
Documentation Retrieval Improves Planning Language Generation

Anonymous ACL submission

Abstract

Certain strong LLMs have shown promise for001
zero-shot formal planning by generating plan-002
ning languages like PDDL. Yet, performance of003
most open-source models under 100B parame-004
ters has been reported to be close to zero due005
to the low-resource nature of these languages.006
We significantly improve their performance via007
a series of lightweight pipelines that integrates008
documentation retrieval with modular code gen-009
eration and error refinement. With models010
like Llama-4-Maverick, our best pipeline im-011
proves plan correctness from 0% to over 80%012
on the common BlocksWorld domain. How-013
ever, while syntactic errors are substantially re-014
duced, semantic errors persist in more challeng-015
ing domains, revealing fundamental limitations016
in current models’ reasoning capabilities.1017

1 Introduction018

Using large language models (LLMs) for planning019

has garnered significant attention, with two main020

paradigms as shown in Figure 1. First, the LLM-021

as-Planner approach (Kambhampati et al., 2024;022

Valmeekam et al., 2023; Stechly et al., 2025; Ma-023

jumder et al., 2023) relies on the reasoning ability024

of LLMs to directly generate action plans based on025

descriptions of the environment. In contrast, the026

LLM-as-Formalizer (Tang et al., 2024; Guo et al.,027

2024; Zhang et al., 2024) approach leverages the028

code generation capability of LLMs to represent029

the environment in some planning language, which030

is then passed to a formal solver to derive a plan.031

Leading to better interpretability and verifiability032

of the plans, the latter approach has recently gained033

considerable attention, with Planning Domain Defi-034

nition Language (PDDL) as one of the predominant035

formal languages for LLM planning (see the Ap-036

pendix A for an example of PDDL).037

While LLMs have been shown to somewhat able038

to generate PDDL, their performance has proven039

1Our code and data are attached with the submission.

Action 1

 Action 2…

: LLM : Solver LLM-as-Planner

LLM-as-Formalizer

Action 1

 Action 2…

Domain File:

(define (domain blocks-world)

(:predicates…)

(:action pickup…)…

Problem File:

(define (block-problem)

 (:domain blocks-world)

 (:objects…)

 (:init …)

 (:goal…)

Domain Description:

Here are the actions I can do

Pickup block …

I have the following restrictions on

my actions:

 To perform Pickup action, the

following facts need to be true: …

Problem Description:

As initial conditions I have that…

My goal is to have that block 1 is

on the table, block 2 is on the

table …

Figure 1: A simplified illustration of LLM-as-Planner
and LLM-as-Formalizer on the BlocksWorld domain.

unsatisfactory in realistic and rigorous evaluations 040

(Zuo et al., 2025). Even state-of-the-art coding 041

LLMs have shown close-to-zero performance as 042

PDDL formalizers on planning benchmarks espe- 043

cially when the model size is less than 100 billion 044

parameters (Huang and Zhang, 2025), while an 045

array of code generation techniques struggle to 046

improve performance (Kagitha et al., 2025). More- 047

over, training data for low-resource and domain- 048

specific languages like PDDL is extremely limited, 049

making generation even more challenging (Taras- 050

sow, 2023; Joel et al., 2024). Existing attempts of 051

improvement such as fine-tuning (Cassano et al., 052

2023; McKenna et al., 2025; Giagnorio et al., 2025) 053

and translation from high-resource languages (Liu 054

et al., 2024) require supervised PDDL data that 055

barely exists. In contrast, retrieval of library doc- 056

umentation (Zhou et al., 2023; Dutta et al., 2024) 057

has proven effective for high-resource languages. 058

We find that simply providing the documenta- 059

tion to LLMs does not help low-resource PDDL 060

generation. However, we present some novel meth- 061

ods that generate PDDL either modularly or with 062

error refinement, while only retrieving the most 063

relevant documentation. These methods enable a 064

“0 to 1” breakthrough of PDDL generation perfor- 065

mance for models like Llama-4-Scout and Llama-4- 066

Marverick on domains like BlocksWorld, improv- 067

ing correctness from 0% to 50%. Moreover, we 068

1

Domain

Description

Problem

Description
Problem File

Domain File

Plan

Error Feedback

: LLM : Solver

: Retrieve : Error Code

Figure 2: Overview of one of our pipeline that retrieve
documents based on error codes located by LLM, and
finally using them as hints to correct the code.

