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Abstract

We present Zero-Direction Probing (ZDP), a theoretical framework that characterises
model drift from null directions of transformer activations, requiring no task labels or
output evaluations. Under explicit assumptions (A1-A6), We prove: (i) the Variance—Leak
Theorem (Thm. 1), (ii) Fisher Null-Conservation (Thm. 2), showing that second-order KL
curvature is confined to the base image space up to a residual controlled by Fisher leakage
into null directions, (iii) a Rank-Leak bound for low-rank updates (Thm. 4), and (iv) a
logarithmic-regret guarantee for online null-space trackers (Thm. 3). We further derive a
Spectral Null-Leakage (SNL) metric with a non-asymptotic Laurent—-Massart tail bound and
an MP-edge—style concentration inequality, providing a-priori thresholds for drift under a
Gaussian null model. Together, these results establish that “listening to silence”—monitoring
the right/left null spaces of layer activations and their Fisher geometry—yields concrete,
testable guarantees on representational change. The manuscript is intentionally theory-only;
empirical validation and benchmarking are deferred to companion work.

1 Introduction

Large language models (LLMs) are routinely adapted after pre-training: supervised fine-tuning, preference
optimisation, and domain specialisation all change internal representations. Most drift detectors reason after
the fact using outputs or high-variance latent directions. In contrast, we study the geometry of zero-variance
directions—the right/left null spaces of layer activations—and ask:

What can be proven about representational drift by inspecting only the null spaces of the
base model, with no access to labels or outputs?

Our answer is a theory we call Zero—Direction Probing (ZDP). Let H, € R"*? denote the activation
matrix at layer £ for the base model, with right-null basis V4 ¢ and left-null basis Uy ¢. For a perturbed model
Hy = Hy+ AH,, we quantify null leakage via quadratic forms such as ||H ¢Vo.e||%. Intuitively, silent directions
in the base model are noise-free: any energy or curvature that appears there is unambiguous evidence of
change. Throughout, we use the term “activation matrix” to refer specifically to collections of transformer
hidden states (residual-stream representations) produced by large language models.

While large-scale empirical benchmarking is deferred to companion work, we include targeted synthetic sanity

checks to confirm that key theoretical predictions are observable in controlled settings.

1.1 Setting and scope

The paper is entirely theoretical. We state explicit standing assumptions (A1-A6) on ranks, perturbation
size, eigengaps, and noise regularity (Sec. 4). All results concern properties of Hy and its null spaces; no task
labels, outputs, or downstream metrics are used.
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1.2 Contributions

1. Linear-algebraic framework. We formalise right- and left-null spaces for transformer layers, define
null-leakage functionals, and relate them to local Gram and Fisher matrices.

2. Drift theorems. (Thm. 1) Variance-Leak shows that null-space energy lower-bounds the smallest
eigenvalue of the local Gram matrix of the perturbation. (Thm. 2) Fisher Null-Conservation proves
that the second-order KL contribution arises only from components outside the base image space.
(Thm. 4) Rank-Leak Bound quantifies when low-rank (LoRA) updates re-occupy silent directions via
principal angles.

3. Spectral metric with a priori thresholds. We introduce Spectral Null-Leakage (SNL) and
derive non-asymptotic tails: a Laurent—Massart bound for Frobenius energy and an MP-edge style
concentration inequality (Lemma 2), yielding parameter-free thresholds under a Gaussian null.

4. Online guarantees. We propose Online Null-Space Tracker (ONT) and Online Null-Aligned LoRA
(ONAL) and prove a logarithmic regret bound (Thm. 3) under eigengap and noise assumptions,
showing that streaming estimates of the null space incur only O(logT) cumulative excess leakage.

5. Conceptual implications. ZDP cleanly separates covariance geometry (NVL/SNL) from informa-
tion geometry (Fisher), explains when low-rank adaptation leaks into silent directions, and provides
null-hypothesis baselines without empirical calibration.

1.3 Limitations and outlook

Results depend on accurate null-space estimation (SVD thresholding) and eigengap conditions; finite-sample
effects can perturb projectors. Extending the theory to attention-dependent subspaces and non-Gaussian
nulls is future work. The manuscript intentionally omits experiments; empirical validation and benchmarking
are deferred to a companion study.

1.4 Organisation

Section 4 states assumptions and notation. Section 4.1 proves the Variance-Leak theorem. Section 4.2
develops Fisher Null-Conservation. Section 4.3 derives RMT baselines; Section 4.4 presents online tracking;
Section 4.6 proves regret bounds; later subsections cover LoRA rank-leak and SNL.

1.5 ZDP in Transformer-Based Language Models

Although the theoretical analysis is agnostic to architecture, the motivating setting throughout is a transformer-
based large language model (LLM). In this context, the activation matrix H, € R™*? corresponds to the
collection of hidden states at layer ¢ produced by a fixed pretrained model when processing a batch of n
tokens drawn from prompts or sequences. Each row of Hy is the residual-stream representation of a token at
layer /¢, after attention and MLP blocks and prior to the next residual addition.

Fine-tuning, preference optimization, or low-rank adaptation (e.g., LoRA) induces a perturbed model whose
corresponding activation matrix is H, ft = Hy + AH, for the same input tokens. The right null space ker(Hy)
therefore represents directions in hidden-state space that are never occupied by the base LLM for the given
domain or prompt distribution. Any energy or curvature observed in these directions after adaptation
constitutes unambiguous representational change.

All null-space probes introduced in this work (NVL, SNL, FNC, and BINA) operate directly on these
transformer hidden states and require no access to outputs, labels, or task-specific metrics.

2 Related Work

Prior work on representation analysis and drift in deep networks can be organized along three dimensions: (i)
which subspaces are studied (dominant vs. silent), (ii) which signals are used (outputs, losses, or internal
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geometry), and (iii) whether results are diagnostic or come with formal guarantees. We review these strands
through the specific theoretical gaps they leave open, and position Zero-Direction Probing (ZDP) as a
framework that addresses each gap using null-space geometry with explicit guarantees.

2.1 Representation geometry and similarity measures

A large literature studies representation drift by comparing dominant activation subspaces. Linear probes
(Alain & Bengio, 2017), SVCCA (Raghu et al., 2017), PWCCA (Morcos et al., 2018), and CKA (Kornblith
et al., 2019) quantify changes in high-variance directions, as do alignment-based analyses of fine-tuning
dynamics (Nguyen et al., 2020; Lu et al., 2025).

