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Abstract

As industrial models and designs grow increasingly complex, the demand for
optimal control of large-scale dynamical systems has significantly increased.
However, traditional methods for optimal control incur significant overhead
as problem dimensions grow. In this paper, we introduce an end-to-end
quantum algorithm for linear-quadratic control with provable speedups.
Our algorithm, based on a policy gradient method, incorporates a novel
quantum subroutine for solving the matrix Lyapunov equation. Specifically,
we build a quantum-assisted differentiable simulator for efficient gradient
estimation that is more accurate and robust than classical methods relying
on stochastic approximation. Compared to the classical approaches, our
method achieves a super-quadratic speedup. To the best of our knowledge,
this is the first end-to-end quantum application to linear control problems
with provable quantum advantage.

1 Introduction

Over the past few decades, the growing complexity of modern engineering designs has made
the control of large-scale dynamical systems a crucial task across various application fields,
such as power grid management [56], swarm robotics [16, 18], sensor networks [21], and
airline scheduling [57]. These challenges often involve high-dimensional solution spaces with
tens of thousands of degrees of freedom, presenting a significant obstacle for traditional
optimal control methods.
The emergence of quantum computing has expanded the potential for designing efficient
algorithms in numerical optimization and machine learning [1, 36, 62]. By leveraging
the principles of quantum mechanics, such as superposition and entanglement, quantum
computers excel at efficient data processing, making them promising for accelerating solutions
to large-scale computational challenges [31].
Although there has been some progress in quantum algorithms for some specific optimal
control problems arising in quantum sciences [37, 39], a viable pathway for accelerating
general large-scale optimal control problems remains unclear. A conventional approach to
optimal control involves solving the Algebraic Riccati Equation (ARE, see Section 1.1 for
details), which is a nonlinear matrix equation. This problem has been less explored in the
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field of quantum computing for two reasons. First, most proposed quantum algorithms
for algebraic and differential equations focus on linear and vector-valued problems, and
extending them to nonlinear matrix equations is highly challenging. Second, while efficient
quantum algorithms exist for certain weakly nonlinear problems [41], they are not powerful
enough to handle the nonlinearity present in the Algebraic Riccati Equation. A breakthrough
in this direction calls for novel ideas in algorithm design.
Inspired by the recent advances in differentiable physics [37, 46, 53] and reinforcement
learning [19, 45], we develop an end-to-end quantum algorithm that solves a fundamental
optimal control problem called the linear-quadratic regulator (LQR). Given its widely
applicable mathematical formulation, LQR has been extensively researched and serves as a
standard case study for various computing and learning algorithms [25]; moreover, LQR is of
significant practical relevance as many real-world optimal control problems can be formulated
to address through linearization techniques. Our quantum algorithm is proven to output an
ε-approximate optimal solution in time Õ

(
nε−1.5)1, where n is the dimension of the state

vector and ε is an error tolerance parameter. The algorithm involves two major components:
a quantum differentiable simulator and a quantum-accessible classical data structure. This
hybrid quantum-classical framework enables us to employ a policy gradient method that
exhibits a fast convergence rate for the LQR problem. Since almost all known classical
methods for the LQR problem heavily rely on subroutines such as matrix factorization
and matrix inversion [6, 32, 34, 35], which require at least O(n3) overhead in the problem
dimension n, our new linear-time quantum algorithm, with super-quadratic speedup, offers
significant promise for large-scale applications.

Notation. We use R and C to denote the set of real and complex numbers, respectively.
I denotes an identity operator with an appropriate dimension. For two real vectors u, v ∈
Rn, the Euclidean inner product ⟨u, v⟩ = uT v, and the norm of a vector u is ∥u∥ =√
uTu. Given a symmetric/Hermitian matrix M , we denote λmax(M) (or λmin(M)) as

the maximal/minimal eigenvalue of M . The spectral norm of a matrix M ∈ Rm×n is
denoted by ∥M∥ = sup∥v∥=1 ∥Mv∥. The Frobenius norm of a matrix M ∈ Rm×n is denoted
by ∥M∥F =

∑
i,j |Mi,j |2 = Tr

[
MTM

]
. We say ξ ∼ D if the random variable ξ ∈ Rn is

distributed according to D.

1.1 Problem Formulation

We focus on the infinite-horizon continuous-time linear-quadratic regulator (LQR) problem:

min
x,u

J = E
[∫ ∞

0

(
x⊤(t)Qx(t) + u⊤(t)Ru(t)

)
dt
]

(1a)

subject to ẋ = Ax+Bu, x(0) ∼ D, (1b)
where x(t) : [0,∞]→ Rn is the state vector, u(t) : [0,∞]→ Rm is the control input. A and
B are constant matrices of appropriate dimensions; Q and R are positive definite matrices.
Definition 1. For a square matrix M ∈ Rn×n, we say M is Hurwitz if every eigenvalue of
M has a strictly negative real part.
Definition 2. For a controllable pair (A,B), the set of stabilizing feedback gains is given by

SK := {K ∈ Rm×n : A−BK is Hurwitz}. (2)

Given a controllable pair (A,B), the optimal controller u(t) of problem (1) can be expressed
as a linear function of the state vector x(t), namely

u(t) = −K∗x(t), (3)
where the matrix K∗ is the optimal linear feedback gain. An analytical form of the optimal
feedback gain is given by K∗ = R−1B⊤P ∗, where P ∗ is the unique positive solution to the
Algebraic Riccati Equation (ARE),

A⊤P + PA+Q− PBR−1B⊤P = 0. (4)
1The Õ(·) notation suppresses the condition number dependence and polylogarithmic factors in

n and ε.
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For large-scale control problems where the control input is much smaller than the state vector
(i.e., m≪ n), it is often desired to compute the optimal feedback gain matrix K∗ without
explicitly solving for P ∗. To this end, we can rewrite the LQR objective function J(x, u)
as a function solely depending on K by leveraging the linearity of the optimal controller
u(t) = −Kx(t). With standard algebraic manipulation, it turns out that

J(x, u) = f(K) =
{

Tr[P (K)Σ0] K ∈ SK ,
∞ otherwise, (5)

where

P (K) =
∫ ∞

0
e(A−BK)⊤t

(
Q+K⊤RK

)
e(A−BK)t dt, (6)

and Σ0 := Eξ∼D[ξξ⊤]. Given this reformulation, the search for the optimal feedback gain
K∗ reduces to minimizing the unconstrained objective function f(K).
In practice, the matrices A,B,Q,R often possess sparsity structures that can be leveraged
by quantum computers. We make the assumptions on the efficient quantum access model.
Assumption 1 (Sparse-access matrices). We assume A, B, Q, and R are s-sparse, i.e.,
there are at most s non-zero entries in each row/column. For M ∈ {A,B,Q,R}, we assume
access to an efficient procedure2 that loads the matrix into quantum data:

|i⟩|k⟩ 7→ |i⟩|ri,k⟩, |ℓ⟩|j⟩ 7→ |cℓ,j⟩|j⟩, |i⟩|j⟩|0⟩ 7→ |i⟩|j⟩|Mij⟩, (7)
where ri,k is the index of the k-th non-zero entry of the i-th row of M , cℓ,j is the index of
the ℓ-th non-zero entry of the j-th column of M , and Mij is a fixed-length binary description
of the (i, j)-th entry of M .

With quantum access to the problem data, we aim to determine the optimal linear feedback
gain K∗ so that the objective function f(K) is minimized, as summarized in the following
problem statement:
Problem 1. Assume (A,B) is a controllable pair and Q, R are positive-definite. Given
quantum access to A,B,Q,R in the sense of Assumption 1, we want to compute an ε-
approximate solution K such that ∥K −K∗∥F ≤ ε, where ε > 0 is prefixed.

1.2 Main Contributions

In this paper, we propose an end-to-end quantum algorithm for solving LQR problems that
exhibits the desired quantum advantage in the large-scale setting (i.e., in the parameter
regime m ≪ n). A detailed comparison between ours and various other methods is given
in Table 1. Compared with state-of-the-art classical methods, our algorithm achieves a
super-quadratic speedup in terms of the state vector dimension n. To the best of our
knowledge, this is the first end-to-end quantum application to linear control problems with
provable speedup.

Methods Time/Gate Complexity
Schur method [35, 48] Õ(n3)

Newton-Kleinman method [32, 47] Õ(n3)
(Model-based) policy gradient [45] Õ(n3 · poly(ε−1))

Ours Õ(nε−1.5) (Theorem 7)
Table 1: Asymptotic cost of different methods for LQR.

Our algorithm is based on a novel policy gradient strategy to find globally optimal solutions
for linear-quadratic control problems. A brief overview of the policy gradient method for
LQR is available in Section 3.2. In each iteration cycle, our algorithm executes a fast,

2This input model is sometimes referred to as the sparse-input oracle model in the literature. It
is a standard assumption in many applications, see [2, 13, 22] for details.
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quantum-assisted differentiable simulator to obtain robust gradient estimates, as detailed
in Theorem 31. The gradient estimates are then utilized by a classical computer to update
the control policy K.
As illustrated in Figure 1, with the back-and-forth iterations between the quantum simulator
and a classical computer, the control policy K converges to the optimal policy K∗ at a linear
rate, leading to an end-to-end resolution of the LQR problem.
Our quantum algorithm design can be regarded as a novel realization of the hybrid
quantum-classical computing paradigm, where collaboration between classical and quan-
tum computers significantly reduces the burden on the quantum side. Moreover, we
provide explicit constructions of the quantum simulator and analyze the convergence
rate of the policy gradient based on our end-to-end model. These desirable attributes
make our proposed design more practical and relevant in the early fault-tolerant era [29].

Differentiable Quantum
Computing𝐾

Gradient-based
Optimizer 𝑓(𝐾)

Objective
Function

∇𝑓(𝐾)

Classical Module Quantum Module

Control
Policy

LQR Policy Gradient

Figure 1: Differentiable quantum computing for linear
control.

