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ABSTRACT

Large Language Models (LLMs) have demonstrated exceptional capabilities in
understanding and generating natural language. However, their high deployment
costs often pose a barrier to practical applications, especially. Cascading local
and server models offers a promising solution to this challenge. While existing
studies on LLM cascades have primarily focused on the performance-cost trade-
off, real-world scenarios often involve more complex requirements. This paper
introduces a novel LLM Cascade strategy with Multi-Objective Optimization, en-
abling LLM cascades to consider additional objectives (e.g., privacy) and better
align with the specific demands of real-world applications while maintaining their
original cascading abilities. Extensive experiments on three benchmarks validate
the effectiveness and superiority of our approach.

1 INTRODUCTION

As Large Language Models (LLMs) continue to evolve rapidly (Touvron et al., 2023; Achiam et al.,
2023; Reid et al., 2024), they are increasingly being integrated into real-world applications, enhanc-
ing the intelligence of a wide range of systems. At the same time, mobile devices have become
indispensable in everyday life. The emergence of on-device intelligence—such as Apple Intelli-
gence (Gunter et al., 2024) and Gemini Live (Reid et al., 2024)—which embeds LLMs directly into
devices for more personalized and intelligent user interactions, is gaining traction but remains rela-
tively underexplored (Xu et al., 2024). A major challenge in this area is the hardware limitations of
mobile devices, including constraints on compute power, battery life, and storage capacity. As a re-
sult, only smaller LLMs, such as Gemma-2B (Team et al., 2024), can be deployed on these devices,
leading to trade-offs in performance compared to larger, more powerful models like Gemini. This
raises a critical question for the research community: how can we optimize on-device intelligence
given these size constraints? The LLM cascade method presents a solution for this challenge.

Figure 1: On the right is the existing LLM cascade, where the deferral module makes decisions
solely based on the quality of the local answer, potentially leading to privacy leakage. On the left is
our proposed LLM cascade with multi-objective considerations, where deferral decisions are more
aligned with the needs of real-world applications.

In an LLM cascade system, a query is usually first processed by a smaller, weaker local LLM and is
only escalated to a larger, stronger server LLM if the local model’s output is deemed insufficient by
a deferral module, as shown in Figure 1. This paradigm has garnered significant attention recently
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(Chen et al., 2023a; Gupta et al., 2024; Yue et al., 2023; Wang et al., 2024). As larger LLMs are often
substantially more expensive than their smaller counterparts (e.g., Gemini-1.5 Pro (Reid et al., 2024)
costs up to 35 times more than Gemini-Flash1), most existing LLM cascade works focused on the
exploration of optimal trade-offs between cost and performance. However, real-world applications
can be more complicated and requires the cascade system to make deferral decisions beyond just
performance-cost consideration. For instance, privacy concerns may arise if personal data is routed
to the server LLM where decisions are made based solely on the local answer’s quality, as illustrated
in Figure 1. Unfortunately, few studies have explored the LLM cascade with multi-objective con-
sideration. To address this, we propose to endorse multi-objective optimal considerations into the
decision making by the LLM cascade system where the deferral module may hesitated to route the
user query not only considering the local answer’s quality but also with other considerations (e.g.,
privacy) as depicted in Figure 1.