These methods intentionally ignore near-zero-variance directions and therefore cannot certify when previously
silent directions become occupied. ZDP addresses this limitation by elevating the null space of the base
activation matrix to a diagnostic object. The Variance-Leak Theorem (Thm. 1) shows that energy observed in
these silent directions lower-bounds the strength of the perturbation itself, yielding a label-free and output-free
drift certificate.

2.2 Null-space constraints and interventions

Several methods exploit null spaces as training-time constraints. LoRA-Null and related approaches restrict
low-rank updates to remain orthogonal to selected subspaces in order to reduce forgetting or interference
(Qin et al., 2024; Tang et al., 2025). Knowledge-editing methods similarly impose constrained optimization
objectives to localize behavioral changes (He et al., 2025).

While effective in practice, these approaches do not characterize when or how updates re-enter silent directions
after initialization or under continued training. ZDP complements this line of work with a post-hoc theoretical
analysis. The Rank-Leak Bound (Thm. 4) shows that leakage from low-rank updates is governed by the
principal angles between update subspaces and the base-model null space, clarifying when null-aligned
initialization suffices and when drift is unavoidable.

2.3 Information-theoretic and Fisher-based analyses

Information-geometric analyses use the Fisher Information Matrix (FIM) to study sensitivity and curvature
in neural networks (Pennington et al., 2018; Soen & Sun, 2021). More recently, Fisher alignment has been
proposed as a diagnostic for policy drift in fine-tuned and RLHF-trained models (Yan et al., 2025).

Existing work does not formalize which representational directions are provably invisible to second-order KL
curvature. The Fisher Null-Conservation theorem (Thm. 2) fills this gap by showing that, up to a controlled
residual, second-order KL contributions arise only from components outside the base model’s Fisher-silent
null space. This result separates covariance-level drift from information-geometric sensitivity.

2.4 Small singular values and random-matrix baselines

Recent studies emphasize the role of small singular values in transformer representations and their sensitivity
to perturbations (Naderi et al., 2025). Random-matrix theory has also been used to characterize activation
spectra and asymptotic behavior (Benaych-Georges & Nadakuditi, 2012; Xu & Singh, 2025).

ZDP differs in providing explicit, non-asymptotic thresholds suitable for drift certification. Lemma 2 and
Corollary 1 derive Laurent—Massart and MP-edge style bounds for null-space energy under a Gaussian null,
yielding calibration-free thresholds for the Spectral Null-Leakage (SNL) metric that depend only on (n,d, k).

2.5 Knowledge editing and representation engineering

Representation-engineering and knowledge-editing methods aim to modify specific behaviors while minimizing
collateral effects (Burns et al., 2023; Feng et al., 2024; Zhang et al., 2025). These approaches are typically
evaluated empirically and operate at the level of outputs or optimization objectives.
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ZDP is complementary in scope. Rather than prescribing an intervention, it provides a geometric diagnostic
lens that predicts when any adaptation—editing, fine-tuning, or low-rank updates—must necessarily re-occupy
previously silent directions, independent of task loss or downstream behavior.

2.6 Theoretical framework and positioning

Across these strands, a common limitation is the absence of guarantees tied to representational silence.
ZDP reframes drift detection as a problem in null-space geometry. Covariance leakage (Thm. 1, SNL),
information-geometric leakage (Thm. 2), and update-induced leakage (Thm. 4) are treated as complementary
phenomena within a unified framework. This perspective enables label-free, output-free drift certification
with explicit thresholds and online guarantees, which existing approaches do not provide.

3 Zero-Direction Framework

3.1 Notation and abbreviations

We summarize here the key objects and abbreviations used throughout the paper.

Activation matrices. For a transformer-based large language model and layer ¢, we denote by H, € R"*¢
the activation matriz, whose rows are the d-dimensional hidden-state (residual-stream) representations
produced by the base model for n tokens drawn from a fixed prompt or domain distribution. Unless otherwise
stated, all null spaces are defined with respect to the base model activation matrix Hy.

Probability distributions. Throughout, py denotes the model-induced conditional distribution over
outputs given a hidden state, parameterized by #; all KL divergences and Fisher matrices are taken with
respect to this distribution.

Null spaces. The right null space of Hy is ker(Hy) and has dimension k; = d — rank(H,), with orthonormal
basis Vp,¢ € R4*ke The left null space is ker(HZ—) with basis Uy € Rrx(n—rank(He)) - [Jpless explicitly noted,
“null space” refers to the right null space.

Perturbations. A fine-tuned or adapted model induces a perturbed activation matrix H, = Hy+ AH,
evaluated on the same inputs.

Abbreviations for probes. We use the following abbreviations throughout:

e NVL: Null-Variance Leakage, measuring Frobenius energy ||FI£VO,Z||%’ in the base-model null space.

« SNL: Spectral Null-Leakage, the normalized variant || HeVp ¢||% /|| Hel|%.

o FNC: Fisher Null-Conservation, quantifying Fisher curvature leakage into ker(Hpy).

o BINA: Bidirectional Null-Adversary, a diagnostic probe that searches for null-aligned perturbations
inducing large output deviations.

All abbreviations are introduced at first use and reused consistently thereafter.

3.2 Domain-specific covariance and null basis

For domain D and layer ¢, let Hfbasc € R4 collect the base-model activations produced by a fixed

pretrained LLM when evaluated on prompts drawn from D.

We define the domain covariance used throughout as

1 T
D - D D dxd
E‘base T np (Hf,base) Hé,base e R )
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which is positive semidefinite. The (right-)null basis for domain D is taken with respect to the base activations:

Vi = ker(Huse)-

3.3 Kernel Equivalence Lemma

Lemma 1 (Kernel equivalence). For any real matriz M, ker(M) = ker(M' M).

Proof. If Mz = 0 then (M M)z = M" (Mz) = 0. Conversely, if M" Mz = 0, then 0 = 2" (M" M)z = | Mz||3,
hence Mz = 0. O

Applying Lemma 1 with M = Hfbase yields
keI(HZ?base) = ker(ZbDase)’

so one may equivalently compute V(f} as the eigenspace of E{?ase associated with the zero eigenvalue(s).!

3.4 Probes

We use four probe functionals, all computable from the base model’s null spaces.

