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Abstract
Motivated by applications in trajectory infer-
ence and particle tracking, we introduce Smooth
Schrödinger Bridges. Our proposal generalizes
prior work by allowing the reference process in
the multi-marginal Schrödinger Bridge problem
to be a smooth Gaussian process, leading to more
regular and interpretable trajectories in applica-
tions. Though naı̈vely smoothing the reference
process leads to a computationally intractable
problem, we identify a class of processes (includ-
ing the Matérn processes) for which the resulting
Smooth Schrödinger Bridge problem can be lifted
to a simpler problem on phase space, which can be
solved in polynomial time. We develop a practical
approximation of this algorithm that outperforms
existing methods on numerous simulated and real
single-cell RNAseq datasets.

1. Introduction
The trajectory inference problem—reconstructing the paths
of particles from snapshots of their evolution—is funda-
mental to modern data science, with applications in single-
cell biology (Huguet et al., 2022a; Saelens et al., 2019;
Schiebinger et al., 2019; Sha et al., 2023; Tong et al., 2020),
fluid dynamics (Brunton et al., 2020; Ouellette et al., 2006),
and astronomical object tracking (Kubica et al., 2007; Li-
ounis et al., 2020). Given observations of a collection of
indistinguishable particles at discrete times, the statistician
aims to infer the continuous trajectories that generated this
data.

A leading approach (Chen et al., 2019; Chizat et al., 2022;
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Lavenant et al., 2024) builds on Schrödinger’s remarkable
thought experiment (Schrödinger, 1931; Schrödinger, 1932),
formulating trajectory inference as a Kullback–Leibler mini-
mization problem. Suppose that a set of particles is observed
at times t0, . . . , tK ∈ [0, 1] and that the particles’ arrange-
ment at time tk is represented by a probability measure µk,
for all k ∈ [K]. The multi-marginal Schrödinger bridge
corresponding to these observations is the solution of

min
P∈P(Ω)

D(P |R) s.t. Pk = µk, ∀k ∈ [K], (1)

where D is the Kullback–Leibler divergence, Pk denotes
the time marginal of P at time tk, and R is the law of a refer-
ence process, typically Brownian motion. (See Appendix A
for a complete list of notation.) This formulation has an ele-
gant quasi-Bayesian interpretation: the Schrödinger bridge
matches the observed marginal distributions while keeping
particle trajectories as faithful as possible to the prior R.

While extensively studied both theoretically and method-
ologically, this classical Schrödinger Bridge (SB) approach
has a critical limitation: its trajectories inherit the roughness
of Brownian paths, leading to noisier estimators and less in-
terpretable posterior paths; see Figure 1, left side. Moreover,
when the experimenter aims to track the positions of indi-
vidual particles in a system evolving over time, inference
with the Brownian motion prior fails to “borrow strength”
from adjacent time points, resulting in less accurate results;
see Figure 2, left side.

The literature on trajectory inference contains various pro-
posals for encouraging smooth paths, inspired by spline
algorithms on Rd or the dynamics of physical systems. (A
full comparison with prior work appears in Appendix B.)
However, from the perspective of Schrödinger’s original
formulation, these modifications sacrifice the clear statis-
tical interpretation of (1). We develop a new approach:
a smooth version of the Schrödinger Bridge problem in
which the Brownian motion is replaced by a smooth Gaus-
sian process. This proposal has an appealing statistical
grounding: like Gaussian process regression (Rasmussen &
Williams, 2006), it provides a flexible and principled way
to perform non-parametric estimation while incorporating
prior smoothness assumptions. As Figures 1 and 2, right
side, show, the resulting estimates significantly outperform
the vanilla Schrödinger Bridge, producing better estimates
with smoother paths.
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Figure 1. Comparison between the classical SB and smooth SB
with Matérn prior on a trajectory inference task for the petal
dataset (Huguet et al., 2022a). Colored points are observed data
and paths are inferred trajectories. Our smooth SB approach gen-
erates much smoother and more concentrated trajectories.

Our contributions:

• We propose a class of Gaussian processes suitable as
priors for smooth SB problems, which we show can be
lifted to simpler SB problems on phase space.

• We show that a message passing algorithm for the
resulting lifted SB problem converges in time quadratic
in K, an exponential improvement over the baseline
approach.

• We develop an efficient approximation of our algo-
rithm that outperforms existing methods in practice, in
several cases by 2–5x.

2. Background
2.1. The Multi-Marginal Schrödinger Bridge

Let R be a measure on the space Ω = C([0, 1];Rd) of
continuous Rd-valued paths, and let µ0, . . . , µK be proba-
bility measures on Rd. Fix a sequence of times t0 = 0 <
t1 · · · < tK = 1. Given ω ∈ Ω, we write ωk = ω(tk)
for k ∈ [K]. Given a probability measure P on Ω and
k ∈ [K], let Pk be the marginal distribution of P at time tk,
that is, let Pk be the element of P(Rd) obtained by pushing
P forward under the map ω 7→ ωk. The multi-marginal
Schrödinger Bridge (1) exists under suitable moment con-
ditions on µ0, . . . , µK (Léonard, 2014), and the strict con-
vexity of the Kullback–Leibler divergence guarantees that
when a solution exists, it is unique.

Though phrased as a minimization problem over the space
P(Ω), the Schrödinger bridge problem admits a “static”
reformulation as a multi-marginal entropic optimal transport
problem over the space P(Rd(K+1)). Write R[K] for the
joint law of ω := (ω0, . . . , ωK) for ω ∼ R.

Lemma 2.1. There is an one-to-one correspondence be-

Figure 2. Comparison between the classical SB and smooth SB.
The observations come from 20 independent trajectories of a
Matérn Gaussian process with ν = 3.5. The two pictures de-
pict the posterior identification of particles obtained by solving the
SB problem with two different priors. Our smooth SB approach
recovers trajectories much more accurately.

tween solutions to (1) and solutions to

min
P[K]∈P(Rd(K+1))

D(P[K]|R[K]), Pk = µk, ∀k ∈ [K]. (2)

Moreover, if each measure µk is absolutely continuous with
finite entropy and R[K] has density exp(−C(ω)), then this
problem is equivalent to

min
P[K]∈P(Rd(K+1))

∫
C(ω)P[K](ω) dω +D

(
P[K]

∣∣∣ K⊗
k=0

µk

)
Pk = µk, ∀k ∈ [K].

(3)

The reformulation in Lemma 2.1 is essential because it elim-
inates the need to optimize over probability measures on
the infinite-dimensional space Ω. Though (3) was derived
for absolutely continuous measures, the expression is sensi-
ble for arbitrary marginal measures. Following a common
convention in the literature (see, e.g., Pooladian & Niles-
Weed, 2024), we therefore take (3) as the basic definition
of the multi-marginal Schrödinger bridge in what follows.
Importantly, when the measures µk are finitely supported,
the resulting optimization problem is finite-dimensional.

2.2. Sinkhorn’s algorithm for multi-marginal transport

Specializing to the case where each of the marginals µk

is supported on a finite set Xk of size at most n, the joint
measure P[K] can be represented by a finite—albeit expo-
nentially large—order (K + 1) tensor, of total size nK+1.

A direct method to solve (3) in this case uses Sinkhorn’s cel-
ebrated scaling Algorithm 1. Sinkhorn’s algorithm is based
on the observation that the optimal solution P ∗

[T ] to (3) is

of the form P ∗
[T ](x) = exp(−C(x))

∏K
k=0 v

∗
k(xk) for all

x = (x0, . . . , xK) ∈
∏K

k=0 Xk, for some “scaling func-
tions” v∗k : Xk → R+, k ∈ [K]. Algorithm 1 produces a
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sequence of iterates v(ℓ)k , k ∈ [K], ℓ ≥ 0, which converge
to these optimal scalings.

Algorithm 1 Vanilla Sinkhorn Algorithm
Input: µ0, ..., µK

Initialize v
(0)
0 , ..., v(0)K ∈ (R+)n, ℓ = 0.

while not converged do
ℓ← ℓ+ 1
for k = 0, ...,K do

Compute S
(ℓ)
k using (4) with

{
v
(ℓ)
i

}
i<k

and{
v
(ℓ−1)
i

}
i>k

v
(ℓ)
k ← µk ⊘ S

(ℓ)
k

end for
end while
Return (v

(ℓ)
k )k∈[K]

The key subroutine in Algorithm 1 is an operation called
“marginalization”: given current iterates (vi)i∈[K], the
marginalization along coordinate k is the function Sk :
Xk → R+ defined by

Sk(xk) :=

K∑
i=0
i̸=k

∑
xi∈Xi

exp(−C(x))

K∏
i=0
i ̸=k

vi(xi) . (4)

The complexity of computing Sk directly is exponential
in K, since the sum in (4) has an exponential number of
terms. Moreover, no general polynomial-time algorithms
for even approximating (4) exist under standard computa-
tional complexity assumptions (Altschuler & Boix-Adserà,
2023, Lemma 3.7). Together, these facts suggest that (3) will
only be computationally feasible under special assumptions
on R.

A crucial observation (Altschuler & Boix-Adserà, 2023;
Chizat et al., 2022), which has driven the near-universal
choice of Brownian motion as a prior, is that when R is a
Markov process, (4) can be computed in Poly(K, |X |) time.
The tractability of marginalization when R is a Markov
process follows from the decomposition

exp(−C(x)) = R[K](x) = R0(x0)

K∏
k=1

Rk|k−1(xk|xk−1) ,

which shows that the exponential-size sum in (4) factors
into K sums, each of which can be computed efficiently.
The assumption that R is Markov extends even to works that
consider priors other than Brownian motion (Bunne et al.,
2023; Vargas et al., 2021).

This raises what appears to be an inherent tension: efficient
algorithms for (3) rely on the assumption that the process
R is Markov; however, limiting to the case of Markov pro-
cesses necessarily precludes consideration of priors R with

smooth sample paths (see Lemma C.1). This observation
suggests the pessimistic conclusion that no practical algo-
rithm exists for solving Schrödinger bridges with smooth
priors.

However, the key contribution of this work is to show that
this conclusion is false. The next section identifies a class
of smooth priors for which (3) can be solved efficiently.

