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ABSTRACT

Graph neural networks (GNNs) suffer from the curse of depth, a phenomenon
where performance degrades significantly as network depth increases. In this
work, we aim to provide a more principled analysis and solution via the lens
of signal propagation. We identify three metrics for a good signal propagation
in graph neural nets: forward-propagation, backward-propagation, and graph
embedding variation (GEV). We prove that traditional initialization methods, which
deteriorate the performance of deep GNNs, fail to simultaneously control the three
metrics. To tackle this issue, we develop a new GNN initialization method called
Signal Propagation on Graph (SPoGInit), which searches for weight variances
that minimize the three metrics. In various datasets, SPoGInit achieves notable
performance enhancements in node classification tasks as GNNs grow deeper. For
instance, we observed a 2.2% gain in test accuracy on OGBN-Arxiv dataset as the
depth increases from 4 to 64.

1 INTRODUCTION

Increasing depth has been an important theme in the development of neural networks. For instance,
from AlexNet (Krizhevsky et al., 2012), VGG19 (Simonyan & Zisserman, 2015) to ResNet He
et al. (2016), the depth of CNN (convolutional neural network) has increased from 8, 19 to 52, and
the corresponding test accuracy on ImageNet has increased from 63.3%, 74.4% to 78.57%. The
theoretical benefit of depth is often considered to be strong representation power: it was proven that
to represent a deep network with a small width by a shallow network, exponentially many neurons
are required (Telgarsky, 2015; Eldan & Shamir, 2016; Liang & Srikant, 2017).

Nevertheless, unleashing the power of deep nets requires extra techniques to handling the training
difficulties. For instance, He et al. (2016) pointed out that at the time of writing their paper, increasing
the depth beyond 20 will lead to worse performance, and they proposed a new technique (skip
connection) to train 50+ layer CNN. Designing initialization is another method to handle the training
issues of deep nets Xiao et al. (2018).

In the realm of Graph Convolutional Networks (GCNs), it is natural to explore deeper architectures.
Deeper GCNs inherently possess stronger representation power, and thus hold potential advantages
in handling complex graph data, including those that display long-range dependencies among
nodes. Nontheless, empirical studies indicate that increasing the depth of a GCN often deteriorate
performance, rather than enhance it. This phenomenon, which we refer to as the curse of depth,
presents a substantial challenge in the development of effective GCNs. In recent years, over-smoothing
(Li et al., 2018; Oono & Suzuki, 2019) has been identified as one of the major reasons for the curse of
depth. Over-smoothing occurs when, as a GCN becomes deeper, embeddings among different nodes
become increasingly similar, rendering nodes challenging to differentiate. A variety of approaches
have been explored to tackle the over-smoothing issue within the GCN family, such as nodes or edges
dropping techniques (Srivastava et al., 2014; Zou et al., 2019; Rong et al., 2020; Huang et al., 2020;
Lu et al., 2021), normalization techniques (Ioffe & Szegedy, 2015; Zhao & Akoglu, 2020; Zhou et al.,
2020; Yang et al., 2020; Zhou et al., 2021b; Li et al., 2020; Guo et al., 2023), and regularization
techniques (Chen et al., 2020a; Yang et al., 2020; Zhou et al., 2021a). Despite their good performance,
they have not fully alleviated the curse of depth. In fact, the optimal performance for GCNs in most
of these studies is still achieved with less than 20 layers, suggesting that the curse of depth continues
to constrain the potential of GCN. See more detailed discussion of their optimal performance and the
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corresponding depths in Appendix F. Such limitation indicates an ongoing need for new perspectives
and strategies to resolve the curse of depth.

Inspired by signal propagation (SP) theory in deep neural networks (DNNs) (Poole et al., 2016;
Schoenholz et al., 2017; Pennington et al., 2017; 2018; Hanin, 2018), we realize that over-smoothing
is also one type of signal propagation issue, though it is only present in GCNs and occurs due to
the graph structure. This understanding has two implications. First, it is an SP issue, and thus may
be addressed via the common SP-handling methods, such as initialization design. Second, it is just
ONE SP issue, and other SP issues exist, thus addressing just over-smoothing may not be enough to
address the curse of depth.

Based on this understanding, we propose the following framework to address the curse of depth
in GCNs: (i) consider both the graph-dependent SP issue (oversmoothing) and generic SP issue
(forward signal propagation and backward signal propagation); (ii) design a proper initialization to
resolve these issues simultaneously. More specifically, we consider three metrics to assess the quality
of GCN initialization: forward signal propagation (FSP) and backward signal propagation (BSP),
and graph embedding variation (GEV). Here the GEV metric (an oversmoothing metric) is graph
dependent, and the FSP and BSP metrics are generic. With these metrics, we provide theoretical
analysis of classical initiazation and propose a new intialization scheme, as detailed below.

• Theory: Analysis of Classical Initialization: We prove that traditional initialization methods for
both vanilla GCNs and residual GCNs (ResGCNs) do not control all three metrics simultatenously.
We provide experiments to show that the traditional initialization methods can indeed cause the
explosion/vanishing of one or more metrics. These results help explain why traditional initialization
methods cannot resolve the curse of depth issue in GCNs.

• Algorithm: SPoGInit: We propose a new initialization design method called Signal Propagation
on Graph (SPoGInit), which is to use an optimization algorithm to find weight variances to control
all three signal propagation (SP) metrics. For ResGCNs, a special version of this initialization,
termed SPoG-ResGCN, is introduced. Experiments show that on complex graph data, with the
proposed initialization methods the performance increases as the depth increases, while other
initialization methods or models display deteriorating performance as the depth increases.

2 PRELIMINARIES AND BACKGROUND

For any integer N ∈ N, we define [N ] := {1, 2, . . . , N}. For brevity, we use θ to denote the
collection of trainable parameters in a GCN model. For additional useful notation, see Appendix B.1.

2.1 GRAPH CONVOLUTIONAL NETWORKS

Featured graph. Let G = (V, E) be an undirected graph, where V is the set of nodes with |V| = n,
and E is the collection of edges. Assume that each node is associated with a d0-dimensional feature
and a label belonging to [C]. Let xi ∈ Rd0×1 and yi ∈ [C] denote the feature and the label of
node i, respectively. Define the node feature matrix as X = (xT

1 , x
T
2 , . . . , x

T
n )

T ∈ Rn×d0 . Let
A = (1{(i,j)∈E})i,j∈[n] ∈ Rn×n represent the adjacency matrix and D = diag(A1n) ∈ Rn×n

represent the degree matrix. Further, Ã = A+ I and D̃ = D+ I denote the adjacency matrix degree
matrix of graph G with self-loop added to each node. Finally, the normalized adjacency matrix is
given by Â = D̃− 1

2 ÃD̃− 1
2 .

Vanilla GCN. Vanilla GCN (Kipf & Welling, 2017) stacks neighborhood aggregations and feature
transformations alternately. Specifically, let H(l), X(l) ∈ Rn×dl denote the pre-activation and the
post-activation embedding matrix at the l-th layer of the vanilla GCN, respectively. They are defined
recursively by

H(l) := ÂX(l−1)W (l) + 1n · b(l), X(l) := σ(H(l)),

where W (l) ∈ Rdl−1×dl and b(l) ∈ R1×dl are the weight and the bias term at the l-th layer, respec-
tively. The input to the first layer is given by X(0) = X , and the output matrix of an L-layer vanilla
GCN is H(L) ∈ Rn×C , which is then fed into a softmax layer to obtain the predicted labels.

ResGCN. Inspired by He et al. (2016), ResGCN (Kipf & Welling, 2017) combines residual
connections with vanilla GCN. An L-layer ResGCN adds skip connections to the post-activation
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embeddings, i.e.,

H(l) := ÂX(l−1)W (l) + 1n · b(l), X(l) := ασ(H(l)) + βX(l−1), ∀l ∈ [L],

where α, β ∈ R are gating hyper-parameters.1 Linear transformations (trainable) are applied before
X(0) and after H(L) to ensure consistency of embedding sizes.

2.2 INITIALIZATION

We consider the following class of initialization methods. At initialization, all W (l)
k′k are i.i.d. and

satisfy E[W (l)
k′k] = 0, Var[W (l)

k′k] = σ2
w/dl−1; all b(l)k are initialized to be 0 for any k′ ∈ [dl−1], k ∈

[dl], l ∈ [L].

Two widely used random initialization methods, LeCun initialization and Kaiming initialization (He
et al., 2015) fit into this framework with σ2

w = 1 and σ2
w = 2 respectively.

• LeCun: E[W (l)
k′k] = 0 and Var[W

(l)
k′k] = 1/dl−1.

• Kaiming (usually for ReLU): E[W (l)
ij ] = 0 and Var[W

(l)
ij ] = 2/dl−1.

In GCN models, uniform weight distribution with variance σ2
w = 1/3 is also widely used, e.g., in

PairNorm (Zhao & Akoglu, 2020), DropEdge (Rong et al., 2020), DropNode (Huang et al., 2020),
SkipNode (Lu et al., 2021), GCNII (Chen et al., 2020b). We simply refer to this initialization
as “Conventional initialization” in the rest of this paper. Xavier initialization has weight variance
2/(dl−1 + dl) = 1/d when hidden layers have the same width d.

3 THEORETICAL ANALYSIS OF GCN INITIALIZATIONS

In this section, we evaluate the quality of GCN initializations from three aspects based on the signal
propagation (SP) theory as follows.

Forward signal propagation (FSP) is responsible to extract abstract and higher-level represen-
tations from the input data as the information flows through the network. We propose the FSP
metric M

(L)
FSP(σ

2
w), which is the expected output-input norm ratio Eθ[∥H(L)(θ)∥2F/∥X∥2F]. A proper

initialization method should prevent M(L)
FSP(σ

2
w) from either vanishing or exploding as L→∞.

Backward signal propagation (BSP) is responsible for updating the weights by utilizing gradients
computed via back-propagation. In vanilla GCN, the gradient of W (l) at the l-th layer can be
decomposed as ∂ℓ/∂W (l) = σ(H(l−1))T · Â · [∂ℓ/∂H(l)] where ℓ is the training loss. A stable
magnitude of ∂ℓ/∂H(l) with respect to the layer l suggests that the gradient is less susceptible to
vanishing or exploding. We take Eθ[∥∂ℓ/∂W (1)∥2F] at initialization as the BSP metric M(L)

BSP(σ
2
w). A

proper initialization method should prevent M(L)
BSP(σ

2
w) from vanishing or exploding as L→∞.

Graph embedding variation (GEV) propagation is responsible for tackling the over-smoothing
issue, a GCN-specific problem. A number of existing works (Cai & Wang, 2020; Zhou et al.,
2021a) measure over-smoothing severity by Dirichlet energy Dir(H(L)) =

∑
(i,j)∈E ∥hi/

√
1 + di−

hj/
√

1 + dj∥2, where hi is the output embedding of node i. Dirichlet energy Dir(H(L)) reveals the
embedding variation with the weighted node pair distance, and a smaller value of Dir(H(L)) is highly
related to the over-smoothing. To eliminate the influence of the embedding norm, we propose the GEV
metric M(L)

GEV(σ
2
w), which is the expected of normalized Dirichlet energy Eθ[Dir(H(L))/∥H(L)∥2F] at

initialization. A proper initialization method should prevent M(L)
GEV(σ

2
w) from vanishing as L→∞.

3.1 THEORETICAL RESULTS FOR VANILLA GCN

We first theoretically evaluate the signal propagation (SP) quality at initialization in vanilla GCN.
Due to the nonlinearity and high dimensionality of neural networks, the SP analysis is challenging.

