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Abstract: We develop a statistical inference method for generalized lin-
ear models (GLMs) in high-dimensional settings, where the number of un-
known coefficients p is of the same order as the sample size n. In this
regime, constructing confidence intervals requires estimating unknown hy-
perparameters, such as the signal strength. However, existing estimators
for the hyperparameters are not stably applicable to GLMs when p/n is
close to or greater than 1, both theoretically and empirically. In this study,
we develop an estimator for the hyperparameter that addresses the issue
and establish an inferential framework, provided that the link function of
the GLM exhibits an asymmetry property. The proposed estimator utilizes
the moments of the output variable of GLMs and a convex surrogate loss.
Our framework is theoretically valid even when the limit of p/n exceeds
1, ensuring the strong consistency of the hyperparameter estimator and
asymptotically attaining the exact coverage probability of the confidence
intervals. Our numerical experiments support these theoretical results.
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1. Introduction

We consider a pair (X, Y ) with p-dimensional random feature X and random
response Y following the generalized linear model (GLM):

E[Y | X = x] = g
(
x⊤β

)
, ∀x ∈ Rp, (1)

where g : R → R is an inverse link function that monotonically increases, and
β = (β1, . . . , βp)⊤ ∈ Rp is an unknown deterministic coefficient vector. This is
one of the most popular classes of statistical models, including linear regression
model, logistic regression model, Poisson regression model, and others. Given a
sample of size n and assuming n-dependent dimension p ≡ p(n), a GLM and
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its specific models in the proportionally high-dimensional regime, where there
exists κ > 0 such that

n, p(n) → ∞ and p(n)/n → κ ∈ (0,∞), (2)

have recently been studied [BM11, Ran11, EKBB+13, TAH18, SC19, BKM+19,
Bel22].

Our interest lies in statistical inference (or simply inference), such as hypoth-
esis testing and constructing confidence intervals, for β. In high-dimensional set-
tings (2), a maximum likelihood estimator (MLE) is influenced by dimensional-
ity κ and unknown parameters in a complex manner [SCC19, SC19, SAH19,
BKM+19, FVRS22], which is contrast to low-dimensional settings [McC80,
Cor83] or other (sparse) high-dimensional settings [VdGBRD14, TT17, FL21,
CGM23, PSVAV24]. Indeed, the asymptotic bias and variance can be character-
ized as fixed points of a nonlinear system called the state evolution (SE) system.
The several unknown hyperparameters in the system must be estimated for in-
ference, which is a major challenge for practical use.

Despite the development of such inferential frameworks, some more chal-
lenges remain. First, estimating the SE hyperparameters becomes hard as the
dimensionality increases, particularly when κ ≥ 1. Existing estimators, includ-
ing [SC19, YYMD21, CLM24], have been theoretically justified only for cases
where κ < 1. Moreover, some methods exhibit numerical instability even when
κ is less than 1 but close to 1, as we verify in Section 5. Second, even if the
SE hyperparameters were known, the inference method with a high-dimensional
MLE proposed by [SC19] would not be applicable to certain GLM settings. This
is because, in some GLMs, the negative log-likelihood function is non-convex,
rendering existing methods relying on convexity inapplicable.

In this study, we develop a moment-based adjustment for statistical inference
in high-dimensional GLMs and prove its asymptotic validity. This methodology
is based on the following techniques. First and most importantly, we construct a
simple yet effective estimator of the SE hyperparameter, which can be computed
from the data by leveraging a moment equation on the output variable Y . This
method enables the estimation of the SE hyperparameters regardless of the
value of κ > 0, while requiring the link function g(·) to be asymmetric, i.e.,
g0(x) := (g(x)+g(−x))/2 being strictly monotone. The moment-based estimator
remains applicable even when κ ≥ 1, as it neither depends on the inverse of
sample covariance matrices nor on the estimator of β. The second technique is
the use of surrogate loss function, which is a convex and consistent loss function
for GLMs. This loss function mitigates the non-convexity of the negative log-
likelihood function in a certain class of GLMs. We leverage this loss and derive
an SE system for GLMs by applying the approximate message passing (AMP)
algorithm.

Our contributions are summarized as follows:

• We perform statistical inference for GLMs in a high-dimensional setting.
We also prove its asymptotic validity; specifically, the proposed confidence
interval asymptotically attains the exact coverage probability. To this aim,
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we leverage the convex surrogate loss function and derive the SE system for
a general class of GLMs from the AMP algorithm.

• We develop a moment-based estimator for hyperparameters in the SE system
using an additive form of GLMs. We prove the consistency of the estimator
for any κ ∈ (0,∞) under the restriction that the link function is asymmetric.
Additionally, we verify that the estimator remains numerically stable even
when κ is large.

1.1. Related Works and Comparison

Statistical estimation and inference in the high-dimensional regime (2) have
been actively studied. For example, linear models have been considered by
[BM11, EKBB+13, TAH15, TAH18, TK18, EK18, MM21, HMRT22, MM22,
BK25]; logistic regression models are by [SCC19, SC19], and others [TB23,
Bel22, LGC+21, SUI24]. In particular, [BKM+19] deduced the Bayes-optimal
estimation and generalization errors for GLMs. Additionally, [LGC+21] provided
a rigorous formula for the asymptotic training loss and generalization error in
more general teacher-student settings. The relationship between our study and
these two papers can be summarized as follows. First, our primary focus is on
estimating unknown hyperparameters essential for statistical inference, rather
than identifying the risk, which differentiates our motivation. Second, our pro-
posed estimator with the convex surrogate loss is applicable to a wider class
of MLEs, while its theoretical foundations have already been established in the
prior research.

Regarding the estimation of SE hyperparameters, the first heuristic approach
called ProbeFrontier was proposed by [SC19] though it is limited to logistic
regression. This method estimates the signal strength (SS) appearing in the
SE systems by utilizing the phase transition properties of the MLEs in logis-
tic regression [CS20]. [YYMD21] developed the Signal Strength Leave-One-Out
Estimator (SLOE) for the SS by adopting a different representation of the SE
system for logistic regression. It is based on the non-regularized MLE, and there-
fore the estimation errors can diverge as κ increases and approaches to one. A
subsequent paper [CLM24], appearing after the preprint release of our study,
developed an estimator named into Method-of-Moment Inference (MoMI), by
extending our moment-based inferenceby incorporating information from X.
This study also studied asymptotic variance of the coefficient estimator via the
bootstrap method. A key difference from our results is that their method cannot
handle the κ ≥ 1 setting when a covariance matrix of X is unknown.

Table 1 summarizes the difference between our study and related methods.
Accordingly, our method differs from existing approaches by achieving two key
objectives: ensuring applicability even when κ is greater than 1 and enabling the
estimation of hyperparameters beyond the SS needed for inference, e.g., variance
of Gaussian noise. These are justified both theoretically and numerically. The
intuitive reason our method can accommodate the κ ≥ 1 setting, albeit at the
cost of imposing an asymmetric assumption, is that it relies solely on the moment
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Table 1
Comparison of methods based on κ values.

Method Model κ < 1 κ ≥ 1 Condition on the link g(·)
ProbeFrontier [SCC19] Logistic

√
sigmoid 1/(1 + exp(−x))

SLOE [YYMD21] GLM
√

MoMI [CLM24] GLM
√

Ours GLM
√ √

restricted to asymmetric

information of Y . As a result, since our method does not use the information of
X, the inverse of the sample covariance matrix (n−1∑n

i=1 XiX
⊤
i )−1 does not

appear. This is a key advantage, as it ensures robustness against the instability
of coefficient estimators and the inverse matrices as κ increases. On the other
hand, a drawback of using only the moment information of Y is that SS cannot
be identified when the link function is symmetric.

Without SE systems, [Bel22] introduced an inference framework that remains
valid even when the link function is unknown under the identification condition
Var(X⊤β) = 1. However, when the link function is specified (i.e., the GLM
case), this approach is not directly applicable since we cannot constrain SS to be
1. As for classification problems, [ML19, MLC19, SLCT21] established feasible
methods for inference though they require prior knowledge of the covariance
matrix of the covariates.

Various theoretical tools have been proposed for analyzing statistical models
in the regime (2), including (i) AMP algorithms [DMM09, Bol14, BM11], (ii)
convex Gaussian minimax theorem [TAH15, TAH18], (iii) leave-one-out tech-
niques [EKBB+13], (iv) second-order Poincaré inequalities [Cha09], and (v)
second-order Stein’s formulae [BZ21, BS22]. In addition to (i), [Ran11] pro-
posed generalized AMP applicable to GLMs. We use this to characterize the
asymptotic behavior of an estimator of GLMs.

In a high-dimensional regime different from (2), statistical inferences for
GLMs under sparse conditions have also been studied [GC16, JVDG16, SAH19,
CGM21, LZCL23]. We note that the regime (2) admits the number of nonzero
elements of coefficient s to be proportional to p, while classical high-dimensional
statistics typically focus on sparse models with s log p = o(n).

1.2. State Evolution (SE)-based Confidence Interval: Logistic
Regression Case

We review statistical inference frameworks that are valid in the high-dimensional
regime (2), especially those aimed at confidence intervals. This framework for
for a logistic regression is developed by [SC19, ZSC22]. Specifically, the stud-
ies showed that a properly corrected maximum likelihood estimator (MLE) is
asymptotically normally distributed. Let β̂MLE = (β̂1, . . . , β̂p)⊤ be the MLE.
Then, as n, p(n) → ∞ with p(n)/n → κ ∈ (0, 1), we have the following for any
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j = 1, . . . , p satisfying
√
nτjβj = O(1) if the MLE exists:
√
n(β̂MLE

j − µβj)
σ/τj

d→ N (0, 1), (3)

where τ2
j := Var(Xij | Xi\j) is the conditional variance of the j-th element of

Xi given Xi\j := (Xi,1, . . . , Xi,j−1, Xi,j+1, . . . , Xi,p). Here, (µ, σ) are the state
evolution (SE) parameters that satisfy the following SE system,

κ2σ2 = E(Q1,Q2)

[
2g(Z) (ηg(D))2

]
,

0 = E(Q1,Q2) [g(Z)Z(ηg(D))] ,
1 − κ = E(Q1,Q2)

[
2g(Z)(1 + ηg′(D))−1] , (4)

with D = proxηG (µZ +
√
κσQ2), Z = γQ1, and (Q1, Q2) ∼ N2(0, I2). Here,

the parameter γ2 = limn→∞ Var(Xi(n)⊤β(n)) is for signal strength (SS). The
covariance structure of Xi is completely captured by γ2 in this system. In this
logistic regression case, the inverse link and the integrated inverse link functions
are defined as g(t) = 1/(1 + exp(−t)) and G(t) := log(1 + exp(t)), respectively.
Here, µ, σ, η ∈ R are the SE parameters. Remarkably, SE-based inference re-
duces the inference problem on high-dimensional coefficients to an SE system
with a small number of scalar SE parameters.

