
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CANONIC SIGNED SPIKE CODING
FOR EFFICIENT SPIKING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) seek to mimic the spiking behavior of biologi-
cal neurons and are expected to play a key role in the advancement of neural com-
puting and artificial intelligence. The conversion of Artificial Neural Networks
(ANNs) to SNNs is the most widely used training method, which ensures that the
resulting SNNs perform comparably to ANNs on large-scale datasets. The effi-
ciency of these conversion-based SNNs is often determined by the neural coding
schemes. Current schemes typically use spike count or timing for encoding, which
is linearly related to ANN activations and increases the required number of time
steps. To address this limitation, we propose a novel Canonic Signed Spike (CSS)
coding scheme. This method incorporates non-linearity into the encoding process
by weighting spikes at each step of neural computation, thereby increasing the
information encoded in spikes. We identify the temporal coupling phenomenon
arising from weighted spikes and introduce negative spikes along with a Ternary
Self-Amplifying (TSA) neuron model to mitigate the issue. A one-step silent pe-
riod is implemented during neural computation, achieving high accuracy with low
latency. We apply the proposed methods to directly convert full-precision ANNs
and evaluate performance on CIFAR-10 and ImageNet datasets. Our experimental
results demonstrate that the CSS coding scheme effectively compresses time steps
for coding and reduces inference latency with minimal conversion loss.

1 INTRODUCTION

Spiking Neural Networks (SNNs), recognized as the third generation of neural network models, are
inspired by the biological structure and functionality of the brain (Wang et al., 2020). Unlike tra-
ditional Artificial Neural Networks (ANNs), which rely on continuous activation functions, SNNs
utilize discrete spiking events. This enables SNNs to capture temporal dynamics and process infor-
mation in a manner that closely resembles brain activity (Taherkhani et al., 2020). The event-driven
nature of SNNs aligns with the brain’s energy-efficient computational paradigm, offering potential
for more efficient and low-power computing systems (Yamazaki et al., 2022).

The two primary learning algorithms for SNNs are gradient-based optimization and ANN-SNN
conversion. Directly training using supervised backpropagation is challenging due to the non-
differentiable nature of spike generation (Lee et al., 2020; 2016). The conversion-based method,
however, offers a practical approach to overcome this difficulty and has produced the best-
performing SNNs (Deng & Gu, 2021; Bu et al., 2022; Ding et al., 2021).

Encoding the ANN activations into spike trains is a prerequisite for successful ANN-SNN conver-
sion. Various coding schemes, such as rate coding and temporal coding, have been proposed to
describe neural activity (Guo et al., 2021). Rate coding maps the number of spikes to the corre-
sponding ANN activation (Cao et al., 2015). In contrast, temporal coding focuses on the precise
timing or patterns of spikes (Rueckauer & Liu, 2018; Kim et al., 2018; Han & Roy, 2020). For ex-
ample, Time-to-First-Spike (TTFS) coding maps the the activation value to the time elapsed before
the first spike (Stanojevic et al., 2022).

However, both the spike counts in rate coding and the spike timing in TTFS coding are linearly
related to the encoded activation. This necessitates a large number of time steps to provide sufficient
encoding granularity (Stanojevic et al., 2023; Meng et al., 2022). Recent works have proposed
alleviating these problems by quantizing the ANN activations before conversion (Hu et al., 2023;

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Bu et al., 2023; Hao et al., 2023). This approach simplifies the encoding process but introduces
additional quantizing and training overhead. Our goal is to develop a novel encoding method that
can directly convert full-precision ANNs while reducing the number of time steps required.

 (rate)

 (CSS)

spike train

more information at 
earlier time steps

Figure 1: Different interpretations of the
same spike sequence. I denotes the infor-
mation encoded in a spike. θl is the spike
amplitude. β is the membrane potential
amplification coefficient and T is the total
length of the sequence.

In the study of the temporal information dynamics of
spikes, Kim et al. (2022) found that after training, in-
formation becomes highly concentrated in the first few
time steps. This observation led us to hypothesize that
the spikes at earlier time steps carry more information
and contribute more to the membrane potential. Con-
sequently, by gradually amplifying the membrane po-
tential over time, we increase the influence of earlier
spikes. This mechanism essentially assigns exponen-
tially decreasing weights to a spike sequence, with the
smallest weight being one (applied to the final spike).
This results in a significant enhancement in the encod-
ing capacity of the spike sequence for a given length.
Due to this fixed weight pattern during neural compu-
tation, we refer to these spikes as canonical.

However, we observed that after weighting, spikes tend
to concentrate in later time steps. This phenomenon oc-
curs because earlier spikes now encode larger values,
making them less likely to be fired after stimulation.
As the spatial depth increases, the spike distribution be-
comes more biased toward later time steps, leading to
significant performance degradation. We refer to this
phenomenon as temporal coupling of weighted spikes.

To mitigate this, we introduce negative spikes and lower the firing threshold of neurons to promote
earlier spike emission. Neurons are also equipped with a negative spike threshold, allowing them
to generate negative spikes that correct excessive firing. This combination results in the Canonic
Signed Spike (CSS) coding scheme and the Ternary Self-Amplifying (TSA) neuron model. To better
balance the trade-off between coding time steps and inference latency in CSS coding, we introduce
a one-step silent period into the TSA neuron, which improves both performance and efficiency of
the resulting SNN.

The main contributions of this paper can be summarized as follows:

• By assigning weights to the spikes, we introduce non-linearity into the coding process and
compress the time steps to a logarithmic scale. Neurons amplify the membrane potential at
each time step, thereby obtaining more information from the preceding spikes.

• We find that weighted spikes are prone to temporal coupling during neural computation,
presenting the biggest challenge when incorporating non-linearity in spike coding. We
analyze the underlying reasons and introduces negative spikes along with the TSA neuron
model to address this issue.

• We demonstrate the effectiveness of the CSS coding scheme on the CIFAR-10 and Ima-
geNet datasets. The results show that the proposed method effectively reduces both the
required coding time steps and inference latency. Additionally, the CSS coding scheme
offers energy efficiency advantages over both rate coding and temporal coding.

2 RELATED WORK

Currently, the mainstream coding schemes in converted SNNs are rate coding and TTFS coding.
Rate coding represents different activities with the number of spikes emitted within a specific time
window. Early research efforts focused on reducing conversion loss, leading to methods such as
weight normalization (Diehl et al., 2015), threshold rescaling (Sengupta et al., 2019), and soft-reset
neuron models (Han et al., 2020). More recent work has shifted towards reducing the number of
time steps by optimizing neuron parameters. Meng et al. (2022) introduced the Threshold Tuning

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and Residual Block Restructuring (TTRBR) method to minimize conversion error in ResNet archi-
tectures with fewer time steps. Bu et al. (2022) proposed optimizing the initial membrane potential
to reduce conversion loss when using a small number of time steps.

Despite these optimizations, deep networks or large datasets still require hundreds of time steps to
achieve satisfactory results. To address this, recent works in rate coding have explored quantizing
the ANNs before conversion (Hao et al., 2023; Bu et al., 2023; Hu et al., 2023). This approach
directly reduces the number of activations that need to be mapped, providing an alternative way to
minimize time steps. Notably, this approach is complementary to ours. The proposed encoding
scheme can also convert quantized ANNs and further reduce the required number of time steps.