One key focus of LLM cascade research is the design of deferral criteria, which determine whether
a query needs to be routed to the server model. Ideally, the deferral criteria should identify queries
that the local LLM is unlikely to handle effectively, sending them to the server to significantly
improve performance while keeping costs manageable. Conversely, sending queries that the local
LLM can address with high quality to the server can result in unnecessary costs. Intuitively, model
confidence could serve as a good indicator, with queries routed to the server when the local model
is not confident with its response. For instance, Zhu et al. (2024) explored a self-critique strategy
to leverage the local model’s intelligence to produce a confidence level in terms of the local answer
and make decisions based on the confidence level. However, Jitkrittum et al. (2024) noticed the
weakness of confidence-based deferral rule in cases where distribution shifts occur between the
training and test datasets. Logit-based methods step further by using the generated token logits of
the local answer as features to make deferral decisions. For example, Gupta et al. (2024) found
the length bias and token uncertainty problems in cascading by relying on the mean logits and
proposed to leverage quantile logits as features to mitigate this problem. Additionally, Wang et al.
(2024) introduced cascade-aware training, which incorporates both the local and server LLM’s logits
into the loss function during local model training, helping the local LLM become more aware of
which queries should be deferred to the server. Unfortunately, none of these works explored deferral
decision making with respects to other objectives such as privacy. To address this gap, we propose
incorporating multi-objective optimization into the LLM cascade system. The key is to enable the
local LLM to better understand multi-objective deferral logic, rather than focusing solely on the
cost-performance trade-off. Intuitively, we can utilize the in-context learning abilities of the local
model by designing appropriate instructional prompts to help it understand the cascade logic with
multi-objective considerations (Sordoni et al., 2024; Hartmann et al., 2024). However, this approach
is limited by the size and corresponding in-context learning capacity of the local LLM. Another
option is training the local LLM to incorporate multi-objective considerations. Instruction tuning has
proven highly effective at improving LLM performance across specific tasks, as well as enhancing
its ability to follow instructions (Zhao et al., 2024; Chen et al., 2024; Ma et al., 2024), aligning well
with our goal of embedding cascade logic into the local model. Moreover, incorporating the more
powerful server LLM’s capabilities into the customized loss function during local LLM training
penalizes the local model for producing high logits associated with poor-quality outputs(Wang et al.,
2024). In tandem, we explore both training-based methods (i.e., instruction tuning, loss tuning) and
training-free approaches (i.e., prompt engineering) to enable the local LLM to account for multi-
objective considerations when deciding whether to invoke the server model. The contributions of
this study are three-fold:

‚ We extend the current focus of LLM cascading beyond the traditional cost-performance trade-off
to include multi-objective considerations, better aligning with the needs of real-world applications.

‚ We explore both training and training-free methods to enable local LLMs to comprehend complex
cascade logic with multi-objective considerations.

‚ Extensive experiments on three benchmarks have validated the necessity and superiority of in-
corporating multi-objective considerations into LLM cascading, rather than relying solely on cost-
performance trade-offs2.

1https://ai.google.dev/pricing
2To encourage further explorations by the community, we will open-source our implementations (a copy is

attached with this submissions).
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2 METHODOLOGY

Figure 2: Overview of the proposed methods: ΦpLq and ΦpSq represent the local model and server
model, respectively. The red box indicates trainable, while the blue box represents frozen. ΦpLq is
tasked with generating responses yL and yobji for both the query x and the multi-objective consider-
ations obji. For loss tuning, the generation tasks are handled by different heads hi, and a combined
cascade loss is utilized for tuning.

2.1 PRELIMINARY FORMULATION

Before proceeding, we will first present the preliminary concepts and formulations. Given a local
LLM ΦpLq (smaller and weaker) and a server LLM ΦpSq (larger and stronger), when a user sends
a query x to ΦpLq, the local model generates an initial answer yL. A deferral module Dp¨q then
determines whether it is necessary to route the query x to ΦpSq. If Dp¨q accepts yL, it becomes the
final answer y returned to the user. If rejected, the query x is routed to ΦpSq, and the server-generated
answer yS serves as the final response y. Our objective in this study is to enable ΦpLq to be aware of
multi-objective considerations robj1, ..., objis while generating yL. The responses ryobj1 , ..., yobjis
corresponding to these considerations, along with yL, can be utilized in Dpryobj1 , ..., yobji , yLsq to
inform decision-making. In this study, we primarily focus on two objectives: privacy and quality. In
the following sections, we will illustrate how to incorporate multi-objective considerations into both
training methods (instruction tuning and loss tuning) and training-free methods (prompting).

