Documentation Retrieval Improves Planning Language Generation

Anonymous ACL submission

Abstract

Certain strong LLMs have shown promise for
zero-shot formal planning by generating plan-
ning languages like PDDL. Yet, performance of
most open-source models under 100B parame-
ters has been reported to be close to zero due
to the low-resource nature of these languages.
We significantly improve their performance via
a series of lightweight pipelines that integrates
documentation retrieval with modular code gen-
eration and error refinement. With models
like Llama-4-Maverick, our best pipeline im-
proves plan correctness from 0% to over 80%
on the common BlocksWorld domain. How-
ever, while syntactic errors are substantially re-
duced, semantic errors persist in more challeng-
ing domains, revealing fundamental limitations
in current models’ reasoning capabilities. !

1 Introduction

Using large language models (LLMs) for planning
has garnered significant attention, with two main
paradigms as shown in Figure 1. First, the LLM-
as-Planner approach (Kambhampati et al., 2024;
Valmeekam et al., 2023; Stechly et al., 2025; Ma-
jumder et al., 2023) relies on the reasoning ability
of LLMs to directly generate action plans based on
descriptions of the environment. In contrast, the
LLM-as-Formalizer (Tang et al., 2024; Guo et al.,
2024; Zhang et al., 2024) approach leverages the
code generation capability of LLMs to represent
the environment in some planning language, which
is then passed to a formal solver to derive a plan.
Leading to better interpretability and verifiability
of the plans, the latter approach has recently gained
considerable attention, with Planning Domain Defi-
nition Language (PDDL) as one of the predominant
formal languages for LLM planning (see the Ap-
pendix A for an example of PDDL).

While LLMs have been shown to somewhat able
to generate PDDL, their performance has proven

'Our code and data are attached with the submission.

LLM-as-Planner

@ Action 1
. 2...
LLM-as-Formalizer Action

Domain File:

(define (domain blocks-world)

(:predicates...)

(:action pickup...)...

Problem File:

(define (block-problem)
(:domain blocks-world)

S

Domain Description:
Here are the actions I can do
Pickup block ...

I have the following restrictions on
my actions:

To perform Pickup action, the
following facts need to be true: ...
Problem Description:

As initial conditions I have that...

Action 1
Action 2...

My goal is to have that block 1 is
on the table, block 2 is on the
table ...

(:objects....)
(cinit ...)
(:goal....)

Figure 1: A simplified illustration of LLLM-as-Planner
and LLM-as-Formalizer on the BlocksWorld domain.

unsatisfactory in realistic and rigorous evaluations
(Zuo et al., 2025). Even state-of-the-art coding
LLMs have shown close-to-zero performance as
PDDL formalizers on planning benchmarks espe-
cially when the model size is less than 100 billion
parameters (Huang and Zhang, 2025), while an
array of code generation techniques struggle to
improve performance (Kagitha et al., 2025). More-
over, training data for low-resource and domain-
specific languages like PDDL is extremely limited,
making generation even more challenging (Taras-
sow, 2023; Joel et al., 2024). Existing attempts of
improvement such as fine-tuning (Cassano et al.,
2023; McKenna et al., 2025; Giagnorio et al., 2025)
and translation from high-resource languages (Liu
et al., 2024) require supervised PDDL data that
barely exists. In contrast, retrieval of library doc-
umentation (Zhou et al., 2023; Dutta et al., 2024)
has proven effective for high-resource languages.
We find that simply providing the documenta-
tion to LLMs does not help low-resource PDDL
generation. However, we present some novel meth-
ods that generate PDDL either modularly or with
error refinement, while only retrieving the most
relevant documentation. These methods enable a
“0 to 17 breakthrough of PDDL generation perfor-
mance for models like Llama-4-Scout and Llama-4-
Marverick on domains like BlocksWorld, improv-
ing correctness from 0% to 50%. Moreover, we

Domain
Description

Problem File

s BTN

Problem
Description

Figure 2: Overview of one of our pipeline that retrieve
documents based on error codes located by LLM, and
finally using them as hints to correct the code.

verify the intuition that documentation significantly
reduces syntax errors, but has limited effect on se-
mantic errors. We also present interesting findings
that LL.Ms are more reliant on documentation ini-
tially than during error refinement, different models
vary in their ability to leverage documentation ef-
fectively and that examples are more effective than
descriptions in the documentation.