Due to the functional similarity to the biological neural network, SNNs are highly compatible with
temporal coding. Rueckauer & Liu (2018) were the first to attempt converting an ANN to a TTFS-
based SNN. While this coding method significantly increased sparsity by limiting each neuron to fire
at most one spike, they observed large conversion errors, even on MNIST dataset. Stanojevic et al.
(2022) demonstrated that an exact mapping from ANN to TTFS-based SNN is feasible but needs
hundreds of time steps for accurate encoding. Yang et al. (2023) proposed a TTFS-based conversion
algorithm with dynamic neuron threshold and weight regularization. They completed the conversion
with 50 time steps per layer. Despite the reduction in the number of time steps per layer, TTFS
coding still suffered from high output latency in deep networks for its layerwise processing manner.
Han & Roy (2020) introduced the Temporal-Switch-Coding (TSC) scheme, where each input pixel
is represented by two spikes, and the time interval between them encodes pixel intensity. However,
as this time interval remains linearly related to activation, the issue of long latency persists.

Some recent works have also incorporated non-linearity into the coding process. Stöckl & Maass
(2021) and Rueckauer & Liu (2021) used spikes to encode the ”1”s in the binary representations
of ANN activations. However, both works did not address the temporal coupling issue caused by
weighted spikes. Instead, they adopted an approach similar to TTFS coding, where neurons must
wait for the arrival of all input spikes before firing. In contrast, our approach facilitates the greatest
extent of synchronous neural computation, thereby reducing both the coding time steps and output
latency.

3 PRELIMINARIES

3.1 SPIKING NEURONS

Spiking neurons communicate through spike trains and are interconnected via synaptic weights.
Each incoming spike contributes to the postsynaptic neuron’s membrane potential, and a spike is
generated when the potential reaches a predefined threshold. Generally, a spike sequence Sl

i[t] in
the SNN can be expressed as follows:

Sl
i[t] =

∑
tl,fi ∈Fl

i

θlδ[t− tl,fi ] (1)

where i is the neuron index, l is the layer index, θl is the spike amplitude, δ[·] denotes an unit
impulse1, f is the spike index, and Fl

i denotes a set of spike times which satisfies the firing condition:

tl,fi : oli[t
l,f
i ] ≥ θl (2)

where oli[t] denotes the membrane potential before firing a spike. Conversion-based works often
employ soft-reset IF neuron model, where the membrane potential is subtracted by an amount equal
to the spike amplitude for reset. Specifically, its dynamics can be expressed as follows:

ul
i[t] = ul

i[t− 1] + zli[t]− Sl
i[t] (3)

where ul
i[t] denotes the membrane potential after firing a spike and zli[t] denotes the integrated

inputs:
zli[t] =

∑
j

wl
ijS

l−1
j [t] + bli (4)

where wl
ij is the synaptic weight and bli is the bias. For clarity, definitions of the common symbols

are provided in Table 1.
1δ[t] takes the value 1 at t = 0, and 0 otherwise

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Common symbols in this paper.

Symbol Definition Symbol Definition
l Layer index β Amplification factor
i, j Neuron index wl

ij SNN weight
Sl
i[t] Spike sequence ŵl

ij ANN weight
oli[t] Membrane potential before firing bli SNN bias
ul
i[t] Membrane potential after firing b̂li ANN bias

zli[t] Integrated inputs (PSP)1 T Time steps for coding
θl Spike amplitude θ̃l Initial spike amplitude
1 Postsynaptic potential

3.2 ANN-SNN CONVERSION

The ANN-SNN conversion typically involves the following two key steps: 1) selecting an appropri-
ate encoding method to represent ANN activations as spike trains, and 2) adopting a suitable neuron
model that ensures the generated spike trains accurately encode the outputs of the corresponding
ANN neurons. Note that this process results from the joint effect of the encoding scheme and the
neuron model.

The most widely used and State-Of-The-Art (SOTA) approaches employ (signed) soft-reset IF neu-
rons and interprets their output through spike rates (i.e. rate coding). Let T denote the number of
time steps, with the initial condition ul

i[0] = 0, we can iteratively update the membrane potential
using Eq. (3) until t = T . Then substitute zli[t] with Eq. (4), and we can write:∑T

t=1 S
l
i[t]

T
=

∑
j

wl
ij

∑T
t=1 S

l−1
j [t]

T
+

T∑
t=1

bli
T
− ul

i[T ]

T
(5)

See Appendix A.1 for a detailed derivation. Note that both sides of the equation are divided by T
to better highlight the interpretation of

∑T
t=1 Sl

i[t]/T as a ”rate”. It defines the relationship between
neuron’s input rate and output rate and can be directly related to the forward pass in a ReLU-activated
ANN:

ali = max

∑
j

ŵl
ija

l−1
j + b̂li, 0

 (6)

where ali denotes the ANN activation, ŵl
ij and b̂li denote the weight and bias, respectively. Note

that in Eq. (5) we have: 1)
∑

S[t]/T > 0, and 2) ul
i[T ]/T becomes negligible as T increases. These

observations suggest that mapping ANN activations to SNN spike rates can be achieved by simply
using the scaled ANN weights2 and bias.

However, with fewer time steps, the spike rate
∑

Sl
i[t]/T can only encode a limited number of activa-

tions, while the perturbation introduced by ul
i[T ]/T increases. These factors together result in a rapid

increase in conversion loss. This issue is inherent in any encoding scheme that relies on quantities
linearly related to the time steps. Therefore, our goal is to incorporate nonlinearity into the encoding
process to enhance the expressiveness of spike trains.

4 METHODS

4.1 ASSIGNING WEIGHTS TO SPIKES

We begin by introducing an amplification factor β > 1 into the soft-reset IF model:

ul
i[t] = βul

i[t− 1] + zli[t]− Sl
i[t] (7)

2The spile amplitude θl is finally normalized to 1 for simplicity of implementation, which is achieved by
absorbing it into the synaptic weights. Consequently, the ANN weights still need to be scaled by a certain
factor. Note that θl is typically determined based on the number of time steps and the range of ANN activations
in layer l.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Following the same derivation as in Eq. (5), we can write:

ul
i[T ] =

∑
j

wl
ij

T∑
t=1

βT−tSl−1
j [t] +

T∑
t=1

βT−tbli −
T∑

t=1

βT−tSl
i[t] (8)

The detailed derivation can be found in Appendix A.1. As expected, the input at time tl,fi raises the
membrane potential by θlβT−tl,fi . As shown in Fig. 1, for a sequence of length T , this enables the
use of

∑T
t=1 β

T−tSl
i[t] rather than

∑T
t=1 S

l
i[t] to map the ANN activation. Note the spike at time T

still encodes θl, which is the minimum value a spike can represent and determines the granularity of
encoding.
Definition 1. Let v denote the target value. The encoding is considered accurate, denoted as Sl

i[t] ∼
v, as long as

∣∣∣∑T
t=1 β

T−tSl
i[t]− v

∣∣∣ < θl.

We allow a discrepancy of one spike amplitude between the target and encoded value, which can be
considered as a quantization error due to the finite number of time steps. According to Eq. (8), our
method can theoretically encode the same number of activations as linear encoding method while
log-compressing the number of required time steps. Meanwhile, Eq. (8) serves as the core equation
for ANN-SNN conversion. We can rewrite it as follows:

T∑
t=1

βT−tSl
i[t] =

∑
j

wl
ij

T∑
t=1

βT−tSl−1
j [t] +

T∑
t=1

βT−tbli − ul
i[T ]

By comparing the above equation with Eq. (6), and noting that
∑

t β
T−tSl

i[t] ≥ 0, we can conclude:

Observation 1. Let Sl−1
j [t] ∼ al−1

j , and set wl
ij = ŵl

ij and bli = b̂li/
∑

t β
T−t, respectively. To reduce

encoding errors in layer l, the residual membrane potential ul
i[T ] should be minimized.

