1e−4–5e−4); extremely low thresholds (¡2e−5) lead to a slight drop (0.4%).
– Training Budget Impact: Reduces feature dimensions, accelerating student training.

• Batch-Based CKA: Gram Matrices and CKA scores are computed on mini-batches:
– Performance Gap: Batch-based CKA achieves comparable modularization to full-

dataset CKA (≤ 0.3% difference in accuracy).
– Training Budget Impact: Reduces memory usage and modularization time, enhancing

scalability.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Overall Training Budget Reduction: PKD reduces total training time by up to 30% due to faster
convergence and fewer required computations compared to baseline methods like OFA and DKD.

G RELATED WORKS- ARCHITECTURES

In recent years, significant advancements have been made in the evolution of model architectures
for computer vision tasks. This section offers a succinct overview of two notable architectures:
Transformer and MLP.

Vision Transformer Vaswani and colleagues (Vaswani et al., 2017) initially introduced the trans-
former architecture for tasks in natural language processing (NLP). Due to the utilization of the
attention mechanism, this framework adeptly captures prolonged dependencies and attains remark-
able performance. Motivated by its considerable success, endeavors have been made to devise
transformer-based models for computer vision (CV) tasks. (Dosovitskiy et al., 2021) partition an
image into non-overlapping patches and map these patches into embedding tokens. Subsequently,
these tokens undergo processing by the transformer model akin to NLP tasks. Their design achieves
state-of-the-art performance and stimulates the creation of a sequence of subsequent architectures.

MLP For an extended period, MLP has exhibited inferior performance compared to CNN in the
domain of computer vision. To explore the potential of MLP, (Tolstikhin et al., 2021) proposed
MLP-Mixer, exclusively based on the MLP structure. MLP-Mixer takes embedding tokens of an
image patch as input and interleaves channel and spatial information mixing at each layer. This
architecture performs comparably to the leading CNN and ViT models. Touvron and colleagues
(Touvron et al., 2021) proposed another MLP architecture termed ResMLP.

The most advanced CNN, Transformer, and MLP models achieve analogous performance. Nonethe-
less, these architectures possess distinct inductive biases, leading to disparate preferences in rep-
resentation learning. Generally, noticeable distinctions exist between features acquired by diverse
architectures.

H PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal Component Analysis (PCA) is a statistical method aimed at reducing the dimensionality
of high-dimensional data while preserving as much variance as possible. This is accomplished
by identifying principal components, which are orthogonal vectors that indicate the directions of
maximum variance (Shlens, 2014; Jolliffe, 2002).

Figure 4: Singular Value Decomposition

H.1 PROCEDURE

This section details the steps involved in PCA to extract the most informative features.

Data Standardization: Standardize the dataset features to have a mean of zero and a unit variance.

Covariance Matrix: Calculate the covariance matrix of the standardized data, which captures the
relationships between different features.

SVD of Covariance Matrix: Perform Singular Value Decomposition (SVD) on the covariance
matrix. The SVD of the covariance matrix yields the principal components.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Selecting Principal Components: Sort the singular values in descending order. The corresponding
singular vectors are the principal components. Select the top k principal components to form a
reduced-dimensional space.

Projection: Project the original data onto the selected principal components to obtain the lower-
dimensional representation.

Benefits: - Dimensionality reduction simplifies data visualization and interpretation. - Reduced
dimensionality often enhances computational efficiency. - Principal components encapsulate the most
significant patterns in the data.

H.2 MORE EXPLANATION REGARDING SVD COMPUTATION

Consider an m× n matrix R, where m denotes the number of rows and n represents the number of
columns. The primary objective of Singular Value Decomposition (SVD) is to decompose matrix
R into three distinct matrices: U , Σ, and V T (the transpose of matrix V). This decomposition is
expressed as R = UΣV T ∈ Rm×n, as illustrated in Figure 4.

- U : An m×m orthogonal matrix, whose columns are the left singular vectors of R. - Σ: An m× n
diagonal matrix containing the singular values of R (non-negative and arranged in descending order).

- V T : An n× n orthogonal matrix, with columns representing the right singular vectors of R.

H.3 EIGENVALUES AND EIGENVECTORS

Eigenvalues and eigenvectors are also fundamental to understanding matrix properties. An eigenvalue
λ and its corresponding eigenvector v of a square matrix R satisfy the equation Rv = λv. Eigenvec-
tors denote directions in the vector space that are scaled by the matrix R, while eigenvalues represent
the scaling factors for these eigenvectors.

H.4 SVD AND ITS RELATIONSHIP TO EIGENVALUES AND EIGENVECTORS

SVD establishes a crucial relationship between eigenvalues and eigenvectors and the singular values
and singular vectors of a matrix. The singular values of R are the square roots of the eigenvalues of
either RRT or RTR, and the left and right singular vectors are the eigenvectors of RRT and RTR,
respectively.