2 Methodology

We conduct experiments in text-based simulated
planning environments. Each planning problem in
the dataset is accompanied by a domain descrip-
tion (DD) outlining the environment, and a problem
description (PD) specifying the task objective.

We begin with the most basic setting, referred to
as Base, where a LLM zero-shot generates PDDL
code. Given the DD and PD as input, the LLM pro-
duces a Domain File (DF) and a Problem File (PF):

DF, PF = LLM(DD, PD)

Building upon this, we leverage the PDDL doc-
umentation (Doc) during generation. We consider
two approaches, Once w/ Whole Doc where the
model is given an entire Doc before generating
the entire PDDL, and Modular w/ Specific Doc
where the model incrementally generates PDDL
code guided by relevant parts of the Doc. Here, we
break down the DF structure into types, predicates,
actions, etc. and DF structure into initial and goal
states. We partition the Doc accordingly.

DF, PF = LLM(DD, PD, Doc)

Next, we optionally perform up to three rounds
of iterative error correction. We first use a PDDL
solver to obtain error feedback:

Err_Feedback = Solver(DF, PF)

Without the Doc, the standard Refinement w/o
Doc directly input the error feedback back to the
LLM to re-generate the PDDL.:

DF, PF = LLM(DF, PF, Err_Feedback)

With the Doc, we attempt to retrieve a specific,
helpful part that pertains to the particular error. Us-
ing the feedback directly as the query is referred
to as Refinement w/ Feedback-Retrieved Doc.
Otherwise, we may prompt an LLM to localize the
code that caused the error based on the feedback, re-
ferred to as Refinement w/ Code-Retrieved Doc.

Err Code = LLM(Err_Feedback)

In either case, we then retrieve the most relevant
documentation snippet using the BM25 (Robertson
et al., 2009) retrieval algorithm:

Rel_Doc = BM25(Err_Feedback|Err_Code)

Finally, the LLM corrects the code using the
retrieved Doc, the Error_Feedback, and the local-
ized Error_Code if any.

DF, PF = LLM(DF, PF, Err_Feedback,

[Err_Code|, Rel_Doc)

The full prompts and the pseudocode are pro-
vided in Appendix D, and C.

While we only consider PDDL as the plan-
ning language in this work following cited
works, we also have explored the feasibility
of using Satisfiability Modulo Theories (SMT)
solvers—specifically Z3, a general-purpose solver
for constraint satisfaction planning problems. Fol-
lowing Hao et al. (2025), our evaluation shows that
7.3 exhibits suboptimal performance when handling
complex planning tasks and is thus not discussed
further (see details in Appendix B).

3 Evaluation

Dataset To conduct experiments in a text-
based simulation environment, we use the dataset
from (Huang and Zhang, 2025). Included are three
simulated planning domains, BlocksWorld, Logis-
tics, Barman from the International Planning Com-
petition (IPC, 1998), with increasing action space
and reported difficulty. We also consider Mystery
BlocksWorld (Valmeekam et al., 2023) where all
keywords are perturbed to combat LLM memoriza-
tion. Each instance comes with domain and prob-
lem descriptions and ground-truth PDDL domain
and problem files that are used to validate a pre-
dicted plan. Each domain has 100 tasks of varying
problem complexity and description naturalness.
We use the heavily templated descriptions which
are also the easiest due to the reported close-to-zero

Blocksworld
68%
76% .
QwQ-328 . o 100%
98%
100%
24% cag
Qwen3-8B 36% i oo
41%
e
0%
Llama-4-Scout- 58%
17B-16E-Instruct %% s
50%
0%
17B-128E-Instruct rEs %
96%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Logistics
- [1%
QwQ-32B B 60% o

