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Abstract

Prompt-based continual learning methods have emerged to address catastrophic
forgetting by leveraging large-scale foundation models. These methods keep pre-
trained models frozen and tune only small sets of parameters called prompts to
learn tasks sequentially. However, when a new task comes in, the key-query match-
ing mechanism in prompt-based methods selects the most relevant prompt without
adequately considering whether it is actually suitable for learning the task. To
address this, we propose the CoEn (Continual Enhanced prompt pool), which
dynamically manages the prompt pool each time a new task is introduced. Our
goal is to transform the static management of the prompt pool into a dynamic ap-
proach, enabling greater flexibility in adapting to new tasks and reducing the risk of
catastrophic forgetting. Specifically, CoEn includes a new self-enhancement mech-
anism that assesses whether the prompts in the prompt pool can positively transfer
knowledge to a new task and selectively strengthens the prompts. We demonstrate
the proposed method under image classification benchmarks for class-incremental
learning. Experimental results show that the proposed method outperforms existing
prompt-based methods with an average margin of 3.8% across all scenarios.

1 Introduction

Humans can naturally incorporate new information into their existing learned knowledge. Continual
learning (CL) aims to emulate this cognitive function within machine learning. Although deep learning
algorithms perform well on individual tasks, learning multiple tasks in sequence is challenging due to
catastrophic forgetting [1, 2], where prior knowledge is lost when learning new tasks.

To address this issue, various CL approaches have been proposed [3, 4, 5], and recent prompt-
based learning methods utilizing large-scale foundation models have shown promise in reducing
catastrophic forgetting [6, 7, 8]. They are adopting a transfer learning approach in natural language
processing called prompt-tuning [9]. This approach freezes a pre-trained model, such as a vision
transformer, and trains small sets of parameters called prompts. These prompts serve as task-specific
instructions for the model, avoiding direct weight adjustments [10]. L2P [6] formalized a prompt-
based continual learning framework. It defines a prompt pool as a collection of task-specific prompts
and introduces a key-query matching mechanism to select the most relevant prompts for learning new
tasks. DualPrompt [7] additionally introduces a set of task-invariant prompts shared across all tasks,
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Figure 1: An overview of the proposed CoEn method for dynamic prompt pool management. CoEn
evaluates the positive knowledge transferability of the current prompt pool P by comparing the
key-query matched prompt p∗t with a reference prompt p̂∗t . It computes the cosine similarity wi

between each prompt key and previously learned classes sc and selects h prompts with the lowest
values. Then, these prompts are aggregated using a weighted sum. The result is an enhanced prompt
pool that better accommodates prior knowledge while absorbing new knowledge.

complementing L2P. Prompt gradient projection (PGP) [8] introduces an orthogonal constraint to the
gradients of prompts, effectively reducing task interference.

Despite the advancements in prompt-based CL approaches [6, 7, 8], most methods simply use prompts
selected from key-query matching for learning tasks. While intuitive, it overlooks the potential for
positive knowledge transfer from those prompts to newer tasks. For example, after learning animal-
related tasks up to the current time, a new vehicle-related task may arrive the next time. Even if
the most relevant prompts are selected, differences in class attributes can limit positive knowledge
transfer. This issue with managing a static prompt pool can impede both the retention of previous
knowledge and the acquisition of new tasks.

In this paper, we propose CoEn(Continual Enhanced prompt pool), which dynamically enhances the
prompt pool. Inspired by task similarity detection [11], CoEn detects whether the selected prompts
from the prompt pool are suitable for a new task. Specifically, we employ a statistical risk [11] to
make a diagnose of whether the selected prompts can enable positive knowledge transfer to the new
task. If the statistical risk is not satisfied, we determine that the current prompt pool lacks the capacity
to represent the new task. To do so, we introduce a self-enhancement mechanism that incorporates
prompt addition and aggregation. By adding new prompts, we expand the capacity of the pool,
allowing it to accommodate and integrate knowledge from newer tasks. To optimize the growing
pool size, we aggregate prompts with the least impact on previously seen classes. This dynamic
management balances stability and plasticity, overcoming the limitations of existing approaches. We
evaluate the proposed CoEn in a class-incremental learning scenario and achieve a 3.8% average
improvement over previous methods on benchmark datasets [12, 13, 14, 15, 16].

