
Catch It! Learning to Catch in Flight with Mobile
Dexterous Hands

Anonymous Author(s)
Affiliation
Address
email

Abstract: Catching objects in flight (i.e., thrown objects) is a common daily skill1

for humans, yet it presents a significant challenge for robots. This task requires a2

robot with agile and accurate motion, a large spatial workspace, and the ability to3

interact with diverse objects. In this paper, we build a mobile manipulator com-4

posed of a mobile base, a 6-DoF arm, and a 12-DoF dexterous hand to tackle such5

a challenging task. We propose a two-stage reinforcement learning framework to6

efficiently train a whole-body-control catching policy for this high-DoF system in7

simulation. The objects’ throwing configurations, shapes, and sizes are random-8

ized during training to enhance policy adaptivity to various trajectories and object9

characteristics in flight. The results show that our trained policy catches diverse10

objects with randomly thrown trajectories, at a high success rate of about 80% in11

simulation, with a significant improvement over the baselines. The policy trained12

in simulation can be directly deployed in the real world with onboard sensing13

and computation, which achieves catching sandbags in various shapes, randomly14

thrown by humans.15

Keywords: Mobile Manipulation, Reinforcement Learning, Catching Objects in16

Flight17

1 Introduction18

Humans possess an innate ability to catch thrown objects, a skill that is crucial not only in every-19

day activities but also in specialized contexts such as athletic sports. The incorporation of similar20

capabilities in robotic systems has the potential to revolutionize human-robot interaction, particu-21

larly in scenarios that involve dynamic handovers. By enabling robots to adeptly perform agile and22

long-distance catching maneuvers, we can significantly enhance operational efficiency in various ap-23

plications. Such advancements allow robots to facilitate object transfers between distant locations,24

thereby completing tasks within the short airborne duration of the objects.25

However, existing research on such agile manipulation has notable limitations. Some studies omit26

mobile platforms [1, 2, 3, 4], restricting the workspace to catch distant objects, while others lack27

dexterous hands [5, 6], limiting interaction with diverse objects. In contrast, we develop a mobile28

manipulator with a dexterous hand, expanding the workspace and adapting to diverse objects.29

There are several challenges to enable a mobile manipulator with a dexterous hand to catch objects30

in flight: (i) accurate and agile whole-body control: the mobile base and the arm must coordinate31

to make the arm’s end-effector move to the object in flight precisely while the dexterous hand needs32

to grasp just in time. It also requires agile and real-time movement because the overall execution33

period only lasts for about 2s, which is the object’s flying time in the air. (ii) high-dimensional action34

space: the system, comprising three components, presents a large action space, which complicates35

the optimization of the control policy. (iii) randomly thrown and diverse objects: objects are thrown36

from random positions with random velocities and vary in shapes, which demands a highly adaptive37

control policy.38

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.



(a)

(b)

(c)

Figure 1: (a) Sim2Real Catching Motions. (b) System Overview: Our system comprises a mobile
base, a 6-DoF arm, and a 16-DoF hand, whose goal is to catch objects thrown randomly by humans.
(c) Two-Stage RL Framework: We use two consecutive proprioception Ot,t−1 as the input.

In this work, we propose Catch It!, a learning-based method that leverages reinforcement learning39

(RL) to learn a whole-body control policy to catch objects in flight in simulation, which can also be40

used to perform sim-to-real (sim2real) transfer on a real robot. The key technical contributions of41

Catch It! are summarized as follows:42

1. Whole-Body Control for Mobile Dexterous Catch: We train a unified control policy for43

the base, arm, and hand to be controlled simultaneously. It enables them to work together44

seamlessly for coordinated, agile, and accurate objects catching skills.45

2. Two-Stage RL Framework: To deal with the high-dimensional action space, we intro-46

duce a model-free RL framework that divides the object-catching task into two subtasks,47

enhancing training efficiency by focusing on different components in each subtask.48

3. Sim2Real for Mobile Dexterous Catch: We trained the control policy in simulation with49

careful design to ensure physical and kinematic alignment with the real-world robot. Using50

sim2real techniques, we successfully deployed our catching policy on the real robot.51

