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ABSTRACT

Spiking Neural Networks (SNNs) seek to mimic the spiking behavior of biologi-
cal neurons and are expected to play a key role in the advancement of neural com-
puting and artificial intelligence. The conversion of Artificial Neural Networks
(ANNs) to SNNs is the most widely used training method, which ensures that the
resulting SNNs perform comparably to ANNs on large-scale datasets. The effi-
ciency of these conversion-based SNNs is often determined by the neural coding
schemes. Current schemes typically use spike count or timing for encoding, which
is linearly related to ANN activations and increases the required number of time
steps. To address this limitation, we propose a novel Canonic Signed Spike (CSS)
coding scheme. This method incorporates non-linearity into the encoding process
by weighting spikes at each step of neural computation, thereby increasing the
information encoded in spikes. We identify the temporal coupling phenomenon
arising from weighted spikes and introduce negative spikes along with a Ternary
Self-Amplifying (TSA) neuron model to mitigate the issue. A one-step silent pe-
riod is implemented during neural computation, achieving high accuracy with low
latency. We apply the proposed methods to directly convert full-precision ANNs
and evaluate performance on CIFAR-10 and ImageNet datasets. Our experimental
results demonstrate that the CSS coding scheme effectively compresses time steps
for coding and reduces inference latency with minimal conversion loss.

1 INTRODUCTION

Spiking Neural Networks (SNNs), recognized as the third generation of neural network models, are
inspired by the biological structure and functionality of the brain (Wang et al., 2020). Unlike tra-
ditional Artificial Neural Networks (ANNs), which rely on continuous activation functions, SNNs
utilize discrete spiking events. This enables SNNs to capture temporal dynamics and process infor-
mation in a manner that closely resembles brain activity (Taherkhani et al., 2020). The event-driven
nature of SNNs aligns with the brain’s energy-efficient computational paradigm, offering potential
for more efficient and low-power computing systems (Yamazaki et al., 2022).

The two primary learning algorithms for SNNs are gradient-based optimization and ANN-SNN
conversion. Directly training using supervised backpropagation is challenging due to the non-
differentiable nature of spike generation (Lee et al., 2020; 2016). The conversion-based method,
however, offers a practical approach to overcome this difficulty and has produced the best-
performing SNNs (Deng & Gu, 2021; Bu et al., 2022; Ding et al., 2021).

Encoding the ANN activations into spike trains is a prerequisite for successful ANN-SNN conver-
sion. Various coding schemes, such as rate coding and temporal coding, have been proposed to
describe neural activity (Guo et al., 2021). Rate coding maps the number of spikes to the corre-
sponding ANN activation (Cao et al., 2015). In contrast, temporal coding focuses on the precise
timing or patterns of spikes (Rueckauer & Liu, 2018; Kim et al., 2018; Han & Roy, 2020). For ex-
ample, Time-to-First-Spike (TTFS) coding maps the the activation value to the time elapsed before
the first spike (Stanojevic et al., 2022).

However, both the spike counts in rate coding and the spike timing in TTFS coding are linearly
related to the encoded activation. This necessitates a large number of time steps to provide sufficient
encoding granularity (Stanojevic et al., 2023; Meng et al., 2022). Recent works have proposed
alleviating these problems by quantizing the ANN activations before conversion (Hu et al., 2023;
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Bu et al., 2023; Hao et al., 2023). This approach simplifies the encoding process but introduces
additional quantizing and training overhead. Our goal is to develop a novel encoding method that
can directly convert full-precision ANNs while reducing the number of time steps required.

 (rate)

 (CSS)

spike train

more information at 
earlier time steps

Figure 1: Different interpretations of the
same spike sequence. I denotes the infor-
mation encoded in a spike. θl is the spike
amplitude. β is the membrane potential
amplification coefficient and T is the total
length of the sequence.

In the study of the temporal information dynamics of
spikes, Kim et al. (2022) found that after training, in-
formation becomes highly concentrated in the first few
time steps. This observation led us to hypothesize that
the spikes at earlier time steps carry more information
and contribute more to the membrane potential. Con-
sequently, by gradually amplifying the membrane po-
tential over time, we increase the influence of earlier
spikes. This mechanism essentially assigns exponen-
tially decreasing weights to a spike sequence, with the
smallest weight being one (applied to the final spike).
This results in a significant enhancement in the encod-
ing capacity of the spike sequence for a given length.
Due to this fixed weight pattern during neural compu-
tation, we refer to these spikes as canonical.

However, we observed that after weighting, spikes tend
to concentrate in later time steps. This phenomenon oc-
curs because earlier spikes now encode larger values,
making them less likely to be fired after stimulation.
As the spatial depth increases, the spike distribution be-
comes more biased toward later time steps, leading to
significant performance degradation. We refer to this
phenomenon as temporal coupling of weighted spikes.

To mitigate this, we introduce negative spikes and lower the firing threshold of neurons to promote
earlier spike emission. Neurons are also equipped with a negative spike threshold, allowing them
to generate negative spikes that correct excessive firing. This combination results in the Canonic
Signed Spike (CSS) coding scheme and the Ternary Self-Amplifying (TSA) neuron model. To better
balance the trade-off between coding time steps and inference latency in CSS coding, we introduce
a one-step silent period into the TSA neuron, which improves both performance and efficiency of
the resulting SNN.

The main contributions of this paper can be summarized as follows:

• By assigning weights to the spikes, we introduce non-linearity into the coding process and
compress the time steps to a logarithmic scale. Neurons amplify the membrane potential at
each time step, thereby obtaining more information from the preceding spikes.

• We find that weighted spikes are prone to temporal coupling during neural computation,
presenting the biggest challenge when incorporating non-linearity in spike coding. We
analyze the underlying reasons and introduces negative spikes along with the TSA neuron
model to address this issue.

• We demonstrate the effectiveness of the CSS coding scheme on the CIFAR-10 and Ima-
geNet datasets. The results show that the proposed method effectively reduces both the
required coding time steps and inference latency. Additionally, the CSS coding scheme
offers energy efficiency advantages over both rate coding and temporal coding.

2 RELATED WORK

Currently, the mainstream coding schemes in converted SNNs are rate coding and TTFS coding.
Rate coding represents different activities with the number of spikes emitted within a specific time
window. Early research efforts focused on reducing conversion loss, leading to methods such as
weight normalization (Diehl et al., 2015), threshold rescaling (Sengupta et al., 2019), and soft-reset
neuron models (Han et al., 2020). More recent work has shifted towards reducing the number of
time steps by optimizing neuron parameters. Meng et al. (2022) introduced the Threshold Tuning
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and Residual Block Restructuring (TTRBR) method to minimize conversion error in ResNet archi-
tectures with fewer time steps. Bu et al. (2022) proposed optimizing the initial membrane potential
to reduce conversion loss when using a small number of time steps.