verify the intuition that documentation significantly069

reduces syntax errors, but has limited effect on se-070

mantic errors. We also present interesting findings071

that LLMs are more reliant on documentation ini-072

tially than during error refinement, different models073

vary in their ability to leverage documentation ef-074

fectively and that examples are more effective than075

descriptions in the documentation.076

2 Methodology077

We conduct experiments in text-based simulated078

planning environments. Each planning problem in079

the dataset is accompanied by a domain descrip-080

tion (DD) outlining the environment, and a problem081

description (PD) specifying the task objective.082

We begin with the most basic setting, referred to083

as Base, where a LLM zero-shot generates PDDL084

code. Given the DD and PD as input, the LLM pro-085

duces a Domain File (DF) and a Problem File (PF):086

DF, PF = LLM(DD, PD)087

088 Building upon this, we leverage the PDDL doc-089

umentation (Doc) during generation. We consider090

two approaches, Once w/ Whole Doc where the091

model is given an entire Doc before generating092

the entire PDDL, and Modular w/ Specific Doc093

where the model incrementally generates PDDL094

code guided by relevant parts of the Doc. Here, we095

break down the DF structure into types, predicates,096

actions, etc. and DF structure into initial and goal097

states. We partition the Doc accordingly.098

DF, PF = LLM(DD, PD, Doc)099

100 Next, we optionally perform up to three rounds101

of iterative error correction. We first use a PDDL102

solver to obtain error feedback:103

Err_Feedback = Solver(DF, PF)104

105 Without the Doc, the standard Refinement w/o106

Doc directly input the error feedback back to the107

LLM to re-generate the PDDL:108

DF, PF = LLM(DF, PF, Err_Feedback) 109

110With the Doc, we attempt to retrieve a specific, 111

helpful part that pertains to the particular error. Us- 112

ing the feedback directly as the query is referred 113

to as Refinement w/ Feedback-Retrieved Doc. 114

Otherwise, we may prompt an LLM to localize the 115

code that caused the error based on the feedback, re- 116

ferred to as Refinement w/ Code-Retrieved Doc. 117

Err_Code = LLM(Err_Feedback) 118

119In either case, we then retrieve the most relevant 120

documentation snippet using the BM25 (Robertson 121

et al., 2009) retrieval algorithm: 122

Rel_Doc = BM25(Err_Feedback|Err_Code) 123

124Finally, the LLM corrects the code using the 125

retrieved Doc, the Error_Feedback, and the local- 126

ized Error_Code if any. 127

DF, PF = LLM(DF, PF, Err_Feedback,

[Err_Code], Rel_Doc)
128

129The full prompts and the pseudocode are pro- 130

vided in Appendix D, and C. 131

While we only consider PDDL as the plan- 132

ning language in this work following cited 133

works, we also have explored the feasibility 134

of using Satisfiability Modulo Theories (SMT) 135

solvers—specifically Z3, a general-purpose solver 136

for constraint satisfaction planning problems. Fol- 137

lowing Hao et al. (2025), our evaluation shows that 138

Z3 exhibits suboptimal performance when handling 139

complex planning tasks and is thus not discussed 140

further (see details in Appendix B). 141

3 Evaluation 142

Dataset To conduct experiments in a text- 143

based simulation environment, we use the dataset 144

from (Huang and Zhang, 2025). Included are three 145

simulated planning domains, BlocksWorld, Logis- 146

tics, Barman from the International Planning Com- 147

petition (IPC, 1998), with increasing action space 148

and reported difficulty. We also consider Mystery 149

BlocksWorld (Valmeekam et al., 2023) where all 150

keywords are perturbed to combat LLM memoriza- 151

tion. Each instance comes with domain and prob- 152

lem descriptions and ground-truth PDDL domain 153

and problem files that are used to validate a pre- 154

dicted plan. Each domain has 100 tasks of varying 155

problem complexity and description naturalness. 156

We use the heavily templated descriptions which 157

are also the easiest due to the reported close-to-zero 158

2

1%

2%

1%

47%

0%

1%

0%

28%

1%

0%

2%

44%

0%

0%

0%

33%

19%

0%

0%

26%

0%

0%

0%

22%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Llama-4-Maverick-
17B-128E-Instruct

Llama-4-Scout-
17B-16E-Instruct

Qwen3-8B

QwQ-32B

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Llama-4-Maverick-
17B-128E-Instruct