Building on this insight, we now identify the factors influencing ul
i[T ], as formalized in the following

theorem:
Theorem 1. Making ul

i[T ] < ϵ is equivalent to satisfying the following equation:

∀t0 ∈ {1, 2, · · · , T},

βT−t0+1ul
i[t0 − 1] +

∑
j

wl
ij

T∑
t=t0

βT−tSl−1
j [t] +

T∑
t=t0

βT−tbli < ϵ+

T∑
t=t0

θlβT−t (9)

The second term on the right-hand side of Eq. (9) represents the maximum value a spike train after
t0 can encode. This imposes constraints on both the subsequent input and the membrane potential
carried over from the preceding step (the left-hand side of the equation). Theorem 1 provides the
mathematical foundation for the next section, with its detailed derivation available in Appendix A.2.

4.2 INCORPORATING NEGATIVE SPIKES

Rueckauer et al. (2017) reported that large activation values in ANNs are rare, with most values
concentrated within a smaller range. This suggests that when mapped to weighted spike trains, the
majority of spikes will occur in the later time steps (as these spikes encode smaller values). As a
consequence, Eq. (9) becomes difficult to satisfy as t0 approaches T : the left-hand side contains a
large amount of input, while the right-hand side provides limited encoding capacity. This mismatch
ultimately results in an increase in ul

i[T ], leading to a further shift in the spike distribution.

To illustrate this more clearly, we have plotted the spike distribution in the first and last layers of
VGG-16 (in red) in Fig. 2, alongside the distribution of the average residual membrane potential
across all neurons. As shown, the spike distribution in the last layer shifts significantly toward
later time steps compared to the first layer, a phenomenon we refer to as the temporal coupling
of weighted spikes. Additionally, the residual membrane potential exhibits a distribution resem-
bling random noise, and our experimental results indicate that this leads to nearly random classifi-
cation performance. Therefore, a new neuron model is needed to enable effective computation with
weighted spikes.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6
time step

0

5

10

15

20

25

30

35

40

sp
ike

 p
ro

po
rti

on
 (%

) (a) spike distribution: first layer
plain
TSA
TSA + silent period

1 2 3 4 5 6
time step

0

5

10

15

20

25

30

35

40

sp
ike

 p
ro

po
rti

on
 (%

)

shifted

(b) spike distribution: last layer

0.2 0.4 0.6 0.8 1.0 1.2
residual membrane potentail

0

20

40

60

80

100

pr
ob

. d
en

sit
y

l = 1.0safe zone

(c) residual membrane potentail

Figure 2: (a) Spike distribution in the first layer of VGG-16. (b) Spike distribution in the last layer
of VGG-16. (c) Average residual membrane potential across all neurons in VGG-16. The red data
corresponds to the self-amplifying IF neuron model, the orange data corresponds to the TSA model,
and the green data further incorporates a one-step silent period.

Algorithm 1: The forward method of TSA
Input: input X of shape [BT, C, H, W], length of silent period L, spike amplitude θ
Output: output spike train S of shape [BT, C, H, W]
reshape and then pad X with zeros to shape [(T+L), B, C, H, W];
membrane potential M ← zeros like (X[0]), threshold v ← 1

2
θβL;

for 0 ≤ i ≤ L do
M ← βM +X[i]; /* silent period */

end
for i = 0 to T − 1 do

M ← βM +X[i+ L]; /* accumulate input */
S[i]← (M ≥ v).float()− (M ≤ −v).float() ; /* fire ternary spikes */
M ←M − 2v × S[i]; /* over firing & soft reset */

end

4.2.1 TERNARY SELF-AMPLIFYING NEURON MODEL

Based on the above analysis, our approach begins by encouraging spikes to be generated as early
as possible. The key idea is to lower the firing threshold and incorporate negative spikes into the
encoding scheme to correct the excess information caused by over-spiking.

We set the positive firing threshold to 1
2θ

l and introduce a negative threshold of− 1
2θ

l into the neuron
model, which triggers a negative spike when oli[t] falls below it. Notably, on the left side of Eq. (9),
this adjustment not only shifts the input spikes to earlier time steps, but also reduces ul

i[t0 − 1]. The
coefficient 1

2 is selected to confine both positive and negative membrane potential within a narrow
and balanced range. Given the above characteristics, we designate the coding method as the CSS
coding scheme and the neuron model as the TSA neuron.

Next, we establish the connection between the ANN and SNN using the proposed methods. Based
on Observation 1, we present the following theorem:

Theorem 2. Let Sl−1
j [t] ∼ al−1

j , wl
ij = ŵl

ij , and bli = b̂li/
∑

t β
T−t. Then Sl

i[t] ∼ ali, provided that∣∣ul
i[T ]

∣∣ < θl.

Note Sl
i[t] can now represent negative activations with negative spikes. To handle this, we constrain

the absolute value of ul
i[T ] and apply additional logic to zero out sequences that encode negative

values (a ReLU counterpart). The above theorem supposes that the input has been encoded and then
provides the method for output encoding. Next, we give the method to encode the network input:

Theorem 3. Let the input pixel value be a0i and β ≤ 2. By Initializing the membrane potential u0
i [0]

with a0
i/βT , the resulting spike train S0

i [t] ∼ a0i with T steps.

The proofs of the above two theorems can be found in Appendix A.2. By encoding input with
Theorem 3 and constraining ul

i[T ] of each hidden layer within the requirements of Theorem 2, an
ANN is then converted to a CSS-coded SNN.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.1 0.2 0.3 0.4 0.5 0.6 0.7
residual mem.

0

50

100

150

200

250

pr
ob

. d
en

sit
y

(a) resnet18 on cifar10
= 1.1
= 1.3
= 1.5
= 1.7
= 1.9

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
94.0

94.5

95.0

95.5

96.0

ac
c.

 (%
) (c) resnet18 on cifar10

0.1 0.2 0.3 0.4 0.5 0.6 0.7
residual mem.

0

20

40

60

80

100

120

140

160

180

pr
ob

. d
en

sit
y

(b) vgg16 on imagenet
= 1.1
= 1.3
= 1.5
= 1.7
= 1.9

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
74.0

74.5

75.0

75.5

76.0

ac
c.

 (%
) (d) vgg16 on imagenet

Figure 3: Impact of β on residual membrane potential and accuracy. Membrane potentials are
normalized by the spike amplitude. (a) and (b) show the residual membrane potential distributions
under different β. (c) and (d) show accuracy variations corresponding to different β.

4.2.2 ONE-STEP SILENT PERIOD

Although the TSA neuron effectively controls ul
i[T ] within an acceptable range, the results in Fig. 2

(orange) demonstrate that temporal coupling persists. Inspired by the layerwise processing manner
in TTFS coding (Stanojevic et al., 2022), we incorporate a one-step silent period into the TSA
neuron model. During this period, neurons integrate input and perform stepwise weighting but are
prohibited from firing. This one-step output delay introduces a new term, θlβT−t0−1 (i.e. spike
from t = t0 − 1), to the right-hand side of Eq. (9), making it easier to minimize ul

i[T ].

Since the input information is amplified by β after the silent period, the firing threshold is adjusted
to β

2 θ
l accordingly. Similarly, the membrane potential is reduced by βθl for reset. In Algorithm 1,

we provide pseudo code for the forward propagation process of TSA neurons. The mathematical
description of the TSA neuron model can be found in Appendix A.5.

The silent period method assigns distinct computation time windows to TSAs at different depths,
aligning with the temporal shift of the input spike distribution. This partially sacrifices synchronous
processing at each time step, leading to increased output latency. For an L-layer network, the output
layer will start to fire spikes only after L steps. However, with each layer operating in a pipelined
manner, the efficiency and accuracy gain outweighs the drawback of the increased latency. In Ap-
pendix A.4, we set up an ablation study to evaluate the effectiveness of this trade-off.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Determination of Spike Amplitude. We use a strategy similar to rate coding (Rueckauer et al.,
2017) to derive a suitable θl: after observing the ANN activations over a portion of the training set,
we calculate the 99.99th percentile pl of the activation distribution, and then set θl to pl

/
∑

t β
T−t.