1The original version of ResGCN (Kipf & Welling, 2017) focuses on the special case (α, β) = (1, 1).
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In order to simplify it, we study the infinite-width limit of vanilla GCN using mean field theory
(Poole et al., 2016; Schoenholz et al., 2017). Different from traditional NNs, GNN blocks involve
interactions across nodes, so we have to consider the signal propagation of n nodes as an integrated
whole, rather than that of only one data sample in NNs. Under this approximation, all the channels
{H(l)

:,k}
dl

k=1 of each embedding at the l-th layer are i.i.d., following Gaussian distribution N(0n,Σ
(l)).

The n× n covariance matrix Σ(l) recursively satisfies

Σ(l) = σ2
wÂG(Σ(l−1))Â, Σ(1) = σ2

wÂXXT Â/d0,

where G(Σ(l)) = Eh∼N(0n,Σ)[σ(h)σ(h)
T ] ∈ Rn×n (see Appendix D.1 for the details). This

theoretical framework is referred to as the neural network Gaussian process (NNGP) correspondence.
Under the NNGP correspondence, the forward propagation (FSP) metric can be approximated by

M
(L)
FSP(σ

2
w) ≈ EH(L)∼N(0n,Σ(L))

[
∥H(L)∥2F/∥X∥2F

]
and the graph embedding variation (GEV) metric can be approximated by

M
(L)
GEV(σ

2
w) ≈ EH(L)∼N(0n,Σ(L))

[
Dir(H(L))/∥H(L)∥2F

]
,

where H(L) ∼ N(0n,Σ
(L)) means all columns (channels) of H(L) ∈ Rn×C are i.i.d. N(0n,Σ

(L)).

Now we analyze the signal propagation of GCN under various activation functions. We start with
ReLU since it is the most commonly used activation in popular GCN models (e.g., (Zhao & Akoglu,
2020; Rong et al., 2020; Huang et al., 2020; Lu et al., 2021; Chen et al., 2020b)). The following
theorem states that under ReLU activation, if the initial weight variance σ2

w ≤ 2, which covers
Conventional, Kaiming, and LeCun initialization, deep vanilla GCNs suffer from poor FSP and GEV.
Theorem 3.1. Under the NNGP correspondence approximation, when the activation function σ is
ReLU, we have

1. If σ2
w = 2, either the limit graph embedding variation metric limL→∞ M

(L)
GEV(σ

2
w) = 0 or the limit

forward-propagation metric limL→∞ M
(L)
FSP(σ

2
w) = 0;

2. When σ2
w < 2, the forward-propagation metric M

(L)
FSP(σ

2
w) ≤ 2C

d0
· (σ2

w/2)
L for any L ≥ 1.

Part 1 of Theorem 3.1 shows that under Kaiming initialization in ReLU-activated vanilla GCN, either
M

(L)
FSP or M(L)

GEV vanishes as L → ∞. Part 2 of Theorem 3.1 characterizes the shrinkage of M(L)
FSP

when σ2
w is even less than that of Kaiming initialization.

Theorem 3.2. Under the NNGP correspondence approximation, when the activation is ReLU, the
graph embedding variation metric M

(L)
GEV is independent of σ2

w.

Theorem 3.2 states that it is impossible to improve the graph embedding variation M
(L)
GEV(σ

2
w) by

simply refining σ2
w for ReLU-activated vanilla GCN. In other words, the over-smoothing issue cannot

be resolved by adjusting weight variance σ2
w in ReLU-activated vanilla GCN.

We now provide numerical evidence for Theorem 3.1 and 3.2. The purple lines in Figure 1(a)-(c)
illustrate the shrinkage of the three SP metrics under Conventional initialization as the network depth
L increases. Figure 1(a) when σ2

w presents the vanishing pattern of M(L)
FSP(σ

2
w) is no greater than that

of Kaiming initialization, which validates Theorem 3.1. Figure 1(b) shows that M(L)
BSP(σ

2
w) transits

from vanishing to stable, and then to exploding as σ2
w increases. Figure 1(c) shows that M(L)

GEV(σ
2
w)

cannot be improved via merely changing σ2
w, which validate Theorem 3.2.2

Different from ReLU-activated GCNs, Figure 1(f) shows propagation transits from vanishing to stable
for tanh-activated models as σ2

w increases. With proper σ2
w, stable propagation for all three types of

signals can be achieved; see the orange lines in Figure 1(d)-1(f). A theoretical result of the forward
propagation for tanh-activated vanilla GCNs is provided in Appendix D.5.

2In all the figures illustrating signal propagation metrics, disappearing nodes and vertical lines are caused by
surpassing the machine precision. Specifically, the vanishing forward propagation metric result in vertical lines
in the plots of the graph embedding variation metric, while the exploding forward propagation metric leads to
node disappearance in the plots of the graph embedding variation metric.
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Figure 1: Plots of (a,d) forward metrics, (b,e) backward metrics, and (c,f) graph embedding variation
metrics of deep vanilla GCNs with different initialization variances and activations on Cora. (Sub-
figures (a)-(c) are for ReLU activation, while sub-figures (d)-(f) are for tanh activation.) The choice
of initialization variance plays a crucial role in forward and backward propagation. The graph
embedding variation propagation can be made stable with proper initialization variance for tanh
activation, but not for ReLU activation.

3.2 THEORETICAL RESULTS FOR RESGCN

Similarly to vanilla GCN, the curse of depth has also been reported in deep ResGCN (Huang et al.,
2020; Rusch et al., 2023a). In this subsection, we focus on the signal propagation in ResGCN.

For simplicity, we study linear ResGCN with identity activation in the theoretical analysis. Such a
simplification is very common in NN theory (Saxe et al., 2014; Xu et al., 2021). Similar to vanilla
GCN, all the channels of H(L) are i.i.d. N(0n, Σ̃

(L)) under the infinite-width limit (a.k.a. NNGP
correspondence). The n× n covariance matrix Σ̃(l) recursively satisfies

Σ̃(l) = σ2
wÂΣ̃(l−1)Â+ Σ̃(l−1), Σ̃(1) = σ4

wÂXXT Â/d0, (1)

See Appendix E.1 for the details.

The following theorem implies that linear ResGCN may suffer from forward signal explosion and
over-smoothing under the NNGP approximation at initialization.

Theorem 3.3. Suppose that there exists an eigenvector u of Â corresponding to the eigenvalue 1,
such that the input feature X ∈ Rn×d0 satisfies XTu ̸= 0d0×1. Under the NNGP correspondence
for linear ResGCN, if α2σ2

w + β2 > 1 and α ̸= 0, then we have

lim
L→∞

M
(L)
FSP(σ

2
w) =∞ and lim

L→∞
M

(L)
GEV(σ

2
w) = 0.

Since (α, β) = (1, 1) for the original ResGCN (Kipf & Welling, 2017), α2σ2
w + β2 > 1 and

α ̸= 0 always hold for any nonzero initialization variance, which indicates exploding M
(L)
FSP(σ

2
w) and

shrinking M
(L)
BSP(σ

2
w).

Numerical experiments demonstrate that the consequences of Theorem 3.3 can be observed on
ResGCNs with non-linear activations. In Figure 2, we plot the FSP and the GEV of ReLU-activated
ResGCN with different initialization variances. We see that the widely used Conventional and
Kaiming initialization schemes (Huang et al., 2020; Kipf & Welling, 2017) (and essentially any
non-zero initialization variance) lead to exploding forward propagation and over-smoothing.

In summary, the discussions in Sections 3.1 and 3.2 provide a theoretical guarantee that the traditional
initialization schemes utilized in both vanilla GCN and ResGCN fail to achieve proper SP. To address
this challenge, we will introduce new initialization schemes in the subsequent section.
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Figure 2: (a) The forward metrics and (b) the graph embedding variation metrics of ReLU-activated
deep ResGCN on Cora. ResGCNs with non-zero initialization variances always suffer from exploding
forward propagation and over-smoothing.

4 SPOGINIT: INITIALIZATION GUIDED BY SIGNAL PROPAGATION ON GRAPH

Section 3 theoretically shows that conventional initialization approaches fail to ensure effective signal
propagation for GCNs. In essence, finding a single initialization variance that caters to every layer,
while meeting all three SP metrics, proves to be a daunting task. One promising approach is to
permit distinct initialization variances across different layers. This strategy allows various layers to
synergistically complement each other, leading to more efficient signal propagation.

However, allowing distinct layer-wise variances introduces a new challenge. Specifically, it is not
straightforward to design a unified criterion to set the variances for GCNs with varying depths. To
resolve this challenge, we introduce the SPoGInit (Signal Propagation on Graph guided Initialization)
method. For any GCN (with a given depth), SPoGInit formulates and solves an optimization problem,
so as to determine the layer-wise initialization variances that meet the SP requirements.

Given a GCN with L layers, we denote the variance of the l-th layer by σ2
w,l. SPoGInit solves the

following optimization problem

minimize
{σw,l}L

l=1

w1VFSP + w2VBSP − w3M
(L)
GEV (2)

where VFSP := (M
(1)
FSP/M

(L−1)
FSP − 1)2 encourages consistent forward propagation metrics across

hidden layers, while VBSP := (M
(2)
BSP/M

(L−1)
BSP − 1)2 targets consistent backward propagation

metrics, with the numbers in parentheses indicating the layer index corresponding to the gradient
norm. Besides, w1, w2, w3 > 0 are pre-defined for balancing these three SP metrics. During the
implementation of SPoGInit, we adjust the weight initialization variances across layers by gradient
descent algorithm. More details about SPoGInit are in Appendix G.

4.1 SPOGINIT FOR RESGCN

SpoGInit can be applied to both vanilla GCN and ResGCN. While applying SPoGInit for Res-
GCNs, we observed an interesting phenomenon that the average magnitude of residual blocks
ασ(ÂX(l−1)W (l)) converges to 0 in Figure 3(a). It implies that in order to achieve satisfactory SP in
ResGCNs, the “signal” of the first layer should be preserved in all the following layers. That is, we
should ensure each hidden embedding H(l) to be identical to H(1).

The above requirement leads to three potential initialization designs for ResGCNs regarding the
initialization variances and the gating parameters:

(D1). α(l) = 0, σ2
w,l = 0; (D2). α(l) = 0, σ2

w,l > 0; (D3). α(l) > 0, σ2
w,l = 0.

All these three designs set β(l) = 1. Here, α(l), β(l) denote the corresponding gating parameters at
the l-th layer, which are set to be trainable parameters to preserve the expressive power of ResGCNs.

We test the performance of the three designs. Figure 3(b) demonstrate that (D2) significantly
outperforms (D1) and (D3). Consequently, we choose (D3) as the initialization strategy called as
SPoG-ResGCN for ResGCN. SPoG-ResGCN’s corresponding network is

H(l) := ÂX(l−1)W (l) + 1n · b(l), X(l) := α(l)σ(H(l)) + β(l)X(l−1), ∀l ∈ [L],
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Figure 3: (a) The average magnitude of residual blocks in ResGCN during the SPoGInit on the Cora
dataset. (b) the average test accuracies of ResGCN with different initialization designs. We find that
the average magnitude of residual blocks rapidly reaches close to 0 during SPoGInit searching and
the initialization design α = 0, β = 1, σ2

w,l > 0 significantly outperforms other designs.

where the trainable parameters (α(l), β(l)) = (0, 1) and Var[W
(l)
ij ] = σ2

w/d at initialization.3

From the theoretical perspective, SPoG-ResGCN can also be deducted from Theorem 3.3. Since
α2σ2

w + β2 > 1 and α ̸= 0 leads to exploding forward metric M(L)
FSP and vanishing graph embedding

variation M
(L)
GEV, a straightforward way to resolve it is to set α(l) = 0. If so, each layer of ResGCN

becomes X(l) = β(l)X(l−1). Again, to preserve forward SP, a natural way is to set β(l) = 1.