2.2 MULTI-OBJECTIVE PROMPTING

Ideally, the ΦpLq can be taught multi-objective optimal cascade logic based on its own natural
language understanding ability. Efforts have been made to enable the ΦpLq being aware of the
confidence of generated responses via self-critique(Zhu et al., 2024), step-by-step prompting(Zhang
& Gao, 2023) etc. We step further on the previous works and include the privacy concern (Hartmann
et al., 2024) into prompt design. Specifically, we formulate an instructional prompt3 which integrates
query x and objective considerations (i.e., privacy consideration objp) to the ΦpLq to obtain response
ryobjp , yLs, and these response will further be sent to the Dp¨q where deferral decisions will be made.
Further, we follow Deng et al. (2024)’s work and perform few-shot prompting to better activate the
ΦpLq’s in-context learning ability. However, with limited size, the Φ is inadequate4 to understand the

3The prompts used can be seen in the appendix A
4Please refer to the appendix B for better understanding over the local llm’s weakness.
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multi-objective optimal cascade logic relying its own ability and the complicated logic may further
hurt its ability to answer user’s query and thus training is needed.

2.3 MULTI-OBJECTIVE INSTRUCTION TUNING

Previous studies have demonstrated the effectiveness of instruction tuning in enhancing downstream
task performance and improving comprehension of given instructions (Zhu et al., 2024; Zhao et al.,
2024; Ma et al., 2024; Li et al., 2023). This ability to understand instructions aligns well with
our objective of grasping the deferral logic. Furthermore, the improvements in task performance
help mitigate any negative impacts on generating yL that may arise from producing yobji during
prompting. Similar to the prompting method, we utilize an instructional prompt that combines a
step-by-step instruction with the user query x as input. The labeled text ŷ corresponding to x, along
with the labeled responses ŷobji for the multi-objective considerations, serve as outputs for fine-
tuning the model ΦpLq. The responses generated by the tuned model will then be utilized by the
deferral module Dp¨q to determine whether routing to the server model ΦpSq is necessary.

2.4 MULTI-OBJECTIVE LOSS TUNING

Stepping further over the methods that rely on the local model’s intricate understanding ability,
recent works have pointed out the superiority of distilling the server llm’s ability on downstream
tasks into the loss function for tuning the local model(Wang et al., 2024). Intuitively, our assumption
is that the server llm is larger and more powerful(Hartmann et al., 2024) in terms of down-stream
tasks, and thus the discrepancy between the generations of ΦpLq and ΦpSq can somehow be used
for ΦpLq to indicate the confidence level. The larger the discrepancy is, the lower confidence level
should the ΦpLq have. However, to enable ΦpLq being aware of multi-objective considerations,
simply including the distillation loss from ΦpSq is inadequate. To this end, we decompose the
overall task into several sub-tasks and use different heads to handle the different sub-tasks. Namely,
given the multi-objective considerations robj1, ..., objis and the query x, we leverage multiple llm
heads rh1, ..., hi, hLs to handle different considerations and the query. Each head will produce a
loss and a distillation loss from ΦpSq will be optionally added. These losses will then be sent to a
weighted-sum function to produce a multi-objective cascade loss for tuning ΦpLq:

l “

n
ÿ

i

wi ¨ lobji ` wL ¨ lL ` αptq ¨ wS ¨ lS

n
ÿ

i

wn
i ` wL ` wS “ 1, αptq “ HplogityL , tq

(1)

where wi denotes the weight for the loss associated with generating response yobji for the objective
obji, wL is the weight for the loss of generating response yL for x from ΦpLq and wS is the weight
for the loss of generating response yS for x from ΦpSq. n is the number of objectives that need to
be considered. α is the factor for controlling if the knowledge from the server LLM ΦpSq is used
depending on a logit threshold t. Hp¨, tq is a modified Heaviside Step function which returns 0 if
¨ ą t else returns 1. In the context of identifying privacy concern, the loss function we utilized for
tuning ΦpLq is:

l “ ´ wp ¨ pŷp ¨ logppLpyp|xqq ` p1 ´ ŷpq ¨ logp1 ´ pLpyp|xqqq`

wL ¨ logppLpyL|xqq ` αptq ¨ wS ¨ logppSpyS |xqq
(2)

where yp, ŷp are the predicted, golden binary predictions for privacy, respectively. Other terms
remain the same as in formula 1. By incorporating multi-objective considerations into the loss func-
tion for tuning ΦpLq, the model will generate answers with better awareness of these considerations.
The corresponding logits of the generated answers by tuned ΦpLq can then be utilized by the deferral
module to inform decision-making.