3.4.1 NVL (Null-Variance Leak)
For layer ¢ with right-null basis V¢ € R%*Fe and activation matrix ﬁg under a perturbation,

NVL,
n k‘e '

NVLg = ||ﬁgV07g||§, De =

3.4.2 FNC (Fisher Null-Conservation)

Let F'(h) denote the token-level Fisher Information Matrix evaluated under the base model. Define the Fisher
leakage in the right-null space by

2
FNC; := || F(h) Vou|| s

which vanishes when the right-null is Fisher-silent (assumption of Thm. 2).

3.4.3 SNL (Spectral Null-Leakage)

Given the base null basis V; ¢ and perturbed activations i ‘0,

_ 1BVoul2

SNL,(H) : =
|| Hel|%

Lower values indicate that the perturbed model remains silent along the base null directions; increases beyond
a threshold derived in Lemma 2 and Cor. 1 constitute drift alarms.

3.4.4 BINA (Bidirectional Null-Adversary).

Given projectors Py = VO,ZVOT@ and @y = UMU&, construct an in-null perturbation é and score

Seivae = || Qe(f(h+8) = f(h))]],

where f maps hidden states to logits. Algorithm 1 details the procedure.

LIf rows of H lDbase are centered by subtracting their mean, the equality still holds with H replaced by its centered version H.,

since ker(H,.) = ker(H/! H,).
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Notation. Throughout Algorithm 1, f(h) denotes the model output (e.g., logits or predictions), while L(h)
denotes the scalar training loss evaluated at hidden state h. Gradients with respect to h are taken through
L(h), while adversarial deviation is measured in the output space via f(h).

Algorithm 1 BINA: Bidirectional Null-Adversary

Require: hidden state h € R? at layer ¢; right-null projector P := VO,ZVOT(& left-null projector @ := UO,ZUE)r,e?
step size nn > 0; budget £ > 0; iterations T'; score functional L£(h) or logit map f(h)

1: 5+ 0 > initial in-null perturbation
2: fort=1,...,7 do

3: g <+ Vi L(h+0) > or Vi||f(h+68) — f(h)|3
4: gr < Qg > slice gradient in left null to target output-silent change
5: s+ Py > project back into right null so § stays in ker(Hy)
6: s+ s/ max(|s]2,10712) > stabilise step direction
7 0+ d0+mns > gradient ascent on null-aligned objective
8: 6 < min(1,£/|d]]2) - & > project onto Lo ball (radius €)
9: 0+ Po > re-enforce right-null constraint (numerical drift guard)
10: end for

11: return §, SpiNa & H Q(f(h+6)— f(h))Hz

Role of the Bidirectional Null-Adversary (BINA). The Bidirectional Null-Adversary (BINA) is not
introduced as a theorem-backed guarantee, but as a diagnostic probe that operationalizes the null-space
analysis developed in the preceding sections. Given a base activation h and null basis V; ¢, BINA searches
for perturbations § € span(Vp ¢) that maximize functional deviation while remaining confined to directions
that were silent in the base model. Intuitively, if significant null leakage exists (as detected by NVL/SNL or
FNC), then there exist null-aligned perturbations § for which |f(h + &) — f(h)| is large. Conversely, if the null
space is both covariance-silent and Fisher-silent, then perturbations in ker(H,) have negligible effect on model
outputs. Thus, the BINA score Sgina should be interpreted as a practical stress test of functional sensitivity
along null directions, complementary to the analytic probes NVL/SNL and FNC. In practice, Sgina can
be used as a heuristic drift score, while theoretically it serves to illustrate how null leakage translates into
adversarial functional sensitivity.

4 Theoretical Analysis

We now view ZDP through the lenses of linear algebra, information geometry, and random matrix theory
(RMT). Let H, € R"*< be the activation matrix for layer ¢ under base weights and H, under a perturbed
model (fine-tune or weight drift). Denote by Vp ¢ = ker(Hy) the right-null space of rank k; = d — rank(H,).

4.0 Notation and Standing Assumptions

Dimensions. For each layer ¢, the base activation matrix is H, € R®*¢ (rows = n token activations,
columns = d hidden dimensions). Its right—null space has dimension k; = d — rank(H,) with orthonormal

basis V¢ € R¥*ke - A perturbed model induces H, = Hy + AHj.

A1 (Numerical null space via SVD cutoff). Let H, € R"*¢ denote the base activation matrix at layer
£, with thin singular value decomposition

HZ = U[Ee‘/e—r’ Zf = diag(gl 2 - 2 O—Inin(n,d) 2 0)
For a fixed threshold € > 0, define the e-null space of Hy as
ker.(Hy) := span{v; : 0;(H;) < ¢},

and let Vp o € R?*k¢ be an orthonormal basis of this subspace, where k; = dim ker.(H;). Throughout the
paper, Vg ¢ refers to this e-null basis. When € = 0, this definition reduces to the exact algebraic null space.
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We refer to ker.(Hy) as the numerical null space, distinguishing it from the exact algebraic null space obtained
when € = 0.

A2 (Perturbation size, explicit). There exists a constant 0 < p < 1 (fixed; e.g., p < 0.1) such that

[AH |2 < pl[Hell2-

A3 (Only for online §§4.4-4.5). In the streaming setting we observe mini-batches H; € R™*? with
population Gram Y. = E[H] H;]. The noise process is 72-sub—exzponential in operator norm: ||H] H; — X2 is
72-sub-exponential (sub-Gaussian rows are a special case). This assumption is used solely for the online
tracker /optimizer regret analysis and is not invoked elsewhere.

Spectral Null-Leakage (SNL). Unless stated otherwise, SNL is evaluated on perturbed activations with
the base null basis: R
|| H Vol

SNLy(H) := =5
[ Hel|%

y Voyg = ker(Hg).

4.1 Variance—Leak Theorem

Theorem 1 (Variance—Leak). Let H; € R™*4 pe the base activation matriz in layer € and let Vo, € Réxke pe
an orthonormal basis of ker.(Hy) as defined in Assumption Al. Consider a perturbed model with activations

H, = H, + AH,.
Define the null-variance leakage _
NVL, = [|H,
Let G := AHJAH@ = 0. Then
keAmin(G) < NVLy < keAmax(G) + ke (1)
In particular, if NVL, > kee?, then
huin(@) 2 TR

so any excess null-space energy beyond the base-model bias certifies a strictly positive smallest eigenvalue of
the perturbation Gram matrizx.

Proof. Decompose
HVoo=AH Vo o+ HiVoy.