Notably, we propose a new quan-
tum algorithm for solving the Lya-
punov equation, a fundamental
task in optimal control theory [25].
Based on an integral representation
of the solution and a rich toolbox
of methods for quantum numerical
linear algebra, our algorithm can
produce a quantum representation
of the solution matrix in a cost that
is polylogarithmic in the matrix dimension n (see Theorem 4), leading to an exponential
speedup over existing classical methods [51]. Moreover, since the matrix Lyapunov equation
is fundamental to many control problems, we foresee that our quantum algorithm may play
an important role in finding speedups for other tasks.
The fast quantum algorithm for the Lyapunov equation enables us to develop a quantum
gradient estimation subroutine in near-optimal cost, as detailed in Theorem 31. Compared
with the conventional gradient estimation techniques based on stochastic approximation
(e.g., one- and two-point gradient estimators [45]), our quantum gradient estimation benefits
from the explicit exploitation of the analytical form of the gradient. Numerical experiments
suggest that our gradient estimation is robust and often leads to faster convergence in
practice, as demonstrated in Section 5.3.

2 Related Work

We survey related work on model-based and model-free linear-quadratic control, differentiable
physics, and quantum reinforcement learning in this section.

Model-based linear-quadratic control. Model-based optimal control [17, 50] refers to
the scenario where historical measurement data explicitly gives (or estimates) the problem
description. In this case, the optimal linear feedback gain K∗ can be computed by solving
the algebraic Riccati equation (ARE), as detailed in Section 1.1. Commonly used numerical
methods for ARE include factorization methods (e.g., Schur method [35, 48]) and iterative
methods (e.g., Newton-Kleinman method [20, 32, 47]). These methods require computing
matrix factorization or matrix inverse, which in general leads to a O(n3) run time (assuming
m ≤ n). Some methods for ARE can achieve O(n) runtime under strong assumptions such
as the solution P ∗ is of low rank [8]. It is also possible to solve LQR by reformulating it as a
semidefinite programming (SDP) problem [14]. We do not dive into the SPD approach as it
does not demonstrate superior asymptotic scaling compared to other direct methods.

Model-free linear-quadratic control. LQR can be regarded as a continuous-time
analog of the discrete Markov Decision Process (MDP) model and many techniques from
reinforcement learning (RL) can be introduced to learn the optimal feedback gain (i.e.,
control policy), such as policy gradient [19, 45], natural gradient [25], and policy iteration [10].
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These RL-based methods are particularly useful when we have access to the observed costs
but the system model can not be directly constructed.

Differentiable physics and quantum computing. The differentiable programming
paradigm has been applied to many dynamical systems for learning [46] and control [53].
Those gradient-based methods can be used in reinforcement learning [61], inverse prob-
lems [27], optimization [5], design [60], etc. People have developed differentiable pipelines
for various dynamics including fluids [59], rigid body [49], soft body [26], and other hybrid
systems [52]. Recently, [37] have derived a differentiable analog quantum computing pipeline
for quantum optimization and control. In this work, we will focus on using differentiable
quantum computing to accelerate a widely studied classical problem - linear control synthesis.

Quantum reinforcement learning. Recently, quantum-accelerated reinforcement learn-
ing has attracted significant attention as it demonstrates the potential for computational
speedup [43]. It has been shown that quantum computers can be used to compute policy
gradients given coherent access to a Markov Decision tree model [15, 28]. Some works also
discuss the quantum policy iteration method for RL, see [12, 58]. It is worth noting that the
existing works are usually based on a strong quantum access model and it remains unclear
what the cost of constructing such models is in an end-to-end sense.

3 Preliminaries

3.1 Introduction to Quantum Computing

All quantum states of a quantum system form a Hilbert space, which is isomorphic to CN .
We may assume N = 2n and n is a non-negative integer. An element |ψ⟩ in this Hilbert
space is then noted as a N -dimensional quantum state, where

|ψ⟩ =


v0
v1
...

vN−1

 , (8)

where vi ∈ C, i ∈ {0, 1, · · · , N − 1}. Also, we often use ⟨ψ| to denote the conjugate transpose
of |ψ⟩. For any c ≠ 0, c|ψ⟩ and |ψ⟩ refer to the same state, thus without loss of generality,
∥|ψ⟩∥ = 1 always holds. Specifically, a one qubit system corresponds to the aforementioned
Hilbert space with n = 1.
Given m quantum states |ψ1⟩, |ψ2⟩, · · · , |ψm⟩ from m quantum systems, then

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψm⟩ (9)
is a quantum state in the space that consists m subspaces.
The evolution of a quantum state can be described by a unitary operator U , meaning

U†U = UU† = I. (10)
We often note these operations as gates on the quantum circuit. One important type of
unitary operators are the Pauli operators, namely

X =
[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (11)

They form a basis of all the linear operators acting on C2.
For the quantum measurement, given a quantum observable H, we can do the measurement
of a quantum state |ψ⟩. Specifically, after the measurement on |ψ⟩, the state collapses to
Pm|ψ⟩√
pm

, and we get an outcome λm with probability pm = ⟨ψ|Pm|ψ⟩, where

H =
∑
m

λmPm (12)

is the spectral decomposition of H.
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3.2 Policy Gradient for LQR

For all stabilizing feedback gains K ∈ SK , the gradient of the objective function f(K) as
defined in (5) has the following closed-form expression [38, 40]:

∇f(K) = 2(RK −B⊤P (K))X(K), (13)

where P (K) is given in (6), and X(K) is determined by

X(K) =
∫ ∞

0
e(A−BK)tΣ0e

(A−BK)⊤t dt. (14)

The (direct) policy gradient method for LQR minimizes the objective f(K) via the vanilla
gradient update rule K ← K − s∇f(K), where s > 0 is a fixed step size. Given sufficiently
small s, it has been shown that the policy gradient method converges at a linear rate [45,
Theorem 2]. In practice, however, the policy gradient is often estimated through stochastic
approximation, such as one- and two-point estimation [45]. While these zeroth-order gradient
estimation methods are less demanding in terms of computational cost, they tend to be
sensitive to random perturbations and slow to converge.
In this paper, we propose a fast quantum algorithm that outputs a robust estimate of the
gradient in Õ(n) time (assuming m≪ n, see Theorem 31). Leveraging the quantum gradient
estimation subroutine, we recover the linear convergence rate using robust gradient descent,
as detailed in Proposition 34.

3.3 Quantum Data Structure

To perform policy gradient in the training process, the linear feedback gain K is stored in a
quantum-accessible data structure as proposed in [30]. This data structure allows intermediate
updates on K and efficient quantum queries to K as a block-encoded matrix. This data
structure is a purely classical representation of K, and quantum access to this data structure
(e.g., through qRAM [23]) is required to build the block-encoding of K. In the literature,
this data structure is also known as classical-write, quantum-read qRAM [7, 54].
Definition 3 (Block-encoding). Suppose that M is an p-qubit operator, α, ε ∈ R+ and
r ∈ N, then we say that the (p+ r)-qubit unitary UM is an (α, r, ε)-block-encoding of M , if

∥M − α(⟨0|r ⊗ I)UM (|0⟩r ⊗ I)∥ ≤ ε. (15)

In this paper, the growth of ancilla qubits (space complexity) is dominated by the number of
elementary gates (gate complexity). Therefore, when referring to a specific block-encoding,
we often omit the number of ancilla qubits (i.e., the parameter r) for simplicity.
Lemma 1. Let K ∈ Rm×n. There exists a data structure to store K with the following
properties: (1) the size of the data structure is O

(
mn log2(mn)

)
, (2) the time to store a new

entry (i, j, K̂i,j) is O
(
log2(mn)

)
, and (3) for any ε > 0, a quantum algorithm can implement

a (∥K∥F , ⌈log2 n⌉+ 2, ε)-block-encoding of K in time O (poly log(n, 1/ε)). There also exists
an analogous data structure for K̂⊤.

Proof. We use the data structure as described in [30, Theorem 5.1]. To construct the
block-encoding, we utilize [22, Lemma 50].

3.4 Quantum Simulation of Linear Dynamics

Quantum computers can simulate certain linear ordinary differential equations (ODEs)
exponentially faster than classical computers [3, 4, 9, 22, 33]. In this paper, we present a
quantum simulation subroutine based on quantum linear system solvers (QLSS) [9, 33], as
described below. While this approach may not be optimal in terms of state preparation cost
compared to quantum singular value transformation [22] or linear combination of Hamiltonian
simulation [3, 4], it allows us to incorporate the Hurwitz stability of the system.
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Theorem 2 (Informal version of Theorem 17). Suppose that A ∈ Rn×n is a Hurwitz matrix,
and OA is an (α, 0)-block-encoding of A. For an arbitrary t > 0, we can implement a (ζt, ε)-
block-encoding of eAt using Õ (αρt · poly log(1/ε)) queries to OA, and Õ (αρt · poly log(1/ε))
queries to additional gates. Here, the normalization factor ζ = O(αρ), and the constant ρ is
solely determined by A.

More details and the proof of Theorem 2 can be found in Appendix C. Note that the
dependence on t in the above result can be further improved using a standard padding
technique, but for simplicity, we do not discuss this minor improvement, as it does not
affect our main end-to-end result. We also notice a technique called quantum eigenvalue
transformation (QEVT), recently proposed by Low and Su [42]. While this method cannot
be directly applied to Hurwitz-stable systems, it may be enhanced to provide a simulation
algorithm with a similar cost, as discussed in Appendix D.

4 Quantum Algorithm for the Lyapunov Equation

The (continuous-time) Lyapunov equation is a linear matrix equation of the following form,

AX +XA⊤ + Ω = 0. (16)

Since this equation is linear in terms of the matrix X, it is possible to derive a vectorization
form of (16) and solve it using a quantum linear system algorithm [11, 24]. In this paper, we
propose a new quantum algorithm for solving the Lyapunov equation based on an integral
representation formula. Our algorithm directly prepares a block-encoded solution matrix
X∗. Compared to the previous approach, our method leads to an exponentially faster
quantum objective function evaluation algorithm (see Theorem 5) and a new quantum
gradient estimation subroutine (see Theorem 6).