Despite these optimizations, deep networks or large datasets still require hundreds of time steps to
achieve satisfactory results. To address this, recent works in rate coding have explored quantizing
the ANNs before conversion (Hao et al., 2023; Bu et al., 2023; Hu et al., 2023). This approach
directly reduces the number of activations that need to be mapped, providing an alternative way to
minimize time steps. Notably, this approach is complementary to ours. The proposed encoding
scheme can also convert quantized ANNs and further reduce the required number of time steps.

Due to the functional similarity to the biological neural network, SNNs are highly compatible with
temporal coding. Rueckauer & Liu (2018) were the first to attempt converting an ANN to a TTFS-
based SNN. While this coding method significantly increased sparsity by limiting each neuron to fire
at most one spike, they observed large conversion errors, even on MNIST dataset. Stanojevic et al.
(2022) demonstrated that an exact mapping from ANN to TTFS-based SNN is feasible but needs
hundreds of time steps for accurate encoding. Yang et al. (2023) proposed a TTFS-based conversion
algorithm with dynamic neuron threshold and weight regularization. They completed the conversion
with 50 time steps per layer. Despite the reduction in the number of time steps per layer, TTFS
coding still suffered from high output latency in deep networks for its layerwise processing manner.
Han & Roy (2020) introduced the Temporal-Switch-Coding (TSC) scheme, where each input pixel
is represented by two spikes, and the time interval between them encodes pixel intensity. However,
as this time interval remains linearly related to activation, the issue of long latency persists.

Some recent works have also incorporated non-linearity into the coding process. Stöckl & Maass
(2021) and Rueckauer & Liu (2021) used spikes to encode the ”1”s in the binary representations
of ANN activations. However, both works did not address the temporal coupling issue caused by
weighted spikes. Instead, they adopted an approach similar to TTFS coding, where neurons must
wait for the arrival of all input spikes before firing. In contrast, our approach facilitates the greatest
extent of synchronous neural computation, thereby reducing both the coding time steps and output
latency.

3 PRELIMINARIES

3.1 SPIKING NEURONS

Spiking neurons communicate through spike trains and are interconnected via synaptic weights.
Each incoming spike contributes to the postsynaptic neuron’s membrane potential, and a spike is
generated when the potential reaches a predefined threshold. Generally, a spike sequence Sl

i[t] in
the SNN can be expressed as follows:

Sl
i[t] =

∑
tl,fi ∈Fl

i

θlδ[t− tl,fi ] (1)

where i is the neuron index, l is the layer index, θl is the spike amplitude, δ[·] denotes an unit
impulse1, f is the spike index, and Fl

i denotes a set of spike times which satisfies the firing condition:

tl,fi : oli[t
l,f
i ] ≥ θl (2)

where oli[t] denotes the membrane potential before firing a spike. Conversion-based works often
employ soft-reset IF neuron model, where the membrane potential is subtracted by an amount equal
to the spike amplitude for reset. Specifically, its dynamics can be expressed as follows:

ul
i[t] = ul

i[t− 1] + zli[t]− Sl
i[t] (3)

where ul
i[t] denotes the membrane potential after firing a spike and zli[t] denotes the integrated

inputs:
zli[t] =

∑
j

wl
ijS

l−1
j [t] + bli (4)

where wl
ij is the synaptic weight and bli is the bias. For clarity, definitions of the common symbols

are provided in Table 1.
1δ[t] takes the value 1 at t = 0, and 0 otherwise
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Table 1: Common symbols in this paper.

Symbol Definition Symbol Definition
l Layer index β Amplification factor
i, j Neuron index wl

ij SNN weight
Sl
i[t] Spike sequence ŵl

ij ANN weight
oli[t] Membrane potential before firing bli SNN bias
ul
i[t] Membrane potential after firing b̂li ANN bias

zli[t] Integrated inputs (PSP)1 T Time steps for coding
θl Spike amplitude θ̃l Initial spike amplitude
1 Postsynaptic potential

3.2 ANN-SNN CONVERSION

The ANN-SNN conversion typically involves the following two key steps: 1) selecting an appropri-
ate encoding method to represent ANN activations as spike trains, and 2) adopting a suitable neuron
model that ensures the generated spike trains accurately encode the outputs of the corresponding
ANN neurons. Note that this process results from the joint effect of the encoding scheme and the
neuron model.

The most widely used and State-Of-The-Art (SOTA) approaches employ (signed) soft-reset IF neu-
rons and interprets their output through spike rates (i.e. rate coding). Let T denote the number of
time steps, with the initial condition ul

i[0] = 0, we can iteratively update the membrane potential
using Eq. (3) until t = T . Then substitute zli[t] with Eq. (4), and we can write:∑T

t=1 S
l
i[t]

T
=

∑
j

wl
ij

∑T
t=1 S

l−1
j [t]

T
+

T∑
t=1

bli
T
− ul

i[T ]

T
(5)

See Appendix A.1 for a detailed derivation. Note that both sides of the equation are divided by T
to better highlight the interpretation of

∑T
t=1 Sl

i[t]/T as a ”rate”. It defines the relationship between
neuron’s input rate and output rate and can be directly related to the forward pass in a ReLU-activated
ANN:

ali = max

∑
j

ŵl
ija

l−1
j + b̂li, 0

 (6)

where ali denotes the ANN activation, ŵl
ij and b̂li denote the weight and bias, respectively. Note

that in Eq. (5) we have: 1)
∑

S[t]/T > 0, and 2) ul
i[T ]/T becomes negligible as T increases. These

observations suggest that mapping ANN activations to SNN spike rates can be achieved by simply
using the scaled ANN weights2 and bias.

However, with fewer time steps, the spike rate
∑

Sl
i[t]/T can only encode a limited number of activa-

tions, while the perturbation introduced by ul
i[T ]/T increases. These factors together result in a rapid

increase in conversion loss. This issue is inherent in any encoding scheme that relies on quantities
linearly related to the time steps. Therefore, our goal is to incorporate nonlinearity into the encoding
process to enhance the expressiveness of spike trains.

4 METHODS

4.1 ASSIGNING WEIGHTS TO SPIKES

We begin by introducing an amplification factor β > 1 into the soft-reset IF model:

ul
i[t] = βul

i[t− 1] + zli[t]− Sl
i[t] (7)

2The spile amplitude θl is finally normalized to 1 for simplicity of implementation, which is achieved by
absorbing it into the synaptic weights. Consequently, the ANN weights still need to be scaled by a certain
factor. Note that θl is typically determined based on the number of time steps and the range of ANN activations
in layer l.