2 System Setup52

2.1 Task Description53

Our goal is to train a mobile manipulator to catch various objects thrown randomly by humans.54

Catching objects in flight involves approaching the object with the palm and grasping it stably,55

which can be divided into two subtasks: (i) The hand needs to track and reach the object. During56

this phase, only the base and arm are controlled; the hand remains in its initial position. We name57

this subtask “tracking task”. (ii) When the object is about to be reached (i.e., near the palm), the hand58

needs to grasp the object. Meanwhile, the base and arm are fine-tuned to achieve optimal grasping59

position. We name this subtask “catching task”. In the tracking task, if the palm touches the objects60

in flight, we consider it as a tracking success. In the catching task, if the object keeps being held in61

hand until the episode’s maximum time, which is set to 2.5s, we consider it a catching success.62

2.2 State and Action Space63

The state space and the action space are shown in Fig. 1b and the details are explained in A.3.64

Note that we fix 4 hand joints to reduce the space complexity, improving training efficiency while65

ensuring graspability. During the tracking task, hand states and actions are excluded.66

2



Figure 2: (a): Object Set Overview. (i) Objects in training; (ii) Objects in evaluation; (iii) Objects
in the real world; (b) Random Throwing Trajectory Visualization; (c): Training Curves. The
blue, orange, and green curves represent the two-stage (T.S.), two-stage without arm’s roll (T.S. w/o
AR), and one-stage (O.S.) methods. The first row corresponds to the episode rewards and success
rates for the tracking task, while the second row shows the same metrics for the catching task.

2.3 System Setup67

We construct a mobile manipulator system, as depicted in Fig 1 (b), which is similar to [7] except68

for a dexterous hand. The details of our real robot system are in A.1 (b). In simulation, we choose69

Mujoco [8] as our simulation environment and use sw2urdf1 to build a URDF/MJCF model that70

mirrors the real robot. For each component of the robot, we develop the PID controller and realize71

its kinematics respectively. For the arm, we implement its inverse kinematics (ik) to control the joint72

positions from its end-effector’s expected pose.73

3 Learning Mobile Dexterous Catching Policies74

3.1 Two-Stage Reinforcement Learning75

Training the whole-body control policy from scratch to catch objects in flight is inefficient due to76

the complex dynamics and high-dimensional action space. Thus, our method Catch It! leverages a77

two-stage reinforcement learning (RL) framework to train the catching policy more efficiently. As78

described in Sec. 2.1, we first train the control policies for the base and arm in the tracking task.79

Then in the subsequent catching task, we train the hand’s control policy while fine-tuning the base80

and arm’s policy from the tracking task, to achieve a better grasping position. In this way, the control81

policy of the base and arm is pre-trained in the tracking task before starting the catching task, which82

gives them an initial ability to track and reach the object. Additionally, since the high-dimensional83

12-DoF hand movements are unnecessary when the object is distant, fixing the hand in a neutral84

position during the tracking task training enhances training efficiency. The two-stage RL process is85

shown in Fig. 1 (c), with Proximal Policy Optimization (PPO) [9] used to train the neural network.86

3.2 Reward Design87

Careful reward design in RL is the key to train a robust policy successfully. In both tasks, we reward88

the policy approaching the object and the orientation alignment between the palm and object. We89

also give a high reward for the the palm touching the object. Finally, we discourage excessive motion90

via penalizing policy output, and joint limit violation. The reward details are shown in A.2.91

4 Experiments92

4.1 Thrown Object Settings93

We use diverse objects during training, evaluation and real-world deployment, as depicted in Fig. 294

(a). As shown in Fig 2 (b), we randomize the initial positions and velocities of the objects in each95

1https://github.com/ros/solidworks_urdf_exporter

3

https://github.com/ros/solidworks_urdf_exporter


Track S.R. (%) Bowls Bottles Win-Cups Cups Breads

T.S. w/o A.R. 88±4 92±3 90±5 92±5 91±4
T.S. (ours) 92±3 90±4 88±3 94±5 95±4
Catch S.R. (%) Bowls Bottles Win-Cups Cups Breads