In the experimental section, we demonstrate how SPoGInit, when applied to both vanilla GCN and
ResGCN, effectively improves signal propagation and alleviates the performance decline in deep
GCNs.

5 EXPERIMENTS

In this section, we demonstrate the advantage of the proposed SPoGInit in training deep graph neural
nets. Due to limited space, details of the datasets, experimental settings, and hyperparameters are
given in Appendix H.1 and H.2.

5.1 EXPERIMENTS FOR VANILLA GCNS

We first examine whether SPoGInit tackles the signal propagation and performance degradation
of deep GCNs.
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Figure 4: (a) The forward metrics, (b) backward metrics, and (c) graph embedding variation metrics
of deep GCNs with different initializations on the Cora dataset. (d) Test accuracies of deep GCNs
after training on Cora. We find that SPoGInit simultaneously addresses three signal propagation
aspects, and alleviates the performance degradation.

In Figure 4(a)-4(c), we report the average signal propagation metrics for vanilla GCNs with different
initializations and varying depths. The results indicate that SPoGInit stabilizes the forward-backward
propagations and enhances the graph embedding variation. Notably, SPoGInit successfully prevents
gradient vanishing, a common issue encountered by other initialization. As a result, SPoGInit
effectively alleviates the performance degradation of deep vanilla GCNs. It outperforms the baselines
(Xavier, Conventional) by 7.5% and 35.2% test accuracy at depth 128 (see Figure 4(d)). Similar
phenomena are also observed in various other datasets. We present more experiments in Appendix

3The design of gating parameters for residual networks coincides with Bachlechner et al. (2021).

7



Under review as a conference paper at ICLR 2024

4 8 16 32 64
Depths

0.3

0.4

0.5

0.6

Tr
ai

n 
Ac

cu
ra

cy

JKNet
ResGCN
GCNII
APPNP
DAGNN
SPoG-ResGCN

(a) Arxiv-year training

4 8 16 32 64
Depths

0.725

0.750

0.775

0.800

0.825

0.850

Tr
ai

n 
Ac

cu
ra

cy

JKNet
ResGCN
GCNII
APPNP
DAGNN
SPoG-ResGCN

(b) OGBN-Arxiv training

4 8 16 32 64
Depths

0.75

0.80

0.85

0.90

Tr
ai

n 
Ac

cu
ra

cy

JKNet
ResGCN
GCNII
APPNP
DAGNN
SPoG-ResGCN

(c) IGB-tiny19 training

4 8 16 32 64
Depths

0.30

0.35

0.40

0.45

0.50

0.55

Te
st

 A
cc

ur
ac

y

JKNet
ResGCN
GCNII
APPNP
DAGNN
SPoG-ResGCN

(d) Arxiv-year test

4 8 16 32 64
Depths

0.69

0.70

0.71

0.72

Te
st

 A
cc

ur
ac

y

JKNet
ResGCN
GCNII
APPNP
DAGNN
SPoG-ResGCN

(e) OGBN-Arxiv test

4 8 16 32 64
Depths

0.69

0.70

0.71

0.72

0.73

Te
st

 A
cc

ur
ac

y

JKNet
ResGCN
GCNII
APPNP
DAGNN
SPoG-ResGCN

(f) IGB-tiny19 test

Figure 5: The average training accuracies (a)-(c) and test accuracies (d)-(e) of different skip-
connection-based GCNs with ReLU activation on various datasets. SPoG-ResGCN outperforms
baselines on all datasets and achieves consistent training gains with increasing depth

.
H.3. These results also demonstrate a strong correlation between the proposed signal propagation
metrics and the actual performance of deep GCNs. To further verify the benefits of deep GCNs, We
also provide experiments on the datasets with long-range dependencies in Appendix H.4.

5.2 EXPERIMENTS FOR SKIP-CONNECTION-BASED GCN MODELS

In this part, we consider GCN with skip-connections and examine whether deep SPoG-ResGCN
overcomes the curse of depth. We adopt a few popular skip-connection-based GCN models, JKNet,
ResGCN (with Conventional initialization), GCNII, APPNP, and DAGNN as baselines. Note that
for small-sized datasets these baseline models performs very well already, thus we only consider
large-scale datasets.

Figure 5 present the test and training accuracy of ReLU-activated models with various depths
(experiments of tanh-activated models are presented in Appendix H.5). We see that SPoG-ResGCN
achieves consistent performance gains as the depth increases. For instance, on the OGBN-Arxiv
and Arxiv-year datasets, SPoG-ResGCN achieves a 2.2% gain in test accuracy as the model depth
increases from 4 to 64. In contrast, for other models with standard initialization, the performance
deteriorates as the depth increases.
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Figure 6: (a) The forward metrics and (b) graph embedding variation metrics of different models
and depths on Cora. ResGCN suffers from forward exploding and GEV vanishing. In contrast,
SPoG-ResGCN addresses the forward propagation and preserves the graph embedding variation.

Next, we investigate whether SPoG-ResGCN achieves well-behaved signal propagation. We
adopt JKNet, ResGCN (with Conventional initialization), and GCNII as baselines. Figure 6 presents
the average forward metric and graph embedding variation metric of different models with various
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depths. Results indicate that SPoG-ResGCN effectively controls forward propagation and graph
embedding variation.

Skip connections significantly change the back-propagation computation. Therefore, we select the
middle hidden layer (the L/2-th layer in an L-layer model) as the representative layer to measure the
backward propagation. Figure 7 plots the average backward metrics of the skip-connection-based
GCNs with various depths L during early training. We see that the baseline models suffer from poor
backward propagation. Similar phenomena are also observed at initialization; see Appendix H.6. In
contrast, the backward propagation of deep SPoG-ResGCN with different depths rapidly tends to
stabilize during early training. The results of other layers in the skip-connection-based models are
presented in Appendix H.6.
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(d) SPoG-ResGCN

Figure 7: The backward metrics at the L/2-th layer of different skip-connection-based GCNs with
various depths L during early training on the IGB-Tiny19 dataset. Baselines suffer from gradient
vanishing or exploding problems. Across early 300 epochs, the gradient norms of (a) JKNet and (c)
GCNII vanish as the depths increase, while the gradient norms of (b) ResGCN explode. In contrast,
the gradient norms of (d) SPoG-ResGCN quickly improve in the early training. The disappearing
lines in (b)-(c) are caused by surpassing the machine precision.

We summarize behaviors on signal propagation for skip-connection-based GCN models in Table 1.

Table 1: Summary of signal propagation for popular skip-connection-based GCNs. ✓ means that the
corresponding signal propagation is well-behaved. The proposed SPoG-ResGCN addresses all three
signal propagation aspects properly.

Models Forward SP Backward SP Graph embedding variation
JKNet vanish vanish ✓

ResGCN explode explode vanish
GCNII ✓ vanish ✓

SPoG-ResGCN ✓ ✓ ✓

In conclusion, SPoGInit offers a straightforward yet effective solution for ResGCNs to address
the signal propagation challenges. As a result, deep SPoG-ResGCN possesses powerful training
capability, successfully countering the curse of depth.

6 CONCLUSION

We attempt to address the performance degradatation of training deep GCNs from the lens of signal
propagation. We consider three metrics: the forward propagation, backward propagation, and
graph embedding variation propagation. Our theoretical analysis and empirical studies revealed that
widely used initialization methods in GCNs fail to control these metrics simultaneously, resulting in
performance degradation as depth increases. To tackle these challenges, a new initialization design
method, termed SPoGInit, is proposed. Experiments demonstrate that SPoGInit effectively alleviates
performance degradation in deep vanilla GCNs and deep ResGCNs. One interesting direction for
future work is to study signal propagation and design initialization for GNNs with attention.
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A RELATED WORKS

Over-smoothing in GCNs. The over-smoothing issue was proposed in Li et al. (2018) to explain
the curse of depth in deep GCNs and then studied in (Oono & Suzuki, 2019; Cai & Wang, 2020;
Yang et al., 2020; Chen et al., 2020a; Rusch et al., 2023b; Luan et al., 2020; Cong et al., 2021;
Zhang et al., 2022). Although the smoothing effects of graph convolution may benefit shallow
GCNs (Keriven, 2022; Wu et al., 2023), they adversely affect the performance of deep GCNs. To
alleviate over-smoothing, a variety of techniques are adopted (Chen et al., 2022b). For vanilla GCNs,
techniques such as nodes or edges dropping (Srivastava et al., 2014; Zou et al., 2019; Rong et al.,
2020; Huang et al., 2020; Lu et al., 2021), normalization (Ioffe & Szegedy, 2015; Zhao & Akoglu,
2020; Zhou et al., 2020; Yang et al., 2020; Zhou et al., 2021b; Li et al., 2020; Guo et al., 2023), and
regularization (Chen et al., 2020a; Yang et al., 2020; Zhou et al., 2021a) were explored. Efforts were
also taken on different variants of GCN architectures, including GCNs with residual connections
(Kipf & Welling, 2017; Jaiswal et al., 2022), GCNs with jumping connections (Xu et al., 2018; Liu
et al., 2020; Zhu et al., 2020), and so on (Bose & Das, 2023; Di Giovanni et al., 2022; Chien et al.,
2021; Gasteiger et al., 2019; Luan et al., 2019; Chen et al., 2020b; Li et al., 2019; Yan et al., 2022;
Guo et al., 2022; Min et al., 2020; Chen et al., 2022a; Jin et al., 2022; Zheng et al., 2021; Yang et al.,
2023b; Li et al., 2021). In contrast to these existing works, our paper delves into the impact of weight
initialization to tackle over-smoothing (as well as gradient pathology) in GCNs.

Signal propagation. Classical signal propagation theory has built up a foundation for understand-
ing how information flows through deep neural networks (DNNs) and guides the random weight
initialization. At first, (Glorot & Bengio, 2010; He et al., 2015) studied the forward-backward
propagation in linear or ReLU-activated models. Then, the mean-field theory (Neal, 1996; Lee
et al., 2018; Matthews et al., 2018) was incorporated to study the signal propagation in models with
general non-linear activation. Theoretical analysis on fully-connected neural networks (FCNNs)
includes the study of Edge-of-Chaos (EOCs) (Poole et al., 2016; Schoenholz et al., 2017; Hayou et al.,
2019; 2022) and dynamical isometry (Saxe et al., 2014; Pennington et al., 2017; 2018). Other works
studied the signal propagation in deep CNN (Xiao et al., 2018), RNN (Chen et al., 2018), ResNet
(Yang & Schoenholz, 2017; Hayou et al., 2022), autoencoder (Li & Nguyen, 2019), and LSTM/GRU
(Gilboa et al., 2019). In the realm of GCNs, (Guo et al., 2022; Jaiswal et al., 2022) designed weight
initialization methods via traditional forward and backward propagation. Our work further analyzes
the graph embedding variation propagation. graph embedding variation propagation is specifically
tailored for GCN-like architectures, and is shown to be crucial to resolving the curse of depth. In the
realm of GCNs, (Guo et al., 2022; Jaiswal et al., 2022; Li et al., 2023) designed weight initialization
methods based on forward and backward propagation. In contrast to these existing works, our paper
additionally analyze the impact of initialization on graph embedding variation (GEV) to alleviate
over-smoothing problem in GCNs, which enhance the power of deep GCNs and the performance on
large-scale datasets.