4
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Following the same derivation as in Eq. (5), we can write:

ul
i[T ] =

∑
j

wl
ij

T∑
t=1

βT−tSl−1
j [t] +

T∑
t=1

βT−tbli −
T∑

t=1

βT−tSl
i[t] (8)

The detailed derivation can be found in Appendix A.1. As expected, the input at time tl,fi raises the
membrane potential by θlβT−tl,fi . As shown in Fig. 1, for a sequence of length T , this enables the
use of

∑T
t=1 β

T−tSl
i[t] rather than

∑T
t=1 S

l
i[t] to map the ANN activation. Note the spike at time T

still encodes θl, which is the minimum value a spike can represent and determines the granularity of
encoding.
Definition 1. Let v denote the target value. The encoding is considered accurate, denoted as Sl

i[t] ∼
v, as long as

∣∣∣∑T
t=1 β

T−tSl
i[t]− v

∣∣∣ < θl.

We allow a discrepancy of one spike amplitude between the target and encoded value, which can be
considered as a quantization error due to the finite number of time steps. According to Eq. (8), our
method can theoretically encode the same number of activations as linear encoding method while
log-compressing the number of required time steps. Meanwhile, Eq. (8) serves as the core equation
for ANN-SNN conversion. We can rewrite it as follows:

T∑
t=1

βT−tSl
i[t] =

∑
j

wl
ij

T∑
t=1

βT−tSl−1
j [t] +

T∑
t=1

βT−tbli − ul
i[T ]

By comparing the above equation with Eq. (6), and noting that
∑

t β
T−tSl

i[t] ≥ 0, we can conclude:

Observation 1. Let Sl−1
j [t] ∼ al−1

j , and set wl
ij = ŵl

ij and bli = b̂li/
∑

t β
T−t, respectively. To reduce

encoding errors in layer l, the residual membrane potential ul
i[T ] should be minimized.

Building on this insight, we now identify the factors influencing ul
i[T ], as formalized in the following

theorem:
Theorem 1. Making ul

i[T ] < ϵ is equivalent to satisfying the following equation:

∀t0 ∈ {1, 2, · · · , T},

βT−t0+1ul
i[t0 − 1] +

∑
j

wl
ij

T∑
t=t0

βT−tSl−1
j [t] +

T∑
t=t0

βT−tbli < ϵ+

T∑
t=t0

θlβT−t (9)

The second term on the right-hand side of Eq. (9) represents the maximum value a spike train after
t0 can encode. This imposes constraints on both the subsequent input and the membrane potential
carried over from the preceding step (the left-hand side of the equation). Theorem 1 provides the
mathematical foundation for the next section, with its detailed derivation available in Appendix A.2.

4.2 INCORPORATING NEGATIVE SPIKES

Rueckauer et al. (2017) reported that large activation values in ANNs are rare, with most values
concentrated within a smaller range. This suggests that when mapped to weighted spike trains, the
majority of spikes will occur in the later time steps (as these spikes encode smaller values). As a
consequence, Eq. (9) becomes difficult to satisfy as t0 approaches T : the left-hand side contains a
large amount of input, while the right-hand side provides limited encoding capacity. This mismatch
ultimately results in an increase in ul

i[T ], leading to a further shift in the spike distribution.

To illustrate this more clearly, we have plotted the spike distribution in the first and last layers of
VGG-16 (in red) in Fig. 2, alongside the distribution of the average residual membrane potential
across all neurons. As shown, the spike distribution in the last layer shifts significantly toward
later time steps compared to the first layer, a phenomenon we refer to as the temporal coupling
of weighted spikes. Additionally, the residual membrane potential exhibits a distribution resem-
bling random noise, and our experimental results indicate that this leads to nearly random classifi-
cation performance. Therefore, a new neuron model is needed to enable effective computation with
weighted spikes.
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Figure 2: (a) Spike distribution in the first layer of VGG-16. (b) Spike distribution in the last layer
of VGG-16. (c) Average residual membrane potential across all neurons in VGG-16. The red data
corresponds to the self-amplifying IF neuron model, the orange data corresponds to the TSA model,
and the green data further incorporates a one-step silent period.

Algorithm 1: The forward method of TSA
Input: input X of shape [BT, C, H, W], length of silent period L, spike amplitude θ
Output: output spike train S of shape [BT, C, H, W]
reshape and then pad X with zeros to shape [(T+L), B, C, H, W];
membrane potential M ← zeros like (X[0]), threshold v ← 1

2
θβL;

for 0 ≤ i ≤ L do
M ← βM +X[i]; /* silent period */

end
for i = 0 to T − 1 do

M ← βM +X[i+ L]; /* accumulate input */
S[i]← (M ≥ v).float()− (M ≤ −v).float() ; /* fire ternary spikes */
M ←M − 2v × S[i]; /* over firing & soft reset */

end

4.2.1 TERNARY SELF-AMPLIFYING NEURON MODEL

Based on the above analysis, our approach begins by encouraging spikes to be generated as early
as possible. The key idea is to lower the firing threshold and incorporate negative spikes into the
encoding scheme to correct the excess information caused by over-spiking.

We set the positive firing threshold to 1
2θ

l and introduce a negative threshold of− 1
2θ

l into the neuron
model, which triggers a negative spike when oli[t] falls below it. Notably, on the left side of Eq. (9),
this adjustment not only shifts the input spikes to earlier time steps, but also reduces ul

i[t0 − 1]. The
coefficient 1

2 is selected to confine both positive and negative membrane potential within a narrow
and balanced range. Given the above characteristics, we designate the coding method as the CSS
coding scheme and the neuron model as the TSA neuron.

Next, we establish the connection between the ANN and SNN using the proposed methods. Based
on Observation 1, we present the following theorem:

Theorem 2. Let Sl−1
j [t] ∼ al−1

j , wl
ij = ŵl

ij , and bli = b̂li/
∑

t β
T−t. Then Sl

i[t] ∼ ali, provided that∣∣ul
i[T ]

∣∣ < θl.

Note Sl
i[t] can now represent negative activations with negative spikes. To handle this, we constrain

the absolute value of ul
i[T ] and apply additional logic to zero out sequences that encode negative

values (a ReLU counterpart). The above theorem supposes that the input has been encoded and then
provides the method for output encoding. Next, we give the method to encode the network input:

Theorem 3. Let the input pixel value be a0i and β ≤ 2. By Initializing the membrane potential u0
i [0]

with a0
i/βT , the resulting spike train S0

i [t] ∼ a0i with T steps.