O.S. 22±2 10±3 6±2 13±2 15±3
T.S. (ours) 84±5 78±6 65±3 80±4 80±3

(a)

Track S.R. (%) Cube Sphere Cylinder Irregular

T.S. w/o LPF 10 10 5 15
T.S. (ours) 70 65 70 75
Catch S.R. (%) Cube Sphere Cylinder Irregular

T.S. w/o LPF 0 0 0 5
T.S. (ours) 25 25 15 20

(b)
Table 1: (a) Evaluation of Unseen Objects in Simulation. It shows the average Success Rate (S.R.)
in the tracking and catching tasks for 200×64 trials; (b) Evaluation in Real Robot Deployment. It
shows the average Success Rate (S.R.) in the tracking and catching tasks for 40×4 trials.

episode to collect diverse thrown trajectories. Note that the farthest landing point is about 1.5m from96

the robot’s start, which is beyond the arm’s reach (about 0.8m), necessitating the mobile base.97

4.2 Baselines98

We compare our two-stage reinforcement learning framework with the following two baselines:99

• One-Stage without Tracking Task: In the one-stage baseline, we skip the tracking task100

and directly train the catching task from scratch. The base and arm’s control policy would101

not be pre-trained from the tracking task.102

• Two-Stage without Arm’s Roll: According to Sec. 2.2, we remove the rolling action of103

the arm but still train in a two-stage manner.104

4.3 Simulation Results105

We first compare our two-stage training method with the two baselines on their training performance106

in simulation, using 64 parallel environments, each running 200 trials. Then, we evaluate their107

success rate in simulation with the 8 unseen objects. As shown in Table 1 (a) and Fig. 2 (c), ours108

outperforms both training efficiency and success rates compared to the baselines. In addition, the109

trained catching policy achieves high catching success rate with unseen and diverse objects, which110

indicates the effectiveness and adaptability of our method, making it suitable for deployment on111

real-world robots with unseen object geometries.112

4.4 Sim2Real Transfer113

There remains a large sim2real gap due to the complexity of our mobile manipulator system. To114

bridge the sim2real gap, we leverage some techniques explained in A.4 in detail.115

4.5 Real-world Deployment116

4.5.1 Multi-processing Controller117

We develop a multi-processing control system to manage the synchronization among various com-118

ponents of the mobile manipulator, which is depicted in A.5.119

4.5.2 Deployment Result120

We deployed the trained policy on the real robot across 160 trials (40 per object shape, 20 with and121

20 without LPF). As shown in Table 1 (b), the success rates for both tracking and catching were low122

without LPF. In contrast, with LPF, we achieved a high tracking success rate of approximately 70%,123

demonstrating the effectiveness of LPF and the robustness of the whole-body control policy trained124

in simulation. The policy also successfully caught objects of all shapes, highlighting its adativeness125

in real-world scenarios with varied object geometries. However, the catching success rate did not126

exceed 25%, the reason for this is further discussed in A.6.127

4



References128

[1] K. Deguchi, H. Sakurai, and S. Ushida. A goal oriented just-in-time visual servoing for ball129

catching robot arm. In 2008 IEEE/RSJ International conference on intelligent Robots and130

Systems, pages 3034–3039. IEEE, 2008.131

[2] B. Bauml, T. Wimböck, and G. Hirzinger. Kinematically optimal catching a flying ball with132

a hand-arm-system. In 2010 IEEE/RSJ International Conference on Intelligent Robots and133

Systems, pages 2592–2599, 2010. doi:10.1109/IROS.2010.5651175.134

[3] S. S. Mirrazavi Salehian, M. Khoramshahi, and A. Billard. A dynamical system approach for135

catching softly a flying object: Theory and experiment. IEEE Transactions on Robotics, 32(2):136

462–471, 2016.137

[4] S. Kim, A. Shukla, and A. Billard. Catching objects in flight. IEEE Trans. Robotics, 30138

(5):1049–1065, 2014. doi:10.1109/TRO.2014.2316022. URL https://doi.org/10.1109/139