This setting ensures that the vast majority of the activations remain below the maximum encod-
able value,

∑
t θ

lβT−t, and increases the network’s robustness to outlier activations. For ImageNet,
we further fine-tune the spike amplitude; additional details on this process can be found in Ap-
pendix A.3.

Choice of the Amplification Factor. To investigate the impact of β, we conducted experiments
using ResNet-18 on CIFAR-10 and VGG-16 on ImageNet. We plotted the distribution of the residual
membrane potential for different values of β (which serves as an indicator of temporal coupling) and
provided the corresponding accuracy curves in Fig. 3

As shown, accuracy generally increases and then decreases as β varies. As β increases, the weight
difference between spikes grows, causing input spikes to cluster at later time steps and increasing
the likelihood of temporal coupling. Conversely, a decrease in β requires a larger θl to provide
the same encoding capacity, which in turn leads to a higher quantization error. Notably, for β ≥
1.4, the network exhibits relatively stable performance, with the accuracy difference becoming less
pronounced as β increases.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Coding time steps and inference latency under different neural coding schemes, evaluated
on CIFAR-10 and ImageNet datasets.

Methods Architecture ANN
Accuracy

Coding
Scheme

Coding
Time Steps

Inference
Latency

SNN
Accuracy

C
IF

A
R

-1
0

FS-conversion (Stöckl & Maass, 2021) ResNet-20 91.58% FS 10 200 91.45%
TTRBR (Meng et al., 2022) ResNet-18 95.27% rate 128 128 95.18%
TSC (Han & Roy, 2020) VGG-16 93.63% TSC 512 512 93.57%
LC-TTFS (Yang et al., 2023) VGG-16 92.79% TTFS 50 800 92.72%
Exact mapping (Stanojevic et al., 2023) VGG-16 93.68% TTFS 64 1024 93.64%
Calibration (Li et al., 2021) VGG-16 95.72% rate 128 128 95.65%
OPI (Bu et al., 2022) VGG-16 94.57% rate 128 128 94.50%

CSS-SNN
ResNet-20 92.10%

CSS
12 32 92.06%

ResNet-18 95.24% 12 30 95.30%
VGG-16 95.89% 10 26 95.88%

Im
ag

eN
et

OPI (Bu et al., 2022) VGG-16 74.85% rate 256 256 74.62%
TSC (Han & Roy, 2020) VGG-16 73.49% TSC 1024 1024 73.33%
RMP-SNN Han et al. (2020) VGG-16 73.49% rate 2048 2048 72.78%
Calibration (Li et al., 2021) VGG-16 75.36% rate 256 256 74.23%
TSC (Han & Roy, 2020) ResNet-34 70.64% TSC 4096 4096 69.93%
CalibrationLi et al. (2021) ResNet-34 75.66% rate 256 256 74.61%
FS-conversion (Stöckl & Maass, 2021) ResNet-50 75.22% FS 10 500 75.10%
TTRBR (Meng et al., 2022) ResNet-50 76.02% rate 512 512 75.04%

CSS-SNN
VGG-16 75.34%

CSS
12 28 75.24%

ResNet-34 76.42% 14 48 76.22%
ResNet-50 80.85% 16 66 80.10%

Based on these observations, we set β to 1.5 for two key reasons: it lies near the midpoint of the
range, and more importantly, it allows for membrane potential amplification through simple shifting
and addition operations, which is energy-efficient and facilitates future hardware implementation.

5.2 OVERALL PERFORMANCE

In Table 2, we compared the time steps and inference latency under different coding schemes, which
reflect the throughput and latency of the network, respectively. Note all SNNs are converted from
full-precision ANNs to ensure a fair comparison. Furthermore, the accuracy of the ANNs utilized
in each work is also provided.

Reduction in Coding Time Steps. The coding time steps refer to the number of time steps required
to encode the activations into a spike train. This metric indicates how well the encoding scheme can
represent information within a given time frame and reflects the efficiency of the method.

For simpler classification tasks such as CIFAR-10, CSS coding scheme demonstrated nearly loss-
less conversion with a significant reduction in the number of required time steps. Compared to linear
coding schemes like rate coding, CSS reduces time steps by more than tenfold for both VGG-16 and
ResNet-18, while simultaneously reducing the conversion loss. While the FS coding scheme also
applied weighted spikes and required fewer time steps for ResNet-20, it experienced greater con-
version loss compared to our method. On the more complex ImageNet dataset, the higher precision
demands for encoding further highlighted the benefits of spike weighting. For example, Li et al.
(2021) reported a conversion error exceeding 1% on ResNet-34 with 256 time steps, whereas our
method achieved only 0.2% conversion loss with just 14 time steps. FS-coding achieved smaller
conversion loss for ResNet-50 with fewer time steps; however, this came at the cost of a latency
eight times greater than that of ours.

Reduction in Inference Latency. Inference latency refers to the time elapsed from the beginning
of input encoding to the receipt of the classification result, and is also measured in time steps. It
indicates how efficiently the encoding scheme transmits information through neural computation
across the network layers.

In CSS coding scheme, each layer of TSA neurons incorporates a one-step silent period, making the
inference latency equal to the sum of layer counts and coding time steps. In contrast, both TTFS
coding and FS coding require each layer to wait for the arrival of all inputs. While this approach fa-
cilitates lossless conversion, it completely sacrifices the synchronous processing capability of SNNs,
leading to increased output latency (i.e. the product of layer counts and coding time steps). For in-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Performance of Fast-SNN, Offset, and CSS on ImageNet after converting 3-bit VGG-16.
The results for both Fast-SNN (Hu et al., 2023) and Offset (Hao et al., 2023) are self-implemented
using their publicly available repositories, ensuring identical pre-conversion ANN accuracy.

Methods T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8

Offset (rate) 64.90%
(129 steps)

70.85%
(130 steps)

72.06%
(131 steps)

72.53%
(132 steps)

72.79%
(133 steps)

72.92%
(134 steps)

73.05%
(135 steps)

73.01%
(136 steps)

Fast-SNN (rate) 3.19%
(1 step)

52.74%
(2 steps)

68.13%
(3 steps)

71.26%
(4 steps)

72.21%
(5 steps)

72.64%
(6 steps)

72.87%
(7 steps)

72.97%
(8 steps)

CSS 2.87%
(17 steps)

68.53%
(18 steps)

72.81%
(19 steps)

73.25%
(20 steps)

73.23%
(21 steps)

73.24%
(22 steps)

73.23%
(23 steps)

73.24%
(24 steps)

stance, in the CIFAR-10 classification task, the inference latency reported by Stanojevic et al. (2023)
on VGG-16 is about 40 times that of our method. FS coding, as a nonlinear encoding scheme, per-
forms well in both coding steps and conversion loss, but its output latency remains a major weakness;
on ResNet-20, its latency exceeds that of CSS by over six times. Rate coding enables synchronous
processing, but its inference latency is constrained by the large number of coding time steps. In
the ImageNet classification task, for example, rate-coded ResNet-34 has a latency five times greater
than our method.

5.3 COMBINATION WITH QUANTIZED ANNS

SOTA performance SNNs (Hu et al., 2023; Hao et al., 2023) are typically achieved by converting
quantized ANNs, while still utilizing rate coding. To ensure that only the encoding scheme varies,
we convert ANNs with identical precision. Experiments were conducted using a 3-bit VGG-16 on
ImageNet, with the results presented in Table 3. T represents the number of coding time steps, and
the inference latency is given in round brackets. Note we set β to 2 for quantized networks as this
ensures the encoded values align well with the quantized activations. Additionally, the membrane
potential amplification can be achieved using only shifting operations.