4.1 Representation

Given a positive-definite Q, there exists a unique positive-definite X∗ satisfying (16) if and
only if A is Hurwitz. The unique positive solution is given by

X∗ =
∫ ∞

0
eAtΩeA⊤t dt. (17)

The integral formula (17) suggests that the solution to the Lyapunov equation can be
computed using a numerical integration technique. For a finite τ > 0, we define

Xτ :=
∫ τ

0
eAtΩeA⊤t dt. (18)

For any arbitrary ε > 0, we find that a τ = Õ(log(1/ε)) is sufficient to ensure an ε-approximate
solution. We denote κ := ∥X∗∥/λmin(Ω).
Lemma 3 (Numerical integration). For any ε > 0, we have ∥X∗ −Xτ∥ ≤ ε, provided that

τ = κ log
(
∥Ω∥∥X∗∥κ
ελmin(X∗)

)
. (19)

Proof. Note that ∥X∗ −Xτ∥ =
∥∥∥∫∞
τ
eAtΩeA⊤t dt

∥∥∥ ≤ ∫∞
τ
∥Ω∥∥eAt∥∥eA⊤t∥ dt, where ∥eAt∥

(or ∥eA⊤t∥) is upper bounded by ∥X∗∥
λmin(X∗)e

−t/κ (see [44, Lemma 12]). It follows that
∥X∗ −Xτ∥ ≤ ∥Ω∥∥X∗∥κ

λmin(X∗) e
−τ/κ. Therefore, an integration time as given in (19) guarantees

that ∥X∗ −Xτ∥ ≤ ε.
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4.2 Algorithm Complexity Analysis

The matrix Xτ can be approximated by a trapezoidal rule with (K + 1) quadrature node
points, namely,

Xτ ≈
K∑
k=0

wke
Atk ΩeA⊤tk =

K∑
k=0

wkF (tk), (20)

where wk = (2−1k=0,K )τ
2K , tk = kτ

K , and F (t) := eAtΩeA⊤t. The summation in (20) can be
computed on a quantum computer by performing linear combinations of block-encoded
matrices, which we will explain shortly.
Definition 4 (Select oracle). Let A ∈ Rn×n be a Hurwitz matrix. Given an integer K > 0
and two positive scalars τ, ε > 0, we define the following unitary (named as the select oracle):

select(A, ε) :=
K∑
k=0
|k⟩⟨k| ⊗ Uk, (21)

where for each k = 0, . . . ,K, Uk is a (ζtk, ε)-block-encoding of eAtk with tk = kτ/K. Here,
ζ denotes some parameter that only depends on A.

Now, we consider two select oracles:

select(A, ε) :=
K∑
k=0
|k⟩⟨k| ⊗ Uk, select(A⊤, ε) :=

K∑
k=0
|k⟩⟨k| ⊗ Vk, (22)

where for each k = 0, . . . ,K, Uk (or Vk) denotes a block-encoding of eAtk (or eA⊤tk ) with
normalization factor ζtk. Let OΩ be a (η, 0)-block-encoding of Ω, and we find that

select(A, ε)(I ⊗OΩ)select(A⊤, ε) =
K∑
k=0
|k⟩⟨k| ⊗Wk, (23)

where Wk := UkOΩVk is a (ηζ2t2k, 2ζηε)-block-encoding of the matrix F (tk). Denoting λk :=
wkk

2, then it is clear that
∑K
k=0 λkWk is a block-encoding of Xτ . Thus we can implement a

block-encoded Xτ on a quantum computer using a technique known as linear combination
of unitaries (LCU) [22, Lemma 52]. The rigorous complexity of this quantum algorithm is
given in the following theorem, for which a complete proof is provided in Appendix E.
Theorem 4. Suppose that A ∈ Rn×n is Hurwitz and Ω ∈ Rn×n is positive-definite. Let OA
be an (α, 0)-block-encoding of A and OΩ be an (η, 0)-block-encoding of Ω. Then, we can imple-
ment a (γ, ε)-block-encoding of X∗, the unique solution to the Lyapunov equation (16), using
a single query to OΩ, Õ

(
α2√η

ε

)
queries to controlled OA and its inverse, and Õ

(
α2√η

ε

)
queries to other additional elementary gates. Here γ = Õ(α2η).

4.3 Objective Function Evaluation

As a direct consequence of Theorem 4, we can evaluate the objective function value f(K)
for a given K ∈ SK in a cost that is logarithmic in the dimension parameter n. This result
demonstrates an exponential quantum advantage for the objective function evaluation task,
as any known classical algorithm for this task requires at least matrix multiplication time.
Theorem 5. Assume that we have efficient procedures (as described in Assumption 1) to
access the problem data A,B,Q,R in O(poly log(n)) time. Let K ∈ SK be a stabilizing policy
stored in a quantum-accessible data structure. We can estimate the objective function f(K)
up to multiplicative error θ in cost Õ

( 1
θ2

)
.

Proof. Given a K ∈ SK , we can evaluate the objective function f(K) via the formula
f(K) = Tr[P (K)Σ0]. Here, without loss of generality, we assume Σ0 = I. P (K) has a
closed-form representation as in (6), which corresponds to the unique positive solution to
the Lyapunov equation

(A−BK)⊤P + P (A−BK) +
(
Q+K⊤RK

)
= 0. (24)
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We denote A = A − BK, and Ω = Q + K⊤RK. By Lemma 11 and Remark 1, we can
block-encode A with normalization factor s(∥K∥F + 1) and Ω with normalization factor
s(∥K∥2

F +1), both in cost O(poly log(n, s)). Suppose that f(K) = a, it follows from Lemma 8
that ∥K∥F ≤ O(a). Therefore, by Theorem 4, we can implement a (γ, ε)-block-encoding of

P (K) in cost Õ
(
a3ρ
√

κ5

ε

)
, where γ ≤ Õ(a4ρ2κ3). Note that P (K) is a Hermitian matrix,

and λmin(P (K)) ≥ λmin(Q), by invoking Theorem 25, we can estimate f(K) = Tr[P (K)] up

to a multiplicative error θ in cost Õ
(
a3ρ
θ

√
γ3κ5

ε

)
≤ Õ

(
a13ρ6κ10

θ2

)
. Here, the error parameter

must be chosen so that ε ≤ Õ(θ2/γ2).

5 Quantum Policy Gradient for Large-Scale Control

5.1 Quantum Gradient Estimation

Definition 5. Given any K ∈ SK , we call G ∈ Rm×n a θ-robust estimate of ∇f(K) if it
approximates the gradient ∇f(K) up to a multiplicative error θ, i.e.,

∥G−∇f(K)∥F ≤ θ∥∇f(K)∥F . (25)

Here, we utilize the close-form expression of the policy gradient ∇f(K), as shown in (13), to
construct a quantum algorithm for gradient estimation. The complete theorem statement
and the proof are in Appendix G.
Theorem 6 (Informal version of Theorem 31). Assume we have efficient procedures (as
described in Assumption 1) to access A,B,Q,R in O(poly log(n)) time. Let K ∈ SK be a
stabilizing policy stored in a quantum-accessible data structure. Provided that ∥K −K∗∥ > ε

and m≪ n, we can compute a θ-robust estimate of ∇f(K) in cost Õ
(

n
θ1.5ε1.5

)
.

5.2 Quantum Policy Gradient

Our main quantum algorithm for LQR is summarized in Algorithm 1.

Algorithm 1 Quantum policy gradient

Inputs: A, B, Q, R (problem data), K0 ∈ SK (initial guess), σ > 0 (step size/learning rate), θ
(robustness parameter), N (number of iterations)
Output: an approximate solution KN

for k ∈ {0, 1, . . . , N − 1} do
Compute a θ-robust estimate of ∇f(Kk), denoted as Gk, using Theorem 6.
Update the quantum-accessible data structure using the rule: Kk+1 = Kk − σGk.

end for

We can prove that the iterates in Algorithm 1 converges to the optimal control policy K∗

at a linear rate (Proposition 34). It follows that our algorithm can find an ε-approximate
optimal policy with an end-to-end cost Õ

(
n
ε1.5

)
.

Theorem 7 (Informal version of Theorem 35). Assume that we have efficient procedures
(as described in Assumption 1) to access the problem data A,B,Q,R in O(poly log(n)) time.
Let K0 ∈ SK be a stabilizing policy and assume that m≪ n. Then, Algorithm 1 outputs an
ε-approximate solution to Problem 1 in cost Õ

(
n
ε1.5

)
.

5.3 Numerical Experiments

Correctness. We conduct a numerical experiment to showcase the correctness of our
quantum policy gradient algorithm. Following a similar setup as in [45], a mass-spring-
damper system with g = 4 masses is used for constructing our LQR problem. The state

9



(a) J − J∗ (b) f(K) − f(K∗) (c) runtime
Figure 2: Numerical Results on Convergence. Following the mass-spring-damper setup
in [45], our policy gradient descent algorithm converges much faster than [45].

x = [p⊤, v⊤]⊤ ∈ R2g contains positions and velocities, with dynamic and input matrices,

A =
[

0 I
−T −T

]
, B =

[
0
I

]
, Q = I + 100e1e

⊤
1 , R = I + 4e2e

⊤
2 , (26)

where 0, I are g × g zero and identity matrices, ei is the ith unit vector, and matrix T has
2 on the main diagonal and -1 on the first super- and sub-diagonal. In Figure 2, we run
our method against the classical model-free gradient-based method [45]. It shows that our
model-based policy gradient converges much faster to the ground truth ARE solution K∗. In
the benchmark example [45], ours converges within 750 iterations, while the classical method
takes 2× 104 iterations (orders of magnitude longer). In Figure 2 (c), we increase the system
size by scaling g from 4 to 64. Both methods run on a classical simulator with Intel i9-
10980XE CPU. Our method runs much faster than [45] by nearly 3 orders of magnitude.
The code for both methods can be seen at https://github.com/YilingQiao/diff_lqr.
Additional numerical results can be found in Appendix I.

6 Conclusion and Future Work

In this paper, we propose the first quantum algorithm for solving linear-quadratic control
problems that achieves end-to-end quantum speedups. Our quantum algorithm utilizes an
exponentially faster quantum linear dynamics simulator combined with a policy gradient
method. Compared to classical approaches relying on matrix factorization and iterations, our
method achieves super-quadratic speedup in the large-scale regime (i.e., m≪ n). Moreover,
the hybrid quantum-classical algorithm design makes our algorithm a promising candidate
for practical quantum advantage in the near horizon. We also provide numerical evidence to
demonstrate the robustness and favorable convergence behavior of our method.