2.5 DEFERRAL MODULE

All the three methods are studying how to enable the local LLM to be aware of multi-objective
considerations while generating the response to the query. And such considerations are presented
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as the logit distributions of the generated response, for example, higher logit may indicated higher
performance and less privacy concern. Deferral module plays a pivotal role in the LLM cascade
since it decides which query to send out to the server llm based on the logits. Following previous
successes on using different logit (e.g., mean, quantile) of the generated response as the reference
to decide if there is a need to route the query to the server LLM(Wang et al., 2024; Jitkrittum et al.,
2024; Gupta et al., 2024), we also utilize the logit of generated response as indicators to make the
routing decisions. Specifically, given a threshold t P p0, 1q, if the logit of the generated response
exceed t then it means the local LLM is confident with its response and no need to route, otherwise
route the query x to the server LLM ΦpSq.

3 EXPERIMENTAL SETTINGS

3.1 DATASETS

To validate the effectiveness of including multi-objective considerations into LLM cascade, we opt
for three benchmarks to test our methods as below, more statistics can be seen in appendix C.2.

GSM8K(Cobbe et al., 2021) is a graduate student mathematical dataset consisting of mathematical
questions and corresponding solutions, of which some questions contain personal information for
privacy study(Hartmann et al., 2024).

MedQSum(Zekaoui et al., 2023) is a medical related dataset with a focus on summarizing the cus-
tomer health question. The dataset contains customer health questions and corresponding summaries
which contains personal healthcare information.

WMT22(Kocmi et al., 2022) is a sequence-to-sequence translation dataset consisting of source lan-
guage sentences and corresponding target language sentences.

3.2 TASKS & METRICS

Dataset Task Type Privacy? Measurement
GSM8K Question Answering ! Accuracy, Privacy Leakage

MedQSum Summarization ! ROUGE, Privacy Leakage
WMT22 Translation % ROUGE

Table 1: Details of tasks and measurements.

We evaluate our proposed LLM cascade with multi-objective optimal considerations on three com-
monly used tasks: Question Answering, Summarization, and Translation, as indicated in Table 1.
For datasets involving privacy concerns, we also incorporate the metric of privacy leakage (Hart-
mann et al., 2024), which calculates the average number of privacy tokens leaked when sending
queries to the server LLM (Check more details in appendix C.2). This approach demonstrates the
necessity and effectiveness of considering multi-objective factors in the LLM cascade.

3.3 BASE MODELS & IMPLEMENTATION DETAILS

For implementation details, we leverage the Transformers(Wolf et al., 2020) as the base code and
conduct extensive experiments with the Gemma models(Team et al., 2024): Gemma-2B as the local
LLM, Gemma-7B as the server LLM. Notably, the server LLM is fine-tuned on all datasets to
reach reasonably great performance, of which the server LLM’s ability on GSM8K, MedQSum and
WMT22 are 52.85%, 61.22% and 36.51%, respectively. We use the AdamW optimizer(Loshchilov
& Hutter, 2018; Paszke et al., 2017) with a learning rate of 5e-4 and also a linear warm-up scheduler
initialized with 10% of the total training steps as warm-up steps and a weight decay of 1e-4 to avoid
over-fitting for all the experiments. The batch size per device is set to 8. All the experiments are
conducted on two computation nodes configured with eight 80G H100 GPUs.

5
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4 EXPERIMENTAL RESULTS

4.1 CASCADE STUDY

Dataset Metric % Prompt Engineering Instruction Tuning Loss Tuning0-shot few-shot