35%
o
Qwen3-8B L- 25%

Llama-4-Scout- ™ 3%
17B-16E-Instruct 9%

Llama-4-Maverick-
17B-128E-Instruct 7% s0%

63%

20% 30% Ao 90% 10

0% 10% % 50% 60% 70% 80% 0%
M Base M Modular w/ Specific Doc B Once w/ Whole Doc Refinement w/o Doc

Mystery Blocksworld
_— I 5%
QwQ-328 S o

98%
100%

1%
-Bﬁ 15%
Qwen3-8B e
8%
2%

0%
Uama-4-Scout- ~ EEEG— 3%
17B-16E-Instruct 6% 1o

51%

0%

Llama-4-Maverick- P 50%

17B-128E-Instruct &)

56%

0% 10% 20% 30% 40% S0% 60% 70% 80% 90% 100%

Barman

28%
Qwen3-8B %%,

Llama-4-Scout- 3%
17B-16E-Instruct - %

o
Llama-4-Maverick- 'SSSS—m—15%
17B-128E-Instruct ' gi*

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Refinement w/ Feedback-Retrieved Doc Refinement w/ Code-Retrieved Doc

Figure 3: Syntactic accuracy (orange) and semantic accuracy (blue) on various planning domains.

performance of LLMs with less than 100B param-
eters that we focus on. We crawl, process and use
the Planning Wiki? as the source of documentation
of the PDDL language.

Metrics We follow Kagitha et al. (2025) and use
syntactic and semantic accuracy to assess the DF
and PF generated by an LLM. Syntactic accuracy
is the percentage of problems where no syntax er-
ror are returned by the planning solver. Semantic
accuracy is the percentage of problems where a
plan is not only found but also correct. We use the
dual-bfws-ffparser planner Muise (2016) to solve
for the plan and the VAL4 (Howey et al., 2004) to
validate the plan against the gold DF and PF.

Model We conduct experiments on six open-
source models, ranging from 8B to 32B parameters:
Llama-4-Maverick-17B-128E-Instruct, Llama-4-
Scout-17B-16E-Instruct’, QwQ-32B, Qwen3-8B*.
We follow most cited previous works and only con-
sider zero-shot prompting.

4 Results

We present the following key conclusions based on
the results shown in the Figure 3.

https://planning.wiki/guide/whatis/pddl

3https://github.com/meta-1lama/llama-models/
tree/main/models/1lama4

*https://github.com/QwenLM/Qwen3

Documentation brings a 0 to 1 breakthrough.
On BlocksWorld, most LLMs under the Base set-
ting perform close to zero accuracy, as observed
in previous work. However, when equipped with
appropriate documentation, they demonstrate a dra-
matic increase in their ability to generate valid
PDDL. While the improvement depends on the
LLM, Llama-4-Maverick sees a dramatic improve-
ment of syntactic accuracy from 0% to over 90%
and semantic accuracy of 0% to over 80% with the
help of documentation but regardless of error re-
finement. Other originally zero-performing models
such as Llama-4-Scout see an improvement of 50%
for syntactic and 30% for semantic accuracy. On
more challenging domains, absolute performance
for all LLMs are thwarted, while documentation
still greatly improves syntactic accuracy for many
models. Overall, models that previously failed en-
tirely begin to become functional as planning for-
malizers.

Specific docs significantly reduces syntax er-
rors. Documentation proves effective in reducing
syntax errors during both initial PDDL generation
(Modular w/ Specific Doc) and subsequent error-
correction (Refinement w/ Code-Retrieved Doc).
This effect is especially evident in the case of
Llama-4-Scout, which fails to generate any valid
PDDL originally regardless of whether error cor-

https://planning.wiki/guide/whatis/pddl
https://github.com/meta-llama/llama-models/tree/main/models/llama4
https://github.com/meta-llama/llama-models/tree/main/models/llama4
https://github.com/QwenLM/Qwen3

rection is applied. Only when supported by rele-
vant docs can it successfully generate valid PDDL,
much of which leading to correct plans. Notably,
using feedback to retrieve doc does not lead to
consistent or significant performance gains, as the
retrieved documents often fail to accurately cor-
respond to the actual errors. This highlights that
retrieval based on error codes is more effective in
improving the accuracy of documentation retrieval.