Weight searching and gating parameters. In addition to signal propagation, other factors that
reflect the training dynamics have also been exploited to guide the searching of initial weights
Dauphin & Schoenholz (2019); Zhu et al. (2021). Our SPoGInit draws inspiration from MetaInit
(Dauphin & Schoenholz, 2019) and is further tailored to vanilla GCNs. For DNNs with residual
connections, (De & Smith, 2020; Zhang et al., 2019; Bachlechner et al., 2021) introduced trainable
gating parameters to preserve signal propagation. We borrow the idea from ReZero (Bachlechner
et al., 2021) and propose SPoG-ResGCN, which incorporates skip connections and gating parameters
in GCNs.

Other works. Some existing works studied graph neural tangent kernel (GNTK) (Bayer et al.,
2022; Du et al., 2019; Huang et al., 2022; Jiang et al., 2022; Sabanayagam et al., 2021; 2022; Zhou
& Wang, 2022; Gebhart, 2022; Krishnagopal & Ruiz, 2023; Yang et al., 2023a). They analyzed the
training dynamics of GCNs under the infinite-width limit.

17



Under review as a conference paper at ICLR 2024

B SUPPLEMENTAL NOTATION AND PRELIMINARIES

B.1 NOTATION

For any integer n ∈ N, we define [n] ≜ {1, 2, . . . , n}. We may denote a matrix X ∈ Rm×n

by (xij)i∈[m],j∈[n], where xij is the entry in the i-the row and the j-th column. We further use
Xi,: ∈ R1×n and X:,j ∈ Rm×1 to denote the i-th row and the j-th column of X , respectively. ∥ · ∥F
denotes the Frobenius norm. Given any function f : Rm×n → R, its derivative ∂f/∂X with respect
to X ∈ Rm×n is the m × n matrix with (∂f/∂X)ij = ∂f(X)/∂xij . For any activation function
σ : R→ R, we use σ(X) ∈ Rm×n to denote the output of applying σ entry-wise to the matrix X ,
i.e., (σ(X))ij = σ(xij). We denote ReLU activation by ReLU(x) ≜ max(0, x) and tanh activation
by tanh(x) ≜ (ex − e−x)/(ex + e−x). For brevity, we use θ to denote the collection of all trainable
parameters in a GCN model.

For any matrix X = (xij) ∈ Rm×n, the vectorizaion of X is defined by

vec(X) := (x11, . . . , xm1, x12, . . . , xm2, . . . , x1n, . . . , xmn)
T ∈ Rmn×1.

For any matrix X = (xij) ∈ Rm×n and Y = (yij) ∈ Rp×q , the Kronecker product of X and Y is a
mp× nq block matrix defined by

X ⊗ Y :=

x11Y . . . x1nY
...

. . .
...

xm1Y . . . xmnY

 .

For a matrix X = (xij) ∈ Rm×n, if xij = 0 for all i ∈ [m] and j ∈ [n], we denote X = 0m×n; if
xij = 1 for all i ∈ [m] and j ∈ [n], we denote X = 1m×n. For a vector Z = (zi) ∈ Rn, if zi = 0
for all i ∈ [n], we denote Z = 0n; if zi = 1 for all i ∈ [n], we denote Z = 1n.

B.2 SUPPLEMENTAL SKIP-CONNECTED-BASED GCN ARCHITECTURES

JKNet. Xu et al. (2018) proposes jumping knowledge network (JKNet) by only combining all
embeddings in the hidden layers before getting the output. To be more specific, an L-layer JKNet is
defined by

X(0) := XW (0) + 1n · b(0),
H(l) := ÂX(l−1)W (l) + 1n · b(l), for any l ∈ [L],

X(l) := σ(H(l)), for any l ∈ [L],

H(out,L) := COMBINE(X(1), X(2), . . . , X(L)).

We assume that COMBINE is a linear transformation from the concatenation of {X(l)}Ll=1 to the
output embedding.

GCNII. Chen et al. (2020b) designs GCNII by (1) using residual connection to the initial layer and
(2) combining identity matrices with the weight matrices. Specifically, an L-layer GCNII is defined
by

X(0) := XW (0) + 1n · b(0),

H(l) := (1− αl)ÂX(l−1) ·
[
(1− βl)Id + βlW

(l)
1

]
+ αlX

(0) ·
[
(1− βl)Id + βlW

(l)
2

]
, for any l ∈ [L],

X(l) := σ(H(l)), for any l ∈ [L],

H(out,L) := X(L)W (L+1) + 1n · b(L+1),

(3)

where {αl, βl}Ll=1 are predetermined hyperparameters and βl, set to be log( λ
l+1 + 1), vanishes to

0 as l → ∞, while λ is a predetermined hyperparameter. Chen et al. (2020b) call the architecture
imposing W

(l)
1 = W

(l)
2 by GCNII and call its improved version by (3) GCNII* in their paper. For

the sake of brevity, we refer to the architecture (3) as GCNII without bringing any confusion.
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C CONVOLUTIONAL KERNEL

Suppose that graph G has M connected components. The m-th component is a subgraph denoted by
Gm = (Vm, Em) for m ∈ [M ]. We present a well-known result characterizing the eigenvalues and
the eigenvectors of Â without giving proof, see, e.g., Proposition 1 in Oono & Suzuki (2019).
Proposition C.1. Suppose that G = (V, E) has M connected components {Gm = (Vm, Em)}Mm=1

and the eigenvalues of Â are λ1 ≥ λ2 ≥ · · · ≥ λn. Then we have

• λi = 1, for any 1 ≤ i ≤M .

• λi ∈ (−1, 1), for any M + 1 ≤ i ≤ n.

Moreover, the set {v(m) = D̃
1
2u(m) : m ∈ [M ]} is a basis of the m-dimensional eigenspace of Â

corresponding to the eigenvalue 1, where u(m) = (1{i∈Vm})i∈[n] ∈ Rn×1 is the indicator vector of
the m-th connected component Gm.

Lemma C.2. Given any H ∈ Rn×C and H ̸= 0n×C , we have 0 ≤ Dir(H)/∥H∥2F ≤ 2.

Proof. Recall that L̂ = I − Â is the normalized Laplacian of graph G. By Proposition C.1, all the
eigenvalues of L̂ belong to [0, 2).

Given any H ∈ Rn×C , we have

Dir(H) = tr(HT L̂H) =

C∑
k=1

HT
:,kL̂H:,k ≤

C∑
k=1

2 ·HT
:,kH:,k = 2∥H∥2F.

Similarly, we have

Dir(H) = tr(HT L̂H) =

C∑
k=1

HT
:,kL̂H:,k ≥

C∑
k=1

0 ·HT
:,kH:,k = 0.

Therefore, we conclude that
0 ≤ Dir(H)/∥H∥2F ≤ 2.
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D SIGNAL PROPAGATION THEORY FOR VANILLA GCN

D.1 NNGP CORRESPONDENCE FOR VANILLA GCN

Proposition D.1 (NNGP correspondence for vanilla GCN). As the network widths d1, d2, . . . , dL−1

sequentially go to infinity, the l-th layer’s pre-activation embedding channels {H(l)
:,k}k∈[dl] converge

to i.i.d. n-dimensional Gaussian random variables N(0n,Σ
(l)) in distribution for any l ≥ 2. The

covariance matrices are

Σ(1) =
σ2
w

d0
ÂXXT Â,

Σ(l+1) = σ2
wÂG(Σ(l))Â,

(4)

where G(Σ) = Eh∼N(0n,Σ)[σ(h)σ(h)
T ] for any n× n positive semi-definite matrix Σ.

Proof of Proposition D.1. We will prove that {H(l)
:,k}k∈[dl] are asymptotically i.i.d. n-dimensional

random variables with mean 0n and covariance matrix Σ(l) for any l ≥ 1 under the infinite width
limit by mathematical induction. Proposition D.1, which contains a stronger claim that {H(l)

:,k} are
asymptotically Gaussian for any l ≥ 2, will be shown during the induction steps.

Base case. Since the bias terms are initialized to be zero, when l = 1, the k-th channel of the
embedding is

H
(1)
:,k = ÂXW

(1)
:,k + 1n · b(1)k = ÂXW

(1)
:,k . (5)

Since {W (1)
:,k }k∈[d1] are i.i.d. random variables, so {H(1)

:,k }k∈[d1] are also i.i.d. random variables.
Taking the expectation of (5), we get

E[H(1)
:,k ] = ÂX · E[W (1)

:,k ] = 0n.

Calculating the covariance matrix of (5), we have

Cov[H
(1)
:,k , H

(1)
:,k ] = E[H(1)

:,k ·H
(1)T
:,k ] = E[ÂXW

(1)
:,k W

(1)T
:,k XT Â]

= ÂX · E[W (1)
:,k W

(1)T
:,k ] ·XT Â = ÂX ·

(
σ2
w

d0
· Id0

)
·XT Â

=
σ2
w

d0
ÂXXT Â.

Thus, if we define Σ(1) = σ2
wÂXXT Â/d0, then {H(1)

:,k }k∈[d1] are exactly i.i.d with mean 0n and
covariance matrix Σ(1).

Induction step. Suppose that {H(l)
:,k}k∈[dl] converge to i.i.d. n-dimensional random variables with

mean 0n and covariance matrix Σ(l) in distribution as d1, . . . , dl−1 sequentially go to infinity, we
look at the (l + 1)-th layer. Recall from the formation of the l-th layer in vanilla GCN, we have

H(l+1) = ÂX(l)W (l+1) + 1n · b(l+1),

X(l) = σ(H(l)),

for any l ≥ 1. We vectorize the first equation and get

vec(H(l+1)) = vec(ÂX(l)W (l+1)) + vec(1n · b(l+1))

=

dl∑
k=1

vec

[ÂX
(l)
:,k ]︸ ︷︷ ︸

n×1

·W (l+1)
k,:︸ ︷︷ ︸

1×dl+1

 ,
(6)

because b(l+1) is initialized to be 0dl+1
. Suppose that Σ(l+1) = σ2

wÂG(Σ(l))Â, we are going
to show that vec(H(l+1)) converges to a Gaussian random variable N(0ndl+1

, Idl+1
⊗ Σ(l+1)) in

distribution as d1, d2, . . . , dl−1, dl sequentially go to infinity. If this claim holds, {H(l+1)
:,k } are
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not only asymptotically i.i.d., but also asymptotically Gaussian i.i.d. with N(0n,Σ
(l+1)), which

corresponds to the statement of this proposition.

For brevity, we define

ω
(l+1)
kk′ :=

√
dl ·W (l+1)

kk′ , for all k ∈ [dl] and k′ ∈ [dl+1],

and
Z

(l+1)
k := vec

(
[ÂX

(l)
:,k ] · ω

(l+1)
k,:

)
, for all k ∈ [dl]. (7)

Then we get that {ω(l+1)
kk′ }k∈[dl],k′∈[dl+1] are i.i.d. from N(0, σ2

w) and

RHS of (6) =
1√
dl

dl∑
k=1

Z
(l+1)
k . (8)

By the induction hypothesis, as d1, d2. . . . , dl−1 sequentially go to infinity, {X(l)
:,k}k∈[dl] =

{σ(H(l)
:,k )}k∈[dl] converge to i.i.d. n-dimensional random vectors in distribution. Because X(l)

can be regarded as a function of {W (l′)}ll′=1 at initialization, we get that X(l) and W (l+1) are
independent. Thus, as d1, d2. . . . , dl−1 sequentially go to infinity, {Z(l+1)

k }k∈[dl] converge to i.i.d.
random vectors in distribution. Moreover, in this limiting case, by taking the expectation of (7), we
have

E[Z(l+1)
1 ] = vec

([
ÂE[X(l)

:,k ]
]
· E[ω(l+1)

k,: ]
)
= vec

(
0n×1 · 01×dl+1

)
= 0ndl+1

.