The proofs of the above two theorems can be found in Appendix A.2. By encoding input with
Theorem 3 and constraining ul

i[T ] of each hidden layer within the requirements of Theorem 2, an
ANN is then converted to a CSS-coded SNN.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.1 0.2 0.3 0.4 0.5 0.6 0.7
residual mem.

0

50

100

150

200

250

pr
ob

. d
en

sit
y

(a) resnet18 on cifar10
= 1.1
= 1.3
= 1.5
= 1.7
= 1.9

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
94.0

94.5

95.0

95.5

96.0

ac
c.

 (%
) (c) resnet18 on cifar10

0.1 0.2 0.3 0.4 0.5 0.6 0.7
residual mem.

0

20

40

60

80

100

120

140

160

180

pr
ob

. d
en

sit
y

(b) vgg16 on imagenet
= 1.1
= 1.3
= 1.5
= 1.7
= 1.9

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
74.0

74.5

75.0

75.5

76.0

ac
c.

 (%
) (d) vgg16 on imagenet

Figure 3: Impact of β on residual membrane potential and accuracy. Membrane potentials are
normalized by the spike amplitude. (a) and (b) show the residual membrane potential distributions
under different β. (c) and (d) show accuracy variations corresponding to different β.

4.2.2 ONE-STEP SILENT PERIOD

Although the TSA neuron effectively controls ul
i[T ] within an acceptable range, the results in Fig. 2

(orange) demonstrate that temporal coupling persists. Inspired by the layerwise processing manner
in TTFS coding (Stanojevic et al., 2022), we incorporate a one-step silent period into the TSA
neuron model. During this period, neurons integrate input and perform stepwise weighting but are
prohibited from firing. This one-step output delay introduces a new term, θlβT−t0−1 (i.e. spike
from t = t0 − 1), to the right-hand side of Eq. (9), making it easier to minimize ul

i[T ].

Since the input information is amplified by β after the silent period, the firing threshold is adjusted
to β

2 θ
l accordingly. Similarly, the membrane potential is reduced by βθl for reset. In Algorithm 1,

we provide pseudo code for the forward propagation process of TSA neurons. The mathematical
description of the TSA neuron model can be found in Appendix A.5.

The silent period method assigns distinct computation time windows to TSAs at different depths,
aligning with the temporal shift of the input spike distribution. This partially sacrifices synchronous
processing at each time step, leading to increased output latency. For an L-layer network, the output
layer will start to fire spikes only after L steps. However, with each layer operating in a pipelined
manner, the efficiency and accuracy gain outweighs the drawback of the increased latency. In Ap-
pendix A.4, we set up an ablation study to evaluate the effectiveness of this trade-off.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Determination of Spike Amplitude. We use a strategy similar to rate coding (Rueckauer et al.,
2017) to derive a suitable θl: after observing the ANN activations over a portion of the training set,
we calculate the 99.99th percentile pl of the activation distribution, and then set θl to pl

/
∑

t β
T−t.

This setting ensures that the vast majority of the activations remain below the maximum encod-
able value,

∑
t θ

lβT−t, and increases the network’s robustness to outlier activations. For ImageNet,
we further fine-tune the spike amplitude; additional details on this process can be found in Ap-
pendix A.3.

Choice of the Amplification Factor. To investigate the impact of β, we conducted experiments
using ResNet-18 on CIFAR-10 and VGG-16 on ImageNet. We plotted the distribution of the residual
membrane potential for different values of β (which serves as an indicator of temporal coupling) and
provided the corresponding accuracy curves in Fig. 3

As shown, accuracy generally increases and then decreases as β varies. As β increases, the weight
difference between spikes grows, causing input spikes to cluster at later time steps and increasing
the likelihood of temporal coupling. Conversely, a decrease in β requires a larger θl to provide
the same encoding capacity, which in turn leads to a higher quantization error. Notably, for β ≥
1.4, the network exhibits relatively stable performance, with the accuracy difference becoming less
pronounced as β increases.
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Table 2: Coding time steps and inference latency under different neural coding schemes, evaluated
on CIFAR-10 and ImageNet datasets.

Methods Architecture ANN
Accuracy

Coding
Scheme

Coding
Time Steps

Inference
Latency

SNN
Accuracy

C
IF

A
R

-1
0

FS-conversion (Stöckl & Maass, 2021) ResNet-20 91.58% FS 10 200 91.45%
TTRBR (Meng et al., 2022) ResNet-18 95.27% rate 128 128 95.18%
TSC (Han & Roy, 2020) VGG-16 93.63% TSC 512 512 93.57%
LC-TTFS (Yang et al., 2023) VGG-16 92.79% TTFS 50 800 92.72%
Exact mapping (Stanojevic et al., 2023) VGG-16 93.68% TTFS 64 1024 93.64%
Calibration (Li et al., 2021) VGG-16 95.72% rate 128 128 95.65%
OPI (Bu et al., 2022) VGG-16 94.57% rate 128 128 94.50%

CSS-SNN
ResNet-20 92.10%

CSS
12 32 92.06%

ResNet-18 95.24% 12 30 95.30%
VGG-16 95.89% 10 26 95.88%

Im
ag

eN
et

OPI (Bu et al., 2022) VGG-16 74.85% rate 256 256 74.62%
TSC (Han & Roy, 2020) VGG-16 73.49% TSC 1024 1024 73.33%
RMP-SNN Han et al. (2020) VGG-16 73.49% rate 2048 2048 72.78%
Calibration (Li et al., 2021) VGG-16 75.36% rate 256 256 74.23%
TSC (Han & Roy, 2020) ResNet-34 70.64% TSC 4096 4096 69.93%
CalibrationLi et al. (2021) ResNet-34 75.66% rate 256 256 74.61%
FS-conversion (Stöckl & Maass, 2021) ResNet-50 75.22% FS 10 500 75.10%
TTRBR (Meng et al., 2022) ResNet-50 76.02% rate 512 512 75.04%

CSS-SNN
VGG-16 75.34%

CSS
12 28 75.24%

ResNet-34 76.42% 14 48 76.22%
ResNet-50 80.85% 16 66 80.10%

Based on these observations, we set β to 1.5 for two key reasons: it lies near the midpoint of the
range, and more importantly, it allows for membrane potential amplification through simple shifting
and addition operations, which is energy-efficient and facilitates future hardware implementation.

5.2 OVERALL PERFORMANCE

In Table 2, we compared the time steps and inference latency under different coding schemes, which
reflect the throughput and latency of the network, respectively. Note all SNNs are converted from
full-precision ANNs to ensure a fair comparison. Furthermore, the accuracy of the ANNs utilized
in each work is also provided.