Docs cannot reliably reduce semantic errors.
During error correction, Llama-4-Maverick shows
a 3% improvement in syntax accuracy on the Logis-
tic dataset under the Refinement w/ Code-Retrieved
Doc setting compared to the Refinement w/o Doc
setting. However, its semantic accuracy decreases
by 1%. This is because generating valid PDDL not
only requires syntactic correctness but also an accu-
rate representation of the environment. Otherwise,
the resulting plan may fall into a loop, fail to reach
the goal due to insufficient executable actions, or
be unnecessarily complex. Achieving this depends
heavily on the reasoning capabilities and world
modeling abilities of the LLM, and simply provid-
ing documentation is not sufficient to enhance such
reasoning.

LLMs exhibit varying sensitivity to documen-
tation across different phases of the code genera-
tion process. Our results reveal that documentation
exerts a stronger influence during the initial code
generation phase compared to the subsequent error
refinement phase. Specifically, in the Formalize
phase—corresponding to the initial generation of
PDDL—providing specific documentation signif-
icantly improves syntax accuracy, reaching up to
72% for modular models with targeted documen-
tation. In contrast, the benefits of documentation
during the later Refinement phase are substantially
smaller. This suggests that models rely more on
documentation cues when initially producing struc-
tured code, whereas later refinements depend more
on internal representations and the code previously
generated.

LLM:s that are better at generating PDDL can
make more effective use of documentation. Since
QwQ-32B and Qwen3-8B outperform LLaMA-4
models in the Base setting, we consider them more
proficient at PDDL generation. Compared to the
Base and Modular w/ Specific Doc settings, these
PDDL-proficient models (QwQ-32B and Qwen3-
8B) perform better under the Once w/ Whole Doc
setting. In contrast, the less proficient LLaMA-4
model does not outperform Modular w/ Specific

100 98

82

72 70

QwQ-32B
Once w/ Whole Doc

70 66 g4

60

50 44
40

30

20

10

0 0 0 0 0 0

Qwen3-8B

m Once w/ Whole Example

Llama-4-Maverick Llama-4-Scout

® Once w/ Whole Description

Figure 4: Syntactic accuracy of different models under
various document conditions on BlocksWorld. Once
w/ whole example refers to all the examples in the doc,
and Once w/ whole description refers to all the textual
descriptions in the doc.

Doc under the same condition. This suggests that
for models less capable of generating PDDL, mod-
ular generation is more effective, as they tend to be-
come overwhelmed when processing large amounts
of documentation.

Using examples to convey knowledge is more
effective than using descriptions. Figure 4
presents the performance of different types of
documentation in the LLM-as-Formalizer setting.
Among all types, Once w/ whole doc yields the
best results. Notably, for Llama-4-Maverick, per-
formance is 0% when provided with only exam-
ples or only descriptions, but nearly 100% when
given the entire documentation. Comparing Once
w/ whole example and Once w/ whole description,
we observe that examples consistently outperform
descriptions. This suggests that examples are eas-
ier for LLMs to comprehend and are more useful
for correcting syntax errors. Furthermore, even for
models with inherently strong PDDL generation
capabilities, such as QwQ-32B, the use of docu-
mentation still leads to a noticeable improvement
in performance.

5 Conclusion

Our experiments clearly demonstrate that incor-
porating documentation to the process greatly
improves generation of low-resource formal lan-
guages like PDDL. We show that for models less
skilled at generating PDDL, documentation is only
useful when paired with techniques like modular
generation or error refinement. For more capa-
ble models, documentation accuracy matters more.
Despite the clear gain, models still struggle when
their size is small and when the domain is complex,
which future work should strive to address.

6 Limitations

While our proposed pipelines significantly improve
the syntactic and, to a lesser extent, semantic ac-
curacy of PDDL generation in low-resource set-
tings, several limitations remain. First, our methods
rely on well-structured documentation and domain
descriptions; performance may degrade in noisy
or under-specified environments. Moreover, docu-
mentation itself may contain outdated, incomplete,
or inaccurate information, which can mislead the
model during generation. Second, although doc-
umentation helps reduce syntax errors, semantic
correctness still heavily depends on the model’s in-
ternal reasoning capabilities, which are limited for
smaller LLMs. Lastly, our evaluation is confined to
a few benchmark domains; generalization to more
diverse or real-world planning scenarios remains
to be verified.