Limitations and Future Work. Accelerating optimal control and reinforcement learning
using quantum computers remains an emerging research topic. Our work has focused on
the theoretical aspects of quantum advantage for LQR, a classic optimal control problem
of fundamental importance in both theory and practice. However, for special cases [17],
we have no guarantee that our quantum algorithm still applies, since Lemma 33 may not
hold. In the future, we aim to explore both the practical utility of quantum computing for
such tasks and its potential for handling more complex optimal control scenarios, such as
non-quadratic and nonlinear problems.
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Appendices

A LQR theory

Definition 6. Given a positive number a > 0, we define the sublevel set SK(a) := {K ∈
Rm×n : f(K) ≤ a}. We have the following useful bound on K.
Lemma 8. Over the sublevel set SK(a) of the LQR objective function f(K), we have

Tr[X(K)] ≤ a/λmin(Q), (27a)
ν/a ≤ λmin(X(K)), (27b)
∥K∥F ≤ a/

√
νλmin(R), (27c)

where the constant

ν = 1
4

(
∥A∥2√
λmin(Q)

+ ∥B∥2√
λmin(R)

)−2

. (28)

Proof. See [45, Lemma 16].
Lemma 9. For any K ∈ SK(a), we have

∥K −K∗∥2
F ≤

a

νλmin(R) (f(K)− f(K∗)) , (29)

where ν is the same as in (28).

Proof. By [45, Lemma 2], we have
f(K)− f(K∗) = Tr

[
(K −K∗)⊤R(K −K∗)X(K)

]
≥ λmin(R)λmin(X(K))∥K −K∗∥2

F .

Combining the above result with Lemma 8, we end up with (29).
Lemma 10 (PL condition). Fix a > 0. For any K ∈ SK(a), we have

∥∇f(K)∥2
F ≥ 2µf (f(K)− f(K∗)), (30)

where µf > 0 is a constant that only depends on the problem data and a.

Proof. See [45, Remark 2].

B Implementation of block-encoded matrices

Lemma 11. Assume that we have efficient procedures (as described in Assumption 1) to
access the problem data A,B,Q,R in O(poly log(n)) time. For a fixed a > 0, suppose that
K ∈ SK is a stabilizing policy stored in a quantum-accessible data structure. Then, we can
implement

1. a (s(∥K∥F + 1), ε)-block-encoding of A−BK in cost O(poly log(n, s/ε)),

2. a (s(∥K∥2
F + 1), ε)-block-encoding of Q+K⊤RK in cost O(poly log(n, s/ε)).

Proof. By [22, Lemma 48], we can implement a (s, ε)-block-encoding of A (or B,Q,R)
in cost O(poly log(n, s/ε)). Also, due to [22, Lemma 50], we can implement a (∥K∥F , ε)-
block-encoding of K in cost O(poly log(n, 1/ε)). Therefore, by [22, Lemma 52, 53], a
(s(∥K∥F + 1), ε)-block-encoding of A − BK can be implement in cost O(poly log(n, s/ε)).
Similarly, we can implement a (s(∥K∥2

F + 1), ε)-block-encoding of Q + K⊤RK in cost
O(poly log(n, s/ε)).

Remark 1. We observe that the block-encodings of A − BK and Q + K⊤RK can be
implemented with high precisions, i.e., in cost O(poly log(1/ε)). To simplify our technical
arguments, we assume these block-encodings can be implemented with no error, i.e., we can
implement a (s(∥K∥F +1), 0)-block-encoding of A−BK (or a (s(∥K∥2

F +1), 0)-block-encoding
of Q+K⊤RK in cost O(poly log(n, s)).
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C Matrix exponential based on quantum linear system solver

C.1 Block-encoding for matrix inverse

Lemma 12 (Modified from [42], Lemma 11). Let C be a matrix such that C/αC is block-
encoded by OC with some normalization factor αC . Then we can implement a (O(αC−1), ε)-
block-encoding of C−1 using

O(κC log(1/ε)) (31)
queries to OC . Here κC is the condition number of C.

Suppose we have an (α, ε)-block-encoding UM that block-encodes M . Denote
α⟨0|UM |0⟩ −M = Λ, (32)

we have ∥Λ∥ ≤ ε. Then we can see UM as an (α, 0)-block-encoding of M + Λ/α. So with the
lemma above, we have the theorem below:
Theorem 13. Suppose we have an (α, ε1)-block-encoding UM that block-encodes M , then
we can implement a (O(αM−1), ε2 + α2

M−1
α−ε1αM−1

ε1)-block-encoding for M−1 using
O(κM log(1/ε2)) (33)

queries to UM .

Proof. From the lemma above we know we can implement a (α̃M−1 , ε2)-block-encoding as
ŨM−1 for (M + Λ/α), where α̃M−1 = O(αM−1). To analyze the error,
∥α̃M−1ŨM−1 −M−1∥ ≤ ε2 + ∥(M + Λ/α)−1 −M−1∥ = ε2 + ∥(I +M−1Λ/α)−1M−1 −M−1∥

= ε2 + ∥(I +M−1Λ/α)−1 − I∥∥M−1∥ = ε2 +
∥∥∥∥∥

∞∑
n=1

((−M−1Λ)/α)n
∥∥∥∥∥ ∥M−1∥

≤ ε2 +
∞∑
n=1

∥∥((−M−1Λ)/α)n
∥∥ ∥M−1∥ ≤ ε2 +

α2
M−1

α− ε1αM−1
ε1.

(34)

C.2 Introduction to quantum linear system solver

The first quantum algorithm for solving linear differential equations was proposed by [9].
Since this work was done, several refinements have been made. Among these, [33] significantly
loosen the requirement of performing the algorithm. We notice that this whole algorithm
can be written in the form of block-encoding. Basically, for a linear differential equation

du
dt = Au, (35)

upon appropriate discretization method and the method of line, one may construct a big
matrix A s.t.

A


u(0)
u(h)
u(2h)

...
u(T )

 =


u(0)

0
0
...
0

 . (36)

Then it is easy to see that the matrix inverse A−1 satisfies
(⟨k| ⊗ I)A−1(|0⟩ ⊗ u(0)) = u(kh) = ekhAu(0). (37)

Because u(0) is arbitrarily chosen, we conclude
(⟨k| ⊗ I)A−1(|0⟩ ⊗ I) = ekhA. (38)

Suppose A−1 is block-encoded in some UA−1 , we have
(⟨k| ⊗ I)((⟨0a| ⊗ I)UA−1(|0a⟩ ⊗ I))(|0⟩ ⊗ I) = (⟨k0a| ⊗ I)UA−1(|0a+ℓ⟩ ⊗ I). (39)

Here ℓ satisfy 2ℓ = T/h, where T is the simulation time and h is the step size. Then it is
obvious that UA−1 is also a block-encoding of ekhA.
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C.3 Matrix exponential construction

Lemma 14 (Modified from [33]). If we have a block-encoding UL that block-encodes L
defined as

L = I −N,

N =
m∑
i=0
|i+ 1⟩⟨i| ⊗M2(I −M1)−1 +

2m∑
i=m+1

|i+ 1⟩⟨i| ⊗ I,

M1 =
k−1∑
j=0
|j + 1⟩⟨j| ⊗ Ah

j + 1 ,

M2 =
k∑
j=0
|0⟩⟨j| ⊗ I,

(40)

then the (αL−1 , ε)-block-encoding UL−1 that block-encodes L−1 satisfies∥∥αL−1(⟨r0a| ⊗ I)UL−1(|0a+s⟩ ⊗ I)− eTA
∥∥ ≤ ϵ. (41)

for any r ≥ m+ 1. Let 2s−1 = m, thus

αL−1(⟨0a+s| ⊗ I) ((X ⊗ Is−1 ⊗ Ia ⊗ I)UL−1) (|0a+s⟩ ⊗ I) ≈ eTA, (42)
which means that ((X ⊗ Is−1 ⊗ Ia ⊗ I)UL−1) is a block-encoding of eTA with its normalization
factor as αL−1 and error being at most ε.

Proof. The proof of the correctness of L can be found in [33].

Now we turn to construct the block-encoding for L.
Lemma 15. Assume we can query the (αA, 0)-block-encoding UA that encodes A and
hαA = O(1), then we can construct a (O(k1.5), k1/2ϵ)-block-encoding for L defined in (40)
using O(k log(1/ϵ)) queries of UA and same queries to additional elementary gates.

Proof. First we need to block-encode M1. We will use the ADD operator defined as

ADD :=
∑
j

|(j + 1) mod k⟩⟨j|, (43)

and the controlled-rotation UR as

UR|j + 1⟩|0⟩ = |j + 1⟩
(

1
j + 1 |0⟩+

√
1− 1

(j + 1)2 |1⟩
)
. (44)

Notice that

(UR ⊗ I)(ADD⊗ I ⊗ I)

k−1∑
j=0
|j⟩⟨j| ⊗ I ⊗ UA


=
k−1∑
j=0

UR
(
|j + 1 mod k⟩⟨j| ⊗ I

)
⊗ UA.

(45)

Post-select on the second register and the ancilla qubits of UA, we have

(I ⊗ ⟨0| ⊗ ⟨0|)

k−1∑
j=0

UR
(
|j + 1 mod k⟩⟨j| ⊗ I

)
⊗ UA

 (I ⊗ |0⟩ ⊗ |0⟩)

=
k−1∑
j=0
|(j + 1) mod k⟩⟨j| ⊗ A/αA

j + 1 .

(46)
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If we apply the operator on a state, namelyk−1∑
j=0

UR
(
|(j + 1) mod k⟩⟨j| ⊗ I

)
⊗ UA

 |t⟩|0⟩|ψ⟩ = 1
αA(t+ 1) |(t+ 1) mod k⟩|0⟩A|ψ⟩+|⊥⟩.