Llama-4-Scout-
17B-16E-Instruct

Qwen3-8B

QwQ-32B

Barman

63%

0%

43%

97%

59%

0%

42%

83%

37%

0%

41%

92%

0%

0%

25%

60%

72%

3%

3%

21%

0%

0%

35%

61%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Llama-4-Maverick-
17B-128E-Instruct

Llama-4-Scout-
17B-16E-Instruct

Qwen3-8B

QwQ-32B

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Llama-4-Maverick-
17B-128E-Instruct

Llama-4-Scout-
17B-16E-Instruct

Qwen3-8B

QwQ-32B

Logistics

56%

51%

22%

100%

35%

37%

8%

98%

33%

6%

17%

93%

7%

0%

15%

83%

50%

33%

8%

32%

0%

0%

1%

56%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Llama-4-Maverick-
17B-128E-Instruct

Llama-4-Scout-
17B-16E-Instruct

Qwen3-8B

QwQ-32B

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Llama-4-Maverick-
17B-128E-Instruct

Llama-4-Scout-
17B-16E-Instruct

Qwen3-8B

QwQ-32B

Mystery Blocksworld

96%

50%

44%

100%

43%

44%

41%

98%

86%

0%

36%

100%

98%

0%

64%

82%

94%

58%

54%

76%

0%

0%

24%

68%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Llama-4-Maverick-
17B-128E-Instruct

Llama-4-Scout-
17B-16E-Instruct

Qwen3-8B

QwQ-32B

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Llama-4-Maverick-
17B-128E-Instruct

Llama-4-Scout-
17B-16E-Instruct

Qwen3-8B

QwQ-32B

Blocksworld

Base Modular w/ Specific Doc Once w/ Whole Doc Refinement w/o Doc Refinement w/ Feedback-Retrieved Doc Refinement w/ Code-Retrieved Doc

Figure 3: Syntactic accuracy (orange) and semantic accuracy (blue) on various planning domains.

performance of LLMs with less than 100B param-159

eters that we focus on. We crawl, process and use160

the Planning Wiki2 as the source of documentation161

of the PDDL language.162

Metrics We follow Kagitha et al. (2025) and use163

syntactic and semantic accuracy to assess the DF164

and PF generated by an LLM. Syntactic accuracy165

is the percentage of problems where no syntax er-166

ror are returned by the planning solver. Semantic167

accuracy is the percentage of problems where a168

plan is not only found but also correct. We use the169

dual-bfws-ffparser planner Muise (2016) to solve170

for the plan and the VAL4 (Howey et al., 2004) to171

validate the plan against the gold DF and PF.172

Model We conduct experiments on six open-173

source models, ranging from 8B to 32B parameters:174

Llama-4-Maverick-17B-128E-Instruct, Llama-4-175

Scout-17B-16E-Instruct3, QwQ-32B, Qwen3-8B4.176

We follow most cited previous works and only con-177

sider zero-shot prompting.178

4 Results179

We present the following key conclusions based on180

the results shown in the Figure 3.181

2https://planning.wiki/guide/whatis/pddl
3https://github.com/meta-llama/llama-models/

tree/main/models/llama4
4https://github.com/QwenLM/Qwen3

Documentation brings a 0 to 1 breakthrough. 182

On BlocksWorld, most LLMs under the Base set- 183

ting perform close to zero accuracy, as observed 184

in previous work. However, when equipped with 185

appropriate documentation, they demonstrate a dra- 186

matic increase in their ability to generate valid 187

PDDL. While the improvement depends on the 188

LLM, Llama-4-Maverick sees a dramatic improve- 189

ment of syntactic accuracy from 0% to over 90% 190

and semantic accuracy of 0% to over 80% with the 191

help of documentation but regardless of error re- 192

finement. Other originally zero-performing models 193

such as Llama-4-Scout see an improvement of 50% 194

for syntactic and 30% for semantic accuracy. On 195

more challenging domains, absolute performance 196

for all LLMs are thwarted, while documentation 197

still greatly improves syntactic accuracy for many 198

models. Overall, models that previously failed en- 199

tirely begin to become functional as planning for- 200

malizers. 201

Specific docs significantly reduces syntax er- 202

rors. Documentation proves effective in reducing 203

syntax errors during both initial PDDL generation 204

(Modular w/ Specific Doc) and subsequent error- 205

correction (Refinement w/ Code-Retrieved Doc). 206

This effect is especially evident in the case of 207

Llama-4-Scout, which fails to generate any valid 208

PDDL originally regardless of whether error cor- 209

3

https://planning.wiki/guide/whatis/pddl
https://github.com/meta-llama/llama-models/tree/main/models/llama4
https://github.com/meta-llama/llama-models/tree/main/models/llama4
https://github.com/QwenLM/Qwen3