Calculating the covariance matrix of (7), we have

Cov[Z
(l+1)
1 , Z

(l+1)
1 ] = E[Z(l+1)

1 · Z(l+1)T
1 ]

= E
[
vec
(
[ÂX

(l)
:,1 ] · ω

(l+1)
1,:

)
· vec

(
[ÂX

(l)
:,1 ] · ω

(l+1)
1,:

)T]
= E

[
(ω

(l+1)T
1,: ⊗ ÂX

(l)
:,1 ) · (ω

(l+1)
1,: ⊗X

(l)T
:,1 Â)

]
= E

[
ω
(l+1)T
1,: ω

(l+1)
1,: ⊗ ÂX

(l)
:,1X

(l)T
:,1 Â

]
= E

[
ω
(l+1)T
1,: ω

(l+1)
1,:

]
⊗
{
Â · E

[
X

(l)
:,1X

(l)T
:,1

]
· Â
}

= σ2
wIdl+1

⊗ ÂG(Σ(l))Â

= Idl+1
⊗ σ2

wÂG(Σ(l))Â = Idl+1
⊗ Σ(l+1).

Here X(l)
:,1 actually stands for the limit of true X(l)

:,1 as d1, . . . , dl−1 sequentially go to infinity without
bringing any confusion.

By multivariate central limit theorem, 1√
dl

∑dl

k=1 Z
(l+1)
k converges to a Gaussian random variable

N(0ndl+1
, Idl+1

⊗ Σ(l+1)) in distribution as dl → ∞. Recalling (6) and (8), we conclude that
vec(H(l+1)) converges to a Gaussian random variable N(0ndl+1

, Idl+1
⊗ Σ(l+1)) as d1, . . . , dl

sequentially go to infinity.

Conclusion. By the principle of mathematical induction, we have proven this proposition.

D.2 SOME DISCUSSION W.R.T. G

We claim that the function G is well-defined in Proposition D.1 on the collection of positive semi-
definite matrices

S = {Σ ∈ Rn×n : xTΣx ≥ 0 for all x ∈ Rn×1}. (9)
Remark D.2. To show that G(Σ) = Eh∼N(0n,Σ)[σ(h)σ(h)

T ] is well-defined at any Σ ∈ S , we only
need to show that such Σ is always a feasible covariance matrix of Gaussian distribution. For any
Σ ∈ S, there exists P ∈ Rn×n, such that PPT = Σ. Let ξ ∼ N(0n, In) be an n-dimensional
standard normal random variable, then the random variable Pξ ∼ N(0n,Σ). Thus, all positive
semi-definite matrices are feasible covariance matrices for Gaussian distributions.
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Definition D.3. Given any positive semi-definite matrix Σ ∈ S, we define

G1(Σ) := q(Σ)q(Σ)T , (10)

where q(Σ) ∈ Rn×1 is defined by

q(Σ)i :=
√
G(Σ)ii, for all i ∈ [n]. (11)

Lemma D.4. Given any positive semi-definite matrix Σ ∈ S, it holds that

G1(Σ)ij ≥ G(Σ)ij for any i, j ∈ [n]. (12)

Proof. Recalling the formation of function G in Proposition D.1 (NNGP correspondence for vanilla
GCN), for any i, j ∈ [n], we have

G(Σ)ij = Eh∼N(0n,Σ)[σ(hi) · σ(hj)].

Recalling (10) and (11) in Definition D.3, we get

G1(Σ)ij := q(Σ)i · q(Σ)j =
√

G(Σ)ii ·
√
G(Σ)jj

= Eh∼N(0n,Σ)[σ(hi)
2]

1
2 · Eh∼N(0n,Σ)[σ(hj)

2]
1
2

(13)

From Hölder’s inequality (Hardy et al., 1952), we get

RHS of (13) ≥ Eh∼N(0n,Σ) [|σ(hi) · σ(hj)|]
≥ Eh∼N(0n,Σ) [σ(hi) · σ(hj)] = G(Σ)ij .

Lemma D.5. Given the NNGP covariance matrices {Σ(l)}∞l=1 defined by (4), it holds that

tr(Σ(l+1)) ≤ σ2
w tr(G(Σ(l))).

Proof. Recalling the NNGP correspondence formula for vanilla GCN (4) in Proposition D.1, we have

tr(Σ(l+1)) = tr(σ2
w(ÂG(Σ(l))Â)) = σ2

w tr(ÂG(Σ(l))Â)). (14)

Since all entries of Â are non-negative, by Lemma D.4, we have

(ÂG(Σ(l))Â)ii ≤ (ÂG1(Σ
(l))Â)ii, for any i ∈ [n].

Taking the summation of w.r.t i ∈ [n], we get

tr(ÂG(Σ(l))Â) ≤ tr(ÂG1(Σ
(l))Â). (15)

Recalling the definition of function G1 in (10), we get

tr(ÂG1(Σ
(l))Â) = tr(Âq(Σ(l))q(Σ(l))T Â) = ∥Âq(Σ(l))∥2. (16)

By Proposition C.1, all the eigenvalues of Â belong to (−1, 1]. Recalling the definition of function q
in (11), we get

∥Âq(Σ(l))∥2 ≤ ∥q(Σ(l))∥2 =

n∑
i=1

q(Σ(l))2i = tr(G(Σ(l))). (17)

Finally, combining (14), (15), (16), and (17), we complete the proof.
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D.3 PROOF OF THEOREM 3.1 (SIGNAL PROPAGATION ON RELU-LIKE-ACTIVATED VANILLA
GCN)

We will give a more general signal propagation analysis on vanilla GCN with ReLU-like activation.
Definition D.6 (ReLU-like activation). An activation function σ : R→ R is (α, β)-ReLU if it has
the form

σ(x) =

{
αx, x ≥ 0,

βx, x < 0,
(18)

where α, β ∈ R+ and not both of them are 0. We also call such σ a ReLU-like activation function.

Then we extend our analysis from the special (1, 0)-ReLU-activated case to the general (α, β)-ReLU-
activated case.
Theorem D.7 (The generalized version of Theorem 3.1). Under the NNGP correspondence approxi-
mation, when the activation function σ is (α, β)-ReLU in Definition D.6, we have

1. When σ2
w = 2/(α2 + β2), either the graph embedding variation metric

lim
L→∞

M
(L)
GEV(σ

2
w) = lim

L→∞
EH∼N(0n,Σ(L))

[
Dir(H)/∥H∥2F

]
= 0,

or the forward propagation metric

lim
L→∞

M
(L)
FSP(σ

2
w) = lim

L→∞
EH∼N(0n,Σ(L))[∥H∥2F/∥X∥2F] = 0.

2. When σ2
w < 2, for any L ≥ 1, the forward propagation metric satisfies

M
(L)
FSP(σ

2
w) = EH∼N(0n,Σ(L))[∥H∥2F/∥X∥2F] ≤

2C

(α2 + β2)d0
·
(
σ2
w(α

2 + β2)

2

)L

.

Lemma D.8. For any x ∈ Rn, it holds that

Dir(Âx) ≤ λ2Dir(x), (19)

where λ is the second largest absolute eigenvalue of Â, i.e.,

λ = max
i∈[n],λi ̸=1

|λi|.

Proof. Since Â is a symmetric real matrix, by Proposition C.1, it can be decomposed as Â = UΛUT ,
where Λ = diag(λ1, λ2, . . . , λn) and U ∈ Rn×n is an orthogonal matrix. The i-th column ui of U
is the eigenvector corresponding to λi.

By Proposition C.1, we have λi ∈ (−1, 1] for all i ∈ [n]. Since L̂ = I − Â, we conclude that

Dir(Âx) = (Âx)T L̂Âx = xT ÂL̂Âx = zTUT (UΛU−1)(U(I − Λ)U−1)(UΛU−1)z

= zTΛ(I − Λ)Λz =

n∑
i=1

(1− λi)λ
2
i z

2
i ≤ λ2

n∑
i=1

(1− λi)z
2
i

= λ2zT (I − Λ)z = λ2Dir(x).

Lemma D.9. When the activation function σ is (α, β)-ReLU, it holds that

(σ(x)− σ(y))2 + (σ(−x)− σ(−y))2 ≤ (α2 + β2)(x− y)2, (20)

for any x, y ∈ R. Moreover, the inequality becomes an equality if and only if xy ≥ 0.

Proof. When x, y ≥ 0, it holds that

LHS of (20) = (αx− αy)2 + (−βx+ βy)2 = RHS of (20).
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Similarly, the equality holds when x, y ≤ 0. When xy < 0,

LHS of (20) = (αx− βy)2 + (−βx+ αy)2

= (α2 + β2)(x2 + y2)− 4αβxy

= (α2 + β2)(x− y)2 + 2(α− β)2xy

< RHS of (20).

Lemma D.10. When the activation function σ is (α, β)-ReLU, it holds that

Dir(σ(h)) + Dir(σ(−h)) ≤ (α2 + β2)Dir(h). (21)

Proof. Since the activation function σ is (α, β)-ReLU, we have

σ(cx) = cσ(x), for any c ∈ R+, x ∈ R.

Then we get

LHS of (21) =
∑

(i,j)∈E

[
σ(hi)√
1 + di

− σ(hj)√
1 + dj

]2
+

[
σ(−hi)√
1 + di

− σ(−hj)√
1 + dj

]2

=
∑

(i,j)∈E

[
σ

(
hi√
1 + di

)
− σ

(
hj√
1 + dj

)]2
+

[
σ

(
−hi√
1 + di

)
− σ

(
−hj√
1 + dj

)]2
.

By Lemma D.9, we have

LHS of (21) ≤ (α2 + β2)
∑

(i,j)∈E

[
hi√
1 + di

− hj√
1 + dj

]2
= RHS of (21).

Lemma D.11. When the activation function σ is (α, β)-ReLU, for any feasible covariance matrix
Σ ∈ Rn×n, it holds that

Eh∼N(0n,Σ)[Dir(σ(h))] ≤ α2 + β2

2
· Eh∼N(0n,Σ)[Dir(h)].

Proof. By symmetry, for any n-dimensional random variable h ∼ N(0n,Σ), it holds that −h ∼
N(0n,Σ). By Lemma D.10, we have

2Eh∼N(0n,Σ)[Dir(σ(h))] = Eh∼N(0n,Σ)[Dir(σ(h)) + Dir(σ(−h))]
≤ (α2 + β2)Eh∼N(0n,Σ)[Dir(h)].

Lemma D.12. Under the NNGP correspondence approximation, suppose that the activation function
σ is (α, β)-ReLU in Definition D.6. If

σ2
w <

2

λ2(α2 + β2)
,

then we have

Eh∼N(0n,Σ(l))[Dir(h)] = O

((
λ2σ2

w(α
2 + β2)

2

)l
)
, as l→∞,

where λ is the second largest non-one absolute eigenvalue of Â, i.e.,

λ = max
i∈[n],λi ̸=1

|λi|.
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Proof. For any positive semi-definite matrix Σ ∈ S and any n-dimensional Gaussian random variable
h ∼ N(0n,Σ), we have

Eh∼N(0n,Σ)[Dir(h)] = Eh∼N(0n,Σ)[tr(h
T L̂h)] = Eh∼N(0n,Σ)[tr(L̂hh

T )] = tr(L̂Σ).