(47)
So we can apply one more multi-controlled-X gate to flip the flag register for the control
register being |0⟩, then the whole thing becomes a (αAh, 0)-block-encoding for M1, using just
one query to UA. We can then easily generate the block-encoding of I −M1 by LCU, with a
1 + αAh normalization factor. By the analysis in [33], we know ∥I −M1∥∥(I −M1)−1∥ ≤
2k. Using Lemma 12, we can implement a (O(k), ϵ1)-block-encoding of (I −M1)−1 using
O(k log(1/ε1)) queries to the block-encoding of I −M1 thus the same queries to UA.
For the block-encoding of M2, since it is sparse, we may directly implement it through the
sparse input model. We may just assume the normalization factor to be

√
k and there is

no error. Then we can implement a (O(k3/2),
√
kε1)-block-encoding of (I −M1)−1M2 using

O(k log(1/ε1)) queries to UA and other additional gates.
For the block-encoding for N , we can see the normalization factor would be the same scaling
as M2(I −M1)−1, thus we implemented a (O(k3/2),O(

√
kε1))-block-encoding of N .

Now if we use QSVT to perform the matrix inverse, just as described in Theorem 13, we can
implement an (αL−1 , ε2 + α2

L−1
αL−ε1αL−1

√
kε1)-block-encoding UL−1 that encodes L−1 in cost

O(κL log(1/ε2)) queries to UL, i.e. O(κL log(1/ε2)k log(1/ε1)) queries to UA.
In order to perform the inverse of L, we need to know the condition number of L.
Lemma 16 (Modified from [33], Theorem 3 & 4). Suppose E is the solution operator
block-encoded by UL−1 that approximates eAT and m is the number of steps. Let

(k + 1)! ≥ me3

δ
CA, (48)

where
sup
t
∥ exp(At)∥ ≤ CA, (49)

we have
∥E − eAT ∥ ≤ δ, ∥L−1∥ = O(mCA(1 + δ)) (50)

and
κL ≤ O(m

√
kCA(1 + δ)). (51)

Proof. The proof can be seen at [33, Theorem 4].

Theorem 17. Let matrix A be a Hurwitz matrix with supt ∥ exp(tA)∥ bounded by some
constant ρ, and OA is a (αA, 0)-block-encoding of A. Then we can construct a (ζT, ϵ)-block-
encoding of eAT using

Õ
(
αAρT · poly log

(
1
ϵ

))
(52)

queries to OA and same queries to other additional elementary gates. Here ζ = O(αAρ).

Proof. Firstly notice that m = O(αAT ) and k = O
(

log(TαAρ/δ)
log log(TαAρ/δ)

)
. For a given accuracy ε,

we need δ ≤ ε, which could be given by letting

ε2 +
α2
L−1

αL − ε1αL−1

√
kε1 ≤ ε. (53)

Choose ε1 = Õ(ε/T 2) and ε2 = ε/2, from the discussion above we know we can implement
an (αL−1 , ε)-block-encoding of eTA. Since αL−1 = O(mρ(1 + δ)), the queries we need is
Õ(αAρT · poly log(1/ε)).
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Remark 2. If we directly use the theorem above to prepare the state |eAT |ψ⟩⟩ for some
input state |ψ⟩, the dependence on T would be T 2, which does not match the optimal scaling.
This is actually due to our usage of QSVT to block-encode matrices inverses. If we adopt the
common technique of padding in the quantum linear system solver, we can easily improve
the current scaling into T 3/2. However, for simplicity, we do not implement these standard
improvements in this work, as they does not affect our end-to-end complexity result.

D Quantum eigenvalue transformation for linear differential
equations

Here we exploit a technique known as quantum eigenvalue transformation (QEVT) by Low
and Su [42] to simulate linear dynamics ẋ = Ax. The algorithm (QEVT) requires that the
dynamics is stable under A+A⊤ ≤ 0, which is stronger than A is Hurwitz stable.
Notice that A+A⊤ ≤ 0 is the stability under the common 2-norm, and A satisfying the
Lyapunov equation AX + XA⊤ ≤ 0 (16) indicates the stability under the inner product
induced by the matrix X. We hence follow [42], use a sequence of polynomial functions
(known as the Faber polynomials) to approximate the time-evolution operator eAt.
Lemma 18 (Faber truncation of matrix exponentials, [42, Lemma 27]). Suppose we have a
matrix A where its numerical range W(A) := {⟨ψ|A|ψ⟩

∣∣∥|ψ⟩∥ = 1} is enclosed by a Faber
region E with associated conformal maps Φ : Ec → Dc,Ψ : Dc → Ec and Faber polynomials
Fs(z). Given t > 0, let etz =

∑∞
j=0 βjFj(z) be the Faber expansion of the complex exponential

function etz. Assume that E is convex and symmetric with respect to the real axis, lying on
the left half of the complex plane, then for sufficiently large s,∥∥∥∥∥eAt −

s−1∑
k=0

βjFj(A)
∥∥∥∥∥ = O

((
ct

s

)s)
, (54)

where c is a constant determined by the conformal maps.

By Lemma 18, given any ε > 0, it suffices to choose s ∼ O(t log
( 1
ε

)
) such that∥∥∥∥∥eAt −

s−1∑
k=0

βjFj(A)
∥∥∥∥∥ ≤ ε. (55)

Definition 7. For some matrix A of size N ×N with its normalization factor αA, denote
the identity matrix of size N ×N as IN , and

LN =



0
1 0

1 0
1 0

. . . . . .
1 0


N×N

(56)

as the lower shift matrix of size N ×N . We then define

PAD(A) :=|0⟩⟨0| ⊗
(
LNΨ(L−1

N )⊗ IN − LN ⊗
A

αA

)
+|1⟩⟨0| ⊗ |0⟩⟨N − 1| ⊗ (−IN ) + |1⟩⟨1| ⊗ (IN − LN )⊗ IN ,

(57)

and

PAD(B) := |0⟩⟨0| ⊗Ψ′(L−1
N )⊗ IN + |1⟩⟨1| ⊗ IN ⊗ IN . (58)

Note that the conformal map Ψ has its Laurent expansion, and so are Ψ′(ω) and ωΨ(ω−1).
Furthermore, Ψ′(ω) and ωΨ(ω−1) only contains terms with non-negative exponents. Thus
Ψ(L−1

N ) and Ψ′(L−1
N ) are well-defined even though L−1

N is not invertible itself.
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With the matrices PAD(A) and PAD(B), we can compute the matrix PAD(A)−1PAD(B),
say

PAD(A)−1PAD(B) =



F0( A
αA

) 0 · · · 0 0 0 · · · 0

F1( A
αA

) F0( A
αA

) . . . ... 0 0 · · · 0
... . . . . . . 0

...
... . . . ...

Fs−1( A
αA

) Fn−2( A
αA

) · · · F0( A
αA

) 0 0 · · · 0
Fs−1( A

αA
) Fs−2( A

αA
) · · · F0( A

αA
) I 0 · · · 0

Fs−1( A
αA

) Fs−2( A
αA

) · · · F0( A
αA

) I I · · · 0
...

... · · ·
...

...
... . . . 0

Fs−1( A
αA

) Fs−2( A
αA

) · · · F0( A
αA

) I I · · · I


. (59)

Note that this matrix has (2s)× (2s) blocks, and each block of size N ×N .
Definition 8. For a matrix A whose numerical range is enclosed by a Faber region E with
associated conformal maps Φ : Ec → Dc,Ψ : Dc → Ec and Faber polynomials Fs(z), consider
some Faber expansion till s-th order, we then define

ρ ≥ max
j=1,··· ,s

∥∥∥∥∥F ′
j( A
αA

)
j

∥∥∥∥∥ (60)

as an upper bound on the derivative of Faber polynomials.
Lemma 19. We are able to have a (ξ, ε)-block-encoding to (PAD(A))−1 using O(ξ log

( 1
ε

)
)

queries to the block-encoding of A and Õ(1) additional elementary gates. Here ξ ∼ O(ρs).

Proof. Since we know that PAD(A) can be block-encoded with an O(1) normalization factor
with arbitrary precision using a single query to the block-encoding of A and a polylogarithmic
number of elementary gates, and ∥(PAD(A))−1∥ = O(sρ), the rest of the proof is done
by Lemma 12.

Theorem 20 (Modified version of Theorem 10. [42]). Let matrix A have its numerical range
W(A) := {⟨ψ|A|ψ⟩

∣∣∥|ψ⟩∥ = 1} enclosed by a Faber region E with associated conformal maps
Φ : Ec → Dc,Ψ : Dc → Ec and Faber polynomials Fs(z). Let p(z) =

∑s−1
k=0 βkFk(z) be the

Faber expansion of a degree-(s− 1) polynomial p and Oβ |0⟩ =
∑s−1
k=0 βk|n− 1− k⟩/∥β∥ be

the oracle preparing the coefficients. Then, we can construct a (ξ′∥β∥, ∥β∥ε)-block-encoding
of
∑s−1
k=0 βkFk(A/αA) using

O
(
ρs log

(
1
ε

))
(61)

queries to OA, one query to Oβ and Õ(1) additional gate. Here, ξ′ ≤ O(ρs).

Proof. First, we observe that

(⟨0| ⊗ ⟨0| ⊗ I)
(
PAD(A)−1PAD(B)(X ⊗Oβ ⊗ I)

)
(|0⟩ ⊗ |0⟩ ⊗ I) =

s−1∑
k=0

βk
∥β∥

Fk(A/αA). (62)

The X is the quantum Pauli-X gate. Here the circuit has 3 registers, the first one only has
one qubit, the second has log2 s qubits, and the third one matches the size of A.
By [42, Theorem 9], we can implement a block-encoding of PAD(A) using a single query to
the block-encoded matrix A/αA. Also, given a constant

ρ ≥ max
j=1,··· ,s

∥∥∥∥∥F ′
j( A
αA

)
j

∥∥∥∥∥ , (63)

we know that ∥PAD(A)−1∥ = O(ρs). By Lemma 19, we can construct a (ξ, ε)-block-encoding
of PAD(A)−1 using O(ξ log(1/ϵ)) queries to the block-encoding of A/αA.
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Also, assume we can implement a block-encoding of PAD(B) with a O(1) normalization
factor. Combining these two block-encodings together, we obtain a (ξ′, ε)-block-encoding of
PAD(A)−1PAD(B), where ξ′ ≤ O(ρs). Then, by (62), the block-encoding we implemented
turns out to be a (ξ′∥β∥, ∥β∥ε)-block-encoding of

∑s−1
k=0 βkFk(A/αA).