H.5 RANK AND MATRIX APPROXIMATION

The rank of a matrix R is determined by the number of non-zero singular values in Σ. By retaining
only the largest singular values and their corresponding singular vectors, it is possible to approximate
the original matrix R with a lower-rank approximation. This technique is valuable for tasks such as
dimensionality reduction and noise reduction, and it is utilized in our approach.

H.6 PROPERTIES OF SVD

- The singular values in Σ are non-negative and arranged in descending order. - The columns of U
and V are orthonormal, forming an orthogonal basis for their respective vector spaces. - The SVD
decomposition is unique, except for the sign of the singular values and the order of the singular
vectors.

SVD is a powerful matrix factorization technique, offering a concise representation of a matrix while
preserving essential structural properties. Its applications span various fields, including data analysis,
image processing, recommendation systems, and more (Deisenroth et al., 2020).

I PRINCIPAL COMPONENT ANALYSIS FOR MEAN VARIANCE COMPUTATION

In this section, we outline the procedure for computing the mean variance of high-dimensional data
features using Principal Component Analysis (PCA). Consider a dataset X ∈ Rn×d, where n is the
number of data samples and d is the number of features.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

I.1 STANDARDIZATION OF FEATURES

PCA is sensitive to the scale of the input data, so we begin by standardizing the features. This ensures
that each feature has zero mean and unit variance.

Let the dataset X = {X1, X2, . . . , Xn}, where each Xi ∈ Rd, represent the set of n data samples,
each having d features. The standardized data matrix Xstandardized is computed as:

µj =
1

n

n∑
i=1

Xij , ∀j = 1, 2, . . . , d, (6)

Xcentered = X − µ, (7)

Xstandardized =
Xcentered

σ
, σj =

√√√√ 1

n

n∑
i=1

(Xij − µj)2. (8)

Here, µj represents the mean of the j-th feature, and σj is the standard deviation of the j-th feature.

I.2 COVARIANCE MATRIX COMPUTATION

Once the data is standardized, the covariance matrix Σ ∈ Rd×d can be computed to measure the
pairwise dependencies between features. The covariance matrix is defined as:

Σ =
1

n− 1
X⊤

standardizedXstandardized, (9)

where Σjk represents the covariance between the j-th and k-th features.

I.3 EIGENVALUE DECOMPOSITION OF THE COVARIANCE MATRIX

We perform eigenvalue decomposition on the covariance matrix Σ, which gives us the principal
components and the amount of variance explained by each. The decomposition is expressed as:

Σ = V ΛV ⊤, (10)

where V ∈ Rd×d is the matrix of eigenvectors (principal components) and Λ =
diag(λ1, λ2, . . . , λd) ∈ Rd×d is the diagonal matrix of eigenvalues λj , where λj corresponds to the
variance explained by the j-th principal component.

I.4 EXPLAINED VARIANCE

The eigenvalues λj provide the variance explained by each corresponding principal component. The
proportion of variance explained by the j-th principal component is computed as:

Explained Variance Ratio =
λj∑d
k=1 λk

. (11)

I.5 MEAN VARIANCE EXPLAINED

The mean variance explained by the principal components can be computed by averaging the explained
variance ratio across all components:

Mean Variance =
1

d

d∑
j=1

λj∑d
k=1 λk

. (12)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

This metric represents the average amount of variance explained by each principal component in the
transformed space.

23

	Introduction
	Related Work and Background
	Method
	Notations and Problem Definition
	Insight
	PKD Framework
	Network Modularization
	Modular Feature Alignment

	Experiment
	Experimental setup
	Distillation Results on ImageNet-1K
	Distillation Results on CIFAR-100
	Ablation studies
	PKD without Module-specific Feature Computation (PKD-progressive)
	PKD without Modularization (PKD-PCA)
	PKD with Two Modules (PKD-2 modules)
	Full PKD

	Conclusion
	Appendix
	More Experiments and Ablation Studies
	Ablation Study: Comparison with One-to-One Mapping
	Ablation Study: Evaluating Modularization Using Feature Map Resolution
	Ablation Study: Misaligned Modularization
	Knowledge Transfer in Consistent Architectures.
	Consistent vs. Diverse Teacher Models
	KD with Last Layer Module-Specific Features
	Enhanced DKD Performance with PKD
	Impact of the Threshold in Equation 5

	Impact of Mini-batch Variability on Network Modularization
	Architecture of Swin-Nano and Swin-Pico
	Optimization
	Overall Performance and Training Efficiency
	Training Efficiency
	Scalability Challenges
	Performance Gap and Training Budget

	Related works- Architectures
	Principal Component Analysis (PCA)
	Procedure
	More Explanation Regarding SVD Computation
	Eigenvalues and Eigenvectors
	SVD and Its Relationship to Eigenvalues and Eigenvectors
	Rank and Matrix Approximation
	Properties of SVD

	Principal Component Analysis for Mean Variance Computation
	Standardization of Features
	Covariance Matrix Computation
	Eigenvalue Decomposition of the Covariance Matrix
	Explained Variance
	Mean Variance Explained