Reduction in Coding Time Steps. The coding time steps refer to the number of time steps required
to encode the activations into a spike train. This metric indicates how well the encoding scheme can
represent information within a given time frame and reflects the efficiency of the method.

For simpler classification tasks such as CIFAR-10, CSS coding scheme demonstrated nearly loss-
less conversion with a significant reduction in the number of required time steps. Compared to linear
coding schemes like rate coding, CSS reduces time steps by more than tenfold for both VGG-16 and
ResNet-18, while simultaneously reducing the conversion loss. While the FS coding scheme also
applied weighted spikes and required fewer time steps for ResNet-20, it experienced greater con-
version loss compared to our method. On the more complex ImageNet dataset, the higher precision
demands for encoding further highlighted the benefits of spike weighting. For example, Li et al.
(2021) reported a conversion error exceeding 1% on ResNet-34 with 256 time steps, whereas our
method achieved only 0.2% conversion loss with just 14 time steps. FS-coding achieved smaller
conversion loss for ResNet-50 with fewer time steps; however, this came at the cost of a latency
eight times greater than that of ours.

Reduction in Inference Latency. Inference latency refers to the time elapsed from the beginning
of input encoding to the receipt of the classification result, and is also measured in time steps. It
indicates how efficiently the encoding scheme transmits information through neural computation
across the network layers.

In CSS coding scheme, each layer of TSA neurons incorporates a one-step silent period, making the
inference latency equal to the sum of layer counts and coding time steps. In contrast, both TTFS
coding and FS coding require each layer to wait for the arrival of all inputs. While this approach fa-
cilitates lossless conversion, it completely sacrifices the synchronous processing capability of SNNs,
leading to increased output latency (i.e. the product of layer counts and coding time steps). For in-
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Table 3: Performance of Fast-SNN, Offset, and CSS on ImageNet after converting 3-bit VGG-16.
The results for both Fast-SNN (Hu et al., 2023) and Offset (Hao et al., 2023) are self-implemented
using their publicly available repositories, ensuring identical pre-conversion ANN accuracy.

Methods T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8

Offset (rate) 64.90%
(129 steps)

70.85%
(130 steps)

72.06%
(131 steps)

72.53%
(132 steps)

72.79%
(133 steps)

72.92%
(134 steps)

73.05%
(135 steps)

73.01%
(136 steps)

Fast-SNN (rate) 3.19%
(1 step)

52.74%
(2 steps)

68.13%
(3 steps)

71.26%
(4 steps)

72.21%
(5 steps)

72.64%
(6 steps)

72.87%
(7 steps)

72.97%
(8 steps)

CSS 2.87%
(17 steps)

68.53%
(18 steps)

72.81%
(19 steps)

73.25%
(20 steps)

73.23%
(21 steps)

73.24%
(22 steps)

73.23%
(23 steps)

73.24%
(24 steps)

stance, in the CIFAR-10 classification task, the inference latency reported by Stanojevic et al. (2023)
on VGG-16 is about 40 times that of our method. FS coding, as a nonlinear encoding scheme, per-
forms well in both coding steps and conversion loss, but its output latency remains a major weakness;
on ResNet-20, its latency exceeds that of CSS by over six times. Rate coding enables synchronous
processing, but its inference latency is constrained by the large number of coding time steps. In
the ImageNet classification task, for example, rate-coded ResNet-34 has a latency five times greater
than our method.

5.3 COMBINATION WITH QUANTIZED ANNS

SOTA performance SNNs (Hu et al., 2023; Hao et al., 2023) are typically achieved by converting
quantized ANNs, while still utilizing rate coding. To ensure that only the encoding scheme varies,
we convert ANNs with identical precision. Experiments were conducted using a 3-bit VGG-16 on
ImageNet, with the results presented in Table 3. T represents the number of coding time steps, and
the inference latency is given in round brackets. Note we set β to 2 for quantized networks as this
ensures the encoded values align well with the quantized activations. Additionally, the membrane
potential amplification can be achieved using only shifting operations.

Compared to Fast-SNN, our method achieves ANN-level accuracy with fewer time steps by lever-
aging weighted spikes. The IF neurons in Fast-SNN, which do not require a silent period, naturally
exhibit better output latency. In contrast, Offset improves accuracy with minimal time steps by cal-
ibrating the initial membrane potential of neurons. However, this comes at the cost of significantly
increased output latency, as each layer requires ρ time steps (with ρ = 8 for ImageNet, consistent
with the original paper) to determine how to calibrate the initial membrane potential. This per-layer
latency accumulates across the network, similarly to the silent period in our approach.

Theoretically, the benefits of our method become more pronounced with higher ANN bit precision
(as shown in Table 2), as spike weighting exponentially reduces the number of time steps. While
rate coding also perform well with reduced time steps, they rely heavily on low-bit quantization.
This introduces overhead in training and often sacrifices accuracy. CSS coding scheme provides
an alternative approach to achieving low time steps in SNNs without relying on aggressive quanti-
zation. Furthermore, our method can be seamlessly combined with quantized ANNs, enabling the
development of higher-performance SNNs.

5.4 ENERGY CONSUMPTION ANALYSIS

In this section, we estimate the energy consumption of our methods3, with the results summarized in
Table 4. The results show that the CSS-coded SNNs achieve at least a fivefold reduction in energy
consumption compared to the original ANN. TTFS (Stanojevic et al., 2023) coding demonstrates
extremely low energy consumption due to its theoretical minimum spike count. While our method
does not inherently exhibit sparse characteristics, the reduction in coding time steps mitigates this
disadvantage. By further compressing the number of time steps, our approach achieves a 10%
reduction in energy consumption compared to TTFS. Additionally, we include Fast-SNN (Hu et al.,
2023) as a strong baseline for (signed) rate coding. The results show that our method outperforms

3Energy consumption measurements were performed using the code from https://github.com/
iCGY96/syops-counter
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Table 4: Energy consumption of SNNs on CIFAR-10.