rection is applied. Only when supported by rele-210

vant docs can it successfully generate valid PDDL,211

much of which leading to correct plans. Notably,212

using feedback to retrieve doc does not lead to213

consistent or significant performance gains, as the214

retrieved documents often fail to accurately cor-215

respond to the actual errors. This highlights that216

retrieval based on error codes is more effective in217

improving the accuracy of documentation retrieval.218

Docs cannot reliably reduce semantic errors.219

During error correction, Llama-4-Maverick shows220

a 3% improvement in syntax accuracy on the Logis-221

tic dataset under the Refinement w/ Code-Retrieved222

Doc setting compared to the Refinement w/o Doc223

setting. However, its semantic accuracy decreases224

by 1%. This is because generating valid PDDL not225

only requires syntactic correctness but also an accu-226

rate representation of the environment. Otherwise,227

the resulting plan may fall into a loop, fail to reach228

the goal due to insufficient executable actions, or229

be unnecessarily complex. Achieving this depends230

heavily on the reasoning capabilities and world231

modeling abilities of the LLM, and simply provid-232

ing documentation is not sufficient to enhance such233

reasoning.234

LLMs exhibit varying sensitivity to documen-235

tation across different phases of the code genera-236

tion process. Our results reveal that documentation237

exerts a stronger influence during the initial code238

generation phase compared to the subsequent error239

refinement phase. Specifically, in the Formalize240

phase—corresponding to the initial generation of241

PDDL—providing specific documentation signif-242

icantly improves syntax accuracy, reaching up to243

72% for modular models with targeted documen-244

tation. In contrast, the benefits of documentation245

during the later Refinement phase are substantially246

smaller. This suggests that models rely more on247

documentation cues when initially producing struc-248

tured code, whereas later refinements depend more249

on internal representations and the code previously250

generated.251

LLMs that are better at generating PDDL can252

make more effective use of documentation. Since253

QwQ-32B and Qwen3-8B outperform LLaMA-4254

models in the Base setting, we consider them more255

proficient at PDDL generation. Compared to the256

Base and Modular w/ Specific Doc settings, these257

PDDL-proficient models (QwQ-32B and Qwen3-258

8B) perform better under the Once w/ Whole Doc259

setting. In contrast, the less proficient LLaMA-4260

model does not outperform Modular w/ Specific261

0 0

44

72

0 0

66
70

98

0

64

82

0

10

20

30

40

50

60

70

80

90

100

Llama-4-Maverick Llama-4-Scout Qwen3-8B QwQ-32B

Once w/ Whole Description Once w/ Whole Example Once w/ Whole Doc

Figure 4: Syntactic accuracy of different models under
various document conditions on BlocksWorld. Once
w/ whole example refers to all the examples in the doc,
and Once w/ whole description refers to all the textual
descriptions in the doc.