2.3. Autoregressive Gaussian processes

To develop our proposal for efficient smooth Schrödinger
bridges, we focus on the class of continuous-time Gaus-
sian autoregressive processes, a classic model in statistics
and signal processing (Phillips, 1959). They are also a
widespread choice in applications: as we show below (The-
orem 2.3 and Proposition 2.4), the famous Matérn kernel
gives rise to such processes. While it is known that such pro-
cesses offer crucial efficiency benefits in Gaussian process
regression (Gilboa et al., 2015), their algorithmic implica-
tions for the SB problem have not been explored prior to
this work.

Definition 2.2 (Rasmussen & Williams, 2006, Appendix
B). Let m be a positive integer. A Gaussian process t 7→
ω(t) defined on Cm−1(R;Rd) is a Gaussian autoregressive
process (GAP) of order m if it is a stationary solution to the
stochastic differential equation

dm

dtm
ω(t) + am−1

dm−1

dtm−1
ω(t) + · · ·+ a0ω(t) = σξ(t) ,

for some constants a0, . . . , am−1 ∈ R and σ ∈ Rd×d,
where ξ(t) denotes a white-noise process on Rd with in-
dependent coordinates.

The key fact about GAPs, which we leverage to
develop efficient algorithms, is that, even though a
GAP ω is typically not Markov, the process η :=
(ω, dω/dt, . . . , dm−1ω/dtm−1) taking values in phase
space Rd×m is a Markov process. We call η the “lifted”
Gaussian process corresponding to ω. The main observa-
tion driving our practical algorithm for smooth Schrödinger
bridges is that when R is a GAP, problem (3) admits an effi-
cient algorithm obtained by lifting the optimization problem
to phase space.

GAPs form a rich class of smooth Gaussian processes.
Moreover, they admit a simple characterization in terms
of their covariance functions. Recall that a Gaussian pro-
cess ω taking values in C(R;Rd) is characterized by two
functions m : R→ Rd and κ : R2 → Rd×d, which satisfy

m(t) = Eω(t), κ(s, t)ij = cov(ω(s)i, ω(t)j) .

The process is stationary if κ(s, t) = k(t − s) for some
k : R → Rd×d. For notational convenience, we focus on
the zero-mean case, where m ≡ 0, though our results apply
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to the general case as well. Zero-mean, stationary Gaus-
sian processes are characterized entirely by the covariance
function k.

We summarize the important properties of GAPs in the
following theorem.

Theorem 2.3 (Saatçi, 2012, Section 2.2). Let ω be a zero-
mean continuous, stationary Gaussian process on Rd with
covariance function k. Then ω is a GAP of order m if and
only if its spectral density Sω(τ) :=

1
2π

∫∞
−∞ k(t)e−itτdt ∈

Cd×d is of the form

Sω(τ) = σστ/f(τ2) , ∀τ ∈ R

where f is a polynomial of degree m.

Moreover, if ω is a GAP of order m, then η :=
(ω, dω/dt, . . . , dm−1ω/dtm−1) is a zero-mean, stationary
Gauss–Markov process.

With Theorem 2.3 in hand, we easily obtain many examples
of GAPs. Crucially, this includes Gaussian processes cor-
responding to the Matérn kernel, the most popular smooth
Gaussian process in applications, defined by the covariance
function

k(t) ∝ σ2(
√
2νt/ℓ)νKν(

√
2νt/ℓ) , (5)

where Kν is the modified Bessel function of the second kind
and ν and ℓ are positive parameters.

Proposition 2.4 (Hartikainen & Särkkä, 2010, Section 4.1).
Suppose ω is a Gaussian process on C(R;R) whose covari-
ance function is a Matérn kernel for smoothness parameter
ν = m− 1/2, for m ∈ N. Then ω is a GAP of order m.

By Theorem 2.3, the same holds true in the multidimen-
sional case if each coordinate is taken to be independent of
Matérn covariance.

Though the above characterization is formulated for station-
ary processes, our algorithm also applies to the nonstation-
ary case, for instance, to the case of integrated Brownian
motion: dm

dtmω(t) = σξ(t). Taking m = 1 recovers the
standard Schrödinger bridge, and m = 2 gives rise to the so-
called “momentum Schrödinger bridge,” previously studied
in (Chen, Conforti, Georgiou, and Ripani, 2019; Chen, Liu,
Tao, and Theodorou, 2023). The integrated Brownian mo-
tion prior possesses close connections to spline regression;
see (Saatçi, 2012, Section 2.2.3) for more details.

3. Lifting Schrödinger Bridges
The remainder of this paper is devoted to giving an efficient
algorithm for smooth SBs whose reference process is a GAP.
In this section, we leverage the structure of GAPs to lift (3)
to a higher-dimensional problem, with better structure. In

Section 4, we show that this reformulated problem can be
solved by a belief propagation algorithm in a number of iter-
ations that scales linearly with K. Finally, in Section 5, we
develop a practical approximation of the belief propagation
algorithm, with overall runtime quadratic in K.

In what follows, for notational convenience, we focus on
the case d = 1. (We discuss the runtime considerations
assciated with larger d in Section 6.)

Let R be the law of a mean zero GAP ω of order m
for an integer m > 0. Theorem 2.3 guarantees that
η := (ω, dω/dt, . . . , dm−1ω/dtm−1) is a stationary Gauss–
Markov process on Rm, whose law we denote by R̃. We
write R̃[K] for the joint law of the finite-dimensional vector
η := (η0, . . . , ηK), which is Gaussian with mean 0 and
covariance matrix Σ̃ ∈ Rm(K+1)×m(K+1).

We first show that the smooth Schrödinger bridge prob-
lem corresponding to R can be rewritten in terms of R̃.
Suppose for concreteness that µk is supported on a finite
set Xk ⊆ R, and write X[K] =

∏K
k=0 Xk. We write

Y[K] := R(m−1)(K+1). Given a probability measure P̃
on phase space Z[K] := X[K] × Y[K] whose marginal dis-
tribution on Y[K] is absolutely continuous, we write p(x,y)
for its density with respect to the product of the counting
measure on X[K] and the Lebesgue measure on Y[K]. We
will use the variable z = (x,y) to denote an element of
Z[K].

We obtain the following:
Lemma 3.1. Assume that each of the marginals µk is sup-
ported on a finite set Xk. There is a one-to-one correspon-
dence between solutions to (3) and solutions to

min
p

1

2

∫
Y[K]

∑
x∈X[K]

z⊤Σ̃−1z p(z) dy −H(p),

pxk
= µk, ∀k ∈ [K],

(6)

where H(p) := −
∫
Y[K]

∑
x∈X[K]

p(z) log p(z) dy and the
minimization is taken over all densities onZ[K] under which
the marginal law of xk is equal to µk.

We refer to (6) as the lifted Schrödinger Bridge problem,
since it is obtained by lifting the optimization problem from
densities on X[K] to densities on Z[K].

At first sight, the lifted problem (6) is no improvement
over (3)—indeed, the situation seems to have become worse
due to the introduction of the continuous variables y. How-
ever, we now show that unlike (3), problem (6) is directly
amenable to efficient algorithms.

The first step is to leverage the Gauss–Markov property
of R̃[K] to simplify (6). Recall the fundamental fact that,
under R̃, the law of η has the Markov property. Given
z = (x,y) ∈ Z[K] and k ∈ [K], we write zk = (xk,yk)
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ηk−1

αk−1

ωk−1

αk−1,k ηk

αk

ωk

βk−1

γk−1

δ+k−1 δ−k

βk

γk

· · · · · ·

Figure 3. A portion of the graphical model corresponding to the
joint law of ω and η.

for the kth coordinate of z, which takes values in Zk. The
Markov property then implies that zk+1 is independent of
z0, . . . , zk−1, conditioned on zk. At the level of densities,
this implies the decomposition

r(z) = r(z0)

K∏
k=1

r(zk|zk−1)

∝ r(z0)

K∏
k=1

exp

(
−1

2
Qk(zk−1, zk)

)
,

(7)

where r(z0) ∝ exp(− 1
2z

⊤
0 Σ̃

−1
0,0z0) and each Qk is a

quadratic function:

Qk(zk−1, zk) := (zk−Akzk−1)
TΛ−1

k (zk−Akzk−1) ,

for matrices Ak := Σ̃k,k−1(Σ̃k−1,k−1)
−1 ∈ Rm×m and

Λk := Σ̃k,k − Σ̃k,k−1(Σ̃k−1,k−1)
−1Σ̃k−1,k ∈ Rm×m.

These representations follow directly from standard for-
mulas for Gaussian conditioning, and admit explicit expres-
sions in terms of the kernel k of the GAP (Saatçi, 2012,
Section 2.3.1).

This decomposition represents the first term in (6) as a “tree-
structured cost” (Haasler et al., 2021a), therefore rendering
the marginalization in (4) amenable to belief propagation
methods. We develop such a method in the next section.

4. Belief Propagation
The goal of this section is to show that a belief propagation
algorithm can be used to efficiently solve the lifted prob-
lem (6). Belief propagation (Kschischang et al., 2001; Pearl,
1982) is a canonical approach for performing inference in
high-dimensional models whose densities possess simple
factorizations, such as the one given in (7). The use of be-
lief propagation algorithms for Sinkhorn-type problems is
not new (Haasler et al., 2021a; Singh et al., 2022; Teh &
Welling, 2001); however, we stress that their application to
Schrödinger bridges with smooth priors is novel.

To develop our algorithm, we first reformulate (4) in the
language of graphical models. (See Koller & Friedman,
2009; Wainwright & Jordan, 2007, for background.) The

probabilistic structure of ω and the lifted process η under
R̃ means that we can represent their joint distribution by
a simple hidden Markov model (see Figure 3), with ob-
served variables {ωk}Kk=0 and hidden variables {ηk}Kk=0.
These correspond to variable nodes in Section 3, denoted
by circles.

The dependencies among these variables nodes are repre-
sented by factor nodes (squares in Figure 3): the factor
nodes αk−1,k connecting ηk−1 and ηk enforce the joint law
of the pair (ηk−1, ηk), and the factor nodes αk connecting
ηk and ωk enforce the deterministic requirement that the
first coordinate of ηk equals ωk. We associate to αk−1,k the
factor node potential Φk : Zk−1 ×Zk given by

Φ1(z0, z1) := exp

(
−
z⊤0 Σ̃

−1
0,0z0 +Q1(z0, z1)

2

)

Φk(zk−1, zk) := exp

(
−Qk(zk−1, zk)

2

)
k > 1,

so that

r(z) ∝
K∏

k=1

Φk(zk−1, zk) .