Methods Arch. Accuracy T Latency SyOPs
(ACs) MACs Energy

Consumption

ANN VGG-11 93.82% N/A N/A 0 153.2M 0.7047mJ

CSS VGG-11 93.78% 8 19 0 132.4M 0.1191mJ

ANN VGG-16 95.88% N/A N/A 0 313.88M 1.4438mJ

TTFS⋆ VGG-16 93.53% 64 1024 120.53M 0 0.1085mJ
CSS VGG-16 95.84% 8 24 308.35M 0 0.2775mJ
CSS† VGG-16 95.14% 2 18 102.19M 0 0.0920mJ

ANN ResNet-18 95.25% N/A N/A 0 2.22G 10.21mJ

rate (Fast-SNN)† ResNet-18 95.42% 7 7 1.02G 12.42M 0.9751mJ
rate (Faset-SNN)† ResNet-18 95.23% 6 6 878.3M 10.65M 0.8395mJ

CSS† ResNet-18 95.31% 3 21 730.65M 1.84M 0.6660mJ
CSS† ResNet-18 95.24% 2 20 489.93M 1.91M 0.4497mJ

† The results from converting quantized ANNs.
⋆ Stanojevic et al. (2023) reported an average spike rate of 38% per neuron on VGG-16, which we used to calculate

the SyOPs and estimate the energy consumption.0 10 20 30 40 50 60 70 80
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Figure 4: Inference latency with and without negative spikes. The solid line represents the results
with negative spikes, while the dashed line indicates the results without negative spikes. The lines
of different colors correspond to different lengths of the silent period as shown in the legend.

Fast-SNN with more than a 30% reduction in energy consumption, while maintaining comparable
accuracy.

5.5 THE ROLE OF NEGTIVE SPIKES

In this section, we validate the role of negative spikes in achieving low-latency nonlinear encoding
through an ablation study. Experiments were conducted using ResNet-34 on ImageNet, where we
gradually increased the silent period length from zero, in the absence of negative spikes. The results,
shown in Fig. 4, reveal that a silent period of at least four steps is required to match the performance
gains introduced by negative spikes. This results in a nearly 100-step increase in inference latency.
The introduction of negative spikes and TSA neurons in the CSS coding scheme is crucial for break-
ing temporal coupling, distinguishing our approach from other coding schemes that use weighted
spikes (Rueckauer & Liu, 2021; Stöckl & Maass, 2021; Kim et al., 2018).

6 CONCLUSION AND DISCUSSION

In this work, we compress the coding time steps by assigning weights to spikes, enabling each spike
to carry more information. We also introduce negative spikes to break temporal coupling, effectively
reducing inference latency. The resulting CSS encoding scheme enhances the throughput, inference
speed and energy efficiency of converted SNNs, while minimizing conversion loss.
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A APPENDIX

A.1 PROOFS OF EQUATIONS

Proof of Eq. (8) (A similar derivation leads to Eq. (5))

ul
i[T ] =

∑
j

wl
ij

T∑
t=1

βT−tSl−1
j [t] +

T∑
t=1

βT−tbli −
T∑

t=1

βT−tSl
i[t] (A1)

Proof. Starting with the initial condition ul
i[0] = 0 and Eq. (7), we can write:

ul
i[1] = zli[1]− Sl

i[1]

Next, we derive the expression for ul
i[2] by substitute the above into Eq. (7):

ul
i[2] = β(zli[1]− Sl

i[1]) + zli[2]− Sl
i[2]

We can generalize this process to iteratively compute the membrane potential up to t = T :

ul
i[T ] =

T∑
t=1

βT−t(zli[t]− Sl
i[t])

substituting zli[t] from Eq. (4) and rearranging the terms, we get:

ul
i[T ] =

T∑
t=1

βT−t(
∑
j

wl
ijS

l−1
j [t] + bli − Sl

i[t])

Reorganizing the terms by summation yields:

ul
i[T ] =

∑
j

wl
ij

T∑
t=1

βT−tSl−1
j [t] +

T∑
t=1

βT−tbli −
T∑

t=1

βT−tSl
i[t]

A.2 PROOFS OF THEOREMS

Theorem 1. Making ul
i[T ] < ϵ is equivalent to satisfying the following equation:

∀t0 ∈ {1, 2, · · · , T},

βT−t0+1ul
i[t0 − 1] +

∑
j

wl
ij

T∑
t=t0

βT−tSl−1
j [t] +

T∑
t=t0

βT−tbli < ϵ+

T∑
t=t0

θlβT−t (A2)

Proof. We first prove the forward direction. Given that ul
i[T ] < ϵ, we can express it using Eq. (7)

and Eq. (4) as follows:

βul
i[T − 1] +

∑
j

wl
ijS

l−1
j [T ] + bli < ϵ+ θl (A3)

Continue the above process, and we have:

β2ul
i[T − 2] +

∑
j

wl
ijβS

l−1
j [T − 1] + βbli +

∑
j

wl
ijS

l−1
j [T ] + bli < ϵ+ θl + βθl (A4)

The above process can be repeated until we obtain an equation involving ul
i[0]. The left-hand side

of each equation regarding ul
i[t], where t ∈ {1, 2, · · · , T}, can be organized to demonstrate that the

forward reasoning is valid.
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Then we proceed to prove the backward direction. For any t0 ∈ {1, 2, · · · , T}, by iteratively updat-
ing the membrane potential using Eq. (7) from t = t0 until t = T , and substitute zli[t] with Eq. (4),
we can get:

ul
i[T ] = βT−t0+1ul

i[t0 − 1] +
∑
j

T∑
t=t0

wl
ijβ

T−tSl−1
j [t] +

T∑
t=t0

βT−tbli −
T∑

t=t0

βT−tSl
i[t] (A5)

Note that
∑

t β
T−tSl

i[t] ≤
∑

t θ
lβT−t. Then we can write:

ul
i[T ] ≤ βT−t0+1ul

i[t0 − 1] +
∑
j

wl
ij

T∑
t=t0

βT−tSl−1
j [t] +

T∑
t=t0

βT−tbli −
T∑

t=t0

θlβT−t

< ϵ

(A6)

Theorem 2. Let Sl−1
j [t] ∼ al−1

j , wl
ij = ŵl

ij , and bli = b̂li/
∑

t β
T−t. Then Sl

i[t] ∼ ali, provided that∣∣ul
i[T ]

∣∣ < θl.

Proof. Eq. (8) can be organized into the following form:

T∑
t=1

βT−tSl
i[t] =

∑
j

wl
ij

T∑
t=1

βT−tSl−1
j [t] +

T∑
t=1

βT−tbli − ul
i[T ] (A7)

Given that Sl−1
j [t] ∼ al−1

j , we use σl−1
j to denote the difference between the encoded value and the

activation, defined as σl−1
j =

∑
t β

T−tSl−1
j [t] − al−1

j . Substituting al−1
j and σl

i into Eq. (A7), we
can write:

T∑
t=1

βT−tSl
i[t] =

∑
j

wij(a
l−1
j + σl−1

j ) +

T∑
t=1

βT−tbli − ul
i[T ]

=
∑
j

ŵij(a
l−1
j + σl−1

j ) + b̂li − ul
i[T ]

=
∑
j

ŵija
l−1
j + b̂li − ul

i[T ] +
∑
j

ŵijσ
l−1
j

(A8)

According to Definition 1, we have −θl < σl−1
j < θl. Considering that θl is typically kept small to

provide fine-grained encoding and ŵij is generally symmetrically distributed around zero, we can ig-
nore the last term on the right-hand side of the equation. Since Sl

i[T ] can encode negative values, we
implemented a ReLU counterpart to zero out these spike sequences, corresponding to the max(·, 0)
operation in Eq. (6). Combining Eq. (A8) with the condition

∣∣ul
i(T )

∣∣ < θl and Definition 1, we can
conclude that Sl

i[t] ∼ ali.