Doc under the same condition. This suggests that 262

for models less capable of generating PDDL, mod- 263

ular generation is more effective, as they tend to be- 264

come overwhelmed when processing large amounts 265

of documentation. 266

Using examples to convey knowledge is more 267

effective than using descriptions. Figure 4 268

presents the performance of different types of 269

documentation in the LLM-as-Formalizer setting. 270

Among all types, Once w/ whole doc yields the 271

best results. Notably, for Llama-4-Maverick, per- 272

formance is 0% when provided with only exam- 273

ples or only descriptions, but nearly 100% when 274

given the entire documentation. Comparing Once 275

w/ whole example and Once w/ whole description, 276

we observe that examples consistently outperform 277

descriptions. This suggests that examples are eas- 278

ier for LLMs to comprehend and are more useful 279

for correcting syntax errors. Furthermore, even for 280

models with inherently strong PDDL generation 281

capabilities, such as QwQ-32B, the use of docu- 282

mentation still leads to a noticeable improvement 283

in performance. 284

5 Conclusion 285

Our experiments clearly demonstrate that incor- 286

porating documentation to the process greatly 287

improves generation of low-resource formal lan- 288

guages like PDDL. We show that for models less 289

skilled at generating PDDL, documentation is only 290

useful when paired with techniques like modular 291

generation or error refinement. For more capa- 292

ble models, documentation accuracy matters more. 293

Despite the clear gain, models still struggle when 294

their size is small and when the domain is complex, 295

which future work should strive to address. 296

4

6 Limitations297

While our proposed pipelines significantly improve298

the syntactic and, to a lesser extent, semantic ac-299

curacy of PDDL generation in low-resource set-300

tings, several limitations remain. First, our methods301

rely on well-structured documentation and domain302

descriptions; performance may degrade in noisy303

or under-specified environments. Moreover, docu-304

mentation itself may contain outdated, incomplete,305

or inaccurate information, which can mislead the306

model during generation. Second, although doc-307

umentation helps reduce syntax errors, semantic308

correctness still heavily depends on the model’s in-309

ternal reasoning capabilities, which are limited for310

smaller LLMs. Lastly, our evaluation is confined to311

a few benchmark domains; generalization to more312

diverse or real-world planning scenarios remains313

to be verified.314

The datasets we use are all under the MIT Li-315

cense.316

References317

Federico Cassano, John Gouwar, Francesca Lucchetti,318
Claire Schlesinger, Carolyn Jane Anderson, Michael319
Greenberg, Abhinav Jangda, and Arjun Guha. 2023.320
Knowledge transfer from high-resource to low-321
resource programming languages for code llms. Pro-322
ceedings of the ACM on Programming Languages,323
8:677 – 708.324

Avik Dutta, Mukul Singh, Gust Verbruggen, Sumit Gul-325
wani, and Vu Le. 2024. RAR: Retrieval-augmented326
retrieval for code generation in low resource lan-327
guages. In Proceedings of the 2024 Conference on328
Empirical Methods in Natural Language Processing,329
pages 21506–21515, Miami, Florida, USA. Associa-330
tion for Computational Linguistics.331

Alessandro Giagnorio, Alberto Martin-Lopez, and332
Gabriele Bavota. 2025. Enhancing code generation333
for low-resource languages: No silver bullet. ArXiv,334
abs/2501.19085.335

Weihang Guo, Zachary Kingston, and Lydia E. Kavraki.336
2024. Castl: Constraints as specifications through337
llm translation for long-horizon task and motion plan-338
ning. Preprint, arXiv:2410.22225.339

Yilun Hao, Yang Zhang, and Chuchu Fan. 2025. Plan-340
ning anything with rigor: General-purpose zero-shot341
planning with llm-based formalized programming.342
Preprint, arXiv:2410.12112.343

R. Howey, D. Long, and M. Fox. 2004. Val: auto-344
matic plan validation, continuous effects and mixed345
initiative planning using pddl. In 16th IEEE Inter-346
national Conference on Tools with Artificial Intelli-347
gence, pages 294–301.348

Cassie Huang and Li Zhang. 2025. On the limit of 349
language models as planning formalizers. Preprint, 350
arXiv:2412.09879. 351

IPC. 1998. International planning competition. https: 352
//www.icaps-conference.org/competitions. 353

Sathvik Joel, Jie Jw Wu, and Fatemeh H. Fard. 2024. A 354
survey on llm-based code generation for low-resource 355
and domain-specific programming languages. 356

Prabhu Prakash Kagitha, Andrew Zhu, and Li Zhang. 357
2025. Addressing the challenges of planning lan- 358
guage generation. Preprint, arXiv:2505.14763. 359

Subbarao Kambhampati, Karthik Valmeekam, Lin 360
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham- 361
bri, Lucas Saldyt, and Anil Murthy. 2024. Llms can’t 362
plan, but can help planning in llm-modulo frame- 363
works. Preprint, arXiv:2402.01817. 364

Max Liu, Chan-Hung Yu, Wei-Hsu Lee, Cheng-Wei 365
Hung, Yen-Chun Chen, and Shao-Hua Sun. 2024. 366
Synthesizing programmatic reinforcement learning 367
policies with large language model guided search. 368
ArXiv, abs/2405.16450. 369

Bodhisattwa Prasad Majumder, Bhavana Dalvi Mishra, 370
Peter Jansen, Oyvind Tafjord, Niket Tandon, 371
Li Zhang, Chris Callison-Burch, and Peter Clark. 372
2023. Clin: A continually learning language agent 373
for rapid task adaptation and generalization. Preprint, 374
arXiv:2310.10134. 375

Nick McKenna, Xinnuo Xu, Jack Williams, Nick Wil- 376
son, Benjamin Van Durme, and Christian Poelitz. 377
2025. Synthetic function demonstrations improve 378
generation in low-resource programming languages. 379
ArXiv, abs/2503.18760. 380