The datasets we use are all under the MIT Li-
cense.

References

Federico Cassano, John Gouwar, Francesca Lucchetti,
Claire Schlesinger, Carolyn Jane Anderson, Michael
Greenberg, Abhinav Jangda, and Arjun Guha. 2023.
Knowledge transfer from high-resource to low-
resource programming languages for code llms. Pro-
ceedings of the ACM on Programming Languages,
8:677 —708.

Avik Dutta, Mukul Singh, Gust Verbruggen, Sumit Gul-
wani, and Vu Le. 2024. RAR: Retrieval-augmented
retrieval for code generation in low resource lan-
guages. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 21506-21515, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Alessandro Giagnorio, Alberto Martin-Lopez, and
Gabriele Bavota. 2025. Enhancing code generation
for low-resource languages: No silver bullet. ArXiv,
abs/2501.19085.

Weihang Guo, Zachary Kingston, and Lydia E. Kavraki.
2024. Castl: Constraints as specifications through
llm translation for long-horizon task and motion plan-
ning. Preprint, arXiv:2410.22225.

Yilun Hao, Yang Zhang, and Chuchu Fan. 2025. Plan-
ning anything with rigor: General-purpose zero-shot
planning with llm-based formalized programming.
Preprint, arXiv:2410.12112.

R. Howey, D. Long, and M. Fox. 2004. Val: auto-
matic plan validation, continuous effects and mixed
initiative planning using pddl. In /6th IEEE Inter-
national Conference on Tools with Artificial Intelli-
gence, pages 294-301.

Cassie Huang and Li Zhang. 2025. On the limit of
language models as planning formalizers. Preprint,
arXiv:2412.09879.

IPC. 1998. International planning competition. https:
//www.icaps-conference.org/competitions.

Sathvik Joel, Jie Jw Wu, and Fatemeh H. Fard. 2024. A
survey on llm-based code generation for low-resource
and domain-specific programming languages.

Prabhu Prakash Kagitha, Andrew Zhu, and Li Zhang.
2025. Addressing the challenges of planning lan-
guage generation. Preprint, arXiv:2505.14763.

Subbarao Kambhampati, Karthik Valmeekam, Lin
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham-
bri, Lucas Saldyt, and Anil Murthy. 2024. Llms can’t
plan, but can help planning in llm-modulo frame-
works. Preprint, arXiv:2402.01817.

Max Liu, Chan-Hung Yu, Wei-Hsu Lee, Cheng-Wei
Hung, Yen-Chun Chen, and Shao-Hua Sun. 2024.
Synthesizing programmatic reinforcement learning
policies with large language model guided search.
ArXiv, abs/2405.16450.

Bodhisattwa Prasad Majumder, Bhavana Dalvi Mishra,
Peter Jansen, Oyvind Tafjord, Niket Tandon,
Li Zhang, Chris Callison-Burch, and Peter Clark.
2023. Clin: A continually learning language agent
for rapid task adaptation and generalization. Preprint,
arXiv:2310.10134.

Nick McKenna, Xinnuo Xu, Jack Williams, Nick Wil-
son, Benjamin Van Durme, and Christian Poelitz.
2025. Synthetic function demonstrations improve
generation in low-resource programming languages.
ArXiv, abs/2503.18760.

Christian Muise. 2016. Planning.Domains. In The
26th International Conference on Automated Plan-
ning and Scheduling - Demonstrations.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm?25 and be-

yond. Foundations and Trends® in Information Re-
trieval, 3(4):333-3809.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kamb-
hampati. 2025. Chain of thoughtlessness? an analy-
sis of cot in planning. Preprint, arXiv:2405.04776.

Hao Tang, Darren Key, and Kevin Ellis. 2024. World-
coder, a model-based 1lm agent: Building world mod-
els by writing code and interacting with the environ-
ment. Preprint, arXiv:2402.12275.