To find the optimal solution p∗ to (6), we use a belief propa-
gation algorithm (Algorithm 2). The algorithm iteratively
updates “messages” traveling between factor and variable
nodes, which are depicted in Figure 3. The “vertical” mes-
sages βk, γk are real-valued functions on Xk which encode
information about the ω marginals of p∗, while the “hori-
zontal” messages δ+k , δ−k are real-valued functions on Zk

which encode information about the joint distribution of
ηk and its neighbors ηk−1 and ηk+1 These messages are
iteratively updated back and forth across the graph via the
application of the following operators:

Ik(δ−k , δ+k )(xk) : =

∫
Yk

δ−k (xk,yk)δ
+
k (xk,yk)dyk

Lk−1(δ
+
k , βk)(zk−1) : =∑
xk∈Xk

∫
Yk

Φk(zk−1, zk)δ
+
k (zk)βk(xk)dyk

Rk(δ
−
k−1, βk−1)(zk) : =∑

xk−1∈Xk−1

∫
Yk−1

Φk(zk−1, zk)δ
−
k (zk−1)βk(xk−1)dyk−1

(8)

Since these operators involve manipulating functions on
the space Zk, they are not directly implementable. In this
section, we regard these operators as single basic operators
for the purpose of complexity analysis. We develop effi-
cient techniques to bypass their direct evaluation in the next
section.
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The main result of this section is that Algorithm 2 implicitly
implements the Sinkhorn algorithm (Algorithm 1) for the
multi-marginal entropic optimal transport problem (3), with
cost given by

exp(−C(x)) =

∫
· · ·
∫ K∏

k=1

Φk(zk−1, zk)dy0 · · · dyK .

(9)
This connection allows us to develop a rigorous conver-
gence guarantee for Algorithm 2. Indeed, (9) implies that
exp(−C(x)) is, up to a normalizing constant, the joint den-
sity of R[K], so that Algorithm 1, and hence Algorithm 2,
solves the smooth Schrödinger Bridge problem.

Algorithm 2 Belief Propagation with Continuous Massages

1: Input: Factor node potentials {Φk}K−1
k=0 , distributions

{µk}Kk=0 on {Xk}Kk=0.
2: Initialize ℓ = 0, δ+K ≡ 1, δ−0 ≡ 1, and β

(0)
k : Xk → R+,

k ∈ [K] arbitrary
3: while not converged do
4: ℓ← ℓ+ 1
5: for k = K, ..., 1 do {/* left pass */}
6: δ+k−1 ← Lk−1(δ

+
k , β

(ℓ−1)
k )

7: end for

8: γ
(ℓ)
0 ← I0(δ−0 , δ+0 )

9: β
(ℓ)
0 ← µ0 ⊘ γ

(ℓ)
0

10: for k = 1, ...,K do {/* right pass */}
11: δ−k ← Rk(δ

−
k−1, β

(ℓ)
k−1)

12: γ
(ℓ)
k ← Ik(δ−k , δ+k )

13: β
(ℓ)
k ← µk ⊘ γ

(ℓ)
k

14: end for

15: end while
16: Return (β

(ℓ)
k )k∈[K]

Theorem 4.1. Algorithm 2 is equivalent to Algorithm 1 with
cost given by (9), in the sense that, if the initialization of
Algorithm 2 and Algorithm 1 satisfy

β
(0)
k = v

(0)
k ∀k ∈ [K] (10)

then, for all ℓ ≥ 0 and all k = 0, ...,K, we have

γ
(ℓ)
k = S

(ℓ)
k , β

(ℓ)
k = v

(ℓ)
k . (11)

In particular, we have the following two consequences:

(1) Algorithm 2 achieves an ε-approximate solution
for (3) in Õ(KCmax/ε

−1) iterations, where Cmax =
maxx∈X[T ]

C(x) and Õ(·) hides polylogarithmic factors
in the problem parameters.

(2) The solution of (6) is given by

p(z) ∝
K∏

k=1

Φk(zk−1, zk)

K∏
k=0

β∗
k(xk) (12)

where (β∗
k)k∈[K] is the fixed point of Algorithm (2).

The representation in (12) implies that the output of Al-
gorithm 2 can be used to efficiently manipulate and sam-
ple from the solution to the smooth SB problem; see Ap-
pendix D for details.

5. Approximate Belief Propagation
The final ingredient of our algorithm is an approximation
scheme to efficiently implement the operators in (8). We
use the technique proposed by Noorshams & Wainwright
(2013): we decompose the continuous messages in a suit-
able orthonormal basis. The orthonormal decomposition
method provides two key benefits. First, by truncating the
series at a sufficiently high order, we can create an accurate
representation of the messages using only a finite number
of orthogonal coefficients. Second, the key update rules in
Algorithm 2 described in (8) involve taking the L2 inner
product of two continuous messages. Expressing the mes-
sages in an orthonormal basis simplifies these operations
considerably.

Let {ϕi
k}∞i=0 represent an orthonormal basis in the space

L2(Rm−1). The subscript k indicates that one is free to
choose different bases for different k ∈ [K].

We express the horizontal messages δ+k and δ−k in terms of
this basis as follows:

δ+k (zk) =

∞∑
i=1

ℓik(xk)ϕ
i
k(yk), (13)

δ−k (zk) =

∞∑
i=1

rik(xk)ϕ
i
k(yk), (14)

where r and ℓ denote the coefficients for rightward and
leftward messages and the coefficients are given by

ℓik(xk) :=

∫
δ+k (xk,yk)ϕ

i
k(yk)dyk

rik(xk) :=

∫
δ−k (xk,yk)ϕ

i
k(yk)dyk,

Utilizing the orthonormal expansions from (13)-(14), we
can re-write Algorithm 2 so that it operates directly on the
coefficients lk := (ℓik)

∞
i=0 and rk := (rik)

∞
i=0, which are

functions from Xk to ℓ2.

First, by L2(Yk) orthogonality, the update rule for γk can
be written

Ik(δ+k , δ
−
k )(xk) = ⟨l(xk), r(xk)⟩.
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Note that in this notation, we can write

βk(xk) = µk(xk)/γk(xk) = µk(xk)⟨l(xk), r(xk)⟩−1

We now consider the update rule for the left and right mes-
sages. The following lemma shows how to express these
updates in terms of coefficients.

Lemma 5.1. Fix functions δ+k =
∑∞

i=1 ℓ
i
k ⊗ ϕi

k and βk.
Then the coefficients of δ+k−1 = Lk−1(δ

+
k , βk) in the basis

(ϕi
k−1)

∞
i=1 are given by

ℓik−1(xk−1) =
∑

xk∈Xk

βk(xk)

∞∑
j=1

ℓjk(xk)Γ
ij
k−1(xk−1, xk) ,

(15)
where Γij

k−1(xk−1, xk) denotes∫∫
ϕi
k−1(yk−1)ϕ

j
k(yk)Φk(zk−1, zk)dyk−1dyk . (16)

Similarly, if δ−k−1 =
∑∞

i=1 r
i
k−1 ⊗ ϕi

k−1, then the coeffi-
cients of δ−k = Rk(δ

−
k−1, βk−1) in the basis (ϕi

k)
∞
i=1 are

given by

rik(xk) =∑
xk−1∈Xk−1

βk−1(xk−1)

∞∑
j=1

rjk−1(xk−1)Γ
ij
k−1(xk−1, xk) .

(17)

To obtain a practical procedure, we replace the infinite sums
in (13)-(14) with finite approximations. Choosing a suffi-
ciently large M , and using the first M orthonormal func-
tions on the basis to approximate δ+k and δ−k , we repeat
the previous steps to derive the update rules, expressed as
matrix-vector multiplications.

βk(xk)← µ(xk)(lk(xk)
T rk(xk))

−1, (18)

lk−1(xk−1)←
∑

xk∈Xk

βk(xk)Γk−1(xk−1, xk)lk(xk) (19)

rk(xk)← (20)∑
xk−1∈Xk−1

βk−1(xk−1)r
T
k−1(xk−1)Γk−1(xk−1, xk)

where lk−1(xk−1) and rk(xk) are vectors in RM and
Γk−1(xk−1, xk) is a matrix in RM×M whose element in
row i and column j is given by Γij

k−1(xk−1, xk).

Upon convergence of this algorithm, we obtain the coeffi-
cients rk and lk, and thereby obtain estimates of β∗

k . As
discussed after Theorem 4.1, these messages can be used
directly for downstream tasks involving the Schrödinger
bridge.

Algorithm 3 Approximate Belief Propagation Algorithm
Precompute Γ0, ...,ΓK−1 ∈ Rn×n×M×M by (16).
Initialize {rk(xk)}k,xk

and {lk(xk)}k,xk
as M dimen-

sional vectors filled with 1’s
while not converged do

for k = K, ..., 1 do
Update lk−1 by (19)

end for
Calculate β0 by (18)
for k = 1, ...,K do

Update rk by (20)
Calculate βk by (18)

end for
end while
Return rk and lk

6. Time complexity and practical
considerations

Implementing Algorithm 3 requires selecting bases
({ϕi

k}∞i=1)k∈[K] along with a number of coefficients M . The
computational complexity of the resulting algorithm scales
directly with M , which we summarize in the following
result.

Theorem 6.1. Executing T iterations of Algorithm 3
takes O(TKn2M2) time. In particular, executing T =
Õ(KCmaxε

−1) iterations takes Õ(K2n2M2Cmaxε
−1)

time.

Theorem 4.1 suggests that T = Õ(KCmaxε
−1) iterations

suffice to obtain a ε-approximate solution to (6); unfortu-
nately, however, we lack a rigorous approximation guaran-
tee quantifying the difference between the output of Algo-
rithm 3 and that of Algorithm 2. Nevertheless, the success
of our empirical results (Section 7) indicates that Algo-
rithm 3 does offer a good approximation for the solution
to the smooth SB problem. We leave the open question of
demonstrating this fact theoretically to future work.