2 Method

2.1 Framework

In CL, a sequence of tasks D = {D1, D2, . . . , DT }, where T is the total number of tasks, is given.
Each task Dt consists of Nt input-label pairs {(xi, yi)}Nt

i=1, with (xi, yi) sampled from the input
space Xt and the label space Yt. The goal is to train a model fθ : X → Y parameterized by θ to
predict the label y = fθ(x) ∈ Y for an unseen test sample x from a task in the sequence.

We reformulate the existing approach with a static prompt pool into a dynamic one as illustrated in
Figure 1. We define the prompt pool P = {p1, p2, . . . , pn} as a set of n learnable prompts, where
each prompt pj ∈ RLp×d has a length Lp and an embedding dimension d. Whenever a new task is
introduced, we select a set of most relevant prompts from P using key-query matching [6]. However,
they do not consider whether pt results in positive transfer during the learning the task t.

Inspired by [11], we aim to verify whether pt can facilitate positive knowledge transfer during the
learning process. [11] employes a binary vector, named task similarity vector (TSV), to assess the
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presence of positive knowledge transfer between tasks, defining the statistical risk as follows:
E

(xt,yt)

[
L(fs→t(x

t), yt)
]
> E

(xt,yt)

[
L(fr(xt), yt)

]
. (1)

fs→t denotes the transfer model used to transfer knowledge from task s to t, while fr denotes the
reference model used to learn task t independently. If the statistical risk holds, yielding TSVt(s) = 1,
task s is regarded as similar to task t; otherwise, TSVt(s) = 0.

Since our approach diagnoses whether the prompt pool facilitates positive knowledge transfer to the
current task, we reformulate TSV as the transferability of the prompt pool (ToP) as follows:

ToPt(pt) =

{
1, if E

(xt,yt)
[L(fθ(xt, pt), y

t)] > E
(xt,yt)

[L(fθ(xt, p̂t), y
t)] ,

0, otherwise,
(2)

where fθ is a pre-trained ViT, and p̂t denotes a set of reference prompts independent of P . If
ToPt(pt) = 1 indicates that pt positively aids in learning the current task. Conversely, ToPt(pt) = 0
suggests P lacks sufficient representational capacity to accommodate the new knowledge.

2.2 Self-Enhancement Mechanism

A prompt pool with limited representation capacity causes forgetting of previous tasks and impedes
acquiring new knowledge. If the statistical risk is not satisfied, it suggests that the current capacity is
insufficient to encode any additional knowledge into the pool. Therefore, we expand the capacity
of the pool by adding a newly initialized prompt p̄t to the pool. To prevent the prompt pool from
expanding excessively, we introduce prompt aggregation, which combines prompts with low similarity
to previously learned classes into a single enhanced prompt. After each incremental learning step,
we extract the class-wise feature vector vc = fθ(xc) for each seen class c ∈ C, where C is the
total number of classes, to assess the similarity between prompt keys and previously learned classes.
Instead of storing vc, we store the mean µc ∈ Rd and covariance Σc ∈ Rd×d for each class c [17].
From the distributions with µ and Σ, we sample the feature sc for each seen class. The similarity wi

between sc and the i-th prompt keys ki is calculated using the cosine similarity, sim(·) as

wi =
1

C

C∑
c=1

sim(ki, sc), i ∈ {0, . . . , N}, (3)

where N is the total number of prompts in the pool. We select the set of h prompts P∗ =
{(kρ(1), pρ(1)), (kρ(2), pρ(2)), . . . , (kρ(h), pρ(h))} ⊆ P , where ρ(i) gives the index corresponding
to the i-th lowest value in w. The prompt keys and prompts in P∗ are aggregated into a set of
enhanced key and prompt through a weighted sum based on the wi as follows:

kenh =

h∑
i=1

wρ(i)kρ(i)∑h
i=1 wρ(i)

, penh =

h∑
i=1

wρ(i)pρ(i)∑h
i=1 wρ(i)

. (4)

The enhanced key kenh and corresponding prompt penh are integrated into P . Note that CoEn applies
the matching loss and the cross-entropy loss for classification [7].