GSM8K

CR 100 100 100 81.2
SCR 28.13 28.13 28.13 31.75

Acc
ΦpLq 14.94 11.83 26.08 26.91

ΦpLq ` ΦpSq 52.85 52.85 52.85 55.92
vs ΦpSq - - - Ò3.07

MedQSum

CR 99.3 96.2 94.8 97.3
SCR 25.98 26.09 26.89 26.92

R-S
ΦpLq 21.69 28.55 34.61 36.77

ΦpLq ` ΦpSq 61.81 61.97 62.18 62.95
vs ΦpSq Ò0.59 Ò0.75 Ò0.96 Ò1.73

WMT22

CR 100 90.9 94.7 80.6

R-S
ΦpLq 6.22 8.36 11.49 14.58

ΦpLq ` ΦpSq 36.51 37.39 39.04 39.69
vs ΦpSq - Ò0.88 Ò2.53 Ò3.18

Table 2: Table 2 presents the best cascade performance of ΦpLq across three benchmarks. CR
denotes the call rate, indicating the proportion of queries sent to the server. SCR represents the
safe call rate, reflecting the number of queries that are safe (i.e., those sent to the server that do
not contain privacy information) among the total sent queries. Acc refers to accuracy, while R-S
indicates the ROUGE-Sum score. The symbol Ò signifies an improvement compared to ΦpSq.

Cascade Performance As shown in Table 2, the cascade approach significantly enhances the per-
formance of the local model ΦpLq, even surpassing the server model ΦpSq. For instance, by routing
81.2% of queries to the server, the loss-tuned ΦpLq achieves a 55.92% accuracy on the GSM8K
dataset, reflecting a 3.07% improvement over ΦpSq. On the MedQSum dataset, improvements in
rouge-sum scores of 0.59%, 0.75%, 0.96%, and 1.73% are observed for 0-shot prompting, few-shot
prompting, instruction tuning, and loss tuning, respectively, with routing rates of 99.3%, 96.2%,
94.8%, and 97.3%. A similar pattern is noted on the WMT22 dataset, further validating the ad-
vantages of LLM cascade for the local model ΦpLq. However, the cost of cascading remains a
critical concern in real-world applications. The goal of the cascade is to enhance the local model’s
performance while maintaining a reasonable server call rate. We observe that training-based meth-
ods, such as instruction tuning and loss tuning, yield larger performance gains at lower call rates,
indicating the necessity of training the local model to optimize cost-performance trade-offs. In con-
trast, the performance of training-free methods (e.g., prompt engineering) heavily depends on the
server model ΦpSq, rather than the cascade itself. For example, on the GSM8K dataset, the best
performance of training-free methods coincides with sending all queries to the server, a pattern is
also seen on the WMT22 dataset. This suggests that the local model struggles to identify which
queries should be routed to the server. Furthermore, training methods demonstrate a more favor-
able ”safe call” rate compared to training-free methods, highlighting the local model’s inability to
incorporate multi-objective considerations during cascading. This underscores the need to include
multi-objective optimization strategies in LLM cascading.

Performance vs Cost To further understand how the call rate impacts on the local LLM’s per-
formance, we set different thresholds t ranging from 0 to 1 with a step of 0.05 to see the per-
formance trends on three datasets. As can be observed in Figure 3, both 0-shot prompting and
few-shot prompting exhibit a roughly linear performance improvement as the call rate increases on
the GSM8K and MedQSum datasets, suggesting that the prompting methods tend to route queries
randomly. However, on the WMT22 dataset, the performance curve for the prompting methods
suggests that the local LLM struggles to grasp cascade logic when considering other objectives.
In contrast, training methods, especially loss tuning, display a performance increase curve as the
number of calls rises, with specific inflection points indicating the optimal trade-off between perfor-
mance and cost. For instance, when constrained to a 50% call rate, loss tuning demonstrates the best
performance, even matching the capabilities of the server LLM, which is quite promising. These
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(a) GSM8K (b) MedQSum (c) WMT22

Figure 3: Curves depicting cascade performance versus call rate for different methods across all
three datasets: (a) GSM8K, (b) MedQSum, and (c) WMT22.

observations reinforce the necessity for training the local model to effectively understand cascade
logic, particularly when incorporating multi-objective considerations.

4.2 PRIVACY STUDY

(a) GSM8K (b) MedQSum

Figure 4: The curves illustrating the relationship between the number of privacy tokens leaked and
performance are shown for (a) GSM8K and (b) MedQSum.