The SE system is derived as a fixed-point equation of an iterative algorithm
for an optimization problem on estimators. In the logistic regression case, we de-
rive the SE system (4) for the MLE. The derivation is based on the approximate
message passing, the details of which are provided in [FVRS22].

On the Basis of the asymptotic normality of the MLE in (3), we may con-
struct a confidence interval for each βj for j = 1, . . . , p, provided that the SE
parameters are available. Specifically, given (µ, σ), the MLE-centric confidence
interval with confidence level 1 − α ∈ (0, 1) is formed as

CI(1−α) :=
[
β̂MLE

j

µ
− z(1−α/2)

σ/τj√
nµ

,
β̂MLE

j

µ
+ z(1−α/2)

σ/τj√
nµ

]
,

where zα/2 is the (α/2)-quantile of a standard Gaussian distribution. Then we
obtain Pr(βj ∈ CI(1−α)) → 1−α as n, p(n) → ∞ in the sense of (2). Importantly,
we need to know the SS parameter γ2 in advance, because the SE parameters
(µ, σ) depend on γ2.

1.3. Notation

Define R+ = (0,∞). For a vector b = (b1, . . . , bp) ∈ Rp, bj denotes a j-th
element of b for j = 1, . . . , p. For function f : R → R, f ′(·) denotes the deriva-
tive of f(·). We say f(·) is C-Lipschitz with C > 0 if f(·) is Lipschitz con-
tinuous and its Lipschitz constant is C. For any convex function f : R → R
and constant η > 0, we define the proximal operator proxηf : R → R as
proxηf (x) = arg minz∈R

{
ηf(z) + (x− z)2/2

}
.
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2. Preliminary

2.1. Generalized Linear Model

Suppose that we observe i.i.d. n pairs {(Xi, Yi)}n
i=1 of a feature vector Xi ≡

Xi(n) ∈ Rp and a target variable Yi ≡ Yi(n) ∈ Y that follow the GLM (1), where
Y is a response space, such as R,R+, {0, 1}, {0, 1, 2, . . .}, and so on. Hereafter,
we drop the dependence on n whenever it is clear from context. We assume that
the feature vector is generated independently from Xi ∼ Np(0,Σ) using the
covariance matrix Σ ≡ Σ(n) ∈ Rp×p. The GLM can represent several models
by specifying the inverse link function g(·) and distribution of Yi for a given
Xi: for example, Yi | Xi ∼ Ber(g(X⊤

i β)) with g(t) = 1/(1 + exp(−t)) for the
logistic regression model, and Yi | Xi ∼ Pois(g(X⊤

i β)) with g(t) = exp(t) for
the Poisson regression model.

If a random variable Yi | Xi has a density function (continuous case) or a
mass function (discrete case) f(· | Xi), then the maximum likelihood estima-
tor (MLE) of β is defined as β̂MLE(n) = arg maxb∈Rp

∑n
i=1 log f(Yi | Xi). In

a low-dimensional setting where n → ∞ with fixed p < ∞, the MLE β̂MLE

asymptotically obeys the normal distribution as
√
n(β̂MLE − β) d→ Np(0, I−1

β ),
where Iβ is the Fisher information matrix at the true coefficient β. Once the
matrix is estimated consistently, we can consider the inference of β convention-
ally. By contrast, this classical approach is no longer valid in a proportionally
high-dimensional setting (2), as presented in [SC19].

2.2. Our Goal

Our goal is to construct a valid confidence interval for the unknown coeffi-
cient vector β of the GLM (1) that is valid in the high-dimensional regime (2).
Specifically, for α ∈ (0, 1) we construct a set CI(1−α) ⊂ R such that we obtain
Pr(βj ∈ CI(1−α)) → 1 − α at the limit (2). Note that we need to introduce an
estimator β, since the MLE is not a valid instrument in the high-dimensional
regime, as noted above.

3. Method

We present a confidence interval for GLMs in the high-dimensional regime by
three steps, as overviewed in Section 1.2:

1. We construct a surrogate estimator for the coefficient β of GLM, and derive
its SE systems.

2. We develop moment-based estimators for parameters in the derived SE sys-
tem. This step constitutes the core of our novelty.

3. We construct a confidence interval based on the surrogate estimator and the
moment-based estimator.

Each step is detailed in the following subsections.



/Moment-Based Adjustments of Statistical Inference in High-Dimensional GLM 7

3.1. Surrogate Estimator for Coefficient Vector β

3.1.1. Definition

We develop an estimator for the true coefficient vector β by using a surrogate
loss function [AHW95, AKK+14], which is characterized by ℓ : Rp ×Rp ×Y → R
with

ℓ(b; x, y) := G
(
x⊤b

)
− yx⊤b,

where G(·) is the function satisfying G′ = g. Using the loss, we define the
surrogate estimator

β̂(n) := arg min
b∈Rp

n∑
i=1

ℓ(b; Xi, Yi). (5)

The use of a surrogate estimator is justified in two ways. First, if g(·) mono-
tonically increases, the surrogate loss is convex in b. This property provides
computational and statistical advantages for a broader class of GLMs and plays
a crucial role in the derivation of SE systems. Second, the minimizer of surrogate
risk coincides with the true coefficient β, which is expressed as follows:
Proposition 1 (Lemma 1 in [AKK+14]). Consider an Rp × Y-valued random
element (X, Y ) that follows GLM (1). If g(·) is increasing, then the coefficient
vector β in (1) satisfies β = arg minb∈Rp E [ℓ(b; X, Y ) | X] .

This claims that the surrogate loss estimator is a reasonable extension of
MLE for GLMs. Modeling the distribution of Yi | Xi to follow an exponential
dispersion family [Jør87] and choosing g(·) as the inverse of the canonical link
function make the surrogate estimator (5) equivalent to the MLE, covering
logistic and Poisson regression.

3.1.2. SE System for Surrogate Estimator of GLMs

We derive an SE system associated with the surrogate estimator (5). As this
estimator is given by the minimization problem of the convex loss function, we
can derive the SE system for the estimator, as described in Section 1.2. Recall
that G(·) is a function satisfying G′ = g, and γ2 = limn→∞ Var(Xi(n)⊤β(n))
is the signal strength (SS) parameter.
Proposition 2. Suppose that the model (1) can be rewritten as Y = h(X⊤β, ε)
with R-valued non-random function h(·, ·) and the noise variable ε ∈ R indepen-
dent of X. If κ ∈ (0, 1) and the surrogate estimator in (5) is bounded, then the
corresponding SE system is given by

κ2σ2 = η2E(Q1,Q2,Ȳ )

[(
Ȳ − g (D)

)2]
,

0 = E(Q1,Q2,Ȳ )
[
Z
(
Ȳ − g (D)

)]
,

1 − κ = E(Q1,Q2,Ȳ )
[
(1 + ηg′ (D))−1] , (6)



/Moment-Based Adjustments of Statistical Inference in High-Dimensional GLM 8

where D = proxηG(µZ +
√
κσQ2 + ηȲ ), Z = γQ1, (Q1, Q2) ∼ N2(0, I2), and

Ȳ = h(Z, ε) with a random variable ε ∈ R independent of Z.

In view of (6), the SE parameters (µ, σ2, η) depend on three components: (i)
κ = limn→∞ p(n)/n, (ii) the SS parameter γ2 = limn→∞ Var(Xi(n)⊤β(n)), and
(iii) the distribution of Ȳ determined by the model. Some numerical plots of the
equations (6) will be presented in Section A.1.

Deriving the parameters of this equation is a non-trivial task. Although we
can set κ = p(n)/n and regard it as known, the estimation of γ2 and other
parameters (if present) of the distribution of Ȳ for each GLM is non-trivial. In
the next subsection, we propose a method for estimating them.

Remark 1. If the distribution of Y | X has a single parameter (e.g., Bernoulli,
Poisson, and exponential distribution), then one can specify ε ∼ Unif[0, 1] and
the model assumption E[Y | X] = g(X⊤β) implies that γ2 fully characterizes
the SE parameters (µ, σ2, η). Thus, in this case, the SS parameter γ2 is the only
unknown parameter to be estimated. Meanwhile, estimating the distribution of
Y | X is difficult if it has multiple parameters. Even in such cases, we propose
a method for their estimation, focusing on the case of Y | X following a normal
distribution; see Section 3.2.2.

3.2. Moment-Based Estimation for SE Parameter

We propose a novel estimator for the SS parameter γ2 and other parameters of
the distribution of Ȳ in (6) to access the SE parameters (µ, σ2) for inference.
Once we estimate γ2 and the parameters of Ȳ , we can solve system (6) by
substituting the estimators to obtain the SE parameters.

3.2.1. Additive Form of GLM

We convert the GLM (1) into the additive model with observations (Yi,Xi):

Yi = g(X⊤
i β) + ei with ei = Yi − E[Yi | Xi], i = 1, . . . , n, (7)

where ei is a noise variable that satisfies E[ei | Xi] = 0. Note that the parameters
of the distribution of ei | Xi may depend on Xi, i = 1, . . . , n. While the original
GLM (1) highlights the conditional mean, the additive model (7) provides a
more analyzable form of the distribution by introducing the variable ei. This
structure is essential for our following estimation method.

3.2.2. Moment-Based Estimation when Y | X is Gaussian

We first apply our moment-based method to the Gaussian output: Y | X ∼
N (g(X⊤β), σ2

e) with an unknown variance parameter σ2
e > 0. This is a typical

case of GLMs including a nonlinear regression setup, but it has additional un-
known parameter σ2

e to be estimated, as well as the SS parameter γ. We first
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consider this rather complicated case where we estimate both γ and σ2
e as it

serves as an appropriate introduction to our approach.
At the beginning, we characterize the parameters γ2 and σ2

e by the moments
of Y . In the limit, the additive model (7) has the form,

Ȳ = g(Zγ) + ē with Zγ ∼ N (0, γ2) and ē ∼ N (0, σ2
e), (8)

where Zγ and ē are independent. Then, we obtain the condition with second
and fourth moments as

Ψ(γ, σe) :=
[

E[Ȳ 2] − E[g(Zγ)2] − σ2
e

E[Ȳ 4] − E[g(Zγ)4] − 6E[g(Zγ)2]σ2
e − 3σ4

e

]
= 0 ∈ R2. (9)

This simultaneous equation characterizes the parameter (γ, σ2
e) as a solution.