Compared to Fast-SNN, our method achieves ANN-level accuracy with fewer time steps by lever-
aging weighted spikes. The IF neurons in Fast-SNN, which do not require a silent period, naturally
exhibit better output latency. In contrast, Offset improves accuracy with minimal time steps by cal-
ibrating the initial membrane potential of neurons. However, this comes at the cost of significantly
increased output latency, as each layer requires ρ time steps (with ρ = 8 for ImageNet, consistent
with the original paper) to determine how to calibrate the initial membrane potential. This per-layer
latency accumulates across the network, similarly to the silent period in our approach.

Theoretically, the benefits of our method become more pronounced with higher ANN bit precision
(as shown in Table 2), as spike weighting exponentially reduces the number of time steps. While
rate coding also perform well with reduced time steps, they rely heavily on low-bit quantization.
This introduces overhead in training and often sacrifices accuracy. CSS coding scheme provides
an alternative approach to achieving low time steps in SNNs without relying on aggressive quanti-
zation. Furthermore, our method can be seamlessly combined with quantized ANNs, enabling the
development of higher-performance SNNs.

5.4 ENERGY CONSUMPTION ANALYSIS

In this section, we estimate the energy consumption of our methods3, with the results summarized in
Table 4. The results show that the CSS-coded SNNs achieve at least a fivefold reduction in energy
consumption compared to the original ANN. TTFS (Stanojevic et al., 2023) coding demonstrates
extremely low energy consumption due to its theoretical minimum spike count. While our method
does not inherently exhibit sparse characteristics, the reduction in coding time steps mitigates this
disadvantage. By further compressing the number of time steps, our approach achieves a 10%
reduction in energy consumption compared to TTFS. Additionally, we include Fast-SNN (Hu et al.,
2023) as a strong baseline for (signed) rate coding. The results show that our method outperforms

3Energy consumption measurements were performed using the code from https://github.com/
iCGY96/syops-counter

9

https://github.com/iCGY96/syops-counter
https://github.com/iCGY96/syops-counter


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Energy consumption of SNNs on CIFAR-10.

Methods Arch. Accuracy T Latency SyOPs
(ACs) MACs Energy

Consumption

ANN VGG-11 93.82% N/A N/A 0 153.2M 0.7047mJ

CSS VGG-11 93.78% 8 19 0 132.4M 0.1191mJ

ANN VGG-16 95.88% N/A N/A 0 313.88M 1.4438mJ

TTFS⋆ VGG-16 93.53% 64 1024 120.53M 0 0.1085mJ
CSS VGG-16 95.84% 8 24 308.35M 0 0.2775mJ
CSS† VGG-16 95.14% 2 18 102.19M 0 0.0920mJ

ANN ResNet-18 95.25% N/A N/A 0 2.22G 10.21mJ

rate (Fast-SNN)† ResNet-18 95.42% 7 7 1.02G 12.42M 0.9751mJ
rate (Faset-SNN)† ResNet-18 95.23% 6 6 878.3M 10.65M 0.8395mJ

CSS† ResNet-18 95.31% 3 21 730.65M 1.84M 0.6660mJ
CSS† ResNet-18 95.24% 2 20 489.93M 1.91M 0.4497mJ

† The results from converting quantized ANNs.
⋆ Stanojevic et al. (2023) reported an average spike rate of 38% per neuron on VGG-16, which we used to calculate

the SyOPs and estimate the energy consumption.0 10 20 30 40 50 60 70 80
Inference latency

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

(a) ResNet-20 on CIFAR-10

w/o negative spikes
silent period steps: 0
siletn period steps: 1
siletn period steps: 2
siletn period steps: 3

w/ negative spikes
silent period steps: 1

0 20 40 60 80 100 120 140 160
Inference latency

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

 ResNet-34 on ImageNet

w/o negative spikes
silent period steps: 0
siletn period steps: 1
siletn period steps: 2
siletn period steps: 3
siletn period steps: 4

w/ negative spikes
silent period steps: 1

Figure 4: Inference latency with and without negative spikes. The solid line represents the results
with negative spikes, while the dashed line indicates the results without negative spikes. The lines
of different colors correspond to different lengths of the silent period as shown in the legend.

Fast-SNN with more than a 30% reduction in energy consumption, while maintaining comparable
accuracy.

5.5 THE ROLE OF NEGTIVE SPIKES

In this section, we validate the role of negative spikes in achieving low-latency nonlinear encoding
through an ablation study. Experiments were conducted using ResNet-34 on ImageNet, where we
gradually increased the silent period length from zero, in the absence of negative spikes. The results,
shown in Fig. 4, reveal that a silent period of at least four steps is required to match the performance
gains introduced by negative spikes. This results in a nearly 100-step increase in inference latency.
The introduction of negative spikes and TSA neurons in the CSS coding scheme is crucial for break-
ing temporal coupling, distinguishing our approach from other coding schemes that use weighted
spikes (Rueckauer & Liu, 2021; Stöckl & Maass, 2021; Kim et al., 2018).

6 CONCLUSION AND DISCUSSION

In this work, we compress the coding time steps by assigning weights to spikes, enabling each spike
to carry more information. We also introduce negative spikes to break temporal coupling, effectively
reducing inference latency. The resulting CSS encoding scheme enhances the throughput, inference
speed and energy efficiency of converted SNNs, while minimizing conversion loss.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Tong Bu, Jianhao Ding, Zhaofei Yu, and Tiejun Huang. Optimized potential initialization for low-
latency spiking neural networks, 2022.

Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-snn
conversion for high-accuracy and ultra-low-latency spiking neural networks, 2023.

Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
energy-efficient object recognition. International Journal of Computer Vision, 113(1):54–66,
May 2015. ISSN 1573-1405. doi: 10.1007/s11263-014-0788-3. URL https://doi.org/
10.1007/s11263-014-0788-3.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks, 2021.

Peter U. Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing.
In 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2015. doi: 10.
1109/IJCNN.2015.7280696.

Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. Optimal ann-snn conversion for fast
and accurate inference in deep spiking neural networks, 2021.

Wenzhe Guo, Mohammed E. Fouda, Ahmed M. Eltawil, and Khaled Nabil Salama. Neu-
ral coding in spiking neural networks: A comparative study for robust neuromorphic sys-
tems. Frontiers in Neuroscience, 15, 2021. ISSN 1662-453X. doi: 10.3389/fnins.
2021.638474. URL https://www.frontiersin.org/journals/neuroscience/
articles/10.3389/fnins.2021.638474.

Bing Han and Kaushik Roy. Deep spiking neural network: Energy efficiency through time based
coding. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), Com-
puter Vision – ECCV 2020, pp. 388–404, Cham, 2020. Springer International Publishing.

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency spiking neural network, 2020.

Zecheng Hao, Jianhao Ding, Tong Bu, Tiejun Huang, and Zhaofei Yu. Bridging the gap between
anns and snns by calibrating offset spikes, 2023.

Yangfan Hu, Qian Zheng, Xudong Jiang, and Gang Pan. Fast-snn: Fast spiking neural network by
converting quantized ann. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45
(12):14546–14562, 2023. doi: 10.1109/TPAMI.2023.3275769.

Jaehyun Kim, Heesu Kim, Subin Huh, Jinho Lee, and Kiyoung Choi. Deep neural networks with
weighted spikes. Neurocomputing, 311:373–386, 2018. ISSN 0925-2312. doi: https://doi.org/
10.1016/j.neucom.2018.05.087. URL https://www.sciencedirect.com/science/
article/pii/S0925231218306726.

Youngeun Kim, Yuhang Li, Hyoungseob Park, Yeshwanth Venkatesha, Anna Hambitzer, and
Priyadarshini Panda. Exploring temporal information dynamics in spiking neural networks, 2022.

Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik
Roy. Enabling spike-based backpropagation for training deep neural network architectures. Fron-
tiers in Neuroscience, 14, February 2020. ISSN 1662-453X. doi: 10.3389/fnins.2020.00119.
URL http://dx.doi.org/10.3389/fnins.2020.00119.

Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using
backpropagation, 2016. URL https://arxiv.org/abs/1608.08782.

Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ann: Towards
efficient, accurate spiking neural networks calibration, 2021.

11

https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1007/s11263-014-0788-3
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.638474
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.638474
https://www.sciencedirect.com/science/article/pii/S0925231218306726
https://www.sciencedirect.com/science/article/pii/S0925231218306726
http://dx.doi.org/10.3389/fnins.2020.00119
https://arxiv.org/abs/1608.08782


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qingyan Meng, Shen Yan, Mingqing Xiao, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo.
Training much deeper spiking neural networks with a small number of time-steps. Neu-
ral Networks, 153:254–268, 2022. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.
2022.06.001. URL https://www.sciencedirect.com/science/article/pii/
S0893608022002064.

Bodo Rueckauer and Shih-Chii Liu. Conversion of analog to spiking neural networks using sparse
temporal coding. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp.
1–5, 2018. doi: 10.1109/ISCAS.2018.8351295.

Bodo Rueckauer and Shih-Chii Liu. Temporal pattern coding in deep spiking neural networks. In
2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2021. doi: 10.1109/
IJCNN52387.2021.9533837.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Con-
version of continuous-valued deep networks to efficient event-driven networks for image classifi-
cation. Frontiers in Neuroscience, 11, 2017. ISSN 1662-453X. doi: 10.3389/fnins.2017.00682.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: Vgg and residual architectures, 2019. URL https://arxiv.org/abs/
1802.02627.

Ana Stanojevic, Stanisław Woźniak, Guillaume Bellec, Giovanni Cherubini, Angeliki Pantazi, and
Wulfram Gerstner. An exact mapping from relu networks to spiking neural networks, 2022. URL
https://arxiv.org/abs/2212.12522.

Ana Stanojevic, Stanisław Woźniak, Guillaume Bellec, Giovanni Cherubini, Angeliki Pantazi, and
Wulfram Gerstner. High-performance deep spiking neural networks with 0.3 spikes per neuron,
2023. URL https://arxiv.org/abs/2306.08744.

Christoph Stöckl and Wolfgang Maass. Optimized spiking neurons classify images with high ac-
curacy through temporal coding with two spikes, 2021. URL https://arxiv.org/abs/
2002.00860.

Aboozar Taherkhani, Ammar Belatreche, Yuhua Li, Georgina Cosma, Liam P. Maguire, and T.M.
McGinnity. A review of learning in biologically plausible spiking neural networks. Neu-
ral Networks, 122:253–272, 2020. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.
2019.09.036. URL https://www.sciencedirect.com/science/article/pii/
S0893608019303181.

Xiangwen Wang, Xianghong Lin, and Xiaochao Dang. Supervised learning in spiking neural
networks: A review of algorithms and evaluations. Neural Networks, 125:258–280, 2020.
ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2020.02.011. URL https://www.
sciencedirect.com/science/article/pii/S0893608020300563.

Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Bulsara, and Ngan Le. Spiking neural networks and
their applications: A review. Brain Sci, 12(7), June 2022.

Qu Yang, Malu Zhang, Jibin Wu, Kay Chen Tan, and Haizhou Li. Lc-ttfs: Towards lossless network
conversion for spiking neural networks with ttfs coding, 2023. URL https://arxiv.org/
abs/2310.14978.

12

https://www.sciencedirect.com/science/article/pii/S0893608022002064
https://www.sciencedirect.com/science/article/pii/S0893608022002064
https://arxiv.org/abs/1802.02627
https://arxiv.org/abs/1802.02627
https://arxiv.org/abs/2212.12522
https://arxiv.org/abs/2306.08744
https://arxiv.org/abs/2002.00860
https://arxiv.org/abs/2002.00860
https://www.sciencedirect.com/science/article/pii/S0893608019303181
https://www.sciencedirect.com/science/article/pii/S0893608019303181
https://www.sciencedirect.com/science/article/pii/S0893608020300563
https://www.sciencedirect.com/science/article/pii/S0893608020300563
https://arxiv.org/abs/2310.14978
https://arxiv.org/abs/2310.14978


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROOFS OF EQUATIONS

Proof of Eq. (8) (A similar derivation leads to Eq. (5))

ul
i[T ] =

∑
j

wl
ij

T∑
t=1

βT−tSl−1
j [t] +

T∑
t=1

βT−tbli −
T∑

t=1

βT−tSl
i[t] (A1)

Proof. Starting with the initial condition ul
i[0] = 0 and Eq. (7), we can write:

ul
i[1] = zli[1]− Sl

i[1]

Next, we derive the expression for ul
i[2] by substitute the above into Eq. (7):

ul
i[2] = β(zli[1]− Sl

i[1]) + zli[2]− Sl
i[2]

We can generalize this process to iteratively compute the membrane potential up to t = T :

ul
i[T ] =

T∑
t=1

βT−t(zli[t]− Sl
i[t])

substituting zli[t] from Eq. (4) and rearranging the terms, we get:

ul
i[T ] =

T∑
t=1

βT−t(
∑
j

wl
ijS

l−1
j [t] + bli − Sl

i[t])

Reorganizing the terms by summation yields:

ul
i[T ] =

∑
j

wl
ij

T∑
t=1

βT−tSl−1
j [t] +

T∑
t=1

βT−tbli −
T∑

t=1

βT−tSl
i[t]

A.2 PROOFS OF THEOREMS

Theorem 1. Making ul
i[T ] < ϵ is equivalent to satisfying the following equation:

∀t0 ∈ {1, 2, · · · , T},

βT−t0+1ul
i[t0 − 1] +

∑
j

wl
ij

T∑
t=t0

βT−tSl−1
j [t] +

T∑
t=t0

βT−tbli < ϵ+

T∑
t=t0

θlβT−t (A2)

Proof. We first prove the forward direction. Given that ul
i[T ] < ϵ, we can express it using Eq. (7)

and Eq. (4) as follows:

βul
i[T − 1] +

∑
j

wl
ijS

l−1
j [T ] + bli < ϵ+ θl (A3)

Continue the above process, and we have:

β2ul
i[T − 2] +

∑
j

wl
ijβS

l−1
j [T − 1] + βbli +

∑
j

wl
ijS

l−1
j [T ] + bli < ϵ+ θl + βθl (A4)

The above process can be repeated until we obtain an equation involving ul
i[0]. The left-hand side

of each equation regarding ul
i[t], where t ∈ {1, 2, · · · , T}, can be organized to demonstrate that the

forward reasoning is valid.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Then we proceed to prove the backward direction. For any t0 ∈ {1, 2, · · · , T}, by iteratively updat-
ing the membrane potential using Eq. (7) from t = t0 until t = T , and substitute zli[t] with Eq. (4),
we can get:

ul
i[T ] = βT−t0+1ul

i[t0 − 1] +
∑
j

T∑
t=t0

wl
ijβ

T−tSl−1
j [t] +

T∑
t=t0

βT−tbli −
T∑

t=t0

βT−tSl
i[t] (A5)

Note that
∑

t β
T−tSl

i[t] ≤
∑

t θ
lβT−t. Then we can write:

ul
i[T ] ≤ βT−t0+1ul

i[t0 − 1] +
∑
j

wl
ij

T∑
t=t0

βT−tSl−1
j [t] +

T∑
t=t0

βT−tbli −
T∑

t=t0

θlβT−t

< ϵ

(A6)

Theorem 2. Let Sl−1
j [t] ∼ al−1

j , wl
ij = ŵl

ij , and bli = b̂li/
∑

t β
T−t. Then Sl

i[t] ∼ ali, provided that∣∣ul
i[T ]

∣∣ < θl.