The main tuning parameter of our algorithm is the choice of
M . In principle, this choice should depend on the smooth-
ness of the messages δ+k and δ−k , the order m of the GAP,
and the dimension d. Since δ+k and δ−k correspond to Gaus-
sian densities, their expansion in many reasonable bases
(for example, Fourier or Wavelet bases) will exhibit strong
decay; however, since they are defined on Yk = R(m−1)d,
standard smoothness arguments would predict that the nec-
essary number of coefficients scales exponentially with the
product md.

However, the dependence on d can be somewhat ame-
liorated under additional assumptions. Suppose that the
GAP has independent coordinates and the orthogonal bases
have tensor product structure, so that each basis element

7
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ϕ ∈ L2(R(m−1)d) satisfies ϕ(y) =
∏d

j=1 φ
(j)(y(j)) for

φ(j) ∈ L2(Rm−1) and where y(j) corresponds to the deriva-
tives of the jth coordinate of ω. In this case, the tensor Γ
factors across each dimension into the tensor product of
d smaller tensors Γ̃(j),(j = 1, ..., d). Suppose the num-
ber of coefficients we use is equal for each dimension, i.e.

Γ̃(j) ∈ Rn×n×M
1
d ×M

1
d , then the complexity of steps (19)

and (20) drops to O(dn2M1+ 1
d ) by taking advantage of

this lower rank structure. In this important special case,
therefore, the time complexity of our algorithm scales more
benignly with d, which allows us to take larger M when
d rises. A record of the running time of one iteration of
message passing against M and dimension d is presented in
Table 9.

7. Experiments
We test our algorithm on two kinds of low-dimensional

smooth trajectory inference tasks. The first kind aims at
tracking the exact trajectory of each individual particle (e.g.
Figure 2), which we refer to as the One-By-One (OBO)
tracking task in the following text. For this kind of task, we
evaluate the performance by calculating the distance of each
inferred trajectory and the ground truth and measure the per-
centage of time that the algorithm tracks a particle correctly.
For the second kind, the task is to infer the group trajectories
of point clouds whose evolution has geometric structure. We
provide two ways to evaluate the performance for this kind
of task, similar to the evaluation in Banerjee et al.. We first
keep all the observations and visualize the trajectories and
see if they form a pattern that is close to the ground-truth
pattern. Secondly, we will leave out observations at a certain
timestep and instead infer the position of particles at this
timestep and evaluate the distance between the inferred and
real observations, which we call Leave-One-Timestep-Out
(LOT) tasks. Our code for reproducing these experiments is
available on Github.1

7.1. One-By-One tracking

For OBO tasks, we consider three synthetic datasets where
trajectories of particles intersect frequently. We compare
our algorithm with the standard Schrödinger Bridge (SB)
and a modification based on computing the W2 optimal
matching at each step (W2M). We test on three data sets,
two 2-dimensional data sets (Fig 7 in Appendix F) and a
3-dimensional data set consisting of the simulated orbits of
an N -body physical system (Fig. 4). Smooth SB performs
second-best on the Tri-stable diffusion dataset and substan-
tially outperforms other approaches on the more challenging
N -Body and Gaussian Process data. Quantitative evalua-
tions are summarized in Table 1. Full experimental details

1https://github.com/WanliHongC/Smooth_SB

Figure 4. Visualization of orbits in 3D space. The colors of trajec-
tories depend on the starting point. The second row is the visu-
alization of the XY-space projection of the corresponding above
plot.

Table 1. A comparison between smooth SB and two baseline parti-
cle tracking methods. Information on evaluation metrics appears
in Appendix F.

Dataset Method JumpP 5p acc Mean ℓ2

Tri-stable SSB (ours) 1.12e-1 0.798 1.42e-2
Diffusion BMSB 5.20e-1 0.171 6.79e-1

W2M 2.25e-2 0.956 1.37e-8

N Body SSB (ours) 5.00e-4 0.999 5.48e-4
BMSB 1.14e-1 0.641 5.43e-1
W2M 1.08e-1 0.649 5.50e-1

2D SSB (ours) 5.60e-3 0.991 3.57e-4
Gaussian BMSB 1.37e-1 0.612 2.82e-1
Process W2M 6.60e-2 0.760 2.32e-1

appear in Appendix F.

7.2. Point clouds trajectory inference

We also test our algorithm on five challenging baselines
in the trajectory inference literature. We compare our al-
gorithm quantitatively on tasks of LOT with three other
state-of-the-art algorithms: MIOFlow (Huguet et al., 2022b),
DMSB (Chen et al., 2023) and F&S (Chewi et al., 2021). A
visualization of the output of our algorithm appears in Fig-
ure 5, 6 and the quantitative results for the LOT tasks are
provided in Table 2. Our algorithm can recover the geomet-
ric pattern in each low-dimensional dataset by generating
smooth trajectories. We can also apply our algorithm to
somewhat higher dimensional settings by appropriately tun-
ing the number of coefficients in the orthonormal expansion.
In particular, in our experiments on the 10-dimensional
Dyngen cycle dataset shown in Figure 6, we use 4 approx-
imation coefficients for each of the first 5 dimensions and
1 approximation coefficient for the each of the last 5 di-
mensions. Despite the small number of coefficients, the
resulting trajectories are still meaningful. Full experimental
details appear in Appendix F.
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Figure 5. Visualization of trajectory inference on various datasets
by lifted SB, for the 5D Dyngen Tree data, we visualize the 2D
projection of the first three dimensions in the second row.

Figure 6. Visualization of trajectory inference on the 10D Dyngen
cycle dataset projected by Phate, we visualize the 2D projection of
the first dimension against the second to fifth dimension.

Table 2. Performance comparison on the Leave-One-Timestep-Out
task at step j between our algorithm and the state-of-art algorithms.
Our algorithm is typically best or second-best. DMSB failed to
converge on the Dyg dataset despite extensive tuning. Information
on evaluation metrics appears in Appendix F.

Dataset Method W1(↓) MG(↓) MI(↓)
Petal SSB (ours) 2.70e-2 2.21e-5 3.75e-3
j = 2 MIOFlow 2.22e-1 9.06e-3 1.11e-1

DMSB 2.10e-1 5.52e-3 3.68e-2
F&S 2.05e-2 2.85e-5 4.48e-3

EB SSB (ours) 8.45e-2 2.46e-3 5.04e-2
j = 2 MIOFlow 1.34e-1 1.36e-3 2.81e-2

DMSB 1.46e-1 9.43e-3 9.72e-2
F&S 8.72e-2 1.47e-3 3.88e-2

Dyg Tree SSB (ours) 9.81e-2 1.64e-3 3.51e-2
j = 1 MIOFlow 2.33e-1 2.82e-2 1.73e-1

DMSB * * *
F&S 9.78e-2 2.00e-3 4.64e-2

Dyg Cycle SSB (ours) 1.94e-1 2.85e-2 1.71e-1
j = 7 MIOFlow 4.25e-1 1.57e-1 4.11e-1

DMSB * * *
F&S 2.84e-1 2.91e-2 1.70e-1

8. Discussions and Future Directions
We have presented a new method for trajectory inference
and particle tracking based on smooth Schrödinger bridges,
which achieves very good performance on a number of chal-
lenging benchmarks. The main limitations of our proposal
are related to the approximate implementation developed
in Section 5. As we have discussed, our proposal suffers
from the curse of dimensionality, because the number of
coefficients M typically scales exponentially with respect
to both the order of the GAP (m) and the dimension of
the observations (d). In numerical experiments, relatively
small values of M (of order 1000) seem to perform well
for problems up to dimension 10. An important question
for future work is to either develop an approach with better
dimensional scaling or, alternatively, show that the exponen-
tial scaling in dimension is unavoidable, as is the case for
Wasserstein barycenters (Altschuler & Boix-Adserà, 2022).

Implementing our approach also requires selecting a suitable
GAP to use as a reference process. As our experiments make
clear, it is not necessary that the reference process match
the data generating process precisely (see, e.g., Figure 2).
However, picking an appropriate variance for the Gaussian
process is important for good performance (see Figure 16).
In our experiments, choosing σ ≈ σdata where σdata is a
diagonal matrix containing the empirical standard deviation
along each dimension, typically works well.

Finally, we have considered a definition of the Schrödinger
bridge which enforces the strict marginal constraint Pk =
µk. In applications, it is natural to assume that observa-
tions of the particles are corrupted with noise, which mo-
tivates a version of the SB with an approximate constraint
Pk ≈ µk (Chizat et al., 2022; Lavenant et al., 2024). It is
possible to incorporate noisy observations into the graphical
model framework we describe above by introducing a suit-
able potential at the factor nodes αk. A similar approach
generalizes to other missing data problems, for instance,
when some dimensions are not observed. We leave this
extension to future work.
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Smooth Schrödinger Bridges

A. List of notation
• P(X ): the set of Borel probability measures on X .

• D(·|·): Kullback–Leibler divergence. For probability measures P and R,

D(P |R) :=

{∫
log dP

dR dP P ≪ R

+∞ otherwise.

• C(R;Rd), Cm(R;Rd): continuous (respectively, m-times continuously differentiable) functions from R to Rd.

• [N ], [N ]+: for a positive integer N , [N ] is the set 0, ..., N while [N ]+ is the set 1, ..., N .

• R+: the set of positive real numbers

• Xk: the support of µk, assumed to be finite, Yk: the space R(m−1)d, identified with the possible values of
(dω/dt, . . . , dm−1ω/dtm−1) at t = tk, Zk: the phase space Xk × Yk.

• X[T ] =
∏

k∈[T ] Xk, Y[T ] =
∏

k∈[T ] Yk, Z[T ] =
∏

k∈[T ]Zk.

• 1ok(xk): the indicator function 1ok(xk) :=

{
1 if xk = ok

0 otherwise.

• ⊙ and ⊘: point-wise multiplication and division

• Poly(K1, . . . ,Kℓ): a (multivariate) polynomial function in parameters K1, . . . ,Kℓ.

B. Prior work
There has been significant prior work on both the Schrödinger bridge problem and its applications in trajectory inference.
Here, we briefly survey some important related contributions.