The uniqueness of the solution to this system is validated numerically. The
solution is identifiable for any g(·), except when g(·) is a constant function.

We consider estimation of (γ, σ2
e) using an empirical analog of the equa-

tion (9). Since g(·) is known, we can simulate h2(ς) := E[g(Zς)2] and h4(ς) :=
E[g(Zς)4] by generating Zς ∼ N (0, ς2) for each ς > 0. Using the observations
{Yi}n

i=1, we then define the estimators as the solution to

(γ̂, σ̂e) :=
{

(ς, ςe) ∈ R2
+ : Ψn(ς, ςe) = 0

}
, (10)

where Ψn(ς, ςe) =
[

n−1∑n
i=1 Y

2
i − h2(ς) − ς2

e

n−1∑n
i=1 Y

4
i − h4(ς) − 6h2(ς)ς2

e − 3ς4
e

]
∈ R2.

The equation in (10) can be viewed as an empirical analogue of (9), provided
that the convergence n−1∑n

i=1 Y
a

i
a.s.−→ E[Ȳ a] for a ∈ {2, 4} is true under some

assumptions. The solution is obtained by root-finding algorithms, such as the
Gauss-Newton method.

An advantage of the moment-based estimator is its independence from both
the estimator β̂ and an inverse of high-dimensional matrix (X⊤X)−1 with X =
(X1, . . . ,Xn)⊤, that diverge as κ increases. Hence, the moment-based estimator
is stable with any κ ∈ (0,∞). Additionally, since this method relies only on
observations through Y , it is computationally efficient.

3.2.3. Moment-Based Estimation for Other Cases

We next study moment-based estimation in other situations of GLMs with a
single parameter. The problem becomes simpler since we only need to estimate
γ, unlike the Gaussian case. Examples are given in Remark 1.

In this case, we only consider the first moment using the limit form (8):

Ψ̃(γ) := E[Ȳ ] − E[g(Zγ)] = 0, (11)

where we have used the fact that E[e1] = E[E[e1 | X1]] = 0 by the assumption.
The estimator of γ is obtained as a solution to the linear equation with h1(ς) :=
E[g(Zς)]:

γ̂ :=
{
ς ∈ R+ : Ψ̃n(ς) = 0

}
, where Ψ̃n(ς) := n−1∑n

i=1 Yi − h1(ς). (12)
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Similarly to Section 3.2.2, this estimator is stable for any κ ∈ (0,∞) and com-
putationally efficient. If necessary, we can construct an estimator considering
higher-order moments as in Section 3.2.2.

3.3. Confidence Interval

We construct a confidence interval for β by using the estimators in Sections
3.2 and β̂ in (5). Let (µ̂, σ̂2, η̂) be the solutions to the SE system (6), with γ2

replaced by γ̂2. We also introduce an estimator τ̂j of the conditional variance τ2
j ,

the details of which are provided in Section A.2. Then, our confidence interval
with a confidence level 1 − α ∈ (0, 1) is defined as:

CI1−α,j :=
[
β̂j

µ̂
− z(1−α/2)

σ̂√
nµ̂τ̂j

,
β̂j

µ̂
+ z(1−α/2)

σ̂√
nµ̂τ̂j

]
, j = 1, . . . , p.(13)

4. Theory

We show the theoretical validity of each of the estimators obtained above. Specif-
ically, we prove the asymptotic normality of the surrogate estimator and the con-
sistency of the moment-baesd estimator, showing the validity of the confidence
interval.

4.1. Asymptotic Normality of Surrogate Estimator

We derive the theoretical results of the surrogate estimator β̂. First, we give the
following assumptions.
Assumption 1. We consider the following conditions:
(A1) X is generated as X ∼ Np(0,Σ), and Var(X⊤β) has a convergence limit

γ2 < ∞ as n → ∞.
(A2) An inverse link function g : R → R is monotonically increasing and L-

smooth (i.e., the derivative of g(·) is L-Lipschitz continuous).
(A3) We can write a GLM as Y = h(X⊤β, ε) with a non-random function

h : R2 → R and an R-valued random variable ε independent of X, such
that ε has a finite second moment and h(·, ·) is Lipschitz continuous with
respect to the first argument.

(A4) There exists a positive solution to the SE system (6).
Convergence of Var(X⊤β) = β⊤Σβ in (A1) is a constraint on β and Σ. (A3)

is a technical requirement for the Lipschitzness of SE parameters with respect
to γ2. Examples of h(·, ·) are provided in Section A.6. In the sequel, we focus
only on the situation in which the estimator (5) exists asymptotically almost
surely; that is, limn→∞ ∥β̂∥ < ∞ a.s. If this does not hold, we may consider
regularization to guarantee its existence; see Section A.5 for this point.

We obtain the asymptotic normality of the adjusted test statistics for each
coordinate of β̂ with the oracle SE parameters µ and σ2.
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Proposition 3. Suppose that we know a solution to the system of nonlinear
equations (6), and the estimator (5) almost surely exists asymptotically. Under
(A1), (A2), and (A4) in Assumption 1, as n, p(n) → ∞ and p(n)/n → κ ∈
(0, 1), we have the following for j = 1, . . . , p(n):

√
n(β̂j − µβj)
σ/τj

d→ N (0, 1).

This is the first result to demonstrate the marginal asymptotic normality
of estimators for GLMs in a high-dimensional setting, including MLEs with
canonical links. This differs from the classical result

√
n(β̂MLE−β) d→ N (0, I−1

β )
in a setup with p < ∞. We regard the marginal convergence as an extension
of [ZSC22] on MLEs for logistic regression to more general models. A feasible
construction of the asymptotic normality is provided in Proposition 4.

4.2. Consistency of Moment-Based Estimator

We show the consistency of the estimators for the SS parameters in the cases of
Sections 3.2.2 and 3.2.3. We need the following assumption.

Assumption 2. We consider the following conditions:

(A5) For any ϵ > 0, we have both inf(ς,ςe):|ς−γ|+|ςe−σe|>ϵ ∥Ψ(ς, ςe)∥ > 0 and
infς:|ς−γ|>ϵ |Ψ̃(ς)| > 0.

(A6) There exist constants C, c, ϵ > 0 such that |g(z)| ≤ exp(Cz2−ϵ +c) for any
z ∈ R.

Condition (A5) identifies the SS parameters (γ, σ2
e) by the moment equations.

This condition is not satisfied if the moments of Y do not have sufficient infor-
mation, such as the case of logistic regression. However, a later study [CLM24]
proposes a method that utilizes information from X to handle logistic regression
using our moment-based technique especially when n > p. We also discuss a
sufficient condition for (A5) in Section A.8. The condition (A6) is required for
the existence of E[g(Zγ)q] for q ≥ 1 used in the equations (8) and (11).

We then obtain the following results for the consistency of the estimators for
the SS parameters:

Theorem 1. Under Assumption 1 (A1) and Assumption 2, γ̂ defined in (12)
satisfies γ̂2 a.s.−→ γ2 and (γ̂2, σ̂2

e) defined in (10) satisfies (γ̂2, σ̂2
e) a.s.−→ (γ2, σ2

e), as
n, p(n) → ∞ and p(n)/n → κ ∈ (0,∞).

4.3. Asymptotic Validity of Proposed Confidence Interval

At last, we demonstrate the asymptotic validity of our bias correction for sta-
tistical inference. To observe this, we use the asymptotic normality with the
estimated SE parameters.
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Proposition 4. Suppose that all the conditions in Assumptions 1 and 2 hold,
the estimator (5) almost surely exists asymptotically, and τ̂2

j is a consistent
estimator of the conditional variance τ2

j . Then, for any confidence level (1−α) ∈
(0, 1) and for every j = 1, . . . , p(n) satisfying

√
nτjβj = O(1), we obtain the

following as n, p(n) → ∞, where p(n)/n → κ ∈ (0, 1):
√
n(β̂j − µ̂βj)
σ̂/τ̂j

d→ N (0, 1).

To the best of our knowledge, this is the first result establishing the asymp-
totic normality with the estimated SE parameters in the GLM literature. Its
proof relies on the Lipschitz continuity of SE estimators with respect to SS.
Consequently, the proposed confidence interval asymptotically achieved a con-
fidence level (1 − α).

Theorem 2. Assume the settings of Proposition 4. Then, for any confidence
level (1−α) ∈ (0, 1) and for every j = 1, . . . , p(n) satisfying

√
nτjβj = O(1), we

obtain Pr (βj ∈ CI1−α,j) → 1 − α, as n, p(n) → ∞ where p(n)/n → κ ∈ (0, 1).

5. Experiment

5.1. Empirical Performance of γ̂ and σ̂2
e

We fix n = 4000 and vary p = κn over κ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The SS
parameter is also fixed at γ2 = 1. We independently generate n realizations
of the feature vector X ∈ Rp from the p-variate normal distribution Np(0,Σ)
with Σij = 0.5|i−j|. The true regression coefficients βj for j = 1, . . . , p are
independently drawn from a normal distribution with the variance determined
by γ2. We calculate g(X⊤β) conditional on X and β and finally draw the
response Y from a given distribution.

We consider three cases to check the performance of γ̂ in (12): (i) Poisson
regression g(t) = exp(t), Y | X ∼ Pois(g(X⊤β)), (ii) piecewise regression
g(t) = min(5t, 0.1t), Y | X ∼ N (g(X⊤β), 0.04), and (iii) complementary log-
log (cloglog) regression g(t) = 1 − exp(− exp(t)), Y | X ∼ Bern(g(X⊤β)).
We further investigate two situations to evaluate the behavior of σ̂2

e in (10):
(i) piecewise regression g(t) = min(5t, 0.1t), Y | X ∼ N (g(X⊤β), 0.04) and
(ii) squared regression g(t) = t2, Y | X ∼ N (g(X⊤β), 0.04). These results are
summarized in Figure 1; the upper and lower panels demonstrate stability and
consistency of γ̂ and σ̂2

e , respectively, regardless of the values of κ.