Dataset Metric Prompt Engineering Instruction Tuning Loss Tuning0-shot few-shot

GSM8K precision 0 64.17 82.95 91.79
recall 0 44.20 72.89 87.24

MedQSum precision 48.06 68.85 85.62 90.10
recall 8.44 42.99 68.84 82.99

Table 3: Privacy identification by different models.

One of the key contributions of our study is the incorporation of multi-objective optimal consider-
ations (e.g., privacy) into the LLM cascade, distinguishing our work from previous approaches. In
this section, we demonstrate how these multi-objective considerations help mitigate privacy con-
cerns within the LLM cascade while preserving its ability to enhance performance.

As can be seen in Figure 4, by incorporating privacy considerations into the cascade, the local LLM
tends to route a greater proportion of safe queries to the server, as evidenced by the smaller area un-
der the curves for few-shot prompting compared to the area for zero-shot prompting, even when only

7
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a few examples are provided. However, the number of privacy tokens leaked increases at a faster
rate compared to the training methods, indicating that relying on the local LLM’s in-context abil-
ity to identify multiple objectives in cascading is not trustworthy. The privacy identification results
presented in Table 3 further validate this claim, as the precision and recall metrics for identifying
privacy concerns in queries using prompting methods are not comparable to those of training-based
methods. Interestingly, the local LLM ΦpLq (Gemma-2B) does not recognize personal information,
such as names or account details, as privacy concerns, even when explicitly prompted. This over-
sight could pose risks when the local LLM is applied in real-world financial applications (specific
cases can be found in Appendix B). In contrast, the trained ΦpLq shows significant improvement
in identifying private queries, as indicated in Table 3. The gradual increase in performance, illus-
trated in Figure 4, suggests that the trained ΦpLq is less likely to route private queries to the server,
reinforcing the importance and necessity of incorporating privacy considerations into cascading.

4.3 LOGITS DISTRIBUTION STUDY

(a) 0-shot prompting (b) few-shot prompting (c) few-shot prompting

(d) instruction tuning (e) loss tuning (f) loss tuning

Figure 5: Logits scatter distribution produced by different methods on GSM8K dataset. (e) and (f)
are logits for privacy concerns; y-axis is the logits, x-axis is the data index.

To further understand the effectiveness of our proposed LLM cascade with multi-objective consid-
erations, we visualize the logit distributions for both training and training-free methods. As shown
in Figure 5 and 8, the logits become more decentralized when a few examples are provided for ΦpLq

to learn the cascade logic, in contrast to 0-shot prompting. Additionally, the signals within the dis-
tributions for prompting methods are not distinctly separable, which accounts for the randomness
observed in routing queries, as discussed in previous sections. In contrast, training methods demon-
strate more distinct distributions, where concentrated red points represent the reflection points noted
in Figure 3. This indicates that training-based methods better grasp the cascade logic; answers with
higher logits are correlated with more correct responses, suggesting that the trained ΦpLq is more
confident in its correct answers and more likely to route difficult queries to the server. Further-
more, the trained model tends to send fewer unsafe queries to the server, as the logits for unsafe
responses are generally higher, making them less likely to be sent. These observations reaffirm the
effectiveness and necessity of incorporating multi-objective optimal considerations into cascading,
highlighting the superiority of our proposed loss function for training the local LLM compared to
existing prompting and instruction tuning methods.

5 CONCLUSION & FURTURE WORK

In this study, we advance the LLM cascade by incorporating multi-objective optimization, moving
beyond existing approaches that primarily emphasize cost-performance trade-offs. This enhance-
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ment aligns more closely with the demands of real-world applications. We utilize three methods to
assess the necessity and effectiveness of embedding multiple objectives into the cascade. Extensive
experiments demonstrate that training is essential for local LLMs to grasp the intricate cascade logic
while maintaining their cascading capabilities.

While this work represents the first effort to introduce multi-objective considerations into LLM cas-
cades, future research will explore how the number and complexity of objectives influence the cas-
cade performance of local LLMs. We also aim to develop more sophisticated techniques for integrat-
ing these objectives and investigate memory-based methods to sustain favorable cost-performance
trade-offs while accommodating a wider array of objectives.