By definition of the e-null space, ||H;Vo¢||% < kee?. Moreover,
|AH Vo |3 = tr(Vy|,G Vo) Zv G,

where {v;} are the columns of Vj,. By the Rayleigh-Ritz theorem, Ayuin(G) < viT Gv; < Amax(G), and
summing over ¢ yields
kf)\min(G) S ||AHZVO,ZH%" S kl)\max(G)~

Combining the two bounds gives equation 1. O

Remark 1 (Exact vs. numerical null spaces).). When € = 0, the bound in equation 1 reduces to the exact
Variance-Leak inequality. For € > 0, the additional term k¢e? reflects residual variance already present in the
base model. Thus, null-space leakage exceeding this bias provides unambiguous evidence of representational
drift.
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4.2 Fisher Null-Conservation

Model-induced distributions. Let pg(y | h) denote the conditional output distribution of the model (e.g.,
softmax over logits) parameterized by weights 0, evaluated at a hidden state h at layer £. We write py for the
joint distribution over outputs induced by the model at fixed h, and pgiag for the corresponding distribution
after a small parameter perturbation Af. The Fisher information matrix F(h) is defined with respect to

po(y | h) as .
F(R) :=Eympy (i) [Vologpe(y | ) Vologpa(y | h)'].

Theorem 2 (Fisher Null-Conservation). Let H, € R"*? be the base activation matriz at layer ¢. Let
Vo.e € R¥ke have orthonormal columns spanning the (numerical) right-null space ker.(Hy) (Assumption A1),
and let V1 o € R4x(d=ke) have orthonormal columns spanning its orthogonal complement, so that [V1¢ Vo] is
an orthogonal matriz.

Let F(h) € R™4 denote the token-level Fisher information matriz of the base model evaluated at hidden state
h at layer £. Assume approximate Fisher-silence on the right-null space:

[E(h)Vo,ell2 < 0r, (2)
for some 6 > 0 (possibly depending on (h,?)). Define the orthogonal projector onto im(Hy) by

P, :=Hy(H/ H)'H and Fr := P/ F(h)P,.

Then for any small parameter perturbation AO (with ||Af|| < 1), the second-order KL expansion between the
model-induced output distributions KL(pg || pg+ae) satisfies

1
KL(po || po+ae) = §A9TFT A0 + Rp + O(|Ad]*), (3)

where the residual obeys the bound
Re| < 0r [|A6]3. (4)

In particular, when 6p = 0 (exact Fisher-silence), the residual vanishes and the second-order KL contribution
arises only from components of Af lying in im(Hy).

Proof. Write the orthogonal decomposition

A0 =Viga+ VB, where a=V,,A0, 8=V, ,Af.
The second-order term of the KL expansion is

KL(po | posa0) = 5 86T F(R)A0 + O(|20]*)
Expanding the quadratic form under the above decomposition gives
AOTF(h)AO = o (Vi F(W)Via + 20" (Vi F(WVo)B + BT (Vo F(h)Vo,)B.

We identify the leading term with the restricted Fisher on im(H,). Since V3 o spans im(H,) and Py, = Vl’ﬂ/'l—;7

o (Vi F(h)Vig)a = AT P F(h)P, A9 = AT FrAf.
It remains to bound the terms involving Vg 4. First, by submultiplicativity and ||V ¢||2 = ||[Voell2 = 1,

Vi F(h)Voellz < |F(h)Vouellz < 6r.

Hence
120" (V[ F(R)Vo,0)B] < 26 |all2)lB]2.
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Similarly,
IVole F()Voll < |E(h)Voullz < 0, =[BT (VoleF(h)Vo,0)8] < 6r1B]5-

Combining these bounds yields
AT F(h)A0 — AQTFTAQ‘ < 20k [|all2[IB]l2 + 6r 18115 < dr([lallz + [18]l2)*.

Finally, since [V1¢ Vo,¢] is orthogonal, [|a[|3 +[|8]3 = [ A0][3, and (|e]l2+ [|8]l2)* < 2(|ll3 + [18]3) = 2[|A0]3.
Absorbing the factor of 2 into the definition of §r (or keeping it explicit) gives

‘AHTF(h)AH — AOTFrA] < 55| A9)12,

up to a constant factor that can be made explicit. Plugging this into the KL expansion completes the
proof. [

Interpretation. At second order, Fisher curvature is blind to perturbations that live entirely in the base
model’s null directions. Any nonzero KL change must therefore be accompanied by leakage out of ker(Hy)
into im(Hy), which ZDP’s NVL/SNL probes are designed to detect.

4.3 Random-Matrix Baselines

Rather than postulate a single universal tail for null-space energy, we adopt two standard concentration
routes that yield non-asymptotic bounds for || XV|% when X is a Gaussian activation surrogate and V
has orthonormal columns: (i) a Laurent—Massart x? tail that is dimension-exact in (n, k), and (ii) an
operator-norm route whose exponent reflects the Marchenko—Pastur (MP) upper edge (1+,/7)? with v = d/n.
Both are summarised in Lemma 2 and proved in Appendix A.1. These inequalities provide calibration-free
thresholds for the SNL/NVL functionals under a Gaussian null and make explicit how n,d, k and ~ enter the
alarm level.

For thresholds we model Hy locally as X with i.i.d. N(0,0%/n) rows (after centering); Vo ¢ is treated as fixed
(conditioned on the base model). Non-Gaussian tails can be handled by sub-Gaussian analogues at the cost
of constants.

4.4 Gaussian projected Frobenius Tails Lemma

Lemma 2 (Gaussian projected Frobenius tails). Let X € R"*¢ have i.i.d. entries N(0,0%/n) and let
V € R¥* have orthonormal columns.

(i) Laurent—-Massart (numerator) tail. For any x > 0,

Pr(||XV||% > o [k: +2/k 4 %D < e

(it) MP-edge style bound via operator norm. Writing X = (0/y/n)G with G;; ~ N(0,1) and v = d/n,
for anyt >0,

Pr(||XV||% >ko®(1+ 7+ t)2) < exp(—%z@).
Both inequalities are non-asymptotic.

Proof (Appendix A.1) follows Benaych—Georges & Nadakuditi (2012, Thm 1.6) using a Chernoff bound on
the trace of a Wishart matrix.

Identification for SNL. In our application, set X = Hy (perturbed activations) and V' = V¢ (base null
basis). Then SNL(X,V) = SNLy(H).
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Corollary 1 (Plug-in SNL threshold under a Gaussian null). Adopt the setting of Lemma 2: X € R™*? has

i.i.d. N(0,0?/n) entries and V € R** has orthonormal columns. Fiz o € (0, 3).