5.1.1. Comparison with Other Methods.

We compare the moment-based SS estimator γ̂2 with the previous leave-one-
out-based SS estimator, SLOE γ̃2

SLOE [YYMD21]. Since the original SLOE is
designed for logistic regression, we extend it to GLMs; see Section A.4 for de-
tails. Here, note that the estimand of SLOE is not exactly SS but rather the
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Fig 1: Numerical performance of γ̂ and σ̂2
e over 1000 simulations. The true values

are γ = 1 and σ2
ε = 0.04.

corrupted signal strength, γ2
c = β̂⊤Σβ̂. In the setting with n = 1000 and γ = 2,

we plot the scaled squared estimation errors (γ̂/γ − 1)2 and (γ̃SLOE/γc − 1)2,
respectively, over 100 replications. We consider the Poisson regression and piece-
wise regression as in Section 5.1.

Figure 2 indicates that our moment-based estimator performs well even when
κ exceeds 1 in both cases while SLOE diverges as κ increases and approaches
1. Additionally, regarding the computational load, SLOE requires a longer com-
putation time as κ increases; whereas our proposed method remains nearly in-
variant.

5.2. Coverage Proportion of Proposed Confidence Interval

We compare the empirical coverage proportion of the proposed confidence inter-
val (13) with that of the classical CI with n = 1000, κ ∈ {0.1, 0.2, . . . , 0.5}, and
γ = 1. The proposed CI is calculated by solving a system of nonlinear equations
using the estimated SS. The classical CI for βj , j = 1, . . . , p, is constructed as
[β̂j ± z(1−α/2)(Î−1

jj (β̂)/n)1/2], where Î(β̂) = n−1∑n
i=1 g

′(X⊤
i β̂)XiX

⊤
i is the

empirical Fisher information matrix evaluated at β̂. We analyze the Poisson
regression model. Figure 3 illustrates that our proposed interval achieves theo-
retical coverage in all cases; whereas the coverage of the conventional method
decreases as κ increases.
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Fig 2: Scaled squared estimation error of SLOE and our proposed method, in
the piecewise regression. The LOO-based method is our extension of the existing
method; see Section A.4.
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proposed (gray) CIs over 100 simulations with n = 1000.
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5.3. Real Data Application

We consider an application for the Cleveland Clinic Heart Disease dataset
[DJS+89] from the UCI Machine Learning Repository [DG17]. This contains
303 observations of 14 variables. The target is the presence of heart disease,
which is integer-valued from 0 (no presence) to 4. To realize a setting with a
high-dimensional regime, for each i = 1, . . . , 303, we generate an independent
random vector from N (0, I198) and concatenate it with the original 14 variable
to obtain the covariate vector Xi. Hence, we have κ = (14 + 198)/303 ≈ 0.7.
We constructed CIs with α = 0.1 for X⊤

i β by our proposed CI and a classical
CI by the MLE for Poisson regression; see Section A.7 for the construction of
the classical CI. We approximate the coverage proportion of CIs to X⊤

i β using
Yi, and preclude samples with responses that take zero because they cannot be
covered.

As a result, the coverage proportion of classical CIs is 139/139 = 100% and
that of the proposed CIs is 126/139 ≈ 90.6%. Given that the ideal coverage
proportion is 1 − α = 0.9, the proposed CI provides more appropriate coverage
though the classical CI is too conservative. This result implies that classical CIs
overfit the samples and underestimate the uncertainty of the estimation, while
the proposed CIs control the coverage rate nearly at the preassigned level and
can evaluate the uncertainty much more accurately.

6. Conclusion

We have developed a statistical inference method for GLMs in high dimensions.
Our approach extends the SE-based inference method designed for a logistic
regression model to GLMs. Specifically, we have proposed a surrogate estimator
for GLMs, an associated SE system, and a method to estimate the necessary pa-
rameters in the system. Our methodology works well in terms of both theory and
experimentation. One limitation of our method is that it requires Gaussianity of
the covariate; however, this limitation can be relaxed by applying studies on the
universality of methodologies in terms of data, for example, [MS22, VKM22].

Appendix A: Supportive Information

A.1. Numericals of SE System

We demonstrate the solutions to the system for Poisson regression in Figure 4
and piecewise regression in Figure 5. These plots are numerical solutions to the
SE system over 100 simulations with their mean and 95% bootstrap confidence
intervals.

A.2. Construction of τ̂ 2
j

To construct the corrected confidence interval (13) with correlated features, we
have to estimate the conditional variance parameter, τ2

j = Var(Xij |Xi\j), for
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each j = 1, . . . , p. In this article, we follow [ZSC22]. They consider the residual
sum of squares RSSj obtained by regression of Xj = (X1j , . . . ,Xnj)⊤ ∈ Rn onto
a sub-vector of the input X\j = (X1, . . . ,Xj−1,Xj+1, . . . ,Xp) ∈ Rn×(p−1).
Owing to the Gaussianity of Xi, it satisfies

RSSj = X⊤
j P ⊥

X\j
Xj ∼ τ2

j χ
2
n−p+1,

where P ⊥
X\j

is the orthogonal projection matrix onto the orthogonal complement
of column space spanned by X\j . Then, we immediately obtain an unbiased
estimator of τ2

j :

τ̂2
j = 1

n− p+ 1RSSj .

A.3. Master Theorem of Generalized Approximate Message Passing
(GAMP)

We present the GAMP algorithm by [Ran11] and its associated theoretical re-
sult, which are key tools to inspect the limiting distributional behavior of the
estimator β̂.

First, we provide the GAMP algorithm, which generate a sequence of param-
eters β̃k for an index k ∈ N∪{0} based on the minimization problem in (5) and a
limit of the sequence corresponds to the estimator β̂. Let X = (X1, . . . ,Xn)⊤ ∈
Rn×p, X̆ = X/

√
n, and Y = (Y1, . . . , Yn) ∈ Rn. Given initial values η̄0 > 0, β̃0,

and ξ̃0 = X̆β̃0, a GAMP recursion takes the form, for each k ∈ N ∪ {0},

β̃k+1 = η̄k+1

κ
X̆⊤ {Y − g

(
proxη̄kG(ξ̃k + η̄kY )

)}
+ η̄k+1

η̄k
β̃k,

ξ̃k+1 = X̆β̃k+1 − η̄k+1
{

Y − g
(
proxη̄kG(ξ̃k + η̄kY )

)}
.
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Here, η̄k is updated with µ̄k and σ̄2
k as following:

η̄k+1 = κη̄k

(
1 − E(Q1,Q2,U)

[
1

1 + η̄kg′ (dk)

])−1
,

µ̄k+1 = η̄k+1

γ2 E(Q1,Q2,U) [γQ1 {h(γQ1, U) − g (dk)}] ,

σ̄2
k+1 =

η̄2
k+1
κ2 E(Q1,Q2,U)

[
{h(γQ1, U) − g (dk)}2

]
,

where

dk = proxη̄k(γ)G(µ̄kγQ1 +
√
κσ̄kQ2 + ηkh(γQ1, U)),

(Q1, Q2) ∼ N2(0, I2), U ⊥⊥ (Q1, Q2).

Here, U ∈ R is a random variable independent of (Q1, Q2). This algorithm is
proposed by [Ran11]. It is closely related to the linearized alternating direction
method of multiplier [RSR+16].

Second, we provide the following result for the estimator β̂, which is re-
garded as a limit of the parameter sequence generated by the GAMP algorithm.
The result follows the master theorem for the GAMP algorithm presented by
[FVRS22].

Lemma 1. Assume that {(Xi, Yi)}n
i=1 is an i.i.d. sample, and Xi ∼ Np(0, Ip)

independent of β and ε = (ε1, . . . , εn). For r ∈ [2,∞), suppose that the empirical
distributions p−1∑p

j=1 δ
√

nβj
and n−1∑n

i=1 δεi
converge in the r-Wasserstein

sense to the distributions of β̄ and ε̄ with finite r-th order moment, respectively.
Let Z ∼ N (0, γ2) be independent of ε̄, and G, G̃ ∼ N (0, 1) be independent of
β̄ and Z. Then, for finite β̂ defined in (5) and any pseudo-Lipschitz function
ψ : R2 → R and ψ̃ : R3 → R of order r1, we have

1
p

p∑
j=1

ψ
(√

nβ̂j ,
√
nβj

)
a.s.−→ E

[
ψ
(
µβ̄ + σG, β̄

)]
,

1
n

n∑
i=1

ψ̃
(

X⊤
i β̂,X⊤

i β, εi

)
a.s.−→ E

[
ψ̃
(
proxηℓ

(
µZZ + σZG̃

)
, Z, ε̄

)]
,

as n, p(n) → ∞ with p(n)/n → κ ∈ (0, 1).

The convergence of pseudo-Lipschitz functions of order 1 is equivalent to the
convergence of the 1-Wasserstein distance between the empirical distributions of
each coordinate, as established through Kantorovich-Rubinstein duality [KR58].