6 RELATED WORK

LLM Cascade Cascading has been extensively studied and applied across various domains due to
its ability to enhance system performance in downstream tasks by selecting appropriate models (Hu
et al., 2023; Li et al., 2019; Karlos et al., 2016; Viola & Jones, 2001). Recently, this approach has
garnered increasing attention for improving the performance of large language models (LLMs). For
instance, Agrawal et al. (2024); Xu et al. (2023); Chen et al. (2024) have explored speculative de-
coding, which leverages a larger and more powerful LLM to verify token-level accuracy during the
inference of a smaller LLM, thereby accelerating the overall process. Despite the success of cascad-
ing, researchers have observed that larger, more capable LLMs (e.g., GPT-4 (Achiam et al., 2023))
can be expensive, while smaller LLMs (e.g., GPT-2 (Radford et al., 2019)) may not always meet
performance requirements. This has led to the emergence of the deferral rule—determining when to
invoke the larger LLM—as a critical area of exploration for balancing performance and cost in LLM
cascading (Shekhar et al., 2024; Chen et al., 2023a;b). There are two primary approaches to defer-
ral: confidence-based methods and router-based methods. Confidence-based methods leverage the
LLM’s confidence in its generated answers to inform deferral decisions. Ideally, an LLM exhibits
higher confidence for higher-quality answers, and vice versa. A straightforward approach involves
asking the LLM to provide a confidence score alongside its answers, invoking the stronger LLM
when the score is low (Zhu et al., 2024). Another prevalent method utilizes the logits of generated
tokens to represent the LLM’s confidence, with recent studies exploring operations on logits, such
as mean (Gupta et al., 2024) and quantile (Jitkrittum et al., 2024). Wang et al. (2024) extended this
concept by incorporating the logits of the stronger LLM into the loss function for tuning the weaker
LLM, enhancing its understanding of the cascade logic and enabling deferral decisions based on
logit indicators. In contrast, router-based methods use a routing mechanism to determine whether
to invoke the stronger LLM. Typically, the router selects the most suitable LLM for different tasks.
Non-predictive routing evaluates the outputs of multiple LLMs to select the best one, but this can
be costly due to the need to assess all involved models (Madaan et al., 2023; Lee et al., 2023; Wang
et al., 2023). Predictive routing systems, however, employ reward functions that allow the router
to anticipate which LLM to select, thus avoiding the latency associated with extensive evaluations
(Shnitzer et al., 2023; Šakota et al., 2024; Hari & Thomson, 2023). Nonetheless, router-based meth-
ods require prior knowledge of each LLM’s capabilities and may incur significant costs when trying
to enhance performance, compared to confidence-based methods (Hu et al., 2024b;a). In this study,
we adopt confidence-based methods for LLM cascading.

Privacy-preservation Privacy has always been a core concern in LLM research (Kim et al., 2024;
Zhang et al., 2024b; Das et al., 2024; Janryd & Johansson, 2024; Feng et al., 2024), particularly
for on-device LLM applications (Zhang et al., 2024a; Peng et al., 2024; Yuan et al., 2024). LLMs
have been shown to inadvertently reveal sensitive information, such as personal names (Evertz et al.,
2024; Kim et al., 2024). To address these privacy issues, Liu et al. (2024a;b;c); Kassem et al. (2023)
proposed machine unlearning techniques that enable LLMs to forget sensitive information, thus
mitigating the risk of generating harmful or biased content. Another approach is differential privacy,
which adds noise to the training data, making it more difficult to identify individual data points
(Hartmann et al., 2024). Additionally, Zhang et al. (2024c) suggested using contrastive learning
to erase an LLM’s memory of user information. While these methods have shown success across
diverse user bases, our objective is to enhance the sensitivity of our LLM cascade framework to
privacy concerns in single-user settings. To achieve this, we aim to leverage in-context learning
and integrate binary privacy identification into the loss function, allowing the local LLM to be more
attuned to privacy considerations during the cascading process.
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A PROMPTS

The design of prompts plays a crucial role in activating the LLM’s capabilities for downstream tasks.
Following the findings of Webson & Pavlick (2021) on prompt design, we first assume a persona
for the LLM, then provide task instructions and ask the model to generate outputs in a fixed style.
For few-shot prompting, we provide task examples along with their corresponding outputs; details
are shown in Fig. 6. Interestingly, we observed that as the number and complexity of tasks in the
instructions increased, the model’s performance on the target task declined, as demonstrated in Table
2. The prompts presented here yielded the best performance among all the variations we tested.