Then according the NNGP correspondence formula (4) in Proposition D.1, for any l ∈ N, we have

Eh∼N(0n,Σ(l+1))[Dir(h)] = tr(L̂Σ(l+1))

= σ2
w tr(L̂ÂG(Σ(l))Â) = σ2

w tr
(
L̂Â · Eh∼N(0n,Σ(l))[σ(h)σ(h)

T ] · Â
)

= σ2
wEh∼N(0n,Σ(l))

[
tr
(
L̂Âσ(h)σ(h)T Â

)]
= σ2

wEh∼N(0n,Σ(l))

[
tr
(
σ(h)T ÂL̂Âσ(h)

)]
= σ2

wEh∼N(0n,Σ(l))

[
Dir

(
Âσ(h)

)]
.

(22)

By Lemma D.8 and Lemma D.11, we get

RHS of (22) ≤ λ2σ2
w · Eh∼N(0n,Σ(l))[Dir(σ(h))] ≤ λ2σ2

w(α
2 + β2)

2
· Eh∼N(0n,Σ(l))[Dir(h)].

(23)

Thus, combining (22) and (23), by induction, we have

Eh∼N(0n,Σ(l))[Dir(h)] = O

((
λ2σ2

w(α
2 + β2)

2

)l
)
, as l→∞.

Proof of Theorem D.7 (the generalized version of Theorem 3.1). First of all, we will prove part 2 of
this theorem. For any positive semi-definite matrix Σ ∈ S, we have

Eh∼N(0n,Σ)[∥h∥2] = Eh∼N(0n,Σ)[tr(h
Th)] = Eh∼N(0n,Σ)[tr(hh

T )] = tr(Σ).

For this reason, we only need to focus on {tr(Σ(l))}∞l=1 in the following proof.

We will show that {tr(Σ(l))}∞l=1 is a decreasing sequence if σw ≤ 2/(α2 + β2). By Lemma D.5, we
have

tr(Σ(l+1)) ≤ σ2
w tr(G(Σ(l))). (24)

When the activation function σ is (α, β)-ReLU, for any c ∈ R+, it holds that

EZ∼N(0,1)[σ(cZ)2] = EZ∼N(0,1)[α
2c2Z21{Z>0}] + EZ∼N(0,1)[β

2c2Z21{Z≤0}]

=
α2 + β2

2
· EZ∼N(0,1)[c

2Z2].

Accordingly, for any positive semi-definite matrix Σ ∈ S and i ∈ [n], we have

G(Σ)ii = Eh∼N(0n,Σ)[σ(hi)
2] = EZ∼N(0,1)

[
σ(
√

ΣiiZ)2
]

=
α2 + β2

2
· EZ∼N(0,1)

[
ΣiiZ

2
]
=

α2 + β2

2
· Σii.

(25)

Combining (24) and (25), we get

tr(Σ(l+1)) ≤ σ2
w(α

2 + β2)

2
tr(Σ(l)).

Thus, we have shown that {tr(Σ(l))}∞l=1 is a decreasing sequence if σw ≤ 2/(α2 + β2). In addition,
if σw < 2/(α2 + β2), we get

tr(Σ(L)) ≤
(
σ2
w(α

2 + β2)

2

)L−1

tr(Σ(1)). (26)
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By Proposition D.1, we have

tr(Σ(1)) =
σ2
w

d0
tr(ÂXXT Â) =

σ2
w

d0

d0∑
k=1

tr(ÂX:,kX
T
:,kÂ) =

σ2
w

d0

d0∑
k=1

∥ÂX:,k∥2 (27)

Since all the eigenvalues of Â belong to (−1, 1] by Propositon C.1, we get

RHS of (27) ≤ σ2
w

d0

d0∑
k=1

∥X:,k∥2 =
σ2
w

d0
tr(XXT ). (28)

Combining (26), (27), and (28), we have

tr(Σ(L)) ≤ σ2
w

d0
·
(
σ2
w(α

2 + β2)

2

)L−1

tr(XXT ).

Thus, the forward propagation metric at the L-th layer satisfies

EH∼N(0n,Σ(L))

[
∥H∥2F
∥X∥2F

]
=

C

tr(XXT )
· Eh∼N(0n,Σ(L))[∥h∥2] =

C

tr(XXT )
tr(Σ(L))

≤ Cσ2
w

d0
·
(
σ2
w(α

2 + β2)

2

)L−1

=
2C

(α2 + β2)d0
·
(
σ2
w(α

2 + β2)

2

)L

.

Then we have completed part 2 of this theorem. If σ is ReLU activation function, i.e., (1, 0)-ReLU.
If σ < 2 = 2

12+02 , we have

EH∼N(0n,Σ(L))

[
∥H∥2F
∥X∥2F

]
=

2C

(12 + 02)d0
·
(
σ2
w(1

2 + 02)

2

)L

=
2C

d0
·
(
σ2
w

2

)L

,

which coincides with part 2 in Theorem 3.1.

Next, we will prove part 1 of this theorem. Let’s study the case when σ2
w = 2/(α2 + β2). Suppose

that
lim
l→∞

tr(Σ(l)) = δ0.

If δ0 = 0, then we have completed the first part of this theorem by getting

lim
L→∞

EH∼N(0n,Σ(L))[∥H∥2F/∥X∥2F] = lim
L→∞

C

∥X∥2F
· Eh∼N(0n,Σ(L))[∥h∥2]

=
C

∥X∥2F
· lim
L→∞

tr(Σ(L)) = 0.

Now we study the case when δ0 > 0. In order to show part 2 of the theorem, we only need to
demonstrate that

lim
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F

]
= 0.

Given any fixed ϵ > 0, we have

EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F

]
= EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F
1{∥H∥F≥ϵ}

]
+ EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F
1{∥H∥F≤ϵ}

]
.

(29)

From Lemma C.2, it holds that Dir(H)/∥H∥2F ≤ 2, so we get

RHS of (29) ≤ 1

ϵ2
· EH∼N(0n,Σ(L))

[
Dir(H)1{∥H∥F≥ϵ}

]
+ 2 · PH∼N(0n,Σ(L)) [∥H∥F ≤ ϵ]

≤ 1

ϵ2
· EH∼N(0n,Σ(L)) [Dir(H)] + 2 · PH∼N(0n,Σ(L)) [∥H∥F ≤ ϵ] .

(30)
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For any L ≥ 1, there exists i ∈ [n], such that Σ(L)
ii ≥ tr(Σ(L))/n. Then for any n × C random

matrix H ∼ N(0n,Σ
(L)), we have Hi,1 ∼ N(0,Σ

(L)
ii ). For this reason, we have

PH∼N(0n,Σ(L)) [∥H∥F ≤ ϵ] ≤ PH∼N(0n,Σ(L)) [|Hi,1| ≤ ϵ] = PZ∼N(0,1)

[
|Z| ≤ ϵ√

Σii

]
≤ PZ∼N(0,1)

[
|Z| ≤ ϵ ·

√
n

tr(Σ(L))

]
= 2Φ

(
ϵ ·
√

n

tr(Σ(L))

)
− 1,

(31)

where Φ(x) = PZ∼N(0,1)[Z ≤ x] denotes the cumulative distribution function of the standard normal
distribution N(0, 1).

Combining (29), (30), and (31), we get

EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F

]
≤ 1

ϵ2
· EH∼N(0n,Σ(L)) [Dir(H)] + 4Φ

(
ϵ ·
√

n

tr(Σ(L))

)
− 2,

for any L ≥ 1.

Since
σ2
w =

2

α2 + β2
<

2

λ2(α2 + β2)
,

by Lemma D.12, we have
lim

L→∞
EH∼N(0n,Σ(L))[Dir(H)] = 0.

We let L→∞ in (29) and get

lim sup
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F

]
≤ 1

ϵ2
· lim sup

L→∞
EH∼N(0n,Σ(L)) [Dir(H)] + 4 · lim sup

L→∞
Φ

(
ϵ ·
√

n

tr(Σ(L))

)
− 2

=
1

ϵ2
· 0 + 4Φ

(
ϵ ·
√

n

δ0

)
− 2 = 4Φ

(
ϵ ·
√

n

δ0

)
− 2.

(32)

Notice that the left hand side of (32) is independent of the choice of ϵ. Since Φ is a continuous map,
we let ϵ→ 0+ and get

lim sup
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F

]
≤ 4Φ(0)− 2 = 0.

Therefore, we have

lim
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)

∥H∥2F

]
= 0.

D.4 PROOF OF THEOREM 3.2 (SIGNAL PROPAGATION ON RELU-ACTIVATED VANILLA GCN)

Theorem D.13 (The generalized version of Theorem 3.2). Under the NNGP correspondence ap-
proximation, the graph embedding variation metric M

(L)
GEV(σ

2
w) = EH∼N(0n,Σ(L))[Dir(H)/∥H∥2F]

is independent of the choice of σ2
w.

Proof of Theorem D.13 (the generalized version of Theorem 3.2). Under the NNGP correspondence
approximation, we only need to prove that

Σ(l)(σ2
w)

σ2l
w

=
Σ(l)(σ̃2

w)

σ̃2l
w

, for any l ≥ 1 and σ2
w, σ̃

2
w > 0. (33)
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If (33) holds, then H ∼ N(0n,Σ
(L)(σ2

w)) implies σ̃L
wH/σL

w ∼ N(0n,Σ
(L)(σ̃2

w)). In this way, we
have

EH∼N(0n,Σ(L)(σ2
w))

[
Dir(H)

∥H∥2F

]
= EH∼N(0n,Σ(L)(σ2

w))

[
Dir(σ̃L

wH/σL
w)

∥σ̃L
wH/σL

w∥2F

]
= EH∼N(0n,Σ(L)(σ̃2

w))

[
Dir(H)

∥H∥2F

]
.

Now we prove (33) by mathematical induction. When l = 1, by Proposition D.1, we have

Σ(1)(σ2
w)

σ2
w

=
1

d0
ÂXXT Â =

Σ(1)(σ̃2
w)

σ̃2
w

, for any σ2
w, σ̃

2
w > 0.

If (33) holds for L, we look at the case for L + 1. Since the activation σ is (α, β)-ReLU, for any
c ∈ R+, we have σ(cx) = cσ(x). Recalling the definition of G in Proposition D.1, for any positive
semi-definite matrix Σ ∈ S, we have

G(c2Σ)ij = Eh∼N(0n,c2Σ)[σ(hi) · σ(hj)] = Eh∼N(0n,Σ)[σ(chi) · σ(chj)]

= c2Eh∼N(0n,Σ)[σ(hi) · σ(hj)] = c2G(Σ)ij ,

for any i, j ∈ [n] and c ∈ R+. Thus, by Proposition D.1, we have(
σ̃2
w

σ2
w

)L+1

· Σ(L+1)(σ2
w)

(a)
=

(
σ̃2
w

σ2
w

)L+1

· σ2
wÂG

(
Σ(L)(σ2

w)
)
Â

= σ̃2
w ·
(
σ̃2
w

σ2
w

)L

· ÂG
(
Σ(L)(σ2

w)
)
Â

(b)
= σ̃2

w · ÂG
(
Σ(L)(σ̃2

w)
)

(c)
= Σ(L+1)(σ̃2

w),

where (a) and (c) are due to Proposition D.1 and (b) are from the induction hypothesis.

Therefore, (33) holds for all L ≥ 1 and we have completed the proof.

D.5 SIGNAL PROPAGATION ON TANH-ACTIVATED VANILLA GCN

Theorem D.14. Under the NNGP correspondence approximation, when the activation function σ is
tanh, we have

1. When σ2
w = 1, we have limL→∞ M

(L)
FSP(σ

2
w) = limL→∞ EH∼N(0n,Σ(L))[∥H∥2F/∥X∥2F] = 0.