Proof of Lemma 1. We prove this lemma by the general proof strategy discussed
in Section 4.4 in [FVRS22]. It consists of three steps: (i) find a fixed point of the
GAMP recursion; (ii) consider the stationary version of the GAMP recursion;

1A function ψ : Rm → R is said to be pseudo-Lipschitz of order r if there exists a constant
L > 0 such that for any t0, t1 ∈ Rm, ∥ψ(t0) − ψ(t1)∥2 ≤ L(1 + ∥t0∥r−1

2 + ∥t1∥r−1
2 ) ∥t0 − t1∥.
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(iii) show that the stationary version of the GAMP iterate converges to the
estimator β̂. Following the strategy, the step (i) and the step (ii) are simply
achieved by the convexity and smoothness of the surrogate loss function by the
assumption. Given the fixed point η̄∗ of η̄k, and initial values β0, ξ0 = X̆β0, the
stationary version of the GAMP algorithm takes the form, for each k ∈ N∪{0},

βk+1 = η̄∗

κ
X̆⊤ {Y − g

(
proxη̄∗G(ξk + η̄∗Y )

)}
+ βk (14)

ξk+1 = X̆βk+1 − η̄∗
{

Y − g
(
proxη̄∗G(ξk + η̄∗Y )

)}
. (15)

In the Step (iii), our goal is to ensure the algorithmic convergence of scaled
GAMP iterates β̂k = βk/

√
n to the estimator β̂ as k → ∞. Denote ℓ(b) ≡∑n

i=1 ℓ(b; Xi, Yi) for any b ∈ Rp. By Taylor’s theorem, we have

ℓ(β̂) = ℓ(β̂k) +
(

β̂ − β̂k
)⊤

∇ℓ(β̂k) + 1
2

(
β̂ − β̂k

)⊤
∇2ℓ

(
tβ̂ + (1 − t)β̂k

)(
β̂ − β̂k

)
,

for some t ∈ (0, 1). Thus, Lemma 4 implies, for some non-increasing positive
function ω : R+ → R+,

ℓ(β̂) ≥ ℓ(β̂k) +
(

β̂ − β̂k
)⊤

∇ℓ(β̂k) + 1
2nω

(
max

{
∥β̂∥, ∥β̂k∥

})
∥β̂ − β̂k∥2,

with probability at least 1 − c1 exp(−c2n) where c1, c2 > 0 are some positive
constants. Here, we use ω(∥tβ̂ + (1 − t)β̂k∥) ≥ ω(max(∥β̂∥, ∥β̂k∥)) since ω(·) is
non-increasing. Using optimality of the estimator ℓ(β̂k) ≥ ℓ(β̂) and the Cauchy-
Schwarz inequality as (β̂ − β̂k)⊤∇ℓ(β̂k) ≥ −∥∇ℓ(β̂k)∥∥β̂ − β̂k∥ yields, with
probability at least 1 − c1 exp(−c2n),

∥β̂ − β̂k∥ ≤ 2
ω
(

max
{

∥β̂∥, ∥β̂k∥
}) ∥∥∥∥ 1

n
∇ℓ(β̂k)

∥∥∥∥ ≤ 2
ω(∥β̂∥)ω(∥β̂k∥)

∥∥∥∥ 1
n

∇ℓ(β̂k)
∥∥∥∥ ,

where the last inequality follows from the fact that 0 < ω(·) < 1 and ω is
non-increasing. Next, we consider controlling ∥∇ℓ(β̂k)∥. We have

proxη̄∗G

(
ξk−1 + η̄∗Y

)
= ξk−1 + η̄∗Y − η̄∗g

(
proxη̄∗G

(
ξk−1 + η̄∗Y

))
= ξk−1 − ξk + X̆βk

= ξk−1 − ξk + Xβ̂k,

by the definition of the proximal operator and (15). Thus,

βk − βk−1 = η̄∗

κ
X̆⊤ {Y − g

(
proxη̄∗G(ξk−1 + η̄∗Y )

)}
= η̄∗

κ
X̆⊤

{
Y − g

(
Xβ̂k + ξk−1 − ξk

)}
,
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by (14). Using this and triangle inequalities give∥∥∥∇ℓ(β̂k)
∥∥∥ =

∥∥∥X⊤
{
g(X⊤β̂k) − Y

}∥∥∥
≤
∥∥∥X⊤

{
Y − g(Xβ̂k + ξk−1 − ξk)

}∥∥∥
+
∥∥∥X⊤

{
g(Xβ̂k + ξk−1 − ξk) − g(X⊤β̂k)

}∥∥∥
≤ p

η̄∗

∥∥βk − βk−1∥∥+ ∥X∥op

∥∥∥g(Xβ̂k + ξk−1 − ξk) − g(X⊤β̂k)
∥∥∥

≤ p

η̄∗

∥∥βk − βk−1∥∥+ Lg ∥X∥op
∥∥ξk−1 − ξk

∥∥ ,
where Lg = supz g

′(z). This establishes, with probability at least 1−c1 exp(−c2n),

∥β̂ − β̂k∥ ≤ c

{
κ

η̄∗

∥∥∥β̂k − β̂k−1
∥∥∥+ Cg

n
∥X∥op

∥∥ξk−1 − ξk
∥∥} ,

with c = 2/
(
ω(∥β̂∥)ω(∥β̂k∥)

)
. Finally, Lemma 5 and the Borel-Cantelli lemma

implies

lim
k→∞

lim
n→∞

∥∥∥β̂ − β̂k
∥∥∥ =a.s. 0.

This completes the proof.

Lemma 1 provides a statement on the convergence of the distance between 1-
dimensional distributions, which is computed by averaging over the coordinates
of β̂,β ∈ Rp. However, for statistical inference purposes, it is necessary to in-
vestigate the limiting behavior of the marginal distributions of each coordinate.
To achieve this, we utilize a property of the surrogate loss function.
Lemma 2. For any invertible matrix L ∈ Rp×p satisfying Σ = LL⊤, L⊤β̂
minimizes the surrogate loss function in (5) for the true coefficient L⊤β and
the covariate L−1X ∼ Np(0, Ip).
Proof of Lemma 2. Since the surrogate loss depends on X ∈ Rp and b ∈ Rp only
through their inner product X⊤b, we have ℓ(b; X, Y ) = ℓ(L⊤b; L−1X, Y ).

Using this in reverse, once we show Lemma A.1 for a design with identity
covariance, we can rewrite the estimator corresponding to the unit covariance
in L⊤β̂ to obtain the general covariance result.

A.3.1. Limit of Estimation and Classification Errors

As the consequence of the master theorem of GAMP (Lemma 1), we obtain the
convergence limits of the mean squared error (MSE) and cosine similarity-like
classification error. If we set ψ(s, t) = (s− t)2, then Lemma 1 implies the MSE
limit

1
p

∥β̂ − β∥2
2

a.s.−→ (µ− 1)2E[β̄2] + σ2.
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By setting ψ(s, t) = (s− µt)2, we have a corrected MSE limit

1
p

∥β̂ − µβ∥2
2

a.s.−→ σ2.

For classification errors, by taking the ratio of ψ(s, t) = st and ψ(s, t) = t2, we
can obtain the convergence limit of a cosine similarity-like measure

β̂⊤β

∥β∥2
a.s.−→ µ.

A.4. GLM extension of the SLOE estimator

This section provides an extension of the SLOE estimator [YYMD21] from logis-
tic regression to the GLM. First, it considers another representation of the state
evolution parameters by using corrupted signal strength γ2

c = limn→∞ Var(X1(n)⊤β̂(n))
instead of γ2:

κ2σ2 = η2E(Q′
1,Q′

2,Ȳ )

[(
Ȳ − g

(
proxηG(Q′

2)
))2]

,

0 = E(Q′
1,Q′

2,Ȳ )
[
Q′

1
(
Ȳ − g

(
proxηG(Q′

2)
))]

,

1 − κ = E(Q′
1,Q′

2,Ȳ )
[
(1 + ηg′ (proxηG(Q′

2)
)
)−1] ,

where (
Q′

1
Q′

2

)
∼ N2

(
0,
[

µ−2(γ2
c − κσ2) −µ−1(γ2

c − κσ2)
−µ−1(γ2

c − κσ2) γ2
c

])
.

Then, since X⊤
1 β̂ is computable unlike X⊤

1 β, we can construct the SLOE-like
estimator for γ2

c as follows.

γ̂2
c = 1

n

n∑
i=1

S2
i −

(
1
n

n∑
i=1

Si

)2

,

Si = X⊤
i β̂ + Ui

1 + g′(X⊤
i β̂)

(Yi − g(X⊤
i β̂)),

Ui = −(X(X⊤DX)−1X⊤)ii,

where D = diag(g′(X⊤
1 β̂), . . . , g′(X⊤

n β̂)) ∈ Rn×n. In fact, this is a consistent
estimator of γ2

c .

Proposition 5. Suppose that β̂ exists and κ ∈ (0, 1) is fixed. Under Assumption
1 (A1)–(A2), γ̂2

c
a.s.→ γ2

c as n → ∞.

This follows from the direct application of the original proof of Proposition
2 in [YYMD21] because of the form of the surrogate loss and the monotonicity
of the link function g(·).
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Unfortunately, the estimator γ̂2
c is unstable when p/n is to 1. This property

inherits from two components: β̂ and (X⊤DX)−1 in Ui. First, for large p/n,
β̂ is likely to diverge as evident from [CS20]. This phenomenon is observed in
many estimators. Second, the upper bound of |γ̂2

c − γ2
c | depends on a constant

1/λmin(X⊤DX). This constant diverges as κ ↑ 1.

A.5. Regularized Estimator

In this section, we consider the following regularized estimator:

β̂λ ∈ arg min
b∈Rp


n∑

i=1
ℓ(b; Xi, Yi) + λ

p∑
j=1

J(bj)

 ,

where J : R → R is some regularization function and λ > 0 is a tuning param-
eter. It is important to consider the regularized estimator β̂λ, because in some
cases such as logistic regression with n < 2p, the unregularized estimator β̂ does
not exist (see, for example, [CS20]). The regularization imposes constraints on
the estimator within specific regions around the origin. Consequently, the issue
of non-existence can be mitigated by employing a suitable regularized estimator.
Note that even when we employ the regularized estimator β̂λ, the method of
estimating γ2 and σ2

e is not affected by the method of estimating β.
We display the system of nonlinear equations which characterizes the state

evolution parameters in L2 penalized cases. If we set J(t) = t2, we have
κ2σ2 = η2E(Q1,Q2,Ȳ )

[(
Ȳ − g (L)

)2]
,

2γ2λµ = E(Q1,Q2,Ȳ )
[
Z
(
Ȳ − g (L)

)]
,

1 − κ+ 2λη = E(Q1,Q2,Ȳ )
[
(1 + ηg′ (L))−1] , (16)

where L = proxηG(µZ +
√
κσQ2 + ηȲ ), Z = γQ1, (Q1, Q2) ∼ N2(0, I2) and

Ȳ = h(Z, ε̄). We can see that (16) admits the case n < p since the left-hand
side of the last equation can be positive with sufficiently large λ > 0 while the
right-hand side is always positive.

Since regularized estimators are biased, the distributional characterization of
the limit of β̂λ is somewhat different from the unregularized case. Actually, we
have an extension of Lemma 1 as

1
p

p∑
j=1

ψ
(√

nβ̂j ,
√
nβj

)
a.s.−→ E[ψ

(
proxηJ(µβ̄ + σG), β̄

)
],

under the settings of Lemma 1. For the unregularized case J ≡ const., this is
reduced to Lemma 1. Suppose that J(·) is differentiable and strongly convex,
and X ∼ Np(0, Ip) here. Using the fact that proxηJ(x) = x − ηJ ′(proxηJ(x))
for x ∈ R and η > 0 by the definition of the proximal operator, we finally obtain

√
n
β̂

(d)
j − µβj

σ

d→ N (0, 1),
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where β̂(d) is a debiased estimator

β̂(d) = β̂λ + ηJ ′(β̂λ).