(Numerator bound). With probability at least 1 — «,

IXV|% < o [k +ooy/h logél/o‘) T QIOgS/a)]. (5)

(Ratio bound for SNL). Defining SNL(X,V) := | XV|%/|| X%, a denominator lower tail and a union
bound give, with probability at least 1 — 2c,

k 4+ 2 [k log(1l/a) + 2log(1l/a)
SNL(X,V) < " - (6)
d — 2 /dlog(1l/a)

In particular, for 0% =1 the bound depends only on (n,d, k,a).

Proof. Inequality equation 5 is the Laurent-Massart upper tail for the y? variable %nHX V|2 with m = nk
degrees of freedom and 2 = log(1/a). For the denominator, note that 5 n||X||% ~ x2, and apply the Laurent—
Massart lower tail Pr(x2, —m < —2y/mz) < e~* with m = nd and the same z to obtain, with probability

>1—a, || X]3% > 02 [d —2y/d log(l/a)/n} . Combine the two events by a union bound (probability > 1 — 2a)

and divide the numerator bound by the denominator bound to get equation 6. O

4.5 Online Null-Space Tracking
. B A - )
We model streaming fine-tune updates via H, =H,” +ng;.

Accuracy guarantee. By Corollary 2, ONT achieves e-accuracy (in expectation) after
t > t. = [C/e],

where C' is the constant appearing in the per-step bound of Theorem 3 and depends on the eigengap and
noise parameters in Assumptions A4-A6.

Definition (e-accuracy for NVL). Let D; = HHt‘A/tH%/(mk) be the ONT score at time ¢, and D} =
| H:Vo.el|%/(mk) the oracle score. We say ONT is e-accurate at time t (in expectation) if

E[D; — Df] < e.

If a confidence level 1 — ¢ is specified, we say ONT is (g,0)-accurate if Pr{D; — D} <e} > 1.

Corollary 2 (s-accuracy from O(1/t) decay). Under Assumptions A4—A6, there exists a constant C > 0
such that o

E[D, - Di] < —.

Consequently, for any € > 0, choosing t > t. := {C/E] guarantees e-accuracy (in expectation).
Proof. Immediate from the per-step bound E[D; — D}] < C/t established in the proof of Theorem 3. O

4.6 Regret of Online Trackers

We analyse the one—pass estimators that update a k—dimensional null basis from streaming activations
(Algorithm 2) and its LoRA-aware variant (Algorithm 3). Let P, = VNV[)TJ be the projector onto the true

right—null space of the base model at layer ¢, and P; = XA/,JA/J the tracker’s projector after processing batch ¢.
Define the per-batch NVL score D; = ||H;V;||%/(mk) and the oracle score D} = ||H:Vy ¢||%/(mk).

10
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Additional standing assumptions. A4 The population Gram matrix > has eigengap § > 0.

. _c . 1
A5 Step sizes n; = Fwith 0 <c < T

A6 ||H, H; — X||5 is 72-sub-exponential.
Theorem 3 (Logarithmic Regret of ONT/ONAL). Under A1-AG, the online null-space tracker (ONT) obeys

Z_;(Dt - D;)

Moreover, the same bound holds for ONAL provided each projected LoRA step uses the same schedule n; and
the projected gradient is used in place of the raw gradient.?

E = O(k7?logT).

Proof. Step 1: Subspace error contracts at rate O(1/¢). ONT is an Oja—type iteration on the orthogonal
complement of im(H,) with Robbins—Monro steps 7; = ¢/t. By standard analysis of stochastic subspace
methods with an eigengap (§ > 0) and bounded noise (A6), there exists C; > 0 s.t.

C
E[IP - PF] < 2 7

(Proof sketches use the non-expansiveness of the projection map, martingale difference decomposition of
H] H; — ¥, and an ODE method; the eigengap yields a linearised contraction with Robbins-Monro damping.)

Step 2 (revised): From projector error to NVL gap via . Let F;_; be the filtration up to batch t—1
and Gy := H| H;. By definition,

Taking conditional expectation and using E[G; | Fi—1] = Z,
Elmk (D; — D}) | Foa] = tr((P, — P)%).

Under A4, ker(X) = im(P,) so ¥P, = P,X = 0, hence tr((P; — P,)X) = tr(PX). By Lemma 3, with
L= X2,

L
tr(PY) < 5 | P — P||%.

Therefore I
E[D; — Dy | Fra] < Ik | P: — P.||%.
Taking expectations and invoking Step 1 (Eq. equation 7) gives
C
E[D, — D}] < 73 (8)

for C5 := LC4/(2mk), as claimed.

Lemma 3 (Projector—trace control). Let ¥ = 0 with ker(X) = im(P,) and eigenvalues on im(I — P,) bounded
by 0 <0 < Amin(Blimr—p,)) < |1Ell2 =: L. For any rank-k orthogonal projector P,

5 L
§||P—P*H% < tr(PY) = tr(P - P)Y) < 5||P—P*\|§;.

Proof. Since XP, = P,Y> =0, tr((P — P*)E) = tr(PX). Write IT := I — P,. Because ¥ = II¥II,
tr(PY) = tr(IPI X) < ||X]|2 tr(IIPII) = L tr(PII).

For rank-k projectors P, P, the identity tr(PII) = k — tr(PP,) = 1||P — P.||% yields the upper bound. The
lower bound is identical with L replaced by ¢ and the inequality direction reversed. O

Le. the update is Ay < Ay — nt PoV oLt and similarly for By; cf. Alg. 3.

11
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Step 3: Regret via harmonic sum. Summing equation 8 over ¢t =1,...,T yields E[Zle(Dt - D)) <
T
C3> i % = O(logT).

Extension to ONAL. ONAL replaces raw gradients with their null-projected versions, which is a non-
expansive map in the operator norm. The same argument applies to the induced projector iterate P;; the
step-size restriction in the statement keeps the projected update stable so equation 7 continues to hold with
(possibly) a different C;. O

Remark 2 (Constants and eigengap.). The hidden constants depend on the eigengap § of ¥ (inversely), the
noise level 72 (from A3’s sub-exponential tail), and the spectral radius |||z via the choice of ¢ in 7, = ¢/t.