Artur Tarassow. 2023. The potential of 1lms for coding
with low-resource and domain-specific programming
languages. ArXiv, abs/2307.13018.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,
Sarath Sreedharan, and Subbarao Kambhampati.
2023. Planbench: An extensible benchmark for eval-
uating large language models on planning and rea-
soning about change. Preprint, arXiv:2206.10498.

https://api.semanticscholar.org/CorpusId:261048815
https://api.semanticscholar.org/CorpusId:261048815
https://api.semanticscholar.org/CorpusId:261048815
https://aclanthology.org/2024.emnlp-main.1199
https://aclanthology.org/2024.emnlp-main.1199
https://aclanthology.org/2024.emnlp-main.1199
https://aclanthology.org/2024.emnlp-main.1199
https://aclanthology.org/2024.emnlp-main.1199
https://api.semanticscholar.org/CorpusId:276079432
https://api.semanticscholar.org/CorpusId:276079432
https://api.semanticscholar.org/CorpusId:276079432
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.12112
https://arxiv.org/abs/2410.12112
https://arxiv.org/abs/2410.12112
https://arxiv.org/abs/2410.12112
https://arxiv.org/abs/2410.12112
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://arxiv.org/abs/2412.09879
https://arxiv.org/abs/2412.09879
https://arxiv.org/abs/2412.09879
https://www.icaps-conference.org/competitions
https://www.icaps-conference.org/competitions
https://www.icaps-conference.org/competitions
https://api.semanticscholar.org/CorpusId:273185751
https://api.semanticscholar.org/CorpusId:273185751
https://api.semanticscholar.org/CorpusId:273185751
https://api.semanticscholar.org/CorpusId:273185751
https://api.semanticscholar.org/CorpusId:273185751
https://arxiv.org/abs/2505.14763
https://arxiv.org/abs/2505.14763
https://arxiv.org/abs/2505.14763
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2402.01817
https://api.semanticscholar.org/CorpusId:270062635
https://api.semanticscholar.org/CorpusId:270062635
https://api.semanticscholar.org/CorpusId:270062635
https://arxiv.org/abs/2310.10134
https://arxiv.org/abs/2310.10134
https://arxiv.org/abs/2310.10134
https://api.semanticscholar.org/CorpusId:277271909
https://api.semanticscholar.org/CorpusId:277271909
https://api.semanticscholar.org/CorpusId:277271909
https://arxiv.org/abs/2405.04776
https://arxiv.org/abs/2405.04776
https://arxiv.org/abs/2405.04776
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://api.semanticscholar.org/CorpusId:260155041
https://api.semanticscholar.org/CorpusId:260155041
https://api.semanticscholar.org/CorpusId:260155041
https://api.semanticscholar.org/CorpusId:260155041
https://api.semanticscholar.org/CorpusId:260155041
https://arxiv.org/abs/2206.10498
https://arxiv.org/abs/2206.10498
https://arxiv.org/abs/2206.10498
https://arxiv.org/abs/2206.10498
https://arxiv.org/abs/2206.10498

Li Zhang, Peter Jansen, Tianyi Zhang, Peter Clark,
Chris Callison-Burch, and Niket Tandon. 2024.
PDDLEGO: Iterative planning in textual environ-
ments. In Proceedings of the 13th Joint Conference
on Lexical and Computational Semantics (*SEM
2024), pages 212-221, Mexico City, Mexico. As-
sociation for Computational Linguistics.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhiruo
Wang, Zhengbao Jiang, and Graham Neubig. 2023.
Docprompting: Generating code by retrieving the
docs. Preprint, arXiv:2207.05987.

Max Zuo, Francisco Piedrahita Velez, Xiaochen Li,
Michael L. Littman, and Stephen H. Bach. 2025.
Planetarium: A rigorous benchmark for translat-
ing text to structured planning languages. Preprint,
arXiv:2407.03321.

A Data and PDDL Examples

Figure 5 and 6 is an example of the
dataset Heavily_Templated_BlocksWorld-100
from (Huang and Zhang, 2025).