Proof. Eq. (8) can be organized into the following form:

T∑
t=1

βT−tSl
i[t] =

∑
j

wl
ij

T∑
t=1

βT−tSl−1
j [t] +

T∑
t=1

βT−tbli − ul
i[T ] (A7)

Given that Sl−1
j [t] ∼ al−1

j , we use σl−1
j to denote the difference between the encoded value and the

activation, defined as σl−1
j =

∑
t β

T−tSl−1
j [t] − al−1

j . Substituting al−1
j and σl

i into Eq. (A7), we
can write:

T∑
t=1

βT−tSl
i[t] =

∑
j

wij(a
l−1
j + σl−1

j ) +

T∑
t=1

βT−tbli − ul
i[T ]

=
∑
j

ŵij(a
l−1
j + σl−1

j ) + b̂li − ul
i[T ]

=
∑
j

ŵija
l−1
j + b̂li − ul

i[T ] +
∑
j

ŵijσ
l−1
j

(A8)

According to Definition 1, we have −θl < σl−1
j < θl. Considering that θl is typically kept small to

provide fine-grained encoding and ŵij is generally symmetrically distributed around zero, we can ig-
nore the last term on the right-hand side of the equation. Since Sl

i[T ] can encode negative values, we
implemented a ReLU counterpart to zero out these spike sequences, corresponding to the max(·, 0)
operation in Eq. (6). Combining Eq. (A8) with the condition

∣∣ul
i(T )

∣∣ < θl and Definition 1, we can
conclude that Sl

i[t] ∼ ali.

Theorem 3. Let the input pixel value be a0i and β ≤ 2. By Initializing the membrane potential u0
i [0]

with a0
i/βT , the resulting spike train S0

i [t] ∼ a0i with T steps.

Proof. We proof this theorem by mathematical induction. Let ã0i.T and m0
T denote the encoded value

and the maximum encodable value, respectively, i.e. ã0i,T =
∑

t β
T−tS0

i [t], m
0
T =

∑
t θ

0βT−t.

step 1. For T = 1, it’s obvious that:{∣∣ã0i,0 − a0i
∣∣ < θ0 , a0i < m0

0

ã0i,0 = m0
0 , a0i ≥ m0

0

(A9)

step 2. Assume the statement is true for T = t0, i.e. we have:{∣∣ã0i,t0 − a0i
∣∣ < θ0 , a0i < m0

t0

ã0i,t0 = m0
t0 , a0i ≥ m0

t0

(A10)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Note the relationship between θ0 and m0
t0 : θ0 =

m0
t0

1+β+···+βt0−1 . Then we prove that for T = t0+1,
Eq. (A10) still holds.

case (1). For a0i < m0
t0+1: Consider the first t0 steps. It can be observed that this process is

equivalent to encoding a0
i/β with m0

t0 = 1+β+···+βt0−1

1+β+···+βt0
m0

t0+1. Then we have:
∣∣∣∣ã0i,t0 − a0i

β

∣∣∣∣ < m0
t0+1

1 + β + · · ·+ βt0
,
a0i
β

< m0
t0

ã0i,t0 = m0
t0 ,

a0i
β
≥ m0

t0

(A11)

For a0
i

β < m0
t0 , we can write:

β

∣∣∣∣ã0i,t0 − a0i
β

∣∣∣∣ < βm0
t0+1

1 + β + · · ·+ βt0
<

2m0
t0+1

1 + β + · · ·+ βt0
= 2θ0 (A12)

For a0
i

β ≥ m0
t0 :

β

∣∣∣∣ã0i,t0 − a0i
β

∣∣∣∣ = a0i −
1 + β + · · ·+ βt0−1

1 + β + · · ·+ βt0
m0

t0+1

≤ m0
t0+1 −m0

t0+1

1 + β + · · ·+ βt0−1

1 + β + · · ·+ βt0
= θ0

(A13)

According to Theorem 1, β
∣∣∣ã0i,t0 − a0

i

β

∣∣∣ < 2θ0 is equivalent to
∣∣u0

i [t0 + 1]
∣∣ < θ0 (as there’s neither

input nor bias term). Also note
∣∣u0

i [t0 + 1]
∣∣ = ∣∣ã0i,t0+1 − a0i

∣∣. Then we have
∣∣ã0i,t0+1 − a0i

∣∣ < θ0.

case (2). For a0i ≥ m0
t0+1:

a0i
β
≥ 1

β
m0

t0+1 >
1 + β + · · ·+ βt0−1

1 + β + · · ·+ βt0
m0

t0+1 = m0
t0 (A14)

Then we have:

β

∣∣∣∣ã0i,t0 − a0i
β

∣∣∣∣ = a0i − β
1 + β + · · ·+ βt0−1

1 + β + · · ·+ βt0
m0

t0+1 ≥
m0

t0+1

1 + β + · · ·+ βt0
= θ0 (A15)

which means the neuron will fire a spike at t = t0+1, leading to ã0i,t0+1 = m0
t0+1. Combining case

(1) and (2), and we have: {∣∣ã0i,t0+1 − a0i
∣∣ < θ0 , a0i < m0

t0+1

ã0i,t0+1 = m0
t0+1 , a0i ≥ m0

t0+1

(A16)

step 3. By the principle of mathematical induction, ∀T ∈ N⋆:{∣∣ã0i,T − a0i
∣∣ < θ0 , a0i < m0

T

ã0i,T = m0
T , a0i ≥ m0

T

(A17)

Considering our initialization strategy for θ̃0 and subsequent data-based amplification, we can al-
ways ensure that a0i < m0

T . Thus,
∣∣ã0i,T − a0i

∣∣ < θ0, which means S0
i [t] ∼ a0i .

A.3 SPIKE AMPLITUDE ADJUSTMENT

Eq. (9) suggests that increasing θl can relax the constraints on the input. Let θ̃l denote the initial
spike amplitude. After getting the initialized value, we use a subset of the training set to perform
forward propagation for the CSS-based SNN, and then calculate the 99.9th percentile ul of the
distribution of ul

i[T ] for each layer l. If ul exceeds θl, we amplify θl by a factor sl. Note that
increasing θl raises the firing threshold at the same time, making the change in ul

i[T ] a complex
nonlinear process. To determine a suitable sl, we simplify the problem by assuming that ul

i[T ]

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25
Coding time steps

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

(a) Preformance on CIFAR-10

w/o silent period
VGG-16
ResNet-20

w/ silent period
VGG-16
ResNet-20

0 5 10 15 20 25 30 35
Inference latency

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

(b) Preformance on CIFAR-10

w/o silent period
VGG-16
ResNet-20

w/ silent period
VGG-16
ResNet-20

0 10 20 30 40 50
Coding time steps

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

(c) Preformance on ImageNet

w/o silent period
VGG-16
ResNet-34

w/ silent period
VGG-16
ResNet-34

0 10 20 30 40 50
Inference latency

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

(d) Preformance on ImageNet

w/o silent period
VGG-16
ResNet-34

w/ silent period
VGG-16
ResNet-34

Figure 5: Trade-off between the coding time steps and inference latency. The dashed line represents
the results obtained without the silent period, while the solid line represents the results achieved
after incorporating the silent period. (a) Coding time steps on CIFAR-10. (b) Inference latency on
CIFAR-10. (c) Coding time steps on ImageNet. (d) Inference latency on ImageNet.

accumulates uniformly over time. Thus, if the increment of θl is ∆θl, then ul
i[T ] will decrease by

∆θl
∑

t β
T−t. Accordingly, sl is determined using the following equation:

sl = 1 +



ul − θl∑
t β

T−t
, ul − θl > 0.05 ·

∑
t

βT−t

ul − θl − 0.01 ·
∑

t β
T−t∑

t β
T−t

+ 0.04 , 0.05 ·
∑
t

βT−t ≥ ul − θl > 0.01 ·
∑
t

βT−t

4 · (ul − θl)∑
t β

T−t
, 0.01 ·

∑
t

βT−t ≥ ul − θl > 0

(A18)
To ensure that the spike amplitude can still be effectively adjusted when ul slightly exceeds θl, we
increase the value of sl for this range.