A.6. GLM Form with h(Z, ε̄)

In this section, we discuss the other form of GLM used in (A3) in Assumption
1 as follows:

Yi = h
(
X⊤

i β, εi

)
, (17)

where h : R×R → R is a deterministic function determined by the distribution of
Y | X, and εi ∈ R is an error variable independent of X. While the GLM 1 only
specifies the conditional mean, (17) completely determines the distributional
behavior of Y depending on X. The major difference from the additive model
(7) used in our estimation is that the random variable εi is independent from
X⊤

i .
This model (17) is flexible in design and allows for an intuitive representation

of GLMs. We see several examples of h(Z, ε̄) introduced in (6).
• Bernoulli case (binary choice model). When we use a model Ȳ |Z ∼ Ber(g(Z))
with some g : R → [0, 1], the inverse transformation method yields

Ȳ = 1{g(Z) ≤ ε̄}, ε̄ ∼ Unif[0, 1].

• Exponential case. If Ȳ |Z ∼ Exp(g(Z)) with some g : R → (0,∞), the inverse
transformation method yields

Ȳ = − 1
g(Z) log(ε̄), ε̄ ∼ Unif[0, 1].

• Poisson case. If Ȳ |Z ∼ Pois(g(Z)) with some g : R → (0,∞), we have

Ȳ = min
{
k ∈ N ∪ {0}

∣∣∣∣∣
k+1∑
l=1

ε̄l > g(Z)
}
, ε̄l

iid∼ Exp(1).

• Gaussian case. If Ȳ |Z ∼ N (g(Z), σ2
ε̄) with some g : R → R, we have

Ȳ = g(Z) + ε̄, ε̄ ∼ N (0, σ2
ε̄).

As evident from the aforementioned examples, in the case of modeling using a
one-parameter distribution, the distribution of ε̄ can be fully determined without
any additional parameters.

A.7. Construction of CI in Real Data Application

This section specifies the construction of the classical and proposed CI in Section
5.3. To begin with, we compute the MLE β̂ for the Poisson regression model. A
classical MLE theory implies, for any x ∈ Rp,

√
n(x⊤β̂ − x⊤β) d→ N (0,x⊤I−1

β x),
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as n → ∞ with fixed p. Using this, we construct the classical CI of each X⊤
i β

with a preassigned level (1 − α) asX⊤
i β̂ − z(1−α/2)

√
X⊤

i Î(β̂)Xi

n
,X⊤

i β̂ + z(1−α/2)

√
X⊤

i Î(β̂)Xi

n

 .
We have proposed a CI for βj , j = 1, . . . , p in (13). Using a similar technique,
we can construct a valid CI for X⊤

i β, i = 1, . . . , n in proportionally high dimen-
sions. Actually, we obtain

Proposition 6. Under the setting of Theorem 2, we have, for each i = 1, . . . , n,

X⊤
i β̂ + ηℓ′(X⊤

i β̂) − µZX⊤
i β

σZ

d→ N (0, 1),

as n, p(n) → ∞ with p(n)/n → κ. Here, ℓ′(X⊤
i β̂) = g(X⊤

i β̂) − Yi.

This proposition yields the asymptotically level (1 −α) confidence interval of
X⊤

i β,

1
µZ

[
X⊤

i β̂ + ηℓ′(X⊤
i β̂) − σZz(1−α/2),X

⊤
i β̂ + ηℓ′(X⊤

i β̂) + σZz(1−α/2)

]
.

Proof of Proposition 6. Since X⊤
i β̂ = (L−1Xi)⊤(L⊤β̂) with L−1Xi ∼ Np(0, Ip),

we can repeat the arguments in Proposition 3 by replacing θ and θ̂ with
(X⊤

1 β, . . . ,X⊤
n β)⊤ and (X⊤

1 β̂ + ηℓ′(X⊤
1 β̂), . . . ,X⊤

n β̂ + ηℓ′(X⊤
n β̂)), respec-

tively.

A.8. Sufficient Condition for Assumption 2

We discuss a sufficient condition for Assumption 2 (A5). We require the mono-
tonicity below to identify the SS parameter by using the method provided in
Section 3.2.3.

Lemma 3. Let E[g(Zς)] < ∞ for ς > 0 and g0 be strictly monotone on R+.
Then, the map ς 7→ E[g(Zς)] is strictly monotonic in ς > 0.

This ensures the uniqueness of the estimator γ̂2. One of the sufficient condi-
tions is the following.

Assumption 3. The odd part g0(x) := (g(x) + g(−x))/2 of the inverse link
function g(·) is strictly monotonic for R+.

Intuitively, this implies that the form of g(·) is not point-symmetric around
point (0, g(0)), which is a generalization of a non-odd function. This precludes
logistic regression, but many other models satisfy the condition. However, a later
study [CLM24] proposes a method that utilizes information from X to handle
logistic regression using a moment-based technique, specifically when n > p.
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Appendix B: Proofs of Main Results

Proof of Proposition 2. Since the surrogate loss has an equivalent form of the
negative log-likelihood function for logistic regression, it can be derived accord-
ing to the discussion of [FVRS22] in Section 4.7. Note that the construction of
h(·, ·) and the inverse link function g(·) are generalized in our case.

Proof of Proposition 3. Lemma 2 implies that, for any j = 1, . . . , p,

β̂j − µβj

σ/τj
= θ̂j − µθj

σ
,

where we define

θ = L⊤β, θ̂ = L⊤β̂, (18)

by a Cholesky factorization Σ = LL⊤. We have θ̂j = τj β̂j and θj = τjβj by the
rearrangement of indices. Here, define

µn = θ̂⊤θ

∥θ∥2 , and σ2
n = 1

κ
∥θ̂ − µnθ∥2. (19)

Then, we have

√
n
θ̂j − µθj

σ
=

√
n
θ̂j − µnθj

σn

σn

σ
+

√
n

(µn − µ)θj

σ
.

Lemma 7 gives us

θ̂ − µnθ

σn

d= P ⊥
θ Z

∥P ⊥
θ Z∥

, (20)

where Z = (Z1, . . . , Zp) ∼ Np(0, Ip). Triangle inequalities yield that

∥Z∥
√
p

− |θ⊤Z|
√
p ∥θ∥

≤ ∥P ⊥
θ Z∥
√
p

≤ ∥Z∥
√
p

+ |θ⊤Z|
√
p ∥θ∥

.

Since |θ⊤Z|/(√p ∥θ∥) a.s.−→ 0 and ∥Z∥ /√p a.s.−→ 1, we have ∥P ⊥
θ Z∥/√p a.s.−→ 1.

Then, this fact and (20) imply that

√
n
θ̂j − µnθj

σn

d= 1√
κ
σjQ+ op(1), σ2

j = 1 −
θ2

j

∥θ∥2 ,

where Q ∼ N (0, 1). Here we use the fact that the covariance matrix of P ⊥
θ Z

is P ⊥
θ P ⊥

θ = Ip − θθ⊤/∥θ∥2. Thus, the facts that µn
a.s.−→ µ and σ2

n
a.s.−→ σ2 by

Lemma 8 conclude the proof.
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Proof of Lemma 3. We write the cumulative distribution and density functions
of the standard normal distribution by Φ : R → R and ϕ : R → R, respectively.
Note that a density function of Gaussian distribution with mean zero is an even
function. Since a product of even functions is even and a product of an even
function and an odd function is odd, we have

E[g(Zς)] = 1
ς

∫ ∞

−∞
g(x)ϕ

(
x

ς

)
dx =

∫ ∞

−∞
g(ςy)ϕ (y) dy = 2

∫ ∞

0
g0(ςy)ϕ (y) dy,

where the second identity is from a change of variables y = x/ς. Thus, For any
ς1 > ς0 > 0, we can say that

E[g(Zς1)] − E[g(Zς0)] = 2
∫ ∞

0
{g0(ς1y) − g0(ς0y)}ϕ (y) dy.

is strictly positive or negative by ϕ(·) > 0. Therefore, if the even part g0(·) of
g(·) is monotone on R+, then E[g(Zς)] is monotone in ς > 0.

Proof of Theorem 1. Case of (12). The law of large numbers yields

sup
ς2>0

∣∣Ψ̃n(ς2) − Ψ̃(ς2)
∣∣ =

∣∣∣∣∣ 1n
n∑

i=1
Yi − E[Ȳ ]

∣∣∣∣∣ a.s.−→ 0, (21)

Thus, (21), Assumption (A5), and Ψ̃(γ) = 0 imply γ̂2 a.s.−→ γ2 by Theorem 5.9
in [vdV00].

Case of (10) By the definition, we have

sup
ς,ςe

∥Ψn(ς, ςe) − Ψ(ς, ςe)∥ =
∥∥∥∥∥
(
n−1

n∑
i=1

Y 2
i − E[Ȳ 2], n−1

n∑
i=1

Y 4
i − E[Ȳ 4]

)∥∥∥∥∥ a.s.−→ 0,

where the convergence follows from the law of large numbers. This uniform
convergence, Assumption (A5), and Ψ(γ) = 0 imply (γ̂2, σ̂2

e) a.s.−→ (γ2, σ2
e) by

Theorem 5.9 in [vdV00].

Proof of Theorem 2. By Proposition 4, CIα,j is clearly asymptotically level (1−
α) confidence interval, since we have

Pr
(
β̂j

µ̂
+ zα/2

σ̂√
nµ̂τ̂j

≤ βj ≤ β̂j

µ̂
− zα/2

σ̂√
nµ̂τ̂j

)

= Pr
(
zα/2 ≤

√
n(β̂j − µ̂βj)
σ̂/τ̂j

≤ z(1−α/2)

)
→ (1 − α).
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Proof of Proposition 4. We have

√
nτ̂j

β̂j − µ̂βj

σ̂
=

√
nτ̂j

β̂j − µβj

σ

σ

σ̂
−

√
nτ̂j

(µ− µ̂)βj

σ̂

=
√
nτ̂j

β̂j − µβj

σ
−

√
nτ̂j

β̂j − µβj

σ

σ̂ − σ

σ̂
−

√
nτ̂j

(µ− µ̂)βj

σ̂

=
√
nτj

β̂j − µβj

σ
− op(1),

where the last identity follows from Lemma 6,
√
nτjβj = O(1), and the assump-

tion (A1). Finally, Proposition 3 concludes the proof.