The Schrödinger bridge has been the subject of significant theoretical interest since its introduction; see (Léonard, 2014) for
historical details and additional context. Currently, there are many methodological approaches to the Schrödinger bridge
problem (see, e.g. De Bortoli et al., 2021; Gushchin et al., 2023; Pavon et al., 2021; Pooladian & Niles-Weed, 2024), almost
all of which focus on the two-marginal case (in our notation K = 1). As was forcefully pointed out by Altschuler &
Boix-Adserà, the multi-marginal case presents significantly greater computational challenges (Altschuler & Boix-Adserà,
2022; 2023); indeed, no general-purpose algorithms with running time polynomial in K exist. However, it is possible to
obtain polynomial-time algorithms in certain special cases (Altschuler & Boix-Adserà, 2023). Our work shows that smooth
Schrödinger bridges with GAP priors are such a case.

The connection between multi-marginal entropic OT problems and belief propagation has been highlighted in a number of
prior works dating back more than two decades (Singh et al., 2022; Haasler et al., 2021b; Teh & Welling, 2001), though
apparently without connection to smooth Schrödinger Bridge problems. The exception is the “momentum Schrödinger
bridge” of (Chen, Conforti, Georgiou, and Ripani, 2019; Chen, Liu, Tao, and Theodorou, 2023), which is, implicitly,
an example of a smooth Schrödinger with prior given by integrated Brownian motion; the Sinkhorn algorithm proposed
in (Chen et al., 2019) can be viewed as an ad hoc version of belief propagation for this special case. However, those works
do not make the connection with smooth Gaussian processes, and their algorithm does not apply to more general GAPs.

The importance of the Schrödinger bridge problem for trajectory inference was implicitly recognized in the pioneering
work (Schiebinger et al., 2019), and developed mathematically by (Chizat et al., 2022; Lavenant et al., 2024). The fact that
the vanilla Shrödinger bridge problem uses a Markov prior is crucial for algorithms (Chizat et al., 2022), but has also been
recognized as an undesirable feature that has led to the development of different trajectory inference methods which give
rise to smoother paths. Apart from (Shen et al.), which proposes a “robust” version of the Schrödinger Bridge problem in
which a single reference process is replaced by a family of (Markov) reference processes, these alternate methods largely
abandon Schrödinger’s formulation and develop very different techniques. Many of the most successful methods are based
on measure-valued generalizations of splines (Banerjee et al.; Benamou et al., 2019; Chen et al., 2018; Chewi et al., 2021;
Clancy & Suarez, 2022; Justiniano et al., 2024). Other methods based on neural networks have also been proposed (Huguet
et al., 2022a; Tong et al., 2020). We compare these methods in our experimental section.
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C. Additional results and omitted proofs
The following lemma shows that any Markov Gaussian process with differentiable sample paths is essentially trivial.

Lemma C.1. Let ω : R+ → R be a real-valued Gaussian process that is Markovian and almost surely differentiable.
Assume Var[ω(t)] > 0 for all t ≥ 0. Then ω(t) = E[ω(t)|ω(0)] for all t ≥ 0 almost surely.

Proof of Lemma C.1. Since ω is an almost surely differentiable Gaussian process, we know that the covariance kernel
K(t, s) := E[ω(t)ω(s)] = Cov(ω(t), ω(s)) is differentiable in both coordinates and ∂2

∂x1∂x2
K(t, s) exists. It is well known

(see (Borisov, 1983)) that a real-valued Gaussian process is Markovian if and only if, for any t1 ≤ t2 ≤ t3, we have

K(t1, t2)K(t2, t3) = K(t1, t3)K(t2, t2). (21)

Let t ≤ s and ε > 0. From (21), we have K(s, s)K(t, s+ ε) = K(t, s)K(s, s+ ε). Dividing each side by ε and taking the
limit as ε→ 0, we obtain

K(s, s)
∂

∂x2
K(t, s) = K(t, s)

∂

∂x2
K(s, s). (22)

Similarly, we also have K(t, t) ∂
∂x1

K(t, s) = K(t, s) ∂
∂x1

K(t, t). Combining these two identities, it follows that

K(t, t)K(s, s)
∂2

∂x1∂x2
K(t, s) = K(t, s)

∂

∂x1
K(t, t)

∂

∂x2
K(s, s). (23)

Note that ∂
∂x1

K(t, s) = Cov(ω′(t), ω(s)) and ∂2

∂x1∂x2
K(t, s) = Cov(ω′(t), ω′(s)) by interchanging differentiation and

expectation.

For any s, by taking t = s in (23), we obtain

Var(ω′(s))Var(ω(s)) = Cov(ω′(s), ω(s))2, (24)

which further implies that

Var(ω′(s)|ω(s)) = Var(ω′(s))− Cov(ω′(s), ω(s))2

Var(ω(s))
= 0.

Let gs : [0, s] 7→ R+ be given by

gs(t) := Var(ω′(s)|ω(t)). (25)

We have shown that gs(s) = 0. Moreover, for any t ∈ [0, s), we have

g′s(t) =
d

dt

(
Var(ω′(s))− Cov(ω′(s), ω(t))2

Var(ω(t))

)
(26)

=
2

K(t, t)2

(
∂

∂x1
K(t, t) · ∂

∂x2
K(t, s)2 − ∂

∂x2
K(t, s) · ∂2

∂x1∂x2
K(t, s) ·K(t, t)

)
(27)

=
2

K(t, t)2

(
∂

∂x1
K(t, t) · ∂

∂x2
K(t, s)2 − ∂

∂x2
K(t, s) ·K(t, s) · ∂

∂x1
K(t, t) ·

∂
∂x2

K(s, s)

K(s, s)

)
(28)

=
2

K(t, t)2

(
∂

∂x1
K(t, t) · ∂

∂x2
K(t, s)2 − ∂

∂x2
K(t, s)2 · ∂

∂x1
K(t, t)

)
= 0, (29)

where the third line uses (23) and the last line uses (22). Consequently, we have shown that Var(ω′(s)|ω(t)) = 0 for any
t < s. We complete the proof by applying the Cauchy–Schwarz inequality: for any s > 0, we have

Var (ω(s)|ω(0)) = Var (ω(s)− ω(0) |ω(0)) ≤ s

∫ s

0

Var (ω′(ℓ)|ω(0)) dℓ = 0. (30)

Therefore, ω(s) = E[ω(s)|ω(0)] almost surely for all s > 0.
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C.1. Proof of Lemma 2.1

This follows directly from known arguments in the two-marginal case (see Léonard, 2014), which we recapitulate below.

We first show the equivalence between (1) and (2), which requires no assumptions on the marginal measures. We can
decompose the measure R as R(ω) = R(ω | ω)R[K](ω), where R(ω | ω) denotes the conditional law of ω given the values
ω = (ω0, . . . , ωK), and similarly for P . By the chain rule for Kullback–Leibler divergence, we obtain

D(P | R) = D(P[K] | R[K]) + Eω∼P[K]
D(P (· | ω) | R(· | ω)) .

For any choice of P[K], choosing P (ω | ω) = R(ω | ω) makes the second term vanish. Therefore, any solution P ∗ of (1)
must be of the form P ∗

[K](ω)R(ω | ω) for a solution P ∗
[K] of (2), and conversely.

For the second claim, we assume that each of the measures µk is absolutely continuous with finite entropy, and that R[K]

has a density. In this case, any feasible solution to (2), i.e., any P[K] such that D(P[K]∥R[K]) < ∞, must be absolutely
continuous with respect to R[K] and hence have a density as well, which we also denote by P[K]. We obtain

D(P[K] | R[K]) =

∫
log

P[K](ω)

exp(−C(ω))
P[K](ω) dω

=

∫
C(ω)P[K](ω) dω +

∫
P[K](ω) log

P[K](ω)∏
k∈[K] µk(ωk)

dω +

∫
P[K](ω) log

∏
k∈[K]

µk(ωk) dω .

The marginal constraints imply that∫
P[K](ω) log

∏
k∈[K]

µk(ωk) dω =
∑

k∈[K]

∫
µk(ωk) logµk(ωk) dωk .

Since each µk has finite entropy by assumption, this sum is finite and constant over the constraint set, so it can be dropped
from the objective without changing the solutions.

C.2. Proof of Lemma 3.1

Lemma 3.1 can be reformulated as follows: there is a one-to-one correspondence between solutions to

max
P[K]

∑
x∈X[K]

P[K](x) log(r(x))−
∑

x∈X[K]

P[K](x) log

P[K](x)/
∏

k∈[K]

µk(xk)


Pk = µk,∀k ∈ [K]

(31)

and
max

p

∫
Y[K]

∑
x∈X[K]

p(z) log(r(z)) dy −
∫
Y[T ]

∑
x∈X[T ]

p(z) log(p(z))dy

pxk
= µk ∀k ∈ [T ],

(32)

where the maximization in (31) is taken over distributions in P(X[T ]) and the maximization in (32) is taken over probability
densities on Z[K].

First, note for any P[T ] satisfying the marginal constraints Pk = µk for all k ∈ [K],∑
x∈X[K]

P[K](x) log
∏

k∈[K]

µk(xk) =
∑

k∈[K]

∑
x∈X[K]

P[K](x) logµk(xk) =
∑

k∈[K]

∑
xk∈Xk

µk(xk) logµk(xk) .

Therefore, the term
∑

x∈X[K]
P[K] log

∏
k∈[K] µk(xk) in (31) is constant on the feasible set and can be dropped from the

objective.

Next, by the law of total probability,∫
Y[T ]

∑
x∈X[T ]

p(z) log(r(z)) dy =

∫
Y[T ]

∑
x∈X[T ]

p(z) log(r(x)) dy +

∫
Y[T ]

∑
x∈X[T ]

p(z) log(r(y|x)) dy (33)
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and ∫
Y[T ]

∑
x∈X[T ]

p(z) log(p(z))dy =

∫
Y[T ]

∑
x∈X[T ]

p(z) log(p(x))dy +

∫
Y[T ]

∑
x∈X[T ]

p(z) log(p(y|x)) , dy. (34)

where r(x) and r(y|x) denotes the marginal density of the x variables and conditional density of the y variables under
R̃[T ], and analogously for p. It follows from exchanging the order of integration and summation that the first terms on the
right-hand side of (33) and (34) recover the two terms in (31) (assuming we have dropped

∑
x∈X[K]

P[K] log
∏

k∈[K] µk(xk)

from (31)). We may combine the second terms of (33) and (34) to obtain that the remaining term in the objective of (32)
reads ∑

x∈X[T ]

p(x)

∫
Y[T ]

p(y|x) log(r(y|x)
p(y|x)

)dy. (35)

It follows from the strict concavity of log x that (35) is at most 0 and equals 0 if and only if p(y|x) = r(y|x) for every
x and p(·|x)-almost every y. Since r is a probability density function, the equality condition is equivalent to saying that
for every x ∈ X[T ] we have p(·|x) = r(·|x) Lebesgue almost everywhere. Therefore, if P ∗

[T ] is a maximizer for (31)
then P ∗

[T ](x)r(y|x) is a maximizer for (32). On the other hand, if p∗(z) is a maximizer for (32), then
∫
Y[T ]

p∗(z)dy is a
maximizer for (31).