Note that an increase in θl makes the decoupling conditions for layer l + 1 harder to meet4. Con-
sequently, in deeper layers, the initial spike amplitude must be amplified by a large factor. This
requires a sufficiently small θ̃l to preserve adequate encoding granularity after scaling, which in turn
necessitates a larger number of time steps. We address this issue by delaying the TSA output, which
eliminates the need for θ̃l amplification.

It is important to note that this adjustment lacks strict mathematical support and serves as a heuristic
for fine-tuning the spike amplitude. The introduction of negative spikes remains the core mechanism
for breaking temporal coupling.

A.4 CODING TIME STEPS VS. INFERENCE LATENCY

According to the analysis in Appendix A.3, relying solely on θl amplification to break temporal cou-
pling would require smaller θ̃l in deeper layers, which leads to an increase in coding time steps. To
address this, we introduce a one-step silent period to achieve a trade-off between coding time steps

4In Eq. (9), the spike amplitude of the previous layer is included in Sl−1
j [t].

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

and inference latency. In this section, we conducted an ablation study to assess the effectiveness
of this approach. We performed classification tasks on CIFAR-10 using VGG-16 and ResNet-20,
and on ImageNet using VGG-16 and ResNet-34. Fig. 5 (a) and (c) present the relationship between
coding time steps and accuracy, while Fig. 5 (b) and (d) show the relationship between inference
latency and accuracy.

The experimental results indicate that even with no silent period, deeper networks experience larger
latency due to increased coding time steps. This can also be understood as neurons in each layer
require time to accumulate membrane potential before firing. Thus, incorporating a silent period
has a limited effect on increasing inference latency, but plays a significant role in reducing coding
time steps. For example, in ResNet-20 on CIFAR-10, the silent period increased latency from 20
to 30 steps but halved the coding time steps, greatly improving throughput. This effect becomes
more pronounced with increased network depth or dataset scale. For instance, with ResNet-34 on
ImageNet, the silent period added only about 5 steps to inference latency while reducing coding
time steps by approximately 30 steps. Overall, incorporating the silent period effectively reduces
the required number of time steps for encoding, substantially improving throughput with minimal
impact on latency.

It is important to note that although the requirement ofTheorem 2 can be satisfied by amplitude
adjustment on training set, this does not ensure optimal performance on the test set. By contrast,
silent period provides a data-independent approach to break temporal coupling, resulting in more
stable and consistent performance improvements.

A.5 MATHEMATICAL DESCRIPTION OF THE TSA NEURON

To generalize the representation, let Ts denote the length of the silent period. For a TSA neuron in the
l-th layer, when the time step t ∈ {1, 2, . . . , Tsl}, the membrane potential remains ul

i[t] = ul
i[0] = 0,

and no spikes are generated. After this period, the neuron processes inputs in cycles of length T+Ts.
Let T k

a denote the start of the k-th cycle, i.e. T k
a = Tsl + k(Ts + T ) + 1, and let T k

b denote the
end of the cycle, i.e. T k

b = Tsl + (k + 1)(Ts + T ), with k being a natural number. Without loss of
generality, we consider the case where t ∈ {T k

a , T
k
a + 1, . . . , T k

b }.
The set of its spike times can be expressed as follows:

Fl
i =

{
tl,fi

∣∣∣∣ ∣∣∣oli[tl,fi ]
∣∣∣ ≥ θlβTs

2
, tl,fi ∈ {T

k
a + Ts, T

k
a + Ts + 1, · · · , T k

b }
}

(A19)

The spike sequence it emits, Sl
i[t], can then be written as:

Sl
i[t] =

∑
tl,fi ∈Fl

i

sgn
(
oli[t

l,f
i ]

)
θlδ[t− tl,fi ] (A20)

where δ[·] denotes an unit impulse, sgn(·) is the sign function and θl is the spike amplitude. The
update process of the membrane potential can be expressed as follows:

ul
i[t] = βul

i[t− 1] + zli[t]− βTsSl
i[t] (A21)

where zli[t] denotes the integrated inputs:

zli[t] =
∑
j

wl
ijS

l−1
j [t] + bli (A22)

A.6 PSEUDO CODE FOR CONVERSION PROCESS

See Algorithm 2. The spike amplitude for each layer is determined using the method outlined in
Section 4.2.1. Note that this value is absorbed into the weights and bias, so after conversion, the spike
amplitudes for TSA neurons are all normalized to 1. For data-based spike amplitude adjustment, we
first complete the above conversion process using the initial spike amplitudes. Then, based on the
residual membrane potentials observed in the resulting SNN, we update the spike amplitudes. These
updated values are then used to re-convert the ANN. The process can be repeated as may times as
needed.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 2: Algorithm for ANN-SNN conversion

Input: ANN model fA(Ŵ , b̂), encode time steps T , amplification factor β, spike amplitude θl

for each layer l, total layer number L
Output: SNN models fS(W , b)
reshape and pad X to [T, B, C, H, W] with zeros to shape [(T+L), B, C, H, W];
membrane potential M ← zeros like (X[0]), threshold v ← 1

2θβ
L;

set CSS encoder for the input layer; /* see Theorem 3 */
for 1 ≤ l ≤ L do

W l ← θl−1

θl Ŵ l; /* norms θl in SNN to 1 */

bl ← 1∑T−1
t=0 βtθl

b̂l;
replace ReLU activation with TSA and ReLU counterpart.

end

A.7 IMPLEMENTATION OF THE RELU COUNTERPART

In the actual implementation, we fuse the ReLU counterpart into the TSA neuron model to speed up
program execution. We refer to this model as TSA-ReLU neuron. Below, we continue the notation
from Appendix A.5 to present the mathematical model of TSA-ReLU. Without loss of generality,
we consider the case where t ∈ {T k

a , T
k
a + 1, . . . , T k

b }. We use hl
i[t] and gli[t] to represent the

accumulated input and output of TSA-ReLU, respectively:

hl
i[t] =

∑
j

wl
ij

t∑
τ=Tk

a

βt−τSl−1
j [τ ] +

max(t,Tk
a +T )∑

τ=Tk
a

βt−τ bli

gli[t] =

t∑
τ=min(Tk

a +Ts,t)

βt−τSl
i[τ ]

(A23)

Then we set oli[t] according to the following equation:

oli[t] =


hl
i[t]− gli[t] , hl

i[t] ≥ 0, t ≥ T k
a + Ts

− gli[t] , hl
i[t] < 0, t ≥ T k

a + Ts

0 , t < T k
a + Ts

(A24)

The firing condition of TSA-ReLU is the same as that of TSA, and is given by Eqs. (A19) and (A20).

18


	Introduction
	Related Work
	Preliminaries
	Spiking Neurons
	ANN-SNN Conversion

	Methods
	Assigning Weights to Spikes
	Incorporating Negative Spikes
	Ternary Self-Amplifying Neuron Model
	One-Step Silent Period


	Experiments
	Experimental Setup
	Overall Performance
	Combination with Quantized ANNs
	Energy Consumption Analysis
	The Role of Negtive Spikes

	Conclusion and Discussion
	Appendix
	Proofs of Equations
	Proofs of Theorems
	Spike Amplitude Adjustment
	Coding Time Steps vs. Inference Latency
	Mathematical Description of the TSA Neuron
	Pseudo Code for Conversion Process
	Implementation of the ReLU Counterpart