Theorem 21 (Block-encoding of matrix exponential). Suppose that A ∈ Rm×n is a Hurwitz
matrix, and OA is a (αA, 0)-block-encoding of A. Then we can implement a (ζt, ε)-block-
encoding of eAt using

O
(
αAtpoly log

(
1
ε

))
(64)

queries to OA, one query to a state preparation oracle Oβ and Õ(1) additional gate. Here
ζ = O(αA poly log(1/ϵ)).

Proof. First we use Lemma 18 to eαA(A/αA)t, then we know the polynomial should be of
degree O(αAt log

(
1
ε1

)
) in order to have a ε1 accuracy. Then leverage Theorem 20, we need

O
(
ρ
(
αAt log

(
1
ε1

))
log
(

1
ε2

))
queries to OA to construct a block-encoding of the polynomial.

Since the Faber polynomial expansion of eAt converges absolutely, without loss of generality,
we assume ∥β∥ is O(1). Choosing ε1 = ε

2 and ε2 = ε
2∥β∥ , we have a (ζt, ε)-block-encoding of

eAt.

E Proof of Theorem 4

Lemma 22 (Select oracle). Suppose that A is Hurwitz, and OA is an (α, 0)-block-encoding
of A. Let K be a positive integer and τ, ε > 0 are two real-valued scalars. The select oracle
as defined in Definition 4 can be implemented using

Õ
(
αρτK log(K) · poly log

(
1
ε

))
(65)

queries to controlled OA, and Õ
(
αρτK log(K) · poly log

( 1
ε

))
queries to other additional

elementary gates.

Proof. Firstly, tk here attains tk = kτ
K . By Theorem 17, for each k = 0, . . . ,K, we can

implement a (ζtk, ε)-block-encoding of eAtk using Õ(αρtk · poly log(1/ε)) queries to OA. We
denote this block-encoding as Uk. Notice that the select oracle select(A, ε) can be represented
by

select(A, ε) =
K∏
k=0

[
(I− |k⟩⟨k|)⊗ I + |k⟩⟨k| ⊗ Uk

]
, (66)

where each unitary operator [(I− |k⟩⟨k|)⊗ I + |k⟩⟨k| ⊗ Uk] in this product is a k-controlled
version of Uk that can be implemented with Õ(αρtk log(K) · poly log(1/ε)) queries to the
controlled OA and other additional gates. Therefore, the overall query complexity is

Õ

(
αρτ

(
K∑
k=0

tk

)
log(K) · poly log

(
1
ε

))
≤ Õ

(
αρτK log(K) · poly log

(
1
ε

))
, (67)

where the last step follows from
∑K
k=0 tk =

∑K
k=0

kτ
K = (K+1)τ

2 .

In the following proof, we will need a state preparation oracle

Oλ|0⟩ = 1√
∥λ∥1

K∑
k=0

√
λk|k⟩, (68)
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where λk = wkk
2, ∥λ∥1 =

∑K
k=0 |λk| and wk = (2−1k=0,K)τ

2K . Since λk can be expressed as a
smooth function of k for k ∈ {0, 1, · · · ,K}, this state preparation oracle can be implemented
in O(poly log(K)) cost.

Now, we are ready to prove Theorem 4.

Proof. The global error of the trapezoidal rule (see (20)) is proportional to

max
ξ∈[0,τ ]

τ3

K2 |F
′′(ξ)|, (69)

where
|F ′′(ξ)| =

∣∣A2F (ξ) + 2AF (ξ)A⊤ + F (ξ)(A⊤)2∣∣ ≤ 4∥A∥2∥Ω∥.
Therefore, to achieve precision ε1, the total number of quadrature points is

K = O
(
τ3/2αη1/2

ε
1/2
1

)
. (70)

Now, we consider the following two select oracles, as defined in Definition 4:

select(A, ε2) :=
K∑
k=0
|k⟩⟨k| ⊗ Uk, select(A⊤, ε2) :=

K∑
k=0
|k⟩⟨k| ⊗ Vk, (71)

where Uk (or Vk) is a (ζtk, ε2)-block-encoding of eAtk (or eA⊤tk ) for 0 ≤ k ≤ K. Recall that
OΩ is a (η, 0)-block-encoding of Ω, it turns out that

select(A, ε)(I ⊗OΩ)select(A⊤, ε) =
K∑
k=0
|k⟩⟨k| ⊗Wk, (72)

where Wk := UkUΩVk is a (ηζ2t2k, 2ζtkηε2)-block-encoding of the matrix F (tk).
Let Oλ be the state preparation oracle defined in (68). By the LCU technique [22, Lemma
52], we can implement a (γ,

∑K
k=0 2|wk|ηζtkε2)-block-encoding (where γ :=

∑K
k=0 |wk|ζ2t2kη)

of
∑K
k=0 wke

Atk ΩeA⊤tk using a single query to select(A, ε2), select(A⊤, ε2), UΩ, Oλ and its
inverse.
Notice that

K∑
k=0
|wk|tk ≤

K∑
k=0

τ

K

kτ

K
= O(τ2), (73)

thus
K∑
k=0

2|wk|ηζtkε2 = Õ
(
τ2ηζε2

)
. (74)

Given a positive scalar ε > 0, and set the integration time

τ = κ log
(

3∥X∗∥κ
ε∥w∥1λmin(X∗)

)
, (75)

Note that
εδpoly

(
log
(

1
ε

))
→ 0, (76)

then if we choose
ε1 = ε

3 , ε2 = O(ε1+δ), (77)
where δ > 0 is a constant positive number. By Lemma 3 and the error analysis above, we
implement a (γ, ε)-block-encoding of X∗, with

γ =
K∑
k=0
|wk|ζ2t2kη = O(ζ2ητ3) = Õ(α2ρ2κ3η). (78)
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It follows that the overall cost of this block-encoding is

Õ
(
α2ρκ5/2η1/2

ε1/2

)
(79)

queries to OA and same queries to other additional elementary gates.

F Quantum trace estimation

Here we show how to estimate the trace of a positive definite block-encoded matrix. The
main result is in Theorem 25.
Lemma 23. Let UH be an (α,m, εH)-block-encoding of a positive-definite Hermitian matrix
H ∈ Cn×n and let ε ∈ (0, 1

3 ]. Let λmin > 0 be a known lower bound on the smallest eigenvalue
of H. Provided that εH ≤ O

(
λminε

2

log(1/ε)

)
is sufficiently small (where ε > 0 is a given number),

we can construct a (1,m+2, ε)-block-encoding of
√

H/α
36 using O

(
α

λmin
log(1/ε)

)
applications

of UH and U†
H , a single application of controlled-UH , and O

(
α(m+1)
λmin

log(1/ε)
)

other one-
and two-qubit gates. The description of this block-encoding circuit can be computed classically
in time O

(
poly

(
α

λmin
log(1/ε)

))
.

Proof. Define λ̃min := λmin/α, such that λ̃minI ⪯ H/α ⪯ I. We first find a polynomial
approximation of f(x) :=

√
x
36 over x ∈ [λ̃min, 1] using [22, Corollary 66]. To use this corollary,

let x0 := 1, r := 1− λ̃min, δ := λ̃min, and observe that f(x0 +x) = 1
6
√

1 + x = 1
6
∑∞
ℓ=0
(1/2
ℓ

)
xℓ

whenever |x| ≤ r + δ = 1. Also note that 1
6
∑∞
ℓ=0

∣∣∣(1/2
ℓ

)∣∣∣ ≤ 1
3 =: B. Then there is an

efficiently computable polynomial P0 ∈ C[x] of degree d = O
(

1
λ̃min

log(1/ε)
)

such that

∥f(x)− P0(x)∥ ≤ ε
2 for x ∈ [λ̃min, 1] and ∥P0(x)∥ ≤ ε

2 + B ≤ 1
2 for x ∈ [−1, 1]. It follows

that defining P (x) := Re (P0(x)) gives |f(x)− P (x)|[̃λmin,1] ≤
ε
2 and |P (x)|[−1,1] ≤ 1

2 .

Next, we use [22, Theorem 56] to construct construct a unitary V that is a (1,m+ 2, ε/2)-
encoding of P (H/α) with the desired complexity, using the promise that εH is sufficiently
small to satisfy 4d

√
εH/α ≤ ε/4. V is then a (1,m+ 2, ε)-block-encoding of

√
H/α

36 since∥∥∥∥∥
√
H/α

36 − ( ⟨0|⊗m+2 ⊗ I)V (|0⟩⊗m+2 ⊗ I )
∥∥∥∥∥

≤

∥∥∥∥∥
√
H/α

36 − P (H/α)
∥∥∥∥∥+

∥∥∥P (H/α)− (⟨0|⊗m+2 ⊗ I)V (|0⟩⊗m+2 ⊗ I)
∥∥∥

≤ ∥g(H/α)− P (H/α)∥+ ε

2 = ∥diag(g(λH/α))− diag(P (λH/α))∥+ ε

2
= max
λi∈λH

|g(λi/α)− P (λi/α)|+ ε

2 ≤
ε

2 + ε

2 = ε,

(80)

where λH ∈ Rn is the vector of eigenvalues of H.

Lemma 24. Let µ > 0. Let A be an n-by-n Hermitian matrix such that 0 ⪯ A ⪯
I and let Ṽ be a (1,m, µ/3)-block-encoding of

√
A. Then there exists ŨA such that∣∣∣∣∥∥∥(⟨0| ⊗ I)ŨA|0 . . . 0⟩

∥∥∥2
− Tr(A)

n

∣∣∣∣ ≤ µ that uses 1 query to Ṽ and O(logn) additional gates.

Proof. Our proof is similar to the proof of [55, Lemma 13]. The idea is to first prepare the
maximally entangled state

∑n
i=1 |i⟩|i⟩/

√
n (which requires O(logn) gates) and then apply

the map
√
A to the first register. We can assume without loss of generality that µ ≤ 1,

otherwise the statement is trivial.
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Note that Ṽ0 := (⟨0|⊗m ⊗ I)Ṽ (|0⟩⊗m ⊗ I) is a µ/3-approximation of
√
A by definition. We

are interested in the probability p of measuring 0⊗m in the first register after applying Ṽ .

p :=
∥∥∥∥∥(⟨0|⊗m ⊗ I)Ṽ (|0⟩⊗m ⊗ I)

n∑
i=1

|i⟩|i⟩√
n

∥∥∥∥∥
2

=
∥∥∥∥∥Ṽ0

n∑
i=1

|i⟩|i⟩√
n

∥∥∥∥∥
2

= 1
n

n∑
i=1
⟨i|Ṽ †

0 Ṽ0|i⟩ = 1
n

Tr
(
Ṽ †

0 Ṽ0

)
.