2. When σ2
w < 1, we have M

(L)
FSP(σ

2
w) = EH∼N(0n,Σ(L))[∥H∥2F/∥X∥2F] ≤ C

d0
· σ2L

w for any L ≥ 1.

Lemma D.15. The collection of positive semi-definite matrices S defined by (9) is a closed subset of
Rn×n.

Proof. We only need to show that given any convergent sequence {Q(k)}∞k=1 ⊂ S, its limit also
belongs to S. Suppose that

lim
k→∞

Q(k) = Q∗.

Since all {Q(k)}∞k=1 are positive semi-definite matrices, so given any x ∈ Rn×1, we have

xTQ(k)x ≥ 0, for all k ∈ N.

Then we get
xTQ∗x = lim

k→∞
xTQ(k)x ≥ 0.

Thus, Q∗ also belongs to S.
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Lemma D.16. When the activation function σ is tanh, i.e., σ(x) = (ex − e−x)/(ex + e−x), then we
have |σ(x)| ≤ |x| for any x ∈ R. Moreover, the equality holds if and only if x = 0.

Proof. It is easy to verify that σ(0) = 0. Given any x ≥ 0, we have

σ(−x) = e−x − ex

e−x + ex
= −ex − e−x

e−x + ex
= −σ(x).

For this reason, we only need to prove that |σ(x)| < |x| for any x > 0. In the following part, we will
show that 0 < σ(x) < x when x > 0.

We define f(x) := σ(x)− x for any x ≥ 0. Let’s consider the derivative of f :

f ′(x) =
d

dx

(
ex − e−x

ex + e−x
− x

)
=

1

(ex + e−x)2

[
(ex + e−x) · d

dx
(ex − e−x)− (ex − e−x) · d

dx
(ex + e−x)

]
− 1

=
(ex + e−x)2 − (ex − e−x)2

(ex + e−x)2
− 1

=
−(ex − e−x)2

(ex + e−x)2
.

Then if x > 0, we have f ′(x) < 0; if x = 0, we have f ′(x) = 0. Thus, f(x) = σ(x)− x is a strictly
decreasing function in [0,+∞). Since f(0) = σ(0)− 0 = 0, we have

f(x) = σ(x)− x < 0, for any x > 0.

Since 0 < ex − e−x < ex + e−x for any x > 0, it holds that

σ(x) = (ex − e−x)/(ex + e−x) > 0, for any x > 0.

Therefore, we get that 0 < σ(x) < x for any x > 0 and have completed the proof of this lemma.

Now it is time for Theorem D.14.

Proof of Theorem D.14. First of all, we will prove part 2 of this theorem. For any positive semi-
definite matrix Σ ∈ S, we have

Eh∼N(0n,Σ)[∥h∥2] = Eh∼N(0n,Σ)[tr(h
Th)] = Eh∼N(0n,Σ)[tr(hh

T )] = tr(Σ).

For this reason, we only need to focus on {tr(Σ(l))}∞l=1 in the following proof.

We will show that {tr(Σ(l))}∞l=1 is a decreasing sequence if σw ≤ 1. By Lemma D.5, we have

tr(Σ(l+1)) ≤ σ2
w tr(G(Σ(l))). (34)

By Lemma D.16, we have |σ(x)| ≤ |x| for any x ∈ R. Moreover, the equality holds if and only if
x = 0. For this reason, given any positive semi-definite matrix Σ ∈ S, we have

tr(G(Σ)) =

n∑
i=1

Eh∼N(0n,Σ)[σ(hi)
2] =

n∑
i=1

EZ∼N(0,1)

[
σ(
√
ΣiiZ)2

]
≤

n∑
i=1

EZ∼N(0,1)

[
(
√
ΣiiZ)2

]
=

n∑
i=1

Eh∼N(0n,Σ)[h
2
i ] = tr(Σ),

(35)

and the inequality becomes an equality if and only if
√
ΣiiZ = 0 holds P-a.s. for all i ∈ [n]. Since

Z ∼ N(0, 1) follows a standard normal distribution, it is equivalent to Σii = 0 for all i ∈ [n], i.e.,
tr(Σ) = 0.

Combining (34) and (35), we get

tr(Σ(l+1)) ≤ σ2
w tr(Σ(l)).
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Thus, we have shown that {tr(Σ(l))}∞l=1 is a decreasing sequence if σw ≤ 1. In addition, if σw < 1,
we get

tr(Σ(L)) ≤ σ2(L−1)
w tr(Σ(1)). (36)

Analogous to the proof of part 2 in Theorem D.7 for ReLU-activated model, by Proposition D.1 and
Proposition C.1, we have

tr(Σ(1)) =
σ2
w

d0
tr(ÂXXT Â) =

σ2
w

d0

d0∑
k=1

tr(ÂX:,kX
T
:,kÂ)

=
σ2
w

d0

d0∑
k=1

∥ÂX:,k∥2 ≤
σ2
w

d0

d0∑
k=1

∥X:,k∥2 =
σ2
w

d0
∥X∥2F.

(37)

Combining (36) and (37), we have

tr(Σ(1)) ≤ σ2L
w

d0
∥X∥2F.

Then we have completed part 2 of the theorem by getting

EH∼N(0n,Σ(L))

[
∥H∥2F
∥X∥2F

]
=

C

∥X∥2F
Eh∼N(0n,Σ(L))[∥h∥2] =

C

∥X∥2F
tr(Σ(L))

≤ C

∥X∥2F
· σ

2L
w

d0
· ∥X∥2F ≤

C

d0
· σ2L

w .

Next, we will prove part 1 of this theorem. Let’s study the case when σw = 1.

Since Σ(l) is a positive semi-definite matrix for any l ∈ N, we have

|Σ(l)
ij |

2 ≤ Σ
(l)
ii Σ

(l)
jj ≤ tr(Σ(l))2 ≤ tr(Σ(1))2, for all i, j ∈ [n].

Taking the summation of both sides w.r.t. i and j, we get

∥Σ(l)∥2F =

n∑
i,j=1

|Σ(l)
ij |

2 ≤ n2 tr(Σ(1))2 <∞.

Thus, the matrix sequence {Σ(l)}∞l=1 lies in

S ′ = S ∩ {Σ ∈ Rn×n : ∥Σ∥F ≤ n tr(Σ(1))}.
By Lemma D.15, S ′ is a bounded and closed subset, i.e., a compact subset, of Rn×n. By the
Bolzano–Weierstrass theorem, there exists a subsequence {Σ(lk)}∞k=1 of {Σ(l)}∞l=1 and Σ∗ ∈ S ′ such
that

lim
k→∞

Σ(lk) = Σ∗.

Recalling (34) and that {tr(Σ(l))}∞l=1 is a decreasing sequence, we have

tr(Σ(lk+1)) ≤ tr(Σ(lk+1)) ≤ tr(G(Σ(lk))).

Since G is a continuous function, we let k →∞ and get

tr(Σ∗) = lim
k→∞

tr(Σ(lk+1)) ≤ lim
k→∞

tr(G(Σ(lk))) = tr(G(Σ∗)).

According to (35), we have
tr(G(Σ∗)) = tr(Σ∗).

This implies tr(Σ∗) = 0 by (35).

Then, since {tr(Σ(l))}∞l=1 is a decreasing sequence, we have

lim
l→∞

Eh∼N(0n,Σ(l))[∥h∥2] = lim
l→∞

tr(Σ(l)) = lim
k→∞

tr(Σ(lk)) = tr(Σ∗) = 0.

Consequently, we have

lim
L→∞

EH∼N(0n,Σ(L))

[
∥H∥2F
∥X∥2F

]
=

C

∥X∥2F
lim

L→∞
Eh∼N(0n,Σ(L))[∥h∥2] = 0.
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E SIGNAL PROPAGATION THEORY FOR LINEAR RESGCN

E.1 NNGP CORRESPONDENCE FOR LINEAR RESGCN

Proposition E.1 (NNGP correspondence for linear ResGCN). As the width of the hidden layers
d→∞, the l-th layer’s pre-activation embedding channels {H(l)

:,k}k∈[d] converge to i.i.d. Gaussian
random variables N(0n, Σ̃

(l)) in distribution. The covariance matrices are

Σ̃(1) =
σ4
w

d0
ÂXXT Â,

Σ̃(l+1) = α2σ2
wÂΣ̃(l)Â+ β2Σ̃(l).

(38)

Moreover, as d→∞, the l-th layer’s post-activation embedding channels {X(l)
:,k}k∈[d] converge to

i.i.d. random variables in distribution. The random variables have mean 0n and their covariance
matrices Φ(l), which satisfy

Φ(0) =
σ2
w

d0
XXT ,

Φ(l) = α2σ2
wÂΦ(l−1)Â+ β2Φ(l−1).

(39)

Proof of Proposition E.1. For Φ(l), Σ̃(l+1) defined by (39) and (38), it is easy to show that Σ̃(l+1) =

σ2
wÂΦ(l)Â. Similar to the proof of Proposition D.1, We will prove this proposition by mathematical

induction.

Base case. When l = 0, the k-th channel of X(0) is

X
(0)
:,k = XW

(0)
:,k + 1n · b(0)k = XW

(0)
:,k . (40)

According to our initialization, the weights {W (0)
:,k }k∈[d] are i.i.d. random variables, so {X(0)

:,k }k∈[d]

are also i.i.d. random variables. Taking the expectation of (40), we get

E[X(0)
:,k ] = X · E[W (0)

:,k ] = 0n.

Calculating the covariance matrix of (40), we have

Cov[X
(0)
:,k ] = E[X(0)

:,k ·X
(0)T
:,k ] = E[XW

(0)
:,k W

(0)T
:,k XT ]

= X · E[W (0)
:,k W

(0)T
:,k ] ·XT = X

(
σ2
w

d0
· Id0

)
XT

=
σ2
w

d0
XXT .

Thus, if we let Φ(0) = σ2
wXXT /d0, then we have {X(0)

:,k }k∈[d] are i.i.d. with mean 0n and covariance
matrix Φ(0).

Now we study the pre-activation embedding H(1). Since the bias term b(1) is initialized to be 0d, we
have

H(1) = ÂX(0)W (1) + 1n · b(1) = ÂX(0)W (1).

Similar to the proof of Proposition D.1 for vanilla GCN, we vectorize the equation and get

vec(H(1)) =

d∑
k=1

vec

[ÂX
(0)
:,k ]︸ ︷︷ ︸

n×1

·W (1)
k,:︸ ︷︷ ︸

1×d

 .

For brevity, we define
ω
(1)
kk′ :=

√
d ·W (1)

kk′ , for all k, k′ ∈ [d]

and
Z

(1)
k := vec

(
[ÂX

(0)
:,k ] · w

(l+1)
k,:

)
, for all k ∈ [d].
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Then we get that {ω(1)
kk′}k,k′∈[d] are i.i.d. with mean 0 and variance σ2

w, and

vec(H(1)) =
1√
d

d∑
k=1

Z
(1)
k .

Analogous to the proof of Proposition D.1, {Z(1)
k }k∈[d] are i.i.d., E[Z(1)

1 ] = 0nd, and

Cov[Z
(1)
1 ] = E

[
ω
(1)T
1,: ω

(1)
1,:

]
⊗
{
Â · E

[
X

(0)
:,1 X

(0)T
:,1

]
· Â
}

= σ2
wId ⊗ ÂΦ(0)Â

= Id ⊗ σ2
wÂΦ(0)Â.

Since Σ̃(1) = σ4
wÂXXT Â/d0 = σ2

wÂΦ(0)Â, applying the central limit theorem, vec(H(1)) con-
verges to a Gaussian random variable N(0nd, Id⊗ Σ̃(1)) as d→∞. Consequently, {H(1)

:,k } converge
to i.i.d. Gaussian random variables N(0n, Σ̃

(1)) in distribution.