C.3. Proof of Theorem 4.1

We first prove that if the initialization of Algorithm 1 and Algorithm 2 satisfy

β
(0)
k = v

(0)
k ∀k ∈ [K] (36)

then, at the end of each while loop in both algorithms,

γ
(ℓ)
k = S

(ℓ)
k ,

β
(ℓ)
k = v

(ℓ)
k

for all k ∈ [K].

We proceed by induction. We first investigate the first for loop in Algorithm 2 (the “left pass”). By backwards induction on
k = K, . . . , 1, we obtain that at the conclusion of the left pass

δ+k−1(zk−1) =

∫
· · ·
∫ ∑

xk,...,xK

K∏
i=k

Φi−1(zi−1, zi)β
(ℓ−1)
i (xi)dyk . . . dyK ∀k ∈ [K]+ , (37)

where the integration is taken over (yk, . . . ,yK) ∈
∏K

i=k Yi and the sum is taken over (xk, . . . , xK) ∈
∏K

i=k Xi

Therefore, the updates to γ0 and β0 satisfy

γ
(ℓ)
0 (x0) = I0(1, δ+0 )(z0)

=
∑

x1,...,xK

∫
· · ·
∫
Y[K]

K∏
i=1

Φi−1(zi−1, zi)β
(ℓ−1)
i (xi)dy

=
∑

x1,...,xK

exp(−C(x))

K∏
i=1

β
(ℓ−1)
i (xi)

= S
(ℓ)
0 (x0) ,

where the last equality uses the induction hypothesis β(ℓ−1)
k = v

(ℓ−1)
k , and consequently

β
(ℓ)
0 (x0) = µ0(x0)/S

(ℓ)
0 (x0) = v

(ℓ)
0 (x0) .
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We now show by induction on k that γ(ℓ)
k = S

(ℓ)
k and β

(ℓ)
k = v

(ℓ)
k at the conclusion of the “right pass”. We have already

established the base case k = 0. For k ≥ 1, as in the left pass, the updates in the right pass satisfy

δ−k (zk) =

∫
· · ·
∫ ∑

x0,...,xk−1

k∏
i=1

Φi−1(zi−1, zi)β
(ℓ)
i−1(xi)dy0 · · · dyk . (38)

Combining (37) and (38) implies that

β
(ℓ)
k (xk) = Ik(δ+k , δ

−
k )

=

K∑
i=0
i ̸=k

∫
· · ·
∫
Y[K]

K−1∏
i=0

Φi(zi, zi+1)

k−1∏
i=0

β
(ℓ)
i (xi)

K∏
i=k+1

β
(ℓ−1)
i (xi)dy

=

K∑
i=0
i ̸=k

∫
· · ·
∫
Y[K]

exp(−C(x))

k−1∏
i=0

β
(ℓ)
i (xi)

K∏
i=k+1

β
(ℓ−1)
i (xi)

= S
(ℓ)
k (xk) ,

where the final equality holds by induction. As in the k = 0 case, this implies β(ℓ)
k = v

(ℓ)
k . This proves the claim.

The first implication, on the time complexity of Algorithm 2, follows directly from existing analysis of multi-marginal
entropic optimal transport problems (Altschuler & Boix-Adserà, 2023; Lin et al., 2022). Indeed, those works show that
Algorithm 1 yields an ε-approximate solution to a discrete multi-marginal entropic optimal transport problem with arbitrary
cost tensor C in Poly(K,Cmax/ε) iterations. As each iteration of Algorithm 1 corresponds to an iteration of Algorithm 2, a
similar guarantee holds for Algorithm 2. In particular, (Lin et al., 2022, Theorem 4.3 and proof of Theorem 4.5) shows that
KR̄/ε iterations suffice, where R̄ can be taken to be of order Cmax + log(KnCmax/ε).

The second implication, on the form of the optimum, follows from the same considerations as Lemma 3.1. The proof of
Lemma 3.1 establishes a direct link between solutions of (3) and (6). Specifically, if P ∗

[T ] is the optimal solution for 3, then

p∗ defined by p∗(z) := r(y|x)P ∗
[T ](x) is the corresponding solution for (6). Notice that P ∗(x) ∝ r(x)

∏K
k=0 v

∗
k(xk), with

{v∗k} being the fixed point of Algorithm 1. Thus,

p∗(z) ∝ r(z)

K∏
k=0

v∗k(xk) ∝
K∏

k=1

Φk(zk−1, zk)

K∏
k=0

v∗k(xk),

proving (12). Since we have already shown that the iterations of Algorithms 1 and 2 agree, they have the same fixed points,
and v∗k = β∗

k , as desired.

C.4. Proof of Lemma 5.1

We compute:

ℓik−1(xk−1) =

∫
Yk−1

ϕi
k−1(yk−1)δ

+
k−1(zk−1)dyk−1

=
∑

xk∈Xk

∫∫
Yk×Yk−1

ϕi
k−1(yk−1)Φk(zk−1, zk)δ

+
k (zk)βk(xk)dykdyk−1

=
∑

xk∈Xk

∞∑
j=1

∫∫
Yk×Yk−1

ϕi
k−1(yk−1)Φk(zk−1, zk)ℓ

i
k(xk)ϕ

j
k(yk)βk(xk)dykdyk−1

=
∑

xk∈Xk

βk(xk)

∞∑
j=1

ℓjk(xk)Γ
ij
k (xk−1, xk) .

The computation for rik is analogous.
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C.5. Proof of Theorem 6.1

For each iteration of Algorithm 3, we run 2K sub-iterations for updating the left and right messages lk and rk. The
intermediate step (18) for the calculation of βk has complexity O(nM). The major update steps (19) and (20) involve
matrix-vector multiplication with a matrix of size nM × nM , which has complexity O(n2M2). Therefore, the total
complexity of the algorithm is given by O(TKn2M2).

D. Practical implementation with the Haar basis
The Haar Wavelet basis stand out as an natural choice in the context of this work because of its positivity properties: since the
messages need to be positive, using orthonormal bases that consist of positive functions guarantees that the approximation is
positive as well. Recall that Xk is a finite collection with n members and Yk = Rm−1. Set a sequence of positive integers
M1, . . . ,Mm−1, with each number tied to a dimension of Yk. Our goal is to utilize M = M1 × · · · ×Mm−1 orthonormal
polynomials to execute the algorithm. Let i⃗ ∈ [M1]

+ × · · · × [Mm−1]
+ with i⃗n representing the n-th component of i⃗. We

define the following:

ϕi⃗
k := Zk1Bi⃗

k

B i⃗
k :=

m−1∏
n=1

[
−Kn

2
δk + (⃗in − 1)δk,−

Kn

2
δk + i⃗nδk

) (39)

Here, Zk serves as the normalization constant ensuring that ϕi⃗
k has a unit L2-norm; effectively, Zk is the reciprocal of the

volume of the hypercube B i⃗
k. The parameter δk is chosen via:

Kn

2
δk = C ·

√
max

{
Var(η

(2)
k ), . . . ,Var(η

(m)
k )

}
(40)

where C is a hyper-parameter that one can tune and a typical choice is 3. With the set {ϕi⃗
k} determined, we show how to

compute Γ0, ...,ΓK−1 at the start of Algorithm 5. By setting δk to be very small, we can leverage this approximation:

Γk(xk, xk+1, i⃗, j⃗) =

∫∫
ϕi⃗
k(yk)ϕ

j⃗
k+1(yk+1)Φk(zk, zk+1)dykdyk+1 (41)

≈ Vol(B i⃗
k)Vol(B

j⃗
k+1)Φk(xk,y

i⃗
k, xk+1y

j⃗
k+1), (42)

where yi⃗
k is the midpoint of the hypercube B i⃗

k. Remember, Φk(zk, zk+1) indicates the conditional density of the reference
process r(zk+1|zk) for k ≥ 1, and shifts to the unconditional joint density r(z0, z1) at k = 0. Evaluating the relevant
Gaussian densities allows us to compute Γk(xk, xk+1, i⃗, j⃗) efficiently.

When Algorithm 5 reaches convergence, the representation in (12) can be used to efficiently manipulate p (for instance,
to generate samples). In particular, (12) shows that p inherits the Markov property of r, so to sample from p it suffices to
compute the pairwise marginals p(zk, zk+1), which are proportional to

∫
· · ·
∫ ∑

i∈[K]
i ̸=k,k+1

∑
xi∈Xk

K∏
k=1

Φk(zk−1, zk)

K∏
k=0

β∗
k(xk)dy0 · · · dyk−1dyk+2 · · ·yK .

This may be computed efficiently by repeatedly contracting one coordinate at a time, as in the left pass of Algorithm 2.

When Algorithm 3 is implemented using wavelets, p(zk, zk+1) can be approximated by pk(xk, i⃗, xk+1, j⃗), which approxi-
mates p(xk, y

i⃗
k, xk+1, y

j⃗
k+1). With p(xk, i⃗, xk+1, j⃗) in hand, we propose two trajectory inference methods. The first method,

which is stochastic, generates trajectory samples following the distribution p(zk, zk+1), as outlined in Algorithm 4.