3 Experiments

3.1 Setup

We conducted on class-incremental learning using various benchmark datasets: CIFAR-100 [12],
ImageNet-R [13], EuroSAT [14], RESISC45 [15], and CUB-200 [16]. We define tasks by partitioning
the entire set of classes into disjoint subsets in a dataset. Note that "x-Split" refers to dividing a
dataset into x tasks, each comprising a subset of the classes of the dataset. We used a ViT backbone
[18] pre-trained on ImageNet and compared with L2P [6], DualPrompt [7], and PGP [8].

3.2 Results

3.2.1 General-domain tasks

We used CIFAR-100 [12] and ImageNet-R [13], which consist of general object images, divided
into 10 and 20 tasks, respectively, as shown in Table 1. For CIFAR-100, CoEn outperformed L2P,
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Table 1: Comparison results on 10-Split-CIFAR100, 20-Split-CIFAR100, 10-Split-ImageNet-R, and
20-Split-ImageNet-R. Accuracy denotes the average accuracy for each task after incremental learning.
Forgetting refers to the average decrease in performance on previous tasks after learning a new task.

Method 10-Split-CIFAR100 20-Split-CIFAR100 10-Split-ImageNet-R 20-Split-ImageNet-R

Accuracy Forgetting Accuracy Forgetting Accuracy Forgetting Accuracy Forgetting

L2P 83.5 6.9 81.6 9.4 65.1 5.1 57.0 9.5
DualPrompt 86.1 5.8 83.5 7.8 69.2 4.7 65.7 7.1
PGP 86.7 5.5 83.5 8.1 69.1 5.8 65.9 7.1
CoEn (ours) 86.8 4.9 84.3 6.4 69.6 5.6 64.9 8.0

Figure 2: Comparison results on 5-Split-EuroSAT, 9-Split-RESISC45, and 5-Split-CUB. The left plot
depicts accuracy, while the right bar graph indicates the degree of forgetting.

DualPrompt, and PGP in the 10-split scenario with gains of 3.3%, 0.7%, and 0.1%, respectively, and
in the 20-split scenario, it achieved gains of 2.7%, 0.8%, and 0.8%. For forgetting, we reduced it
by an average of 1.2% in the 10-split task and 2.0% in the 20-split task compared to other methods.
These improvements highlight the proposed method, which balances stability and plasticity in CL.
For ImageNet-R, CoEn performed comparably to L2P, DualPrompt, and PGP in the 10-split task,
outperforming them by 4.5%, 0.4%, and 0.5%, respectively. In the 20-split, it remained close to PGP
but outperformed L2P by 7.9%. CoEn maintained the forgetting rate of 5.6%, similar to DualPrompt,
demonstrating its effectiveness in retaining knowledge while learning new tasks.

3.2.2 Specific-domain tasks

In the specific-domain setup, we used EuroSAT [14], RESISC45 [15], and CUB-200 [16], which
contain specific categories, such as satellite imagery and fine-grained bird species, divided into 5, 9,
and 5 tasks, respectively, as shown in Figure 2. For EuroSAT, CoEn achieved the highest accuracy of
70.5%, with gains of 22.0%, 8.9%, and 3.4% over L2P, DualPrompt, and PGP, respectively. Moreover,
it significantly reduced forgetting to 13.8%, compared to higher rates of 29.5%. For RESISC45,
CoEn reached an accuracy of 75.5%, outperforming the others by margins of 6.1%, 6.3%, and 4.7%,
respectively. Additionally, it exhibited a forgetting rate of 16.0%, which is, on average, 5.3% lower
than that of the other methods. For CUB-200, CoEn achieved 83.3% accuracy with a low 4.0%
forgetting rate, highlighting its strength in handling fine-grained features.

4 Conclusion

In this work, we have proposed CoEn that dynamically manages the prompt pool to address the
limitations of static management of existing works. The dynamic pool management strategy con-
tinuously expands and refines the prompt pool to enable positive knowledge transfer to all tasks,
facilitating new task learning and mitigating catastrophic forgetting. Experimental results show that
CoEn outperforms existing methods, achieving an average accuracy gain of 3.8% across all scenarios.
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