Appendix C: Technical Lemmas

For a matrix A ∈ Rm×m, A ⪰ 0 is defined to mean that A is positive semi-
definite.

Lemma 4. Suppose that Xi ∼ Np(0, Ip). Under the assumption (A2), for some
constant ϵ0 such that 0 ≤ ϵ ≤ ϵ0,

1
n

n∑
i=1

∇2ℓ(b; Xi, Yi) ⪰

(
inf

z:|z|≤ 3∥b∥√
ϵ

g′(z)
)(

√
1 − ϵ−

√
κ− 2

√
H(ϵ)
1 − ϵ

)2

Ip

with H(ϵ) = −ϵ log ϵ− (1 − ϵ) log(1 − ϵ) holds for any b ∈ Rp with probability at
least 1 − 2 exp(−nH(ϵ)) − 2 exp(−n/2).

Proof of Lemma 4. Since the proof of Lemma 3 in [SCC19] only uses the specific
structure ∇2ℓ(b; Xi, Yi) = ρ′′(X⊤

i b)XiX
⊤
i with ρ′(t) = 1/(1+exp(−t)), we can

immediately extend it to our general structure ∇2ℓ(b; Xi, Yi) = g′(X⊤
i b)XiX

⊤
i .

Remark 2. This lemma implies that, for sufficiently small ϵ > 0,

1
n

n∑
i=1

∇2ℓ(b; Xi, Yi) ⪰ ω(∥b∥)Ip,

for some non-increasing positive function ω : R+ → R+ independent of n.

Lemma 5. Consider the setting of Lemma 1. For the generalized approximate
message passing recursion (14)-(15), we have the Cauchy property of the recur-
sion:

lim
k→∞

lim
n→∞

∥βk+1 − βk∥2 =a.s. 0,

lim
k→∞

lim
n→∞

∥ξk+1 − ξk∥2 =a.s. 0.
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Proof of Lemma 5. For the stationary version of the GAMP recursion, we have

η̄∗
{

Y − g
(
proxη̄∗G(ξk + η̄∗Y )

)}
= proxη̄∗ℓ(ξk) − ξk,

where proxη̄∗ℓ(·) depends on the first input of the surrogate loss function ℓ,
by the fact that proxηG(x) = x − g(proxηG(x)) for any x ∈ R, η > 0 by the
definition of the proximal operator. Thus, taking Ψ(z; b) = z−proxbℓ(z), we can
straightforwardly repeat the argument of Lemma 6.9 in [DM16] and complete
the proof.

Recall that η̂ is a solution of the SE system as defined in Section 3.3.

Lemma 6. Under the settings in Proposition 4, we have

η̂
p→ η, µ̂

p→ µ, σ̂2 p→ σ2,

as n, p(n) → ∞ with p(n)/n → κ.

Proof of Lemma 6. In this proof, we denote Lf as the Lipschitz constant of a
function f(·). To emphasize the dependence on the signal strength, we denote
η(γ̂) ≡ η̂, µ(γ̂) ≡ µ̂, σ(γ̂) ≡ σ̂, η(γ) ≡ η, µ(γ) ≡ µ, and σ(γ) ≡ σ. To begin
with, note that, as discussed in Section 4.4 in [FVRS22], the solutions to the
system of nonlinear equations (6) can be rewritten as fixed points of the following
recursions:

ηk+1(γ) = κηk(γ)
(

1 − E(Q1,Q2,U)

[
1

1 + ηk(γ)g′ (dk(γ))

])−1

µk+1(γ) = ηk+1(γ)
γ2 E(Q1,Q2,U) [γQ1 {h(γQ1, U) − g (dk(γ))}]

σ2
k+1(γ) =

η2
k+1(γ)
κ2 E(Q1,Q2,U)

[
{h(γQ1, U) − g (dk(γ))}2

]
,

where

dk(γ) = proxηk(γ)G(µk(γ)γQ1 +
√
κσk(γ)Q2 + ηk(γ)h(γQ1, U)),

(Q1, Q2) ∼ N2(0, I2), U ⊥⊥ (Q1, Q2),

and h(γQ1, U) is designed to have the same distribution as Y .
Step 1. In this step, we inductively show that in each step k ∈ N, (ηk(γ̂), µk(γ̂), σk(γ̂))

of the recursion converges to (ηk(γ), µk(γ), σk(γ)) using the fact that γ̂2 a.s.−→ γ2

by Theorem 1. Let (η0, µ0, σ0) be a given triplet of the initializers, and assume
η0 > 0 and

max{|ηk−1(γ̂) − ηk−1(γ)| , |µk−1(γ̂) − µk−1(γ)| , |σk−1(γ̂) − σk−1(γ)|} = op(1)

.
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• Bound for d0. We have

|d0(γ̂) − d0(γ)| = |proxη0G(µ0γ̂Q1 +
√
κσ0Q2 + η0h(γ̂Q1, U))

− proxη0G(µ0γQ1 +
√
κσ0Q2 + η0h(γQ1, U))|

≤ |µ0(γ̂ − γ)Q1 + η0h(γ̂Q1, U) − η0h(γQ1, U)|
≤ ((µ0 + Lhη0)Q1) |γ̂ − γ| := Ld0 |γ̂ − γ| ,

where the first inequality follows from the Lipschitz continuous of the proximal
operator by Lemma 9 (i), and the last inequality is from the Lipschitz condition
on h(·, ·) and the triangle inequality. Thus, |d0(γ̂) − d0(γ)| = op(1)
• Bound for η1. We use the fact that

∣∣∣ 1
1−a − 1

1−b

∣∣∣ ≤ 1
(1−a)(1−b) |a− b| for

0 < a, b < 1, and
∣∣∣ 1

1+a − 1
1+b

∣∣∣ ≤ |a− b| for 0 < a, b. Define a constant

Cη1 =
(

1 − E
[

1
1 + η0g′(d0(γ̂))

])−1(
1 − E

[
1

1 + η0g′(d0(γ))

])−1
> 0.

Since 1 + η0g
′(·) > 1 by the monotonically increasing property of g(·), we have

|η1(γ̂) − η1(γ)| ≤ κη0Cη1E
[∣∣∣∣ 1

1 + η0g′ (d0(γ̂)) − 1
1 + η0g′ (d0(γ))

∣∣∣∣]
≤ κη2

0Cη1E [|g′(d0(γ̂)) − g′(d0(γ))|]
≤ κη2

0Cη1Lg′Ld0 |γ̂ − γ| ,

where the last inequality uses the Lg′ -smoothness of the inverse link function
g(·) and the Lipschitz continuity of d0(γ). Then, |η1(γ̂) − η1(γ)| = op(1).
• Bound for µ1. By the triangle inequality, we have

|µ1(γ̂) − µ(γ)|

≤
∣∣∣∣(η1(γ̂)

γ̂
− η1(γ)

γ

)
E [Q1 {h(γ̂Q1, U) − g(d0(γ̂))}]

∣∣∣∣
+
∣∣∣∣η1(γ)

γ
E [Q1 {h(γ̂Q1, U) − h(γQ1, U) − g(d0(γ̂)) + g(d0(γ))}]

∣∣∣∣ .
Using the fact that c

a+b = c
a − cb

a(a+b) for any a ̸= 0, b ̸= −a, c ∈ R, we have

η1(γ̂)
γ̂

− η1(γ)
γ

= η1(γ̂)
γ

− η1(γ̂) (γ̂ − γ)
γγ̂

− η1(γ)
γ

= η1(γ̂) − η1(γ)
γ

− op(1) = op(1).

Thus, by the Lipschitz continuity of h(·, ·), g(·), and d0, we have

|µ1(γ̂) − µ1(γ)| ≤
∣∣∣∣η1(γ)

γ
(γ̂ − γ)E [Q1(LhQ1 − LgLd0)]

∣∣∣∣+ op(1) = op(1).
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• Bound for σ1. By the triangle inequality and Jensen’s inequality, we have∣∣σ2
1(γ̂) − σ2

1(γ)
∣∣

≤ 1
κ2

∣∣∣(η2
1(γ̂) − η2

1(γ)
)
E
[
{h(γ̂Q1, U) − g (d0(γ̂))}2

]∣∣∣
+ η2

1(γ)
κ2 E

∣∣∣{h(γ̂Q1, U) − g (d0(γ̂))}2 − {h(γQ1, U) − g (d0(γ))}2
∣∣∣

≤ 1
κ2 |γ̂ − γ| (η1(γ̂) + η1(γ))E

[
{h(γ̂Q1, U) − g (d0(γ̂))}2

]
+ η2

1(γ)
κ2 E [|{h(γ̂Q1, U) − g (d0(γ̂))} − {h(γQ1, U) − g (d0(γ))}|

· {h(γ̂Q1, U) − g (d0(γ̂)) + h(γQ1, U) − g (d0(γ))}]

≤ op(1) + η2
1(γ)
κ2 |γ̂ − γ|

× E |(LhQ1 − LgLd0) (h(γ̂Q1, U) − g (d0(γ̂)) + h(γQ1, U) − g (d0(γ)))|
= op(1).

Also, since |a− b| ≤
√

|a2 − b2| for a, b > 0, we have |σ1(γ̂) − σ1(γ)| = op(1).
• Bound for dk−1. By the triangle inequality, we have

|dk−1(γ̂) − dk−1(γ)|

=
∣∣∣proxηk−1(γ̂)G(µk−1(γ̂)γ̂Q1 +

√
κσk−1(γ̂)Q2 + ηk−1(γ̂)h(γ̂Q1, U))

−proxηk−1(γ)G(µk−1(γ)γQ1 +
√
κσk−1(γ)Q2 + ηk−1(γ)h(γQ1, U))

∣∣∣
≤
∣∣∣proxηk−1(γ̂)G

(
µk−1(γ̂)γ̂Q1 +

√
κσk−1(γ̂)Q2 + ηk−1(γ̂)h(γ̂Q1, U)

)
−proxηk−1(γ)G

(
µk−1(γ̂)γ̂Q1 +

√
κσk−1(γ̂)Q2 + ηk−1(γ̂)h(γ̂Q1, U)

)∣∣∣
+
∣∣∣proxηk−1(γ)G

(
µk−1(γ̂)γ̂Q1 +

√
κσk−1(γ̂)Q2 + ηk−1(γ̂)h(γ̂Q1, U)

)
−proxηk−1(γ)G

(
µk−1(γ)γQ1 +

√
κσk−1(γ)Q2 + ηk−1(γ)h(γQ1, U)

)∣∣∣
≤ C |ηk−1(γ̂) − ηk−1(γ)| + |Q1 (µk−1(γ̂)γ̂ − µk−1(γ)γ)|

+
√
κ |Q2(σk−1 (γ̂) − σk−1(γ))| + |ηk−1(γ̂)h(γ̂Q1, U) − ηk−1(γ)h(γQ1, U)| ,

where C is some positive constant, and the last inequality follows from Lemma
10 and Lemma 9 (i). Using the triangle inequality again, we obtain

|dk−1(γ̂) − dk−1(γ)|
≤ |Q1µk−1(γ̂)(γ̂ − γ)| + |Q1 (µk−1(γ̂) − µk−1(γ))| γ

+ |ηk−1(γ̂)Q1Lh (γ̂ − γ)| + |(ηk−1(γ̂) − ηk−1(γ))h(γQ1, U)| + op(1) = op(1).
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• Bound for ηk. Define a constant

Cηk
=
(

1 − E
[

1
1 + ηk−1(γ̂)g′(dk−1(γ̂))

])−1(
1 − E

[
1

1 + ηk−1(γ)g′(dk−1(γ))

])−1

> 0.