B Z3 Result

We followed the (Hao et al., 2025) by using Formu-
lator to define all possible variables in the environ-
ment and generate their instantiation information
before producing the Z3 code. However, we did
not adopt their iterative error correction method. In
their experiments, Formulator improved the results
on the BlocksWorld domain from 0.2 to 96.2.

We conducted experiments on our dataset using
GPT-40 as the LLM, but the results were 0. The
distribution of error causes is shown in the Table 1.
Goal unsatisfied means that the final output plan
cannot solve the problem correctly. We analyzed
the cause of this error. We printed the state of
each time slice and found that as long as any condi-
tion in the goal state is met, the planning will stop.
When we tried to let LLM correct this error, it only
caused more syntax errors, and never corrected the
error. This is likely because our dataset is more
complex—theirs only involved 4 blocks, whereas
ours often includes more than 10 blocks.

Since even the simplest BlocksWorld dataset
yielded a score of 0 after following the (Hao et al.,
2025) approach, we did not apply our pipeline to Z3
and instead reported the findings in the appendix.

C Pseudocode of Refinement w/
Code-Retrieved Doc

Algorithm 1 shows the Pseudocode of Refinement
w/ Code-Retrieved Doc.

Heavily BlocksWorld
Model syntax error goal unsatisfied
gpt-4o 16/100 84/100
Table 1: Z3 Result
D Prompt

Figure 9 10 11 12 and 13 is the Prompt of all our
methods. Refinement w/ Feedback-Retrieved Doc
and Refinement w/ Code-Retrieved Doc use the
same prompt but different retrieved docs.

https://doi.org/10.18653/v1/2024.starsem-1.17
https://doi.org/10.18653/v1/2024.starsem-1.17
https://doi.org/10.18653/v1/2024.starsem-1.17
https://arxiv.org/abs/2207.05987
https://arxiv.org/abs/2207.05987
https://arxiv.org/abs/2207.05987
https://arxiv.org/abs/2407.03321
https://arxiv.org/abs/2407.03321
https://arxiv.org/abs/2407.03321

I am playing with a set of blocks. Here are the actions I can do

Pickup block

Unstack block from another block
Putdown block

Stack block on another block

I have the following restrictions on my actions:

To perform Pickup action, the following facts need to be true: clear block, block on table,
arm-empty.

Once Pickup action is performed the following facts will be true: holding block.

Once Pickup action is performed the following facts will be false: clear block, block on
table, arm-empty.

To perform Putdown action, the following facts need to be true: holding block.

Once Putdown action is performed the following facts will be true: clear block, block on
table, arm-empty.

Once Putdown action is performed the following facts will be false: holding block.

To perform Stack action, the following needs to be true: clear block2, holding blockl.

Once Stack action is performed the following will be true: arm-empty, clear blockl, blockl
on block2.

Once Stack action is performed the following will be false: clear block2, holding blockl.

To perform Unstack action, the following needs to be true: blockl on block2, clear blockl,
arm-empty.

Once Unstack action is performed the following will be true: holding blockl, clear block2.

Once Unstack action is performed the following will be false:, blockl on block2, clear
blockl, arm-empty.

Figure 5: DD for the BlocksWorld domain

As initial conditions I have that, block 1 is clear, block 2 is clear, block 3 is clear, block
4 is clear, arm-empty, block 1 is on the table, block 2 is on the table, block 3

is on the table, and block 4 is on the table.

My goal is to have that block 1 is on the table, block 2 is on the table, block 3 is on the
table, and block 4 is on the table.