Christian Muise. 2016. Planning.Domains. In The 381
26th International Conference on Automated Plan- 382
ning and Scheduling - Demonstrations. 383

Stephen Robertson, Hugo Zaragoza, et al. 2009. The 384
probabilistic relevance framework: Bm25 and be- 385
yond. Foundations and Trends® in Information Re- 386
trieval, 3(4):333–389. 387

Kaya Stechly, Karthik Valmeekam, and Subbarao Kamb- 388
hampati. 2025. Chain of thoughtlessness? an analy- 389
sis of cot in planning. Preprint, arXiv:2405.04776. 390

Hao Tang, Darren Key, and Kevin Ellis. 2024. World- 391
coder, a model-based llm agent: Building world mod- 392
els by writing code and interacting with the environ- 393
ment. Preprint, arXiv:2402.12275. 394

Artur Tarassow. 2023. The potential of llms for coding 395
with low-resource and domain-specific programming 396
languages. ArXiv, abs/2307.13018. 397

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, 398
Sarath Sreedharan, and Subbarao Kambhampati. 399
2023. Planbench: An extensible benchmark for eval- 400
uating large language models on planning and rea- 401
soning about change. Preprint, arXiv:2206.10498. 402

5

https://api.semanticscholar.org/CorpusId:261048815
https://api.semanticscholar.org/CorpusId:261048815
https://api.semanticscholar.org/CorpusId:261048815
https://aclanthology.org/2024.emnlp-main.1199
https://aclanthology.org/2024.emnlp-main.1199
https://aclanthology.org/2024.emnlp-main.1199
https://aclanthology.org/2024.emnlp-main.1199
https://aclanthology.org/2024.emnlp-main.1199
https://api.semanticscholar.org/CorpusId:276079432
https://api.semanticscholar.org/CorpusId:276079432
https://api.semanticscholar.org/CorpusId:276079432
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.12112
https://arxiv.org/abs/2410.12112
https://arxiv.org/abs/2410.12112
https://arxiv.org/abs/2410.12112
https://arxiv.org/abs/2410.12112
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://arxiv.org/abs/2412.09879
https://arxiv.org/abs/2412.09879
https://arxiv.org/abs/2412.09879
https://www.icaps-conference.org/competitions
https://www.icaps-conference.org/competitions
https://www.icaps-conference.org/competitions
https://api.semanticscholar.org/CorpusId:273185751
https://api.semanticscholar.org/CorpusId:273185751
https://api.semanticscholar.org/CorpusId:273185751
https://api.semanticscholar.org/CorpusId:273185751
https://api.semanticscholar.org/CorpusId:273185751
https://arxiv.org/abs/2505.14763
https://arxiv.org/abs/2505.14763
https://arxiv.org/abs/2505.14763
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2402.01817
https://api.semanticscholar.org/CorpusId:270062635
https://api.semanticscholar.org/CorpusId:270062635
https://api.semanticscholar.org/CorpusId:270062635
https://arxiv.org/abs/2310.10134
https://arxiv.org/abs/2310.10134
https://arxiv.org/abs/2310.10134
https://api.semanticscholar.org/CorpusId:277271909
https://api.semanticscholar.org/CorpusId:277271909
https://api.semanticscholar.org/CorpusId:277271909
https://arxiv.org/abs/2405.04776
https://arxiv.org/abs/2405.04776
https://arxiv.org/abs/2405.04776
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://api.semanticscholar.org/CorpusId:260155041
https://api.semanticscholar.org/CorpusId:260155041
https://api.semanticscholar.org/CorpusId:260155041
https://api.semanticscholar.org/CorpusId:260155041
https://api.semanticscholar.org/CorpusId:260155041
https://arxiv.org/abs/2206.10498
https://arxiv.org/abs/2206.10498
https://arxiv.org/abs/2206.10498
https://arxiv.org/abs/2206.10498
https://arxiv.org/abs/2206.10498

Li Zhang, Peter Jansen, Tianyi Zhang, Peter Clark,403
Chris Callison-Burch, and Niket Tandon. 2024.404
PDDLEGO: Iterative planning in textual environ-405
ments. In Proceedings of the 13th Joint Conference406
on Lexical and Computational Semantics (*SEM407
2024), pages 212–221, Mexico City, Mexico. As-408
sociation for Computational Linguistics.409

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhiruo410
Wang, Zhengbao Jiang, and Graham Neubig. 2023.411
Docprompting: Generating code by retrieving the412
docs. Preprint, arXiv:2207.05987.413