Induction step. Suppose that {X(l−1)
:,k }k∈[d] converge to i.i.d. random variables with mean 0n

and covariance matrix Φ(l−1) in distribution. Suppose that {H(l)
:,k}k∈[d] converge to i.i.d. Gaussian

random variables N(0n, Σ̃
(l)) in distribution. Now we look at X(l) first.

For the linear ResGCN at initialization, the post-activation embeddings satisfy

X(l) = αH(l) + βX(l−1) = αÂX(l−1)W (l) + βX(l−1)

We take any k-th channel X(l)
:,k of X(l):

X
(l)
:,k = αH

(l)
:,k + βX

(l−1)
:,k

= αÂX(l−1)W
(l)
:,k + βX

(l−1)
:,k

= α
( d∑

k′=1

ÂX
(l−1)
:,k′ W

(l)
k′k

)
+ βX

(l−1)
:,k

=
α√
d

( d∑
k′=1

ÂX
(l−1)
:,k′ ω

(l)
k′k

)
︸ ︷︷ ︸

(i)

+βX
(l−1)
:,k︸ ︷︷ ︸
(ii)

,

where ω
(l)
k′k := W

(l)
k′k/
√
d has mean 0 and variance σ2

w, which does not rely on d. By the induction
hypothesis, X(l−1)

:,k′ and X
(l−1)
:,k are independent when k′ ̸= k. Then (ii) is independent of the

k′-th term αÂX
(l−1)
:,k′ ω

(l)
k′k/
√
d in (i) when k′ ̸= k. We notice that the correlation between (i)’s

k-th term αÂX
(l−1)
:,k ω

(l)
kk/
√
d and βX

(l−1)
:,k goes to 0 as d → ∞. Thus, we get that (i) and (ii) are

asymptotically independent, the expectation

E[X(l)
:,k ] = αE[H(l)

:,k ] + βE[X(l−1)
:,k ] = 0n,

and the covariance matrix

Cov[X
(l)
:,k ] = α2Cov[H

(l)
:,k ] + β2Cov[X

(l−1)
:,k ] = α2Σ̃(l) + β2Φ(l−1)

= α2σ2
wÂΦ(l−1)Â+ β2Φ(l−1)

= Φ(l).

By the induction hypothesis, {H(l)
:,k} are i.i.d. and {X(l−1)

:,k } are i.i.d. as d→∞, so {X(l)
:,k} are i.i.d..

Next, we look at the pre-activation embedding H(l+1). We have

H(l+1) = ÂX(l)W (l+1) + 1n · b(l+1) = ÂX(l)W (l+1).
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We also vectorize it and get

vec(H(l+1)) =

d∑
k=1

vec
(
[ÂX

(l)
:,k ] ·W

(l+1)
k,:

)
.

Analogous to the proof of base case (or the proof of Proposition D.1), we can conclude that {H(l+1)
:,k }

converge i.i.d. to N(0n, σ
2
wÂΦ(l)Â), i.e. N(0n, Σ̃

(l+1)).

Conclusion. By the principle of mathematical induction, we have proven this proposition.

E.2 PROOF OF THEOREM 3.3 (SIGNAL PROPAGATION ON LINEAR RESGCN)

Theorem E.2. Suppose that there exists an eigenvector u of Â corresponding to the eigenvalue 1,
such that the input feature X ∈ Rn×d0 satisfies XTu ̸= 0d0×1. Under the NNGP correspondence
approximation for linear ResGCN, if α2σ2

w + β2 > 1 and α ̸= 0, then we have

1. limL→∞ M
(L)
FSP(σ

2
w) = limL→∞ EH(L)∼N(0n,Σ̃(L))[∥H(L)∥2F/∥X∥2F] = +∞.

2. limL→∞ M
(L)
GEV(σ

2
w) = limL→∞ EH(L)∼N(0n,Σ̃(L))[Dir(H(L))/∥H(L)∥2F] = 0.

Proof of part 1 in Theorem 3.3. For any positive semi-definite matrix Σ ∈ S, we have

Eh∼N(0n,Σ)[∥h∥2] = Eh∼N(0n,Σ)[tr(h
Th)] = Eh∼N(0n,Σ)[tr(hh

T )] = tr(Σ).

Recalling the NNGP correspondence formula for linear ResGCN (38) in Proposition E.1, we have

Σ̃(1) =
σ4
w

d0
ÂXXT Â,

Σ̃(l+1) = σ2
wα

2ÂΣ̃(l)Â+ β2Σ̃(l).

(41)

By Proposition C.1, we can assume that A = UΛUT , where Λ = diag(λ1, . . . , λn) with 1 = λ1 ≥
· · · ≥ λn > −1 and U ∈ Rn×n is an orthogonal matrix, i.e., UUT = UTU = In. Then from (41),
we get

UT Σ̃(l+1)U = σ2
wα

2 · UT ÂΣ̃(l)ÂU + β2 · UT Σ̃(l)U

= σ2
wα

2 · ΛUT Σ̃(l)UΛ + β2 · UT Σ̃(l)U.
(42)

So for any i ∈ [n] and l ∈ N, we have

(UT Σ̃(l+1)U)ii = σ2
wα

2 · λi(U
T Σ̃(l)U)iiλi + β2(UT Σ̃(l)U)ii

= (α2λ2
iσ

2
w + β2) · (UT Σ̃(l)U)ii.

Thus, for any i ∈ [n] and L ∈ N, we have

(UT Σ̃(L)U)ii = (α2λ2
iσ

2
w + β2)L−1 · (UT Σ̃(1)U)ii.

According to the assumption on input feature X , there exists an eigenvector u of Â corresponding
to the eigenvalue 1, such that XTu ̸= 0d0×1. Suppose that u1, u2, . . . , un ∈ Rn×1 are the columns
of U , then there exists i ∈ [n] such that XTui ̸= 0. Otherwise, suppose that u =

∑n
j=1 cjuj and

XTuj = 0 for any j ∈ [n], then XTu =
∑n

j=1 cjX
Tuj = 0. Contradiction!

Without loss of generality, we suppose that Au1 = u1 and XTu1 ̸= 0d0×1. Then we have

(UT Σ̃(1)U)11 =
σ4
w

d0
· uT

1 ÂXXT Âu1 =
σ4
w

d0
· uT

1 XXTu1 =
σ4
w

d0
· ∥XTu1∥2 > 0.

It results in

tr(Σ̃(L)) = tr(UT Σ̃(L)U) ≥ (UT Σ̃(L)U)11 = (α2σ2
w + β2)L−1 · σ

4
w

d0
∥XTu1∥2. (43)
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Therefore, if α2σ2
w + β2 > 1, we have

lim
L→∞

M
(L)
FSP(σ

2
w) = lim

L→∞
EH(L)∼N(0n,Σ̃(L))[∥H

(L)∥2F/∥X∥2F]

=
C

∥X∥2F
lim

L→∞
Eh∼N(0n,Σ̃(L))[∥h∥

2]

=
C

∥X∥2F
lim

L→∞
tr(Σ̃(L)) = +∞.

Proof of part 2 in Theorem 3.3. For any positive semi-definite matrix Σ ∈ S, we have

Eh∼N(0n,Σ)[Dir(h)] = Eh∼N(0n,Σ)[tr(h
T L̂h)] = Eh∼N(0n,Σ)[tr(L̂hh

T )] = tr(L̂Σ).

So when we want to study Eh∼N(0n,Σ)[Dir(h)], we only need to look at tr(L̂Σ) in the following of
the proof.

Since ÂL̂ = Â(In − Â) = Â− Â2 = (In − Â)Â = L̂Â, we multiply L̂ on both sides of the second
equation in (41) and get

L̂Σ̃(l+1) = σ2
wα

2 · L̂ÂΣ̃(l)Â+ β2L̂Σ̃(l)

= σ2
wα

2 · ÂL̂Σ̃(l)Â+ β2L̂Σ̃(l).

Then for any i ∈ [n] and l ∈ N, we have

(UT L̂Σ̃(l+1)U)ii = σ2
wα

2 · λi(U
T L̂Σ̃(l)U)iiλi + β2 · (UT L̂Σ̃(l)U)ii

= (α2λ2
iσ

2
w + β2) · (UT L̂Σ̃(l)U)ii.

Thus, for any i ∈ [n] and L ∈ N, we have

(UT L̂Σ̃(L)U)ii = (α2σ2
wλ

2
i + β2)L−1 · (UT L̂Σ̃(1)U)ii (44)

Since UT L̂U = UT (In − Â)U = In − Λ, we get

UT L̂Σ̃(1)U = (In − Λ)UT Σ̃(1)U

We denote
ri = (UT Σ̃(1)U)ii, for any i ∈ [n].

Then by (44), we have

(UT L̂Σ̃(L)U)ii = (α2σ2
wλ

2
i + β2)L−1 · (1− λi)ri,

From Proposition C.1, we have

(UT L̂Σ̃(L)U)ii ≤ (α2σ2
wλ

2 + β2)L · (1− λi)ri, if λi ∈ (−1, 1);
(UT L̂Σ̃(L)U)ii = 0 = (α2σ2

wλ
2 + β2)L · (1− λi)ri, if λi = 1,

where λ = maxλi ̸=1 |λi| ∈ [0, 1). Thus, we get

tr(L̂Σ̃(L)) = tr(UT L̂Σ̃(L)U) ≤ (α2σ2
wλ

2 + β2)L−1 ·
n∑

i=1

(1− λi)ri.

We conclude that

EH(L)∼N(0n,Σ̃(L))[Dir(H(L))] = C · Eh∼N(0n,Σ̃(L))[Dir(h)] = C · tr(L̂Σ̃(L))

≤ C(α2σ2
wλ

2 + β2)L−1 ·
n∑

i=1

(1− λi)ri.

Then we have

EH(L)∼N(0n,Σ̃(L))[Dir(H(L))]

(α2σ2
w + β2)L−1

≤

(
C

n∑
i=1

(1− λi)ri

)
·
(
α2σ2

wλ
2 + β2

α2σ2
w + β2

)L−1

.
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Since α2σ2
w + β2 > 1 and α ̸= 0 as assumed in the statement of this theorem, we have (α2σ2

wλ
2 +

β2)/(α2σ2
w + β2) ∈ [0, 1). So we get that

lim
L→∞

EH(L)∼N(0n,Σ̃(L))[Dir(H(L))]

(α2σ2
w + β2)L

= 0. (45)

Recalling (43) in the proof of part 1 for Theorem 3.3, if we define

δ0 =
σ4
w

d0
∥XTu1∥2 and K = α2σ2

w + β2,

then given any L ∈ N, we have
1

KL−1
· tr(Σ̃(L)) ≥ δ0 > 0. (46)

Similar to the proof of part 2 in Theorem D.7, we have

EH∼N(0n,Σ̃(L))

[
Dir(H)

∥H∥2F

]
= EH∼N(0n,Σ̃(L))

[
Dir(H)

∥H∥2F
1{∥H∥2

F>ϵKL−1}

]
+ EH∼N(0n,Σ̃(L))

[
Dir(H)

∥H∥2F
1{∥H∥2

F≤ϵKL−1}

]
≤

EH∼N(0n,Σ̃(L))[Dir(H)]

ϵKL−1
+ 2 · PH∼N(0n,Σ̃(L))[∥H∥

2
F ≤ ϵKL−1].

(47)

For any L ≥ 1, there exists i ∈ [n], such that Σ̃(L)
ii ≥ tr(Σ̃(L))/n. For any n × C random