TRO.2014.2316022.140

[5] K. Dong, K. Pereida, F. Shkurti, and A. P. Schoellig. Catch the ball: Accurate high-speed141

motions for mobile manipulators via inverse dynamics learning. In 2020 IEEE/RSJ Interna-142

tional Conference on Intelligent Robots and Systems (IROS), pages 6718–6725, 2020. doi:143

10.1109/IROS45743.2020.9341134.144

[6] S. Abeyruwan, A. Bewley, N. M. Boffi, K. M. Choromanski, D. B. D’Ambrosio, D. Jain, P. R.145

Sanketi, A. Shankar, V. Sindhwani, S. Singh, et al. Agile catching with whole-body mpc and146

blackbox policy learning. In Learning for Dynamics and Control Conference, pages 851–863.147

PMLR, 2023.148

[7] H. Xiong, R. Mendonca, K. Shaw, and D. Pathak. Adaptive mobile manipulation for articulated149

objects in the open world. arXiv preprint arXiv:2401.14403, 2024.150

[8] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012151

IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,152

2012.153

[9] S. John, W. Filip, D. Prafulla, R. Alec, and K. Oleg. Proximal policy optimization algorithms.154

arXiv preprint arXiv:1707.06347, 2017.155

[10] A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra. Benchmarking rein-156

forcement learning algorithms on real-world robots. In 2nd Annual Conference on Robot157

Learning, CoRL 2018, Zürich, Switzerland, 29-31 October 2018, Proceedings, volume 87158

of Proceedings of Machine Learning Research, pages 561–591. PMLR, 2018. URL http:159

//proceedings.mlr.press/v87/mahmood18a.html.160

[11] M. Pham, M. Gautier, and P. Poignet. Identification of joint stiffness with bandpass filtering.161

In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat.162

No.01CH37164), volume 3, pages 2867–2872 vol.3, 2001. doi:10.1109/ROBOT.2001.933056.163

5

http://dx.doi.org/10.1109/IROS.2010.5651175
http://dx.doi.org/10.1109/TRO.2014.2316022
https://doi.org/10.1109/TRO.2014.2316022
https://doi.org/10.1109/TRO.2014.2316022
https://doi.org/10.1109/TRO.2014.2316022
http://dx.doi.org/10.1109/IROS45743.2020.9341134
http://dx.doi.org/10.1109/IROS45743.2020.9341134
http://dx.doi.org/10.1109/IROS45743.2020.9341134
http://proceedings.mlr.press/v87/mahmood18a.html
http://proceedings.mlr.press/v87/mahmood18a.html
http://proceedings.mlr.press/v87/mahmood18a.html
http://dx.doi.org/10.1109/ROBOT.2001.933056


A APPENDIX164

A.1 Real Robot Setup165

The system consists of a Ranger Mini V2 omni-mobile base, a 6-DoF XArm, and a 12-DoF LEAP166

Hand. To capture the object’s real-time 3D positions in the real world, we use an overhead-mounted167

RealSense D455 camera to extract the object’s pixel coordinates and apply a perspective transforma-168

tion for 3D position estimation relative to the camera. We utilize eye-on-base calibration algorithm169

to transform this 3D position to the arm’s base frame. For the onboard computation, we use a Thun-170

derobot MIX Mini-PC with an i7-13620H CPU and an RTX 4060 GPU. All the components of our171

robot are powered by the extensive 48V power interface from the Ranger Mini V2.172

A.2 Reward Design173

Given the times t, the object’s 3D position pt and velocity vt (estimated as the difference between174

consecutive positions), the end-effector’s position et, the z-axis vector ût, the previous closest175

hand-to-object distance dt−1, and the policy output at, the detailed reward definitions are:176

• Object Position Reward (track/catch): The difference of hand-to-object distance in two177

consecutive time steps during the episode: rpost = ∥dt−1∥2 − ∥et − pt∥2.178

• Object Precision Reward (track/catch): This reward scales the dt with an exponential179

function, which facilitates learning the policy to approach the target with a higher preci-180

sion [10]: rpret = exp(−50 · ∥dt∥22).181

• Object Orientation Reward (track/catch): This reward is computed as the dot product of182

the delta position vector of the object and the z-axis of the palm, clamped between -1 to183