B PRELIMINARY RESULTS

Metric % Cascade Prompt Engineering Instruction Tuning0-shot 1-shot 2-shot 5-shot
Call Rate 0 70.43 48.98 67.43 42.76

Safe Call Rate 0 2.05 2.94 2.13 27.61

Accuracy % 14.94 10.08 11.83 10.68 26.08
! 14.94 42.91 37.30 42.61 42.29

Table 4: Preliminary results on GSM8K.

Following the approach of Hartmann et al. (2024), we initially attempted to use self-critique and rely
on the in-context learning capabilities of the local LLM to implement the deferral function. Specifi-
cally, we instructed the model to handle the task while simultaneously outputting a confidence level,
which would determine whether the query should be deferred to the server. However, preliminary
results revealed limitations in this design. As shown in Table 4, without examples, the local model
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(a) GSM8K Prompt (b) MedQSum Prompt

(c) WMT22 Prompting

Figure 6: Prompts Used for Prompt Engineering and Instruction Tuning on three datasets.

tends to be overly confident in every generated response. Moreover, even when provided with sev-
eral examples, the model treats confidence as a classification task, rather than correlating it with the
quality of its generated responses. Consequently, we opted to use logits for more effective LLM
cascading. Further, as indicated in section A, as the number and the complexity of tasks within the
instruction increase, the model tend to have worse performance on the downstream task. As such,
we propose to decompose the tasks within the instruction to several tasks and use different heads to
handle it for achieving LLM cascade.

C SUPPLEMENTARY RESULTS

C.1 SUPPLEMENTARY CASCADE RESULTS

Figure 7: The curve of performance and call rate vs threshold on GSM8K dataset
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(a) 0-shot prompting (b) few-shot prompting

(c) instruction tuning (d) loss tuning

Figure 8: Logits distribution curve by different methods on GSM8K dataset: (a) 0-shot prompting,
(b) few-shot prompting, (c) instruction tuning, (d) loss tuning.

As shown in Figure 8, training-based methods have a direct impact on distinguishing between cor-
rect and incorrect answers using logits (i.e., the separation between the green and red areas). This
aligns with the scatter distribution in Figure 5, further validating the necessity of training in LLM
cascading. Additionally, the higher peak in the red area indicates a faster performance improve-
ment, as depicted in Figures 3 and 7. These findings explain the effectiveness and intuition of our
approach.

C.2 DATASETS

Dataset Task Type Avg. Input Length Avg. Output Length Avg. Leakage Tokens
GSM8K Question Answering 52.56 83.60 5.19

MedQSum Summarization 70.51 11.49 11.27
WMT22 Translation 101.67 95.19 -

Table 5: Statistics of datasets.

Table 5 provides detailed statistics for all datasets. Following the privacy research by Hartmann et al.
(2024), we extracted tokens with privacy concerns (e.g., names and other personal identifiers), as the
number of such privacy-leakage tokens is critical for evaluating our methods. The extraction was
based on PII rules (Kim et al., 2024) and HIPAA regulations (Lincke, 2024), achieving extraction
accuracies of 99.1% for GSM8K and 99.7% for MedQSum. A subset of 100 samples was manually
verified by a highly educated PhD student, and the p-value score between human and machine
extractions was less than 0.05, further validating the effectiveness of our proposed methods.

15


	Introduction
	Methodology
	Preliminary Formulation
	Multi-Objective Prompting
	Multi-Objective Instruction Tuning
	Multi-Objective Loss Tuning
	Deferral Module

	Experimental Settings
	Datasets
	Tasks & Metrics
	Base Models & Implementation Details

	Experimental Results
	Cascade Study
	Privacy Study
	Logits Distribution Study

	Conclusion & Furture Work
	Related Work
	Prompts
	Preliminary Results
	Supplementary Results
	Supplementary Cascade Results
	Datasets