The other way to rebuild the trajectories involves utilizing argmax operations on the belief tensor, and it is summarized as
Algorithm 5
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Algorithm 4 Trajectory Inference Through Sampling
Input: p0, ...,pK−1 ∈ Rn×n×M×M and x0 ∈ X0

Marginalize p0 to a probability distribution on X0 × {yi⃗
0}, denote it as pint

Sample y0 proportional to pint(x0, ·)
for k = 0, ...,K − 1 do

Let i⃗k be the index of yk in {yi⃗
k}

Sample (xk+1,yk+1) proportional to pk(xk, i⃗k, ·, ·)
end for
Return {x0, ..., xK} and {y0, ..., yK}

Algorithm 5 Trajectory Inference Through ArgMax
Input: p0, ...,pK−1 ∈ Rn×n×M×M and x0 ∈ X0

Marginalize p0 to a probability distribution on X0 × {yi⃗
0}, denote it as pint

Set y0 as the maximizer of pint(x0, ·)
for k = 0, ...,K − 1 do

Let i⃗k be the index of yk in {yi⃗
k}

Set (xk+1,yk+1) as the maximizer of pk(xk, i⃗k, ·, ·)
end for
Return {x0, ..., xK} and {y0, ..., yK}

E. Log-domain Implementation of Algorithm 5
In the execution of the algorithm, some values could fall below machine precision, triggering numerical problems. Take,
for instance, the wavelet basis: we aim to estimate Γk by computing Φk at a specific point. However, if yk or yk+1

drifts significantly away from its mean, Φk ends up zero. For the sake of numerical stability, we derive the log-domain
implementation of Algorithm 5 in the section. Recall that M is the total number of orthonormal polynomials that we use to
perform the approximate message passing algorithm. Define the log version of quantities

ℓ̂k(xk) := log(ℓk(xk)) and r̂k(xk) := log(rk(xk)) (43)

ĉk(xk) := log(ck(xk)) and Γ̂i,j
k (xk, xk+1) := log (Γk(xk, xk+1, i, j)) (44)

For k = 0, ...,K, the log-domain updates are summarized as follows:

ℓ̂ik(xk) = log

( ∑
xk+1∈Xk+1

M∑
j=1

exp
(
ĉk+1(xk+1) + ℓ̂jk+1(xk+1) + Γ̂i,j

k (xk, xk+1)
))

(45)

r̂it(xt) = log

( ∑
xt−1∈Xt−1

M∑
j=1

exp
(
ĉt−1(xt−1) + r̂jt−1(xt−1) + Γ̂j,i

t−1(xt−1, xt)
))

(46)

ĉk(xk) := log(ck(xk)) = − log

 M∑
j=1

exp
(̂
ljk(xk) + r̂jk(xk)

) .

Note that one can use the logsumexp function in scientific computing packages to implement the log-domain updates
given above. And, for the wavelet decomposition, Γ̂i,j

k (xk, xk+1) can be efficiently approximated by calling a SciPy
scipy.stats.norm.logpdf function.

F. Experiment Details
We first summarize the different data sets, metrics, and experimental findings.

For all experiments, we consider datasets with the number of points being constant at each step and each particle has uniform
weight. For the kernel, we use either Matern kernel with ν = 1.5 or ν = 2.5.
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Figure 7. Visualization of matching results on Tri-stable diffusion and 2D Matern datasets.

F.1. Individual particle tracking

Smooth Gaussian process: (2D version of Figure 2): Each particle follows a 2D Gaussian process with dimension-
independent covariance matrix generated by Matern kernel with ν = 3.5, ℓ = 1, σ = 1. Our algorithm can recover most of
the trajectories correctly by selecting smoother trajectories than the other two algorithms.

Tri-stable diffusion process: Particles are initialized randomly around zero by a normal distribution and follow the
evolution of a deterministic dynamic system. This dynamic is considered in (Lavenant et al., 2024), each particle will be
absorbed into one of the three attraction points with increasing velocity as the distance to the attraction point decreases.
We find when particles are close to each other and have similar velocities, our algorithm has the chance to lose track
of the particles during sampling. The W2 matching performs almost perfectly in this scenario by choosing the closest particle.

N-body physical system: This dataset simulates the orbits of eight planets that circle a star and the task is to
keep track of each planet’s orbit in the system. The 2D version is considered in (Chewi et al., 2021), but they only consider
smooth interpolations between objects and provide no guarantee of the correctness of matching. The visualization result is
presented in Figure 4. The W2 matching and standard SB make many mistakes when trajectories are close to each other
while our algorithm gives near-perfect tracking.

Our quantitative evaluation appears in Table 1. We use several metrics to evaluate our results: JumpP is the observed
likelihood that a particle transitions to a different path at each time increment. 5p acc quantifies the proportion of a sequence
of five consecutive steps that remain on the same trajectory. The Mean ℓ2 metric is the average of all ℓ2 distances between
each sampled trajectory and the ground truth trajectory that maintains the longest continuous alignment with the sample.

F.2. Point cloud inference

Petal: The Petal dataset was introduced in (Huguet et al., 2022b) which mimics natural dynamics of cellular differentiation
and bifurcation.

Converging Gaussian: This dataset was constructed by (Clancy & Suarez, 2022). It models cellular dynamics
using Gaussian point clouds that split and converge over time. Points are sampled evenly around the center of the circles.

Embryoid Body: This sc-RNAseq dataset records statistical data of embryoid body (EB) differentiation over a
period of 27 days with 5 snapshots taken between days of 0-3, 6-9, 12-15, 18-21, and 24-27. The dimension of the original
data was reduced to 2 using a nonlinear dimensionality reduction technique called PHATE (Moon et al., 2019) in (Tong
et al., 2020). We inherit this 2D projection dataset from them.

Dyngen Tree (Dyg Tree): This is another sc-RNAseq dataset crafted by (Huguet et al., 2022b) using Dyngen (Cannoodt
et al., 2021). The data is embedded into dimension 5 also using PHATE. This dataset contains one bifurcation and is
considered to be more challenging than the Petal dataset.

Dyngen Cycle (Dyg Cycle): Another 10-D sc-RNAseq dataset inherited from (Banerjee et al.).
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We subsample each dataset to a moderate size and make nt constant over all timesteps.

Our quantitative evaluation uses the following metrics: W1 is the Wasserstein-ℓ1 distance, MG is the Maximum Mean
Discrepancy with Gaussian kernel K(x, y) :=

∑n
i,j=1(xi − yj)

2/2, and MI is the Maximum Mean Discrepancy with
identity kernel K(x, y) = ⟨x, y⟩.

Table 3 presents additional results on other LOT tasks.

Table 3. Performance comparison on LOT tasks at step j between our algorithm and the state-of-art algorithms.

Dataset Method W1(↓) MG(↓) MI(↓)
Petal SSB (ours) 2.98e-2 3.26e-5 5.53e-3
j = 4 MIOFlow 1.76e-1 9.97e-3 1.14e-1

DMSB 2.63e-1 9.18e-3 1.15e-2
F&S 2.44e-2 4.41e-5 7.33e-3

EB SSB (ours) 6.00e-2 3.88e-4 2.04e-2
j = 3 MIOFlow 1.29e-1 3.31e-3 5.26e-2

DMSB 2.46e-1 4.69e-2 2.37e-1
F&S 7.42e-2 1.46e-3 3.88e-2

Dyg Tree SSB (ours) 1.09e-1 4.67e-3 6.73e-2
j = 2 MIOFlow 2.23e-1 1.57e-2 1.34e-1

DMSB * * *
F&S 9.23e-2 1.43e-3 3.93e-2

F.3. Implementation details

We ran our experiments on an x86-64 setup. Smooth SB (ours) and F&S do not require GPU support; for DMSB and
MIOFlow experiments, we utilized an NVIDIA A100-SXM4-80GB. In tracking individual particles, standard SB with
Brownian motion prior and W2 matching is implemented by Python’s OT library (Flamary et al., 2021). Check out Table 4
for detailed dataset info.

Table 4. The table provides detailed statistics of all the datasets we experimented on. Since the number of particles is constant over time,
we use n to denote the number of observations at each time step and K stands for the total number of time steps excluding the initial
observation. The Figure column stands for the label of figures where this dataset is presented in the main body text.

Name K n Dimension Figure Author

Smooth Gaussian Process 20 20 1 2 us

Smooth Gaussian Process (2D) 20 25 2 7 us

Tri-stable Diffusion 20 20 2 7 (Lavenant et al., 2024)

N Body 50 8 3 4 us

Petal 5 40 2 1,5 (Huguet et al., 2022b)

Converging Gaussian 3 48 2 5 (Clancy & Suarez, 2022)

Embryoid Body 4 100 2 5 (Tong et al., 2020)

Dyngen Tree 5 40 5 5 (Huguet et al., 2022b)

Dyngen Cycle 15 25 10 6 (Banerjee et al.)

Throughout our experiments, we employ either a Matern prior with parameters ν = 1.5, ℓ = 3 or ν = 2.5, ℓ = 2, as
specified in (5), utilizing the wavelet basis. We conduct 200 iterations of message-passing algorithms (T = 200). The initial
covariance, Σ̃0,0, is derived from the stationary distribution’s covariance of the lifted Gaussian process corresponding to
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the kernel, ensuring Σ̃k,k remains steady over time (refer to Equation (2.39) in (Saatçi, 2012) for stationary distribution
calculation). We assume all observations occur equally over the time period t = 2, hence the observation duration is
dt = 2/K, which is utilized to compute covariance between timesteps. For datasets with dimensions greater than one,
the kernel is assumed to be identical and independent for each dimension, simplifying the tensor Γ by factoring it across
dimensions, thereby reducing the computational load in the matrix-vector multiplication during the message-passing phase.
We assume an equal allocation of coefficients per dimension, thus Mi = (M)

1
d for each i = 1, ..., d. For the kernel with

ν = 2.5, we express Mi = (m1,m2) as a tuple where Mi = m1m2 represents the count of approximation coefficients in the
velocity and acceleration dimension. Each task has a fixed Mi choice except for the Dyngen Cycle dataset, with the kernel’s
variance calculated as σ = cσdata, where σdata is the dataset’s standard deviation and c is an adjustable hyper-parameter.
Detailed parameter settings for each task can be found in 5 and 6.