Figure 6: PD for the BlocksWorld domain

(define (domain blocks-world)
(:requirements :strips :typing)
(:predicates (clear ?x - block)

(on ?x ?y - block)
(ontable ?x - block)
(holding ?x - block)
(arm-empty))

raction pickup

:parameters (?b - block)

:precondition (and (clear ?b) (ontable ?b) (arm-empty))

ceffect (and (holding ?b) (not (clear ?b)) (not (ontable ?b)) (not (arm-empty))))

(:action unstack
:parameters (?bl ?b2 - block)
:precondition (and (on ?bl ?b2) (clear ?bl) (arm-empty))
ceffect (and (holding ?bl) (clear ?b2) (not (on ?bl ?b2)) (not (clear ?bl))
(not (arm-empty))))

(:action stack
:parameters (?bl ?b2 - block)
:precondition (and (clear ?b2) (holding ?bl))
ceffect (and (arm-empty) (clear ?bl) (on ?bl ?b2) (not (clear ?b2))
(not (holding ?bl))))

(:action putdown
:parameters (?b - block)
:precondition (holding ?b)
:effect (and (ontable ?b) (clear ?b) (arm-empty) (not (holding ?b))))

Figure 7: DF for the BlocksWorld domain

(define (problem block problem)
(:domain block-stacking)
(:objects blockl block2 block3 block4 - block)
(:init

(clear blockl)

(on blockl block2)
(clear block3)

(on block3 block4)
(on_table block2)

(on_table block4)

(arm_empty)

)

(:goal (and
(on_table blockl)

(on_table block2)
(on _table block3)
(on_table block4)

Figure 8: PF for the BlocksWorld domain

Base Prompt

You are a PDDL expert. Here is a game we are playing.
{domain_description}

{problem_description}

Write the domain and problem files in minimal PDDL.

Figure 9: Base Prompt

modular w/ specific doc Prompt

You are a PDDL expert.

Is next step needed here: yes
next step: domain definition
next domain file:

(define (domain construction)

)

Is next step needed here: yes

next step: requirements

next domain file:

(define (domain game)
(:requirements :strips :adl :typing)

)

[More steps here]

follow the example above, please do not add any other word, generate only the next one step for the domain file.
Here is a game we are playing.
{domain_description}
{problem_description}
.

-

Figure 10: modular w/ specific doc Prompt

Once w/ Whole Doc

Knowledge:
{doc}

are a PDDL expert. Here is a game we are playing.
{domain_description}

{problem_description}

Write the domain and problem files in minimal PDDL.

Figure 11: Once w/ Whole Doc Prompt

Refinement w/o Doc

Wrong_domain_file:

{previous_domain_file}

Wrong_problem_file:

{previous_problem_file}

error feedback:{result}

Instruction: | provided a wrong set of PDDL files, you need according to the error feedback, give me the
corrected domain_file and problem_file. You must make changes.

Figure 12: Refinement w/o Doc Prompt

Refinement w/ Retrieved Doc

Knowledge:{doc}

Wrong_domain_file:
{previous_domain_file}
wrong_problem_file:
{previous_problem_file}
Wrong PDDL:

{query}

error: {result}

Instruction: | provided a wrong PDDL files and the documentation for the errors, you need according to the
documentation, give me the corrected domain_file. You must make changes, and give me a logical reason for
why you change like that. Do not add any other word.

Figure 13: Refinement w/ Retrieved Doc Prompt

10

Algorithm 1 Retrieval-Augmented PDDL Genera-
tion with Iterative Correction

Require: Domain Description (DD), Problem De-

scription (PD)

Ensure: Valid Domain File (DF) and Problem File

1:
2:
3:
4:
5
6
7
8

9:
10:
11:

12:
13:

14:
15:

16:
17:
18:

(PF)
(DF, PF) < LLM(DD, PD)
while true do

feedback < Solver(DF, PF)
if feedback indicates success then
return (DF, PF)

end if
e_type < Parse_Error_Type(feedback)
if e_type == syntax_error and

feedback. file == DF then
e_code < LLM(feedback)
doc + Retrieve(e_code)

(DF, PF) —

LLM(DF, PF, e_code, feedback, doc)
else if e_type == syntax_error and
feedback. file == PF then

(DF, PF) —

LLM(DF, PF, feedback)

else if e_type == semantic_error then
(DF, PF) —
LLM(DF, PF, feedback)

else
raise UnknownErrorType

end if

19: end while

11

	Introduction
	Methodology
	Evaluation
	Results
	Conclusion
	Limitations
	Data and PDDL Examples
	Z3 Result
	Pseudocode of Refinement w/ Code-Retrieved Doc
	Prompt