(81)

It remains to show that p is a good approximation of Tr(A)/n. For this, we show Ṽ †
0 Ṽ0 ≈ A.

Note that for all matrices B, B̃ with ∥B∥ ≤ 1, we have∥∥∥B†B − B̃†B̃
∥∥∥ =

∥∥∥(B† − B̃†)B +B†(B − B̃)− (B† − B̃†)(B − B̃)
∥∥∥

≤
∥∥∥(B† − B̃†)B

∥∥∥+
∥∥∥B†(B − B̃)

∥∥∥+
∥∥∥(B† − B̃†)(B − B̃)

∥∥∥
≤
∥∥∥B† − B̃†

∥∥∥ ∥B∥+
∥∥B†∥∥∥∥∥B − B̃∥∥∥+

∥∥∥B† − B̃†
∥∥∥∥∥∥B − B̃∥∥∥

≤ 2
∥∥∥B − B̃∥∥∥+

∥∥∥B − B̃∥∥∥2
.

(82)

Using equation (81) along with equation (82) (letting B =
√
A and B̃ = Ṽ0), we see∣∣∣∣Tr(A)

n
− p
∣∣∣∣ = 1

n

∣∣∣Tr
(
A− Ṽ †

0 Ṽ0

)∣∣∣ ≤ ∥∥∥A− Ṽ †
0 Ṽ0

∥∥∥ ≤ 2
(µ

3

)
+
(µ

3

)2
≤ µ. (83)

Theorem 25. Let UH be an (α,m, ε)-block-encoding of a Hermitian matrix H ∈ Cn×n,
where UH can be implemented using TH elementary gates. Suppose H ≻ 0 and let λmin > 0
be a known lower bound on the smallest eigenvalue of H. Then, with probability at least 4/5,
we can estimate Tr(H) to within multiplicative error θ ∈ (0, 1] in cost

O

(
α3/2TH

θλ
3/2
min

log
(

α

θλmin

))
, (84)

provided that ε ≤ O
(

λ3
minθ

2

α2 log(α/θλmin)

)
.

Proof. Our proof is similar to the proof of [55, Corollary 10]. Let A := H/α
36 and note that

since H/α ⪰ λminI/α, we have
Tr(A)
n

:= Tr(H/α)
36n ≥ λmin

36α . (85)

Let ŨA be a (1,m+ 2, θλmin/216α)-block-encoding of
√
A constructed via Lemma 23. Using

Lemma 24, we can construct a unitary circuit Ṽ such that∣∣∣∣∥∥∥(⟨0| ⊗ I)Ṽ |0 . . . 0⟩
∥∥∥2
− Tr(A)

n

∣∣∣∣ ≤ θλmin

72α ≤ θ

2 ·
Tr(A)
n
≤ Tr(A)

2n (86)

Therefore we have∥∥∥(⟨0| ⊗ I)Ṽ |0 . . . 0⟩
∥∥∥2
≥ Tr(A)

n
− Tr(A)

2n = Tr(A)
2n ≥ λmin

72α =: pmin. (87)

as well as ∥∥∥(⟨0| ⊗ I)Ṽ |0 . . . 0⟩
∥∥∥2
≤ Tr(A)

n
+ Tr(A)

2n = 3 Tr(A)
2n . (88)

Using the amplitude estimation technique of [55, Lemma 9] with pmin = λmin/72α and
µ = θ/3 gives us a p̃ that with probability at least 4/5 satisfies∣∣∣∣p̃− ∥∥∥(⟨0| ⊗ I)Ṽ |0 . . . 0⟩

∥∥∥2
∣∣∣∣ ≤ θ

3

∥∥∥(⟨0| ⊗ I)Ṽ |0 . . . 0⟩
∥∥∥2
≤ θ

2 ·
Tr(A)
n

. (89)
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By combining (86) and (89) and using the triangle inequality, we get∣∣∣∣Tr(A)
n
− p̃
∣∣∣∣ ≤ θ · Tr(A)

n
. (90)

Therefore, 36αnp̃ is a multiplicative θ-approximation of Tr(H).

It remains to show that the complexity statement holds. The construction of ŨA via
Lemma 23 uses O(TH · α

λmin
log(α/θλmin)) elementary gates from the applications of UH ,

U†
H , and controlled-UH , and O((m+ 1) α

λmin
log(α/θλmin)) other one- and two-qubit gates.

The construction of Ṽ requires an additional O(logn) gates. The amplitude estimation step
requires O(

√
α/λmin/θ) uses of Ṽ and Ṽ †, and O(

√
α/λmin logn/θ) additional gates. So

the overall complexity is

O

(√
α/λmin

θ

(
αTH
λmin

log
(

α

θλmin

)
+ (m+ 1)α

λmin
log
(

α

θλmin

)
+ logn

))
. (91)

Noting that TH ≥ m and TH ≥ logn for any non-trivial UH gives the stated bound.

G Quantum gradient estimation

Lemma 26. Given K ∈ SK(a) and ∥K −K∗∥F > ε, we have

∥∇f∥ ≥ cε, (92)

where the constant c =
√

2µfνλmin(R)/a.

Proof. This lemma follows directly from Lemma 9 and Lemma 10.

Lemma 27 (Block-encoded ∇f(K)). Assume that we have efficient procedures (as described
in Assumption 1) to access the problem data A,B,Q,R in O(poly log(n)) time. Let K ∈
SK(a) be a stabilizing policy stored in a quantum-accessible data structure. Given any
εb > 0, we can implement a (γ∇, εb)-block-encoding of ∇f(K) in cost Õ

(
a6ρ3

√
κ11

εb

)
, where

γ∇ ≤ Õ(a6ρ4κ6).

Proof. We know that for the function f(K) defined in (5), the gradient has a closed-form
expression: ∇f(K) = 2(RK −B⊤P (K))X(K). As shown in the proof of Theorem 5, we can

implement a (γP , ε)-block-encoding of P (K) in cost Õ
(
a3ρ
√

κ5

ε

)
, where γP ≤ Õ(a4ρ2κ3).

Similarly, since X(K) is the solution to the Lyapunov equation (assuming Σ0 = I)

(A−BK)X +X(A−BK)⊤ + I = 0, (93)

we can implement a (γX , ε)-block-encoding of X(K) in cost Õ
(
a2ρ
√

κ5

ε

)
, where γX ≤

Õ(a2ρ2κ3). Based on our assumptions on the input procedures and the usage of quantum
data structure, we can implement a (s∥K∥F , 0)-block-encoding of RK and a (sγP , sε)-block-
encoding of B⊤P (K). It follows that a (γ∇, εb)-block-encoding of ∇f(K) can be implemented

in cost Õ
(
a3ρ
√

κ5

ε

)
, where

γ∇ := 1
2sγX(γP + ∥K∥F ) ≤ Õ

(
a6ρ4κ6) , (94)

and εb ≤ O((a+γP +γXγP )ε). To achieve the desired precision, we pass the error parameter
ε→ ε/(2(a+ γP + γXγP )) to the asymptotic cost.

25



Definition 9. For a matrix G of size m× n, we could always write is as
G = [G1 G2 · · · Gn] , (95)

where Gi is a column vector of size m× 1. Define |Gvec⟩ as

|Gvec⟩ =


G1
G2
...
Gn

 /∥G∥F . (96)

Lemma 28 (Matrix Vectorization). Let UG be a (γ∇, ε)-block-encoding of (∇f(K))⊤, and
we denote

G := γ∇(⟨0r| ⊗ I)UG(|0r⟩ ⊗ I), (97)
where r is the number of ancilla qubits required. Then, we can prepare a quantum state
|Gvec⟩ with Ω(1) success probability using Õ

(
γ∇

√
m

∥G∥F

)
queries to UG and its inverse.

Proof. First, from Lemma 27 we know that we have U⊤
G that encodes ∇f(K)⊤. Notice that

∇f(K) is of size m× n, so

Ir1 ⊗ (Ur2,r3
G )⊤

(
1√
m

m−1∑
i=0
|i⟩r1 ⊗ (|0a⟩)r2 ⊗ |i⟩r3

)

= 1
γ∇
√
m

m−1∑
i=0
|i⟩r1 ⊗ (|0a⟩)r2 ⊗ (G⊤|i⟩)r3 + |⊥⟩

= ∥G∥F
γ∇
√
m

∑m−1
i=0 |i⟩

r1 ⊗ (|0a⟩)r2 ⊗ (G⊤|i⟩)r3

∥G∥F
+ |⊥⟩

(98)

where r1, r2, r3 are the indexes for registers, where the r1 register has log2(m) qubits and
the r3 register has log2(n) qubits(We can always assume m and n are the power of 2). The
state |⊥⟩ contains the state satisfy

(Ir1 ⊗ ⟨0a|r2 ⊗ Ir3)|⊥⟩ = 0. (99)

By leveraging amplitude amplification, we can get the state |Gvec⟩ using O(γ∇
√
m

∥G∥F
) queries

to the block-encoding U⊤
G .

Lemma 29 (Gradient entry estimation). Denote the state preparation in Lemma 28 for
|Gvec⟩ as UGvec , we are able to get the classical G with

∥G − |Gvec⟩∥ ≤ εr (100)
using

Õ
(

γ∇

∥G∥F
m3/2n

εr

)
(101)

queries to UG and Õ
(

γ∇
∥G∥F

m3/2n
εr

)
additional elementary gates.

Proof. [7, Theorem 2] indicates that we can get G using Õ(mnϵr
) queries to the oracle that

prepares |Gvec⟩ and Õ
(
mn
εr

)
additional elementary gates. Since each UGvec requires

Õ
(
γ∇
√
m

∥G∥F

)
(102)

queries, we know the total cost should be

Õ
(

γ∇

∥G∥F
m3/2n

εr

)
. (103)
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Lemma 30 (Gradient norm estimation). Suppose we have the block-encoding UG defined in
Lemma 27, where

G = γ∇(⟨0| ⊗ I)UG(|0⟩ ⊗ I), (104)
then we are able to estimate ∥G∥F up an additive error εa using

O
(
γ∇
√
m∥G∥F

ε2
a + 2∥G∥F εa

)
(105)

queries to UG and its inverse and also Õ
(
γ∇

√
m∥G∥F

ε2
a+2∥G∥F εa

)
elementary gates.