1: rorientt = clamp(vt · ût,−1, 1).184

• Object Touch Reward (track): A binary reward is given if the palm touches the object:185

rtoucht = 1 or 0.186

• Object Stability Reward (catch): This reward is computed according to the time length187

when the object is held by the hand: rstabt = ∆tgrasp.188

• Control Penalty (track/catch): Penalize the policy output: rctrlt = ∥at∥22.189

• Constraint Penalty (track/catch): A binary penalty is provided if the robot joints exceed190

their joint limits: rcstrt = −1 or 0.191

The final reward at t, is computed as the weighted sum of the previously mentioned reward terms,192

each multiplied by a respective scaling coefficient lk: rtrack/catcht =
∑

lk · rkt .193

A.3 State and Action Space194

The state space consists of two consecutive 3D positions of the object, 3D position and the orienta-195

tion of the arm’s end-effector, all relative to the arm base fixed on the mobile base, along with the196

robot’s proprioception, including the base’s 2D planar velocity in its body frame and the hand joint197

positions (Fig. 1b). We fix 4 hand joints to reduce the space complexity, improving training effi-198

ciency while ensuring graspability. During the tracking task, hand states and actions are excluded.199

The action space includes the 2D planar velocity of the base, the 12 delta joint positions of the hand,200

and the 3D delta position as well as the delta roll rotation of the arm’s end-effector. We find that201

controlling the yaw and pitch axes of the arm’s end-effector can destabilize the catch policy training,202

as these movements often lead to unfavorable hand orientations for successful object catching. In203

contrast, the roll rotation remains beneficial (Sec. 4.3).204

A.4 Sim2Real Transfer205

There remains a large sim2real gap due to the complexity of our mobile manipulator system. To206

bridge the sim2real gap as much as possible, we leverage the following techniques:207

6



A.4.1 Low-Pass Filter208

We applied a Low-Pass Filter (LPF) [11] to smooth the velocity commands, ensuring they are exe-209

cutable by the mobile base in the real world.210

A.4.2 System Identification211

We employ system identification to align the behavior of the PID controllers for the base, arm, and212

hand between the simulation and the real world. This process serves as a preliminary estimation of213

the PID parameters within the simulation, which subsequently facilitates the domain randomization.214

A.4.3 Domain Randomization215

In addition to the randomization of thrown objects discussed in Sec. 4.1, we apply Domain Random-216

ization to the PID parameters, the gravity, the timing of throwing objects, the observation noise, and217

the action noise. It is important to note that randomizing the throw timing is crucial, as in real-world218

scenarios, humans typically throw objects at unpredictable moments.219

A.5 Multi-process Controller220

As depicted in Fig. 3, object’s position and proprioceptive states from the base, arm, and hand,221

collected at different frequencies, are synchronized as inputs for inferring our whole-body control222

policy, which runs at 25 Hz and matches the control frequency in simulation.

Figure 3: Multi-Process Controller. A ROS-based controller synchronizing proprioceptive states
and object position data for policy inference in real-time control of the mobile manipulator.223

A.6 Relatively Low Catching Success Rate in the Real World224

The relatively low catching success rate is primarily caused by the elasticity of the objects (Fig 4),225

which introduced challenges not present in the simulation. Additionally, the RGB-D camera used226

for position tracking generated errors when the object moved quickly or was occluded by the hand.227

We believe integrating a global localization system, such as VICON, could improve catching per-228

formance by providing more accurate and robust object tracking.229

Figure 4: Failure Case. The object bounces off the palm.

7


	Introduction
	System Setup
	Task Description
	State and Action Space
	System Setup

	Learning Mobile Dexterous Catching Policies
	Two-Stage Reinforcement Learning
	Reward Design

	Experiments
	Thrown Object Settings
	Baselines
	Simulation Results
	Sim2Real Transfer
	Real-world Deployment
	Multi-processing Controller
	Deployment Result


	APPENDIX
	Real Robot Setup
	Reward Design
	State and Action Space
	Sim2Real Transfer
	Low-Pass Filter
	System Identification
	Domain Randomization

	Multi-process Controller
	Relatively Low Catching Success Rate in the Real World