By the triangle inequality and the technique that we use for bounding η1, we
have

|ηk(γ̂) − ηk(γ)|
≤ κηk−1(γ)Cηk

E [|ηk−1(γ̂)g′ (dk−1(γ̂)) − ηk−1(γ)g′ (dk−1(γ))|]
+Op(|ηk−1(γ̂) − ηk−1(γ)|)

≤ κη2
k−1(γ)Cηk

Lg′E[Op(|dk−1(γ̂) − dk−1(γ)|)] +Op(|ηk−1(γ̂) − ηk−1(γ)|)
= op(1).

• Bound for µk and σk. By the same way to show the bound for µ1 and σ1,
we have

|µk(γ̂) − µk(γ)| = |σk(γ̂) − σk(γ)| = op(1).

Thus, we obtain

|ηk(γ̂) − ηk(γ)| = |µk(γ̂) − µk(γ)| = |σk(γ̂) − σk(γ)| = op(1), (22)

for any k ∈ N by induction.
Step 2. In this step, we get the conclusion from the results in Step 1. First,

we obtain

|η(γ̂) − η(γ)| = |µ(γ̂) − µ(γ)| = |σ(γ̂) − σ(γ)| = op(1).

This follows from the fact that

|η(γ̂) − η(γ)| ≤ |η(γ̂) − ηk(γ̂)| + |η(γ) − ηk(γ)| + op(1),

by (22) and the first two terms on the right-hand side converge to zero for a
large k limit. The results for µ and σ also follow in the same manner.

Lemma 7. Let θ̂ be the estimator, i.e. surrogate loss minimizer, in a GLM
with a true coefficient vector θ and features drawn i.i.d. from Np(0, Ip). Define
(µn, σn) as in (19). Then,

θ̂ − µnθ

σn

is uniformly distributed on the unit sphere lying in θ⊥.
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Proof of Lemma 7. Define an orthogonal projection matrix Pθ = θθ⊤/ ∥θ∥2

onto the line including θ, and an orthogonal projection matrix P ⊥
θ = Ip − Pθ

onto the orthogonal complement of the line including θ. Let U ∈ Rp×p be any
orthogonal matrix obeying Uθ = θ, i.e. any rotation operator about θ. Then,
since θ̂ = Pθθ̂ + P ⊥

θ θ̂, we have

Uθ̂ = UPθθ̂ + UP ⊥
θ θ̂ = Pθθ̂ + UP ⊥

θ θ̂.

Using this, we obtain

UP ⊥
θ θ̂

∥P ⊥
θ θ̂∥

d= P ⊥
θ θ̂

∥P ⊥
θ θ̂∥

= θ̂ − µnθ

σn
, (23)

where the first identity follows from the fact that Uθ̂
d= θ̂ since Uθ̂ is the

estimator with a true coefficient Uθ = θ and features drawn i.i.d. from N (0, Ip).
(23) reveals that (θ̂ −µnθ)/σn is rotationally invariant about θ, lies in θ⊥, and
has a unit norm. These conclude the proof.

Lemma 8. Suppose that 0 < ∥L⊤β̂∥, ∥L⊤β∥ ≤ C for some constant C > 0.
Let θ, θ̂ be defined in (18). If we define

µn = θ̂⊤θ

∥θ∥2 , σ2
n = 1

κ
∥θ̂ − µnθ∥2,

then, under assumptions (A1) and (A2), we have

µn
a.s.−→ µ, σ2

n
a.s.−→ σ2,

as n, p(n) → ∞ with p(n)/n → κ.

Proof of Lemma 8. Since ∥θ∥ is bounded by an assumption, Uθ = (∥θ∥ , . . . , ∥θ∥)/√p
with some orthogonal matrix U ∈ Rp×p satisfies an assumption of Lemma 1
with β̄ ∼ δγ/

√
p by the fact that ∥Uθ∥2 = ∥θ∥2 = β⊤Σβ = γ2. Then applying

Lemma 1 to (Uθ,Uθ̂) with ψ(s, t) = st, t2 and considering their ratio gives

⟨Uθ,Uθ̂⟩
∥Uθ∥2 = µn

a.s.−→ µ.

Also, setting ψ(s, t) = (s− µt)2 yields

1
κ

∥Uθ̂ − µUθ∥2 = 1
κ

∥θ̂ − µθ∥2 a.s.−→ σ2.

Thus, we obtain

σ2
n = 1

κ
∥θ̂ − µθ∥2 + 2(µ− µn)θ⊤θ̂ − (µ2 − µ2

n) ∥θ∥2 a.s.−→ σ2.
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Lemma 9. Define ∥f∥∞ := supt∈R |f(t)| for a function f : R → R. A prox-
imal operator prox(x, f, b) ≡ proxbF (x) with x ∈ R, b > 0, and a monotone
continuous function f = F ′, is Lipschitz continuous with respect to
(i) x ∈ R with constant 1,

(ii) a monotone continuous function f : R → R in terms of L∞ norm ∥·∥∞ with
constant b > 0,

(iii) and b > 0 with constant ∥f∥∞.
Proof of Lemma 9. For any x, y ∈ R and fixed monotone f(·), suppose that
u = prox(x, f, b) and v = prox(y, f, b) and u > v without loss of generality.
Note that F (·) is convex since its derivative f(·) is a monotonically increasing
function. By the first-order condition, we have x = u+ bf(u) and y = v+ bf(v).
Since f(·) is monotonically increasing, 0 ≤ (u− v)(f(u) − f(v)). Using this,

0 ≤ (u− v)(bf(u) − bf(v)) = (u− v)(x− u− y + v) = (u− v)(x− y) − (u− v)2,

by b > 0. This immediately implies |u − v| ≤ |x − y|, i.e., prox(x, f, b) is 1-
Lipschitz continuous with respect to the first argument.

Next, set any two continuous monotone functions f(·) and g(·). Suppose that
prox(x, f, b) ≥ prox(x, g, b) with fixed x ∈ R without loss of generality. Then,

|prox(x, f, b) − prox(x, g, b)| = prox(x, f, b) − prox(x, g, b)
= b (g(prox(x, g, b)) − f(prox(x, f, b)))
≤ b (g(prox(x, f, b)) − f(prox(x, f, b)))
≤ b ∥f − g∥∞ , (24)

where the second identity follows from the fact that prox(x, f) = x−bf(prox(x, f, b)),
and the first inequality is from monotinicity of g(·). This means prox(x, f, b) is
Lipschitz continuous for the second argument with constant b > 0 in terms of
∥·∥∞.

At last, using the fact that prox(x, g, b) = prox(x, f, αb) for g(x) = αf(x), α >
0 by the definition of the proximal operator, we have, for any b, b′ > 0,

|prox(x, f, b) − proxb′(x, f, b′)| =
∣∣∣∣proxb(x, f, b) − prox

(
x,
b′

b
f, b

)∣∣∣∣
≤ b

∥∥∥∥f − b′

b
f

∥∥∥∥
∞

= ∥bf − b′f∥∞

= |b− b′| ∥f∥∞ ,

where the inequality follows from (24).

Lemma 10. Let F : R → R be a strictly convex function and f = F ′. Suppose
that f(·) takes bounded values on bounded domains. For any bounded x ∈ R and
c, c′ > 0, we have

|proxcF (x) − proxc′F (x)| ≤ C |c− c′| ,

for some positive constant C.
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Proof of Lemma 10. By the proofs of Lemma 9 (ii) and (iii), we can improve
Lemma 9 (iii) as

|proxcF (x) − proxc′F (x)| ≤ |f(proxcF (x))| |c− c′| .

Thus, we can complete the proof by showing that proxcF (x) is bounded. Remind
that the definition of the proximal operator is

proxcF (x) = arg min
z∈R

{
cF (z) + 1

2(z − x)2
}
.

We denote the objective function as H(z) := cF (z)+ 1
2 (z−x)2 = H1(z)+H2(z).

Obviously, H2 has the minimum value at x.
(i) For the case that a minimizer z̃ of H1 is bounded. Note that the minimizer

is unique by the strict convexity of H1. Without loss of generality, suppose that
z̃ ≤ z. In this case, we have H ′

1(z′) < 0 and H ′
2(z′) < 0 for z′ < z̃, and also

have H ′
1(z′) > 0 and H ′

2(z′) > 0 for z < z′. Hence, H ′(z′) < 0 holds for z′ < z̃
and H ′(z′) > 0 holds for z < z′, thus proxcF (x) /∈ [−∞, z̃) ∪ (z,∞]. In contrast,
H ′(z′) may be both positive or negative for z′ ∈ [z̃, z]. Hence, proxcF (x) ∈ [z̃, z]
holds and thus bounded itself.

(ii) For the case when H1 has a minimum at an unbounded point, such as
H1(z) = cez, we can also show that proxcF (x) is bounded. In this case, we
can assume that H1 is monotonically increasing without loss of generality. For
z > x, we have H ′(z) > 0 by H ′

1(z) > 0 and H2(z) > 0. Since H ′
1(z) is positive

and monotonically increasing by the monotonicity and the convexity of H1(z),
there exists a constant C̃ < x such that H ′

1(z) = cf(z) < −H ′
2(z) = −(z − x)

for any z < C̃. Putting together the results, we have proxcF (x) ∈ [C̃, x].
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