4.7 Low-Rank Perturbation Leakage

In transformer-based LLMs, low-rank adaptation (LoRA) modifies attention and MLP weight matrices via
updates of the form AW = ABT, making null-space leakage a concrete concern for practical fine-tuning.
Recent work on LoRA-Null adaptation (Tang et al., 2025) shows that low-rank updates AW = AB" can
inject energy into the right-null space unless the factors A, B are chosen from ker(H,) itself. We formalise
the worst-case leakage.

Theorem 4 (Rank-Leak Bound). Let A, B € R¥™" with r < d, and let Vo, € R*¢ have orthonormal
columns spanning ker(H,). Write an orthonormal basis of the column space of B as Up € R¥™" (so0
im(B) = im(Ug)). Then

||(ABT) VOvEHF < Unlax(A) ||BTVE),Z||F < Umax(A) Jlnax(B) ||U£VO,I| F- (9)
Moreover,
min(r,kg)
IURVoel: = ) cos0;(im(B), ker(H,)), (10)

i=1

where 6; are the principal angles between the two subspaces. In particular, zero leak occurs iff BTVO)g =0, ie.
im(B) L ker(Hy).

Proof. Let Z := B"Vy, € R™*¢. Submultiplicativity of the Frobenius norm yields ||(AB")Vo||r = [|AZ||r <
A2 Z|lF = omax(A)|| BT Vo], proving the first inequality.

For the second, write a thin SVD B = UgSpW} with X = diag(o1(B),...,0.(B)). Then B'Vy, =
WBEBUEVM, hence

IB"Voellr = 56 UpVoulr < omax(B) [UpVo.ellr,

establishing the second inequality in equation 9.

Finally, if U € R®" and V € R are orthonormal bases of two subspaces, the singular values of UV
are the cosines of the principal angles {0;} between the subspaces. Therefore [|[UTV||% = 3, cos? 0;, giving
equation 10. In particular, ||(AB")Vo|lr = 0 iff B"Vy, = 0, i.e. im(B) L ker(Hy). O

Figure 1 provides a minimal synthetic illustration of (Thm. 4), confirming that null leakage from rank-r
updates scales with ), cos? §; as predicted.

12
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Theorem 5: Null leakage vs Zcos2 6;

I

7’

’/

e

Measured: ||(ABT)V,||?

0 T T T T
0 1 2 3 4 5 6

Predictor: > cos? 6, = rcos? 6
i

Figure 1: Sanity-check validation of the Rank-Leak Bound (Thm. 4). For synthetic low-rank updates
AW = ABT, measured null-space leakage ||[(AB)V; |3 scales linearly with the predicted quantity Y-, cos? 6;,
where {6;} are the principal angles between im(B) and the base-model null space ker(H). This experiment is
not a benchmark, but a controlled consistency check confirming the tightness and qualitative behavior of the
theoretical bound.

Sanity-check validation. Although this work is primarily theoretical, we include a minimal synthetic
validation to verify that the predicted dependence in Theorem 4 is observable in practice. Figure 1 shows that,
for controlled low-rank perturbations, null-space leakage scales linearly with the sum of squared principal-angle
cosines, as predicted. This experiment is not intended as empirical benchmarking, but as a consistency check
demonstrating that the theorem captures the correct geometric mechanism.

Remark 3 (When does equality hold?). Equality in the first step of equation 9 requires Z to lie in a
right-singular subspace of A associated with oax(A); equality in the second step requires ULVp o to lie
in a right-singular subspace of ¥ associated with o,.x(B). Thus equality demands joint alignment: the
B-columns that are closest (in principal-angle sense) to ker(Hy) must also be mapped by A along its top
singular direction.

Implication. LoRA-Null initialises the update so that im(B) L ker(H,), i.e. B'V;, = 0. By Theorem 4
this yields zero leakage at initialisation. ZDP therefore complements LoRA-Null: it detects when subsequent
training steps rotate im(B) back toward ker(Hy), increasing || BT V; (|| and the null-space energy.

4.8 Spectral Null-Leakage (SNL)

We measure spectral leakage into the base null space via

A

SNL(H) : 5,
14

2 5 with Vb,g = keI‘(Hg).
I3

For thresholding, identify X = fI@ and V=Vj, in Lemma 2; Corollary 1 then supplies a calibration-free,
(n,d, k, a)-explicit bound for SNL;(H) under a Gaussian null.

13
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4.9 Free-Probability Corollary

A free-probabilistic analysis of transformer activations (Xu & Singh, 2025) suggests that, for large d,n,
the empirical spectral distribution of HyVj, converges almost surely to a shifted Marchenko-Pastur law.
Combining with Theorem 4 yields:

Proposition 1 (Expected overlap of random subspaces). Let Ug € R¥" and Vo € R?*F¢ he independent
Haar-orthonormal bases of r- and ky-dimensional subspaces of R¢. Then

k

E|ULVol% = TTIZ‘
Sketch. By rotational invariance, E[UgU}] = %5I; and IE[X/O,@VOTA = %@Id. Hence E||UjVo,|% =
Ete(V] UpULVos) = tr(5 E[VT Voul) = rke/d. 0

Remark 4 (Heuristic leak under isotropy). Combining Theorem 4 with Proposition 1 yields

ke

EJ|(AB Woul3 < 020n(4) 020n(B) .

max max
If the perturbation is small so that Hﬁ ¢||% is approximately constant, a first-order linearisation suggests an

approzimate expected increase in SNL¢(H) bounded by the RHS divided by || H, ¢||%. We present this as a
heuristic, not a theorem.

4.10 Online Null-Aligned LoRA (Algorithm 3)

Caveat (exact vs. estimated projectors). If the projector Py = VMVOTJ is computed ezactly and each

LoRA update is re-projected, then indeed }AIgVo,g = 0 and SNLZ(}AI ) = 0. With an estimated null basis
Vo,e (finite data, SVD thresholding, numerics), a residual leak remains. Let © = ©(Vy ¢, Vo ¢) denote the
principal-angle matrix and set G := AHZAH 0. A standard perturbation argument together with Davis—Kahan
yields
~ ~ 2 ~ 2 . 2
|HeVoule < [[HVou||m + 211Gz ||sin®]| ., (11)

so the induced SNL(H) grows at most linearly with ||G||» and quadratically with the subspace error || sin ©|| .
In practice, tighter SVD cutofls, periodic re-orthonormalisation, and per-step re-projection (Alg. 3) keep this
residual negligible. Pseudo-code appears in Appendix A.3; the regret bound is proved in Section 4.6.