Theorem 3. Let the input pixel value be a0i and β ≤ 2. By Initializing the membrane potential u0
i [0]

with a0
i/βT , the resulting spike train S0

i [t] ∼ a0i with T steps.

Proof. We proof this theorem by mathematical induction. Let ã0i.T and m0
T denote the encoded value

and the maximum encodable value, respectively, i.e. ã0i,T =
∑

t β
T−tS0

i [t], m
0
T =

∑
t θ

0βT−t.

step 1. For T = 1, it’s obvious that:{∣∣ã0i,0 − a0i
∣∣ < θ0 , a0i < m0

0

ã0i,0 = m0
0 , a0i ≥ m0

0

(A9)

step 2. Assume the statement is true for T = t0, i.e. we have:{∣∣ã0i,t0 − a0i
∣∣ < θ0 , a0i < m0

t0

ã0i,t0 = m0
t0 , a0i ≥ m0

t0

(A10)
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Note the relationship between θ0 and m0
t0 : θ0 =

m0
t0

1+β+···+βt0−1 . Then we prove that for T = t0+1,
Eq. (A10) still holds.

case (1). For a0i < m0
t0+1: Consider the first t0 steps. It can be observed that this process is

equivalent to encoding a0
i/β with m0

t0 = 1+β+···+βt0−1

1+β+···+βt0
m0

t0+1. Then we have:
∣∣∣∣ã0i,t0 − a0i

β

∣∣∣∣ < m0
t0+1

1 + β + · · ·+ βt0
,
a0i
β

< m0
t0

ã0i,t0 = m0
t0 ,

a0i
β
≥ m0

t0

(A11)

For a0
i

β < m0
t0 , we can write:

β

∣∣∣∣ã0i,t0 − a0i
β

∣∣∣∣ < βm0
t0+1

1 + β + · · ·+ βt0
<

2m0
t0+1

1 + β + · · ·+ βt0
= 2θ0 (A12)

For a0
i

β ≥ m0
t0 :

β

∣∣∣∣ã0i,t0 − a0i
β

∣∣∣∣ = a0i −
1 + β + · · ·+ βt0−1

1 + β + · · ·+ βt0
m0

t0+1

≤ m0
t0+1 −m0

t0+1

1 + β + · · ·+ βt0−1

1 + β + · · ·+ βt0
= θ0

(A13)

According to Theorem 1, β
∣∣∣ã0i,t0 − a0

i

β

∣∣∣ < 2θ0 is equivalent to
∣∣u0

i [t0 + 1]
∣∣ < θ0 (as there’s neither

input nor bias term). Also note
∣∣u0

i [t0 + 1]
∣∣ = ∣∣ã0i,t0+1 − a0i

∣∣. Then we have
∣∣ã0i,t0+1 − a0i

∣∣ < θ0.

case (2). For a0i ≥ m0
t0+1:

a0i
β
≥ 1

β
m0

t0+1 >
1 + β + · · ·+ βt0−1

1 + β + · · ·+ βt0
m0

t0+1 = m0
t0 (A14)

Then we have:

β

∣∣∣∣ã0i,t0 − a0i
β

∣∣∣∣ = a0i − β
1 + β + · · ·+ βt0−1

1 + β + · · ·+ βt0
m0

t0+1 ≥
m0

t0+1

1 + β + · · ·+ βt0
= θ0 (A15)

which means the neuron will fire a spike at t = t0+1, leading to ã0i,t0+1 = m0
t0+1. Combining case

(1) and (2), and we have: {∣∣ã0i,t0+1 − a0i
∣∣ < θ0 , a0i < m0

t0+1

ã0i,t0+1 = m0
t0+1 , a0i ≥ m0

t0+1

(A16)

step 3. By the principle of mathematical induction, ∀T ∈ N⋆:{∣∣ã0i,T − a0i
∣∣ < θ0 , a0i < m0

T

ã0i,T = m0
T , a0i ≥ m0

T

(A17)

Considering our initialization strategy for θ̃0 and subsequent data-based amplification, we can al-
ways ensure that a0i < m0

T . Thus,
∣∣ã0i,T − a0i

∣∣ < θ0, which means S0
i [t] ∼ a0i .

A.3 SPIKE AMPLITUDE ADJUSTMENT

Eq. (9) suggests that increasing θl can relax the constraints on the input. Let θ̃l denote the initial
spike amplitude. After getting the initialized value, we use a subset of the training set to perform
forward propagation for the CSS-based SNN, and then calculate the 99.9th percentile ul of the
distribution of ul

i[T ] for each layer l. If ul exceeds θl, we amplify θl by a factor sl. Note that
increasing θl raises the firing threshold at the same time, making the change in ul

i[T ] a complex
nonlinear process. To determine a suitable sl, we simplify the problem by assuming that ul

i[T ]

15
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Figure 5: Trade-off between the coding time steps and inference latency. The dashed line represents
the results obtained without the silent period, while the solid line represents the results achieved
after incorporating the silent period. (a) Coding time steps on CIFAR-10. (b) Inference latency on
CIFAR-10. (c) Coding time steps on ImageNet. (d) Inference latency on ImageNet.

accumulates uniformly over time. Thus, if the increment of θl is ∆θl, then ul
i[T ] will decrease by

∆θl
∑

t β
T−t. Accordingly, sl is determined using the following equation:

sl = 1 +



ul − θl∑
t β

T−t
, ul − θl > 0.05 ·

∑
t

βT−t

ul − θl − 0.01 ·
∑

t β
T−t∑

t β
T−t

+ 0.04 , 0.05 ·
∑
t

βT−t ≥ ul − θl > 0.01 ·
∑
t

βT−t

4 · (ul − θl)∑
t β

T−t
, 0.01 ·

∑
t

βT−t ≥ ul − θl > 0

(A18)
To ensure that the spike amplitude can still be effectively adjusted when ul slightly exceeds θl, we
increase the value of sl for this range.