Proof. We still need the computation we did in equation 98, say

Ir1 ⊗ (Ur2,r3
G )⊤

(
1√
m

m−1∑
i=0
|i⟩r1 ⊗ (|0a⟩)r2 ⊗ |i⟩r3

)

= ∥G∥F
γ∇
√
m

∑m−1
i=0 |i⟩

r1 ⊗ (|0a⟩)r2 ⊗ (G⊤|i⟩)r3

∥G∥F
+ |⊥⟩.

(106)

According to [55, Lemma 9], we can get the estimation to
(

∥G∥F

γ∇
√
m

)2
with multiplicative error

µ using O( γ∇
√
m

µ∥G∥F
) queries to U⊤

G . Note our estimator to ∥G∥F as aest, the goal we want to
achieve is

|aest − ∥G∥F | ≤ εa. (107)

Consider our estimation to the amplitude as
(

aest
γ∇

√
m

)2
, set µ = ϵ2

a+2ϵa∥G∥F

∥G∥2
F

, we have(
1

γ∇
√
m

)2 ∣∣a2
est − ∥G∥2

F

∣∣ =
(

1
γ∇
√
m

)2 (∣∣aest − ∥G∥F
∣∣ · ∣∣aest + ∥G∥F

∣∣)
≤
(

1
γ∇
√
m

)2
(εa (|aest − ∥G∥F |+ 2∥G∥F )) ≤

(
1

γ∇
√
m

)2 (
ε2
a + 2εa∥G∥F

)
≤ µ

(
∥G∥F
γ∇
√
m

)2
.

(108)

This in turn gives us the estimation in 107. And this estimation requires

O
(
γ∇
√
m∥G∥F

ε2
a + 2∥G∥F εa

)
(109)

queries to UG and its inverse. The gate complexity also follows from [55, Lemma 9].

Theorem 31 (Quantum gradient estimation). Assume that we have efficient procedures
(as described in Assumption 1) to access the problem data A,B,Q,R in O(poly log(n)) time.
Let K ∈ SK(a) be a stabilizing policy stored in a quantum-accessible data structure. Provided
that ∥K −K∗∥ > ε, we can compute a θ-robust estimate of ∇f(K) in cost

Õ
(
m1.5n

θ1.5ε1.5

)
. (110)

Proof. We need an estimation to ∇f(K) up to a multiplicative error θ. This requires a few
steps as below:
Block-Encoding. From Lemma 27, we know we are able to construct a (γ∇, εb)-block-
encoding to ∇f(K) using

Õ

a6ρ3

√
κ11

εb

 (111)

elementary gates. And we also have the estimation that γ∇ ≤ Õ(a6ρ4κ6).
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Entry Retrieving. The next step is to retrieve the entries in the estimation to ∇f(K). We
firstly use the technique introduced in Lemma 28 to get a state of the estimation to |Gvec⟩,
and this step requires

O
(
γ∇
√
m

∥G∥F

)
(112)

queries. Now we can use Lemma 29 to get the entries in |Gvec⟩ up to an additive error ϵr,
using

Õ
(

γ∇

∥G∥F
m3/2n

εr

)
(113)

queries to UG.
Norm Estimation. The final step is to estimate the norm of G. Lemma 30 tells us that
we can achieve an additive error εa to ∥G∥F using

O
(
γ∇
√
m∥G∥F

ε2
a + 2∥G∥F εa

)
(114)

queries to U⊤
G .

The rest of the theorem is just to assemble all these steps. Note the requirement is

∥G−∇f(K)∥F ≤ θ∥f(K)∥F , (115)

and according to Lemma 26, ∥∇f(K)∥F ≥ cϵ before convergence.
Denote the entries retrieved in the Entry Retrieving step form a matrix G where ∥G∥F = 1,
the norm estimated in the Norm Estimation step as aest, our estimator is then aestG. Choose

εb = cθε

3 , εa = cθε

3 , εr = 1
3 + cθ

, (116)

we then know that ∥G−∇f(K)∥ ≤ cθε
3 , ∇f(K) ≥ cε, then

O(ε) ≤
∣∣∣∣∥∇f(K)∥F −

cθε

3

∣∣∣∣ ≤ ∥G∥F ≤ ∥∇f(K)∥F + cθε

3 . (117)

Thus it is clear to see
∥aestG −∇f(K)∥F

=
∥∥∥∥aestG − ∥G∥FG + ∥G∥FG −G+G−∇f(K)

∥∥∥∥
F

≤
∥∥∥∥aestG − ∥G∥FG

∥∥∥∥
F

+
∥∥∥∥∥G∥FG −G∥∥∥∥

F

+
∥∥∥∥G−∇f(K)

∥∥∥∥
F

≤ εa + ∥G∥F εr + εb ≤ εa + (∥∇f(K)∥F + cθε

3 )εr + εb

≤ θ∥f(K)∥F .

(118)

And the total gate complexity should be

Õ
(
a12ρ7κ11.5m1.5n

θ1.5ε1.5

)
. (119)

H Convergence analysis

Lemma 32. Given any K ∈ SK , let G be a θ-robust estimate of ∇f(K). Then, we have

⟨G,∇f(K)⟩ ≥ (1− θ)∥∇f(K)∥2
F ,

∥G∥2
F ≤ (1 + θ)2∥∇f(K)∥2

F .
(120)

28



Proof. It is straightforward to verify that
⟨G,∇f(K)⟩ = ⟨G−∇f(K) +∇f(K),∇f(K)⟩ = ⟨G−∇f(K),∇f(K)⟩+ ∥∇f(K)∥2

F

≥ −∥G−∇f(K)∥F ∥∇f(K)∥F + ∥∇f(K)∥2
F ≥ (1− θ)∥∇f(K)∥2

F .
(121)

∥G∥2
F = ∥G−∇f(K) +∇f(K)∥2

F ≤ (∥G−∇f(K)∥F + ∥∇f(K)∥F )2

≤ (1 + θ)2∥∇f(K)∥2
F .

(122)

Lemma 33 (Descent lemma). Given K ∈ SK(a), and let G be a θ-robust estimate of ∇f(K).
Then, there exists a positive σm such that for all σ ∈ [0, σm], we have

f(K − σG)− f(K∗) ≤ (1− σ/µ) (f(K)− f(K∗)) , (123)
where µ, σm only depends on A,B,R,Q, and a, and µ > σm.

Proof. This lemma is a direct consequence of Lemma 32 (with θ < 1/2) and [45, Proposition
6].
Proposition 34. For any initial stabilizing feedback gain K0 ∈ SK , we denote a := f(K0).
Then, there exists constants µ > σm > 0, depending only on A,B,Q,R, and a, such that for
any fixed σ ∈ [0, σm], the iterates of Algorithm 1 satisfy

f(Kk)− f(K∗) ≤ (1− σ/µ)k (f(K0)− f(K∗)) , (124a)
∥Kk −K∗∥2 ≤ b(1− σ/µ)k∥K0 −K∗∥2, (124b)

where b is an absolute constant that is independent of k.

Proof. The first part (124a) is a direct corollary of Lemma 33. By Lemma 9 and (124a), we
have

∥Kk −K∗∥2
F ≤

a

νλmin(R) (f(Kk)− f(K∗)) (125)

≤ (1− σ/µ)k (f(K0)− f(K∗)) ≤ b(1− σ/µ)k∥K0 −K∗∥, (126)
where the last step follows from [45, Lamma 2] and b = λmax(RX(K0)).
Theorem 35 (Quantum policy gradient for LQR). Assume that we have efficient procedures
(as described in Assumption 1) to access the problem data A,B,Q,R in O(poly log(n)) time.
Let K0 ∈ SK be a stabilizing policy. Then, Algorithm 1 outputs an ε-approximate solution to
Problem 1 in cost

Õ
(
m1.5n

ε1.5

)
. (127)

Proof. Notice that with lemma 33, we need log
( 1
ε

)
iterations. By Theorem 31, the quantum

gradient estimation subroutine requires Õ
(
m1.5n
ε1.5

)
elementary gates.

I Extended numerical experiments

I.1 Aircraft Control Problem

We perform another experiment on a practical problem that can be formulated as LQR.
Here, we consider the aircraft flight control problem, specifically for pitch angle control.
We adopt a linearized model of the aircraft around a steady flight condition. For a small
aircraft, the pitch dynamics can be represented by the following state variables: pitch angle
θ (rad) and pitch rate q (rad/s). The control input is elevator deflection angle δ (rad). The
state-space model can be represented as ẋ = Ax+ Bu, where x = [θ, q]⊤, u = [δ]. We set
A = [[0, 1], [0,−0.5]]⊤, B = [0, 1]⊤, Q = [[10, 0], [0, 1]]⊤, and R = [0.1]. The plot of our
optimization curve is available in the Figure Figure 3. Our method converges faster than the
classical method.
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(a) J − J∗ (b) f(K) − f(K∗)
Figure 3: Numerical Results on Convergence. In the aircraft control problem, our
policy gradient descent algorithm converges much faster than classic method [45].

I.2 Relative Errors

We conducted further numerical experiments to understand how the optimality scales with
problem size in Figure Figure 4. Here, we scale the number of masses in a spring-mass
system from 2 to 4, and the problem dimension scales accordingly from 2 to 8. We measure
the optimality by the relative error found in both our method and the classical method. The
relative errors are (J − J∗)/j∗ and (f(K)− f(K∗))/f(K∗). As the dimension scales up, the
relative errors increase, while our method consistently outperforms the classical optimization
method.

(a) Relative J − J∗ error (b) Relative f(K) − f(K∗) error
Figure 4: Relative Error. We scale the size of a mass-spring system and our method
consistently gets smaller relative error compared to [45].
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2. Limitations
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authors?
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means that the paper has limitations, but those are not discussed in the paper.
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complemented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce
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Justification: The paper reports error bars to reflect the statistical significance of
the experiments, see the “Numerical Experiments” section and Figure 2.
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