Table 5. Detailed parameter setting of our algorithm for all the experiments for Figures 2, 7, 5 and 4

Dataset Name ν M Mi Dimension c

Smooth Gaussian Process 2.5 200 (40,5) 1 1

Smooth Gaussian Process (2D) 2.5 1024 (8,4) 2 1

Tri-stable Diffusion 1.5 1024 32 2 1

N Body 2.5 1728 (4,3) 3 4

Petal 1.5 400 20 2 0.5

Converging Gaussian 1.5 900 30 2 0.5

Embryoid Body 1.5 144 12 2 1

Dyngen Tree 1.5 1024 4 5 0.5

Dyngen Cycle 1.5 1024 (4) ×5 + (1)× 5 10 2.5

Table 6. Detailed parameter setting of our algorithm for the LOT tasks in Table 3 and 2 where we only used Matern kernel with ν = 1.5
and all the parameters are the same as the corresponding experiment in Table 5 except for c.

Petal j = 2 Petal j = 4 EB j = 2 EB j = 3 Dyg Tree j = 1 Dyg Tree j = 2 Dyg Cycle j = 7

c 0.5 0.45 1 1 0.3 0.25 2.5

Implementation of Sampling: In the point cloud matching, where creating trajectories or inferring positions of the
left-out timestep requires generating new points, we use conditional Gaussian sampling. Initially, yk for all data
points are sampled from calculated probability tensors pk. Under wavelet basis, the sample we get pins down the
range of the yk , we then calculate the conditional Gaussian density for yk given xk and simply use sampling and
rejecting to get a valid velocity sample. Given that the lifted Gaussian process is Markovian, we condition on two
consecutive observations to generate extra points for constructing trajectories or estimating positions at unobserved timesteps.

F.4. Details of other algorithms

Standard Schrödinger Bridges: The single hyper-parameter in regular SB is the scaling factor s for the correlation
between successive time steps, defined as cov(i, j) = smin(i, j). Table 7 shows the configuration.

Table 7. Detailed parameter setting of standard Schrödinger Bridges

Smooth Gaussian process (1D & 2D) N-Body Tri-stable Diffusion

s 0.5 0.3 0.03
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F&S: Natural cubic splines were our interpolation method of choice, as detailed in Chewi et al., 2021, Appendix
D, and we wrote our own code for implementation. The visual results of the same experiments in Figure 5 are shown in
Figure 8 & 9. In the case of the Dyngen dataset, F&S’s matching is significantly poorer than what our algorithm achieves.
This underscores a crucial flaw of the standard W2 matching—it lacks the capacity to split mass effectively when the data
distribution is uniform. The primary culprit is Dyngen’s asymmetric bifurcation structure.

Figure 8. Visualization of trajectory inference on various dataset by F&S, for the 5D Dyngen Tree data, we visualize the 2D projection of
the first three dimensions in the second row.

Figure 9. Visualization of trajectory inference on various dataset by FSI, for the 10D Dyngen Cycle data, we visualize the 2D projection
of the first dimension against the second to fifth dimensions.

MIO Flow 2: We build upon the baseline settings from (Huguet et al., 2022b), with tuning for optimal performance. Here’s
the prime parameter configuration we achieved:,

1. Petal (complete): λe = 1e− 2, λd = 25, other variables adhere to the default Petal (hold one out = False) setup.

2. Petal (leave one out): λe = 1e− 3,n local epochs = 40,n epochs = 0, remaining parameters align with the default
Petal (hold one out = True) configuration.

3. Embryoid Body (complete & leave one out): gae embeded dim = 2, other settings match the default Embryoid
Body configuration.

2https://github.com/KrishnaswamyLab/MIOFlow

24

https://github.com/KrishnaswamyLab/MIOFlow


Smooth Schrödinger Bridges

4. Converging Gaussian (complete): λe = 1e− 3, λd = 15,n local epochs = 20, all others follow the default Petal
(hold one out = False) guidelines.

5. Dyg Tree & Cycle (complete): parameters match the default Dyngen (hold one out = False) specifications.

6. Dyg Tree & Cycle (leave one out): n local epochs = 0,n epochs = 50, rest conforms to the default Dyngen
(hold one out = True) settings.

,Visual comparisons for these experiments, as seen in Figure 5, are presented in Figure 10 & 11. DMSB3: By primarily

Figure 10. Visualization of trajectory inference on various dataset by MIO, for the 5D Dyngen Tree data, we visualize the 2D projection
of the first three dimensions in the second row.

Figure 11. Visualization of trajectory inference on various dataset by MIO, for the 10D Dyngen Cycle data, we visualize the 2D projection
of the first dimension against the second to fifth dimensions.

using the default parameters from (Chen et al., 2023), alongside some refinements, here’s the top-notch parameter set:,

1. Petal (leave one out): n epoch = 2,num stage = 13, num marg = 6, other values are consistent with the default
Petal setup.

3https://github.com/TianrongChen/DMSB
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2. Embryoid Body (leave one out): n epoch = 2, num stage = 13, other settings align with the default Petal
configuration.

, tuning this algorithm as each network requires approximately 5 hours for training. We anticipate enhanced DMSB
performance with more extensive data and training duration. Moreover, the trajectory generation process of DMSB does not
capture the geometry of the dataset well (see Figure 12 as an illustration), hence we do not provide additional visualization
for this algorithm here.

Figure 12. Trajectories drawn by DMSB can not reflect the underlying geometric structure of the Petal dataset well.

F.5. Additional Results and Analysis

Extended quantitative results on one-by-one particle tracking: We provide more metrics in Table 8 for evaluating the
performance of one-by-one particle tracking, which is an extend version of Table 1.

• JumpP: the observed likelihood that a particle transitions to a different path at every increment in time.

• 3p acc: the proportion of a sequence of three consecutive steps that remain on the same trajectory.

• 5p acc: the proportion of a sequence of five consecutive steps that remain on the same trajectory.

• Traj acc: the fraction of trajectories sampled that are correctly matched at each step.

For a given sampled trajectory, we match it with a ground-truth trajectory that maintains the longest continuous alignment
with the sample. We say this ground truth trajectory is the matched trajectory of the sample.

• Max ℓ2: the maximum ℓ2 distance found between a sampled trajectory and its matched ground truth across every
sample.

• Mean ℓ2: the average ℓ2 distance found between a sampled trajectory and its matched ground truth across every sample.

• TrajKL: the KL-divergence between the matched trajectory histogram and the uniform distribution over the ground-
truth trajectories.

Visualization of LOT tasks: We provide the visualization of the sampled point in the Leave-One-Out tasks in Figures 13
and 15 corresponding to results in Table 2. For all the cases, our algorithm is able to draw similar patterns to the ground
truth.

Impact of scale hyper-parameter c: Recall that the variance of the Matérn kernel in our experiments is chosen to be
σ = cσdata for a positive hyperparameter c. We need to choose an appropriate c such that the algorithm is able to search for
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Dataset Model JumpP 3p acc 5p acc Traj acc Max ℓ2 Mean ℓ2 TrajKL

1D Matérn SSB (ours) 4.77e-2 0.930 0.893 0.530 1.912e-01 2.552e-03 0.000360
Process BME 6.08e-1 0.191 0.079 0.001 1.463e+00 2.708e-01 0.036132

W2 2.18e-1 0.621 0.412 0.050 4.641e-01 1.526e-01 0.138629

Tri-stable SSB (ours) 1.12e-1 0.852 0.798 0.489 1.020e-01 1.419e-02 0.011770
Diffusion BME 5.20e-1 0.300 0.170 0.018 6.787e-01 6.595e-02 0.047383

W2 2.25e-2 0.971 0.956 0.800 1.377e-08 2.112e-09 0.000000

N body SSB (ours) 5.00e-4 0.999 0.999 0.983 2.083e-01 5.475e-04 0.000100
BME 1.14e-1 0.796 0.641 0.000 9.719e-01 5.426e-01 0.026030
W2 1.08e-1 0.804 0.649 0.000 8.679e-01 5.495e-01 0.173287

2D Matérn SSB (ours) 5.60e-3 0.993 0.991 0.904 4.181e-03 3.571e-04 0.000000
Process BME 1.38e-1 0.764 0.612 0.179 1.418e+00 2.819e-01 0.038109

W2 6.60e-2 0.867 0.760 0.360 1.015e+00 2.321557e-01 0.110904

Table 8. Performance metrics for different models across various datasets for particle matching.

the next matching point that constructs a smooth interpolation. If c is too small, then the velocity space of the algorithm
searching will not be enough to incorporate the correct particles, this leads to the consequence that some of the particles
will not be matched at all. If c is too large, then it will result in more randomness in the algorithm, which will hurt the
performance of OBO tracking and blur the underlying geometric structure in pattern matching. See Figure 16 on the Petal
dataset for illustrations. In practical implementation, we increase c if we find all the sampled velocities are concentrated at
the center of the velocity grids and decrease c if they are concentrated at the border instead.

Time and Space Complexity Analysis: our algorithm spends most of the time running the message passing algorithm. The
running time complexity of one iteration of message passing is given by O(KM2n2). Since we use dimension independent
kernel, the tensor can be factorized across dimensions, we take Mi = M

1
d , and a single iteration in this case has complexity

O(dTM1+ 1
dn2), this allows us to take more coefficient when dimension increases. We give the run time record for one

iteration of message passing when T = 10 and N = 20 in Table 9

Table 9. Running time record (in seconds) of one iteration of message passing, Mi is taken to be round(M1/d). One observes that the
running time decreases for fixed M when d increases due to the dimension independence.

d=1 d=2 d=3

M=1024 80.91 6.32 5.21
M=512 20.87 2.59 1.29
M=256 5.36 0.82 0.45
M=128 1.42 0.26 0.26
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Smooth Schrödinger Bridges

Figure 13. Visualization of sampled timestep in the LOT tasks for Dyngen datasets. The blue ’x’ points are the left-out ground truth, the
star points are inferred timestep by our algorithm.

Figure 14. Visualization of sampled timestep in the LOT tasks for Dyngen Tree dataset. The blue ‘x’ points are the left-out ground truth,
the star points are inferred timestep by our algorithm.
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Smooth Schrödinger Bridges

Figure 15. Visualization of sampled timestep in the LOT tasks for Dyngen Cycle datasets. The blue ‘x’ points are the left-out ground truth,
the star points are inferred timestep by our algorithm.

Figure 16. Visualization of matching on the Petal dataset. We observe when c = 0.1 some observations have no matching at all, while
when c = 1, 2, the matching contains more randomness and mistakes.
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