Note that an increase in θl makes the decoupling conditions for layer l + 1 harder to meet4. Con-
sequently, in deeper layers, the initial spike amplitude must be amplified by a large factor. This
requires a sufficiently small θ̃l to preserve adequate encoding granularity after scaling, which in turn
necessitates a larger number of time steps. We address this issue by delaying the TSA output, which
eliminates the need for θ̃l amplification.

It is important to note that this adjustment lacks strict mathematical support and serves as a heuristic
for fine-tuning the spike amplitude. The introduction of negative spikes remains the core mechanism
for breaking temporal coupling.

A.4 CODING TIME STEPS VS. INFERENCE LATENCY

According to the analysis in Appendix A.3, relying solely on θl amplification to break temporal cou-
pling would require smaller θ̃l in deeper layers, which leads to an increase in coding time steps. To
address this, we introduce a one-step silent period to achieve a trade-off between coding time steps

4In Eq. (9), the spike amplitude of the previous layer is included in Sl−1
j [t].
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and inference latency. In this section, we conducted an ablation study to assess the effectiveness
of this approach. We performed classification tasks on CIFAR-10 using VGG-16 and ResNet-20,
and on ImageNet using VGG-16 and ResNet-34. Fig. 5 (a) and (c) present the relationship between
coding time steps and accuracy, while Fig. 5 (b) and (d) show the relationship between inference
latency and accuracy.

The experimental results indicate that even with no silent period, deeper networks experience larger
latency due to increased coding time steps. This can also be understood as neurons in each layer
require time to accumulate membrane potential before firing. Thus, incorporating a silent period
has a limited effect on increasing inference latency, but plays a significant role in reducing coding
time steps. For example, in ResNet-20 on CIFAR-10, the silent period increased latency from 20
to 30 steps but halved the coding time steps, greatly improving throughput. This effect becomes
more pronounced with increased network depth or dataset scale. For instance, with ResNet-34 on
ImageNet, the silent period added only about 5 steps to inference latency while reducing coding
time steps by approximately 30 steps. Overall, incorporating the silent period effectively reduces
the required number of time steps for encoding, substantially improving throughput with minimal
impact on latency.

It is important to note that although the requirement ofTheorem 2 can be satisfied by amplitude
adjustment on training set, this does not ensure optimal performance on the test set. By contrast,
silent period provides a data-independent approach to break temporal coupling, resulting in more
stable and consistent performance improvements.

A.5 MATHEMATICAL DESCRIPTION OF THE TSA NEURON

To generalize the representation, let Ts denote the length of the silent period. For a TSA neuron in the
l-th layer, when the time step t ∈ {1, 2, . . . , Tsl}, the membrane potential remains ul

i[t] = ul
i[0] = 0,

and no spikes are generated. After this period, the neuron processes inputs in cycles of length T+Ts.
Let T k

a denote the start of the k-th cycle, i.e. T k
a = Tsl + k(Ts + T ) + 1, and let T k

b denote the
end of the cycle, i.e. T k

b = Tsl + (k + 1)(Ts + T ), with k being a natural number. Without loss of
generality, we consider the case where t ∈ {T k

a , T
k
a + 1, . . . , T k

b }.
The set of its spike times can be expressed as follows:

Fl
i =

{
tl,fi

∣∣∣∣ ∣∣∣oli[tl,fi ]
∣∣∣ ≥ θlβTs

2
, tl,fi ∈ {T

k
a + Ts, T

k
a + Ts + 1, · · · , T k

b }
}

(A19)

The spike sequence it emits, Sl
i[t], can then be written as:

Sl
i[t] =

∑
tl,fi ∈Fl

i

sgn
(
oli[t

l,f
i ]

)
θlδ[t− tl,fi ] (A20)

where δ[·] denotes an unit impulse, sgn(·) is the sign function and θl is the spike amplitude. The
update process of the membrane potential can be expressed as follows:

ul
i[t] = βul

i[t− 1] + zli[t]− βTsSl
i[t] (A21)

where zli[t] denotes the integrated inputs:

zli[t] =
∑
j

wl
ijS

l−1
j [t] + bli (A22)

A.6 PSEUDO CODE FOR CONVERSION PROCESS

See Algorithm 2. The spike amplitude for each layer is determined using the method outlined in
Section 4.2.1. Note that this value is absorbed into the weights and bias, so after conversion, the spike
amplitudes for TSA neurons are all normalized to 1. For data-based spike amplitude adjustment, we
first complete the above conversion process using the initial spike amplitudes. Then, based on the
residual membrane potentials observed in the resulting SNN, we update the spike amplitudes. These
updated values are then used to re-convert the ANN. The process can be repeated as may times as
needed.
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Algorithm 2: Algorithm for ANN-SNN conversion

Input: ANN model fA(Ŵ , b̂), encode time steps T , amplification factor β, spike amplitude θl

for each layer l, total layer number L
Output: SNN models fS(W , b)
reshape and pad X to [T, B, C, H, W] with zeros to shape [(T+L), B, C, H, W];
membrane potential M ← zeros like (X[0]), threshold v ← 1

2θβ
L;

set CSS encoder for the input layer; /* see Theorem 3 */
for 1 ≤ l ≤ L do

W l ← θl−1

θl Ŵ l; /* norms θl in SNN to 1 */

bl ← 1∑T−1
t=0 βtθl

b̂l;
replace ReLU activation with TSA and ReLU counterpart.

end

A.7 IMPLEMENTATION OF THE RELU COUNTERPART

In the actual implementation, we fuse the ReLU counterpart into the TSA neuron model to speed up
program execution. We refer to this model as TSA-ReLU neuron. Below, we continue the notation
from Appendix A.5 to present the mathematical model of TSA-ReLU. Without loss of generality,
we consider the case where t ∈ {T k

a , T
k
a + 1, . . . , T k

b }. We use hl
i[t] and gli[t] to represent the

accumulated input and output of TSA-ReLU, respectively:

hl
i[t] =

∑
j

wl
ij

t∑
τ=Tk

a

βt−τSl−1
j [τ ] +

max(t,Tk
a +T )∑

τ=Tk
a

βt−τ bli

gli[t] =

t∑
τ=min(Tk

a +Ts,t)

βt−τSl
i[τ ]

(A23)

Then we set oli[t] according to the following equation:

oli[t] =


hl
i[t]− gli[t] , hl

i[t] ≥ 0, t ≥ T k
a + Ts

− gli[t] , hl
i[t] < 0, t ≥ T k

a + Ts

0 , t < T k
a + Ts

(A24)

The firing condition of TSA-ReLU is the same as that of TSA, and is given by Eqs. (A19) and (A20).
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