5 Discussion

What “listening to silence” buys us. The core message of ZDP is that null directions are unambiguous
witnesses of change. The Variance-Leak Theorem (Thm. 1) shows that energy observed in the right-null space
lower-bounds the smallest non-zero eigenvalue of the perturbation Gram matrix; the Fisher Null-Conservation
law (Thm. 2) then explains why second-order KL curvature is unaffected by perturbations confined to ker(Hpy).
Together, covariance geometry (NVL/SNL) and information geometry (FIM) describe orthogonal facets of
drift.

Complementarity of probes. The proposed probes capture distinct and complementary aspects of
representational change. NVL and SNL quantify covariance leakage: they measure whether activations
that were silent in the base model’s null space acquire nontrivial variance after fine-tuning. In contrast,
the Fisher Null-Conservation (FNC) probe captures information-geometric leakage: it measures whether
perturbations along nominally null directions induce curvature in the local KL, geometry. As a result, these
probes need not move in lockstep. In particular, it is possible to observe NVL, ~ 0 while FNC, is large,
indicating that the null space remains covariance-silent but is not Fisher-silent. This regime corresponds to
directions that are rarely occupied by activations, yet to which the model is highly sensitive when perturbed.
Conversely, elevated NVL/SNL with small FNC indicates representational occupancy drift without strong
functional sensitivity. Thm. 2 formalizes this distinction by showing that approximate Fisher-silence induces
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only a controlled second-order KL residual, allowing FNC to be interpreted quantitatively rather than as
a binary condition. Together, NVL/SNL and FNC provide complementary diagnostics: the former detect
representational occupancy drift, while the latter flags sensitivity drift even when occupancy remains low.

Low-rank adaptation and leakage. The Rank-Leak Bound (Thm. 4) quantifies when LoRA introduces
energy into previously silent directions via principal angles. Null-aligned initialisation eliminates first-order
leakage, while the Online Null-Aligned LoRA optimiser (Alg. 3) projects every gradient step back into ker(Hy),
keeping SNL identically zero under exact projectors.

A priori thresholds from random matrices. Lemma 2 provides non-asymptotic Laurent—Massart tails
for Frobenius energy in projected Gaussian activations and an MP-edge style concentration inequality for the
operator-norm route. These deliver calibration-free thresholds for drift alarms: no historical ROC curves are
required to set operating points.

Streaming guarantees. For online deployment, Theorem 3 shows that the cumulative excess leakage of
ONT/ONAL is O(logT') under an eigengap and mild noise regularity (A4—A6). In other words, streaming
null-space estimates converge quickly enough that long-horizon monitoring does not accumulate unbounded
error.

Robustness to estimation error. NVL/SNL are stable to small null-basis errors: Davis—Kahan implies
deviations of O(||G||2| sin ©||%), and our bounds translate directly when V¢ is replaced by an estimated ‘7070
Practical guidance follows: use a conservative SVD cutoff, aggregate over prompts to reduce variance, and
prefer Frobenius energy (dimension-exact) when eigenspectra are flat.

Limitations and scope. Results hinge on (i) accurate projector estimation, (ii) an eigengap on the
population Gram matrix, and (iii) sub-exponential noise. Non-Gaussian heavy tails, attention-dependent
subspaces, and cross-layer coupling fall outside the present analysis. Extending the theory to these regimes is
an important next step.

Linear-algebraic scope and nonlinear effects. The ZDP framework is intentionally grounded in linear-
algebraic properties of activation matrices, such as null spaces, covariance structure, and Fisher geometry. As
such, it does not attempt to model higher-order nonlinear dynamics of activations or representational drift
arising from strongly nonlinear transformations.

This design choice reflects a local, first- and second-order perspective that is standard in representation analysis
and information geometry. In particular, ZDP probes linear subspaces of hidden-state space that are provably
silent under the base model; any energy or curvature that appears in these directions constitutes unambiguous
evidence of change, independent of the surrounding nonlinearities. From this viewpoint, nonlinear effects
are not ignored, but rather enter implicitly through the observed activation matrices and the local Fisher
information.

We emphasize that ZDP is not intended as a complete model of all nonlinear representation dynamics in
LLMs. Instead, it provides a conservative, architecture-agnostic diagnostic that isolates changes detectable at
the level of linearized representations. Extending null-space analysis to explicitly nonlinear submanifolds,
attention-dependent null spaces, or higher-order statistics is an important direction for future work.

Conceptual implications. ZDP reframes drift detection as a question of subspace occupancy rather than
output behaviour. The framework suggests certification-style guarantees: if SNL stays below an MP-derived
threshold while FNC remains zero, then second-order KL cannot exceed a computable bound—independent
of tasks or labels.

5.1 Relationship Between NVL, SNL, and FNC

The ZDP framework introduces three complementary drift metrics—NVL, SNL, and FNC— which quantify
distinct but related notions of representational change.
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NVL: absolute occupancy drift. Null-Variance Leakage (NVL) measures the total Frobenius energy that
enters directions which were silent in the base model. As an unnormalized quantity, NVL is highly sensitive:
any nontrivial activation of the base-model null space produces a positive signal. The Variance-Leak Theorem
(Thm. 1) formalizes this sensitivity by showing that excess NVL lower-bounds the smallest eigenvalue of the
perturbation Gram matrix.

SNL: relative occupancy drift. Spectral Null-Leakage (SNL) normalizes NVL by the total activation
energy, yielding a scale-invariant measure of how much representational mass has shifted into previously
silent directions. SNL is therefore better suited for comparisons across layers, batch sizes, or training regimes.
Random-matrix results (Lemma 2, Cor. 1) provide calibration-free thresholds for SNL under a Gaussian null
hypothesis.

FNC: information-geometric sensitivity. Fisher Null-Conservation (FNC) probes a different axis:
whether perturbations aligned with the base null space induce curvature in the local KL geometry. Unlike
NVL and SNL, which measure representational occupancy, FNC measures functional sensitivity. Thm. 2
shows that when the null space is Fisher-silent, second-order KL contributions are confined to the image
space of the base activations, regardless of covariance leakage elsewhere.

Complementarity and non-equivalence. The three metrics are not redundant and need not move
together. For example, it is possible to observe NVL a 0 while FNC is large, indicating Fisher-sensitive
directions that remain rarely occupied by activations. Conversely, elevated NVL/SNL with small FNC
indicates representational drift without strong functional consequences. ZDP deliberately separates these
phenomena, providing a multi-axis diagnostic of drift rather than a single scalar score.