Max Zuo, Francisco Piedrahita Velez, Xiaochen Li,414
Michael L. Littman, and Stephen H. Bach. 2025.415
Planetarium: A rigorous benchmark for translat-416
ing text to structured planning languages. Preprint,417
arXiv:2407.03321.418

A Data and PDDL Examples419

Figure 5 and 6 is an example of the420

dataset Heavily_Templated_BlocksWorld-100421

from (Huang and Zhang, 2025).422

B Z3 Result423

We followed the (Hao et al., 2025) by using Formu-424

lator to define all possible variables in the environ-425

ment and generate their instantiation information426

before producing the Z3 code. However, we did427

not adopt their iterative error correction method. In428

their experiments, Formulator improved the results429

on the BlocksWorld domain from 0.2 to 96.2.430

We conducted experiments on our dataset using431

GPT-4o as the LLM, but the results were 0. The432

distribution of error causes is shown in the Table 1.433

Goal unsatisfied means that the final output plan434

cannot solve the problem correctly. We analyzed435

the cause of this error. We printed the state of436

each time slice and found that as long as any condi-437

tion in the goal state is met, the planning will stop.438

When we tried to let LLM correct this error, it only439

caused more syntax errors, and never corrected the440

error. This is likely because our dataset is more441

complex—theirs only involved 4 blocks, whereas442

ours often includes more than 10 blocks.443

Since even the simplest BlocksWorld dataset444

yielded a score of 0 after following the (Hao et al.,445

2025) approach, we did not apply our pipeline to Z3446

and instead reported the findings in the appendix.447

C Pseudocode of Refinement w/448

Code-Retrieved Doc449

Algorithm 1 shows the Pseudocode of Refinement450

w/ Code-Retrieved Doc.451

Heavily BlocksWorld
Model syntax error goal unsatisfied

gpt-4o 16/100 84/100

Table 1: Z3 Result

D Prompt 452

Figure 9 10 11 12 and 13 is the Prompt of all our 453

methods. Refinement w/ Feedback-Retrieved Doc 454

and Refinement w/ Code-Retrieved Doc use the 455

same prompt but different retrieved docs. 456

6

https://doi.org/10.18653/v1/2024.starsem-1.17
https://doi.org/10.18653/v1/2024.starsem-1.17
https://doi.org/10.18653/v1/2024.starsem-1.17
https://arxiv.org/abs/2207.05987
https://arxiv.org/abs/2207.05987
https://arxiv.org/abs/2207.05987
https://arxiv.org/abs/2407.03321
https://arxiv.org/abs/2407.03321
https://arxiv.org/abs/2407.03321

I am playing with a set of blocks. Here are the actions I can do

 Pickup block

 Unstack block from another block

 Putdown block

 Stack block on another block

I have the following restrictions on my actions:

 To perform Pickup action, the following facts need to be true: clear block, block on table,

arm-empty.

 Once Pickup action is performed the following facts will be true: holding block.

 Once Pickup action is performed the following facts will be false: clear block, block on

table, arm-empty.

 To perform Putdown action, the following facts need to be true: holding block.

 Once Putdown action is performed the following facts will be true: clear block, block on

table, arm-empty.

 Once Putdown action is performed the following facts will be false: holding block.

 To perform Stack action, the following needs to be true: clear block2, holding block1.

 Once Stack action is performed the following will be true: arm-empty, clear block1, block1

on block2.

 Once Stack action is performed the following will be false: clear block2, holding block1.

 To perform Unstack action, the following needs to be true: block1 on block2, clear block1,

arm-empty.

 Once Unstack action is performed the following will be true: holding block1, clear block2.

 Once Unstack action is performed the following will be false:, block1 on block2, clear

block1, arm-empty.

Figure 5: DD for the BlocksWorld domain

As initial conditions I have that, block 1 is clear, block 2 is clear, block 3 is clear, block

4 is clear, arm-empty, block 1 is on the table, block 2 is on the table, block 3

is on the table, and block 4 is on the table.

My goal is to have that block 1 is on the table, block 2 is on the table, block 3 is on the

table, and block 4 is on the table.