Metric Interpretation

NVL Absolute covariance leakage: total activation energy entering directions that were
silent in the base model. Highly sensitive but scale-dependent.

SNL Relative covariance leakage: fraction of total activation energy occupying the base
null space. Scale-invariant and comparable across layers or regimes.

FNC Information-geometric leakage: Fisher curvature along base null directions, indi-

cating second-order KL sensitivity rather than occupancy.

Table 1: Conceptual relationship between ZDP drift metrics. NVL and SNL quantify representational
occupancy drift, while FNC measures information-geometric sensitivity.

6 Conclusion

We developed Zero-Direction Probing (ZDP), a theoretical framework for analysing model drift purely
through the right/left null spaces of layer activations and their Fisher geometry. Our main results are: (i)
the Variance-Leak Theorem, which lower-bounds perturbation strength from null-space energy; (ii) Fisher
Null-Conservation, which isolates the KL-contributing components of a perturbation; (iii) a Rank—Leak
bound for low-rank updates based on principal angles; (iv) calibration-free thresholds from random-matrix
tails; and (v) logarithmic-regret guarantees for online null trackers and a null-aligned LoRA optimiser.

Beyond these formal results, the framework offers a pragmatic recipe for a priori drift certification: compute
(or track) null projectors, monitor NVL/SNL and FNC against MP /Laurent-Massart thresholds, and project
adaptation steps to remain silent by construction. Although this manuscript is deliberately experiment-free,
every statement is testable and designed to transfer directly into practice.

Open problems. We highlight several theory-first directions: (1) High-probability versions of the
regret bound with explicit constants; (2) Attention-aware null spaces that couple token positions; (3)
Multi-layer interaction—propagation of leakage through residual paths; (4) Non-Gaussian null models
(sub-Weibull/heavy-tailed activations); (5) Left-null analogues of rank-leak and online projection; (6)
Certified editing, integrating ONAL with trust-region constraints on KL.
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By “listening to silence”—and proving what it implies—we aim to provide a mathematically grounded
foundation for monitoring and controlling representation change in large language models.
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A Appendix

A.1 Proof of Lemma 2 (MP Tail Bound)

Proof. Let X € R™*? have i.i.d. entries N(0,02/n) and let V' € R4** have orthonormal columns (VT V = I},).
By rotational invariance of the Gaussian, Y := XV has i.i.d. entries N(0,02/n) and size n x k. Hence

nk
ii.d.
n| XV = Y3 = Y 27, Z = N©O,0%).
i=1

Equivalently, % n || X V|3 ~ x2,.
(a) Laurent—Massart tail. For any = > 0, the Laurent-Massart inequality for a x2, random variable states
Pr(xfn —m>2ymzx + 29:) < e".
Applying this with m = nk to Zzn||X V|3, and rescaling yields, for all z > 0,
P(IXVIE > o2 [k + 2¢/82 + 2]) < e, (12)

This gives an explicit, non-asymptotic exponential tail for the Frobenius energy in the projected (null)
subspace.

(b) Operator-norm route to an MP-edge style bound. Alternatively, use | XV||% < k| X||3 to reduce
the problem to the spectral norm of X. Write X = (0/y/n) G with G;; ~ N(0,1). A standard bound (e.g.
Vershynin) gives, for any ¢ > 0,

Pr(||GH2 > /n+ \/c§+t) < e /2,

Therefore ) ) -
Pr(|XV(3 > ko? (147 +1)*) < P(IXIE > 0*(14+ 7 +1)°) < 72",

where v = d/n. In particular, for any u > (1+ ,/7)?,
" 2
Pr<||XV||% > ko? u) < exp(—g(\/ﬂf (1+7)) ) (13)

The exponent in equation 13 reflects the Marchenko—Pastur upper edge (1 + \ﬁ)Q and gives an alternative
exponential tail useful when w is measured relative to that edge.

Combining equation 12 and equation 13 yields the claimed exponential decay of the false-positive probability

under an i.i.d. Gaussian null. Either form suffices for the thresholding rule in §4.3; the former is dimension-exact
in (n, k), while the latter connects directly to the MP edge via v = d/n. O
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A.2 Algorithm 2

Algorithm 2 Online Null-Space Tracker (ONT)

Require: stream {H,;};>1 with H; € R™*%; target nullity k; steps 7, = ¢/t (A5); initial basis Vo € Rdxk
with orthonormal columns R
1: P+ VoVy, {v}r, < columns of V;
2: fort=1,2,... do

3: Gy H;'—Ht > local Gram
4: fori=1to k do

5: v; — vy — e Gy v, > Oja-style step toward null directions
6: v; < v; — Py, > deflation: keep update in orthogonal complement of current span
7 end for

8: Vi + QR([vl, A vk]) > orthonormalise; thin QR or SVD
9: P+ ‘Z‘ZT

10: D; + ||H; f@H%/(mk) > NVL drift score (used in Thm. 3)
11: end for

A.3 Algorithm 3

Algorithm 3 Online Null-Aligned LoRA (ONAL)
Require: stream of mini-batches {B;};>1; frozen base weights W; LoRA rank r for layers £; right-null
projectors {P; = V0751/()Te}geg; step schedule 7, = ¢/t (A5); optional clip A > 0
1: Initialise LoRA factors {Aég), B(()Z) € R¥™"} with columns in im(F)
2: fort=1,2,... do
3: forward with W =W + 3", . Age)B,EZ)T on B;; compute loss L,

4 backward: get raw grads {V 4«)Lt, Vg Lt eer

5 for each layer / € L do > null-projected, stable update

6 ga < PeNV oLy, g < PiVpgel > project into ker(Hy)

7 if A > 0 then > optional gradient clipping

8 g4 ga-min(1,\/|lgallr). g5 g5 - min(1,\/|lg5lr)

9: end if

10: Ay« AP —nega, BE + BY —nigs

11: Agﬂ)l — P Agi)l, Bt(ﬂ — P Bt(_?l > reprojection (numerical drift guard)

12: optional (every S steps): thin-QR re-orthonormalise columns

130 [Qa, _]=QR(A), [Qe._]=QR(B)): Al QaRa, B —QpRsy

14: end for R

15: monitoring (optional): D; < ||H; V;||%/(mk) (tracker score) , Dj < ||H; Voe||%/(mk) (oracle)
SNL(H) = |[HVo el T/ Hell%-

16: end for
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