Figure 6: PD for the BlocksWorld domain

7

(define (domain blocks-world)

 (:requirements :strips :typing)

 (:predicates (clear ?x - block)

 (on ?x ?y - block)

 (ontable ?x - block)

 (holding ?x - block)

 (arm-empty))

 (:action pickup

 :parameters (?b - block)

 :precondition (and (clear ?b) (ontable ?b) (arm-empty))

 :effect (and (holding ?b) (not (clear ?b)) (not (ontable ?b)) (not (arm-empty))))

 (:action unstack

 :parameters (?b1 ?b2 - block)

 :precondition (and (on ?b1 ?b2) (clear ?b1) (arm-empty))

 :effect (and (holding ?b1) (clear ?b2) (not (on ?b1 ?b2)) (not (clear ?b1))

 (not (arm-empty))))

 (:action stack

 :parameters (?b1 ?b2 - block)

 :precondition (and (clear ?b2) (holding ?b1))

 :effect (and (arm-empty) (clear ?b1) (on ?b1 ?b2) (not (clear ?b2))

 (not (holding ?b1))))

 (:action putdown

 :parameters (?b - block)

 :precondition (holding ?b)

 :effect (and (ontable ?b) (clear ?b) (arm-empty) (not (holding ?b))))

)

Figure 7: DF for the BlocksWorld domain

(define (problem block_problem)

 (:domain block-stacking)

 (:objects block1 block2 block3 block4 - block)

 (:init

 (clear block1)

 (on block1 block2)

 (clear block3)

 (on block3 block4)

 (on_table block2)

 (on_table block4)

 (arm_empty)

)

 (:goal (and

 (on_table block1)

 (on_table block2)

 (on_table block3)

 (on_table block4)

))

)

Figure 8: PF for the BlocksWorld domain

You are a PDDL expert. Here is a game we are playing.

{domain_description}

{problem_description}
Write the domain and problem files in minimal PDDL.

Base Prompt

Figure 9: Base Prompt

8

You are a PDDL expert.

Is next step needed here: yes

next step: domain definition

next domain file:

(define (domain construction)

)

Is next step needed here: yes

next step: requirements

next domain file:

(define (domain game)

(:requirements :strips :adl :typing)

)

[More steps here]

…

follow the example above, please do not add any other word, generate only the next one step for the domain file.

Here is a game we are playing.

{domain_description}

{problem_description}

modular w/ specific doc Prompt

Figure 10: modular w/ specific doc Prompt

Knowledge:

{doc}

are a PDDL expert. Here is a game we are playing.

{domain_description}

{problem_description}

Write the domain and problem files in minimal PDDL.

Once w/ Whole Doc

Figure 11: Once w/ Whole Doc Prompt

Wrong_domain_file:

{previous_domain_file}

Wrong_problem_file:

{previous_problem_file}

error feedback:{result}

Instruction: I provided a wrong set of PDDL files, you need according to the error feedback, give me the

corrected domain_file and problem_file. You must make changes.

Refinement w/o Doc

Figure 12: Refinement w/o Doc Prompt

9

Knowledge:{doc}

Wrong_domain_file:

{previous_domain_file}

wrong_problem_file:

{previous_problem_file}

Wrong PDDL:

{query}

error: {result}

Instruction: I provided a wrong PDDL files and the documentation for the errors, you need according to the

documentation, give me the corrected domain_file. You must make changes, and give me a logical reason for

why you change like that. Do not add any other word.

Refinement w/ Retrieved Doc

Figure 13: Refinement w/ Retrieved Doc Prompt

10

Algorithm 1 Retrieval-Augmented PDDL Genera-
tion with Iterative Correction
Require: Domain Description (DD), Problem De-

scription (PD)
Ensure: Valid Domain File (DF) and Problem File

(PF)
1: ⟨DF,PF ⟩ ← LLM(DD,PD)
2: while true do
3: feedback ← Solver(DF,PF)
4: if feedback indicates success then
5: return ⟨DF,PF ⟩
6: end if
7: e_type← Parse_Error_Type(feedback)
8: if e_type == syntax_error and

feedback.file == DF then
9: e_code← LLM(feedback)

10: doc← Retrieve(e_code)
11: ⟨DF,PF ⟩ ←

LLM(DF,PF, e_code, feedback, doc)
12: else if e_type == syntax_error and

feedback.file == PF then
13: ⟨DF,PF ⟩ ←

LLM(DF,PF, feedback)
14: else if e_type == semantic_error then
15: ⟨DF,PF ⟩ ←

LLM(DF,PF, feedback)
16: else
17: raise UnknownErrorType
18: end if
19: end while

11

	Introduction
	Methodology
	Evaluation
	Results
	Conclusion
	Limitations
	Data and PDDL Examples
	Z3 Result
	Pseudocode of Refinement w/ Code-Retrieved Doc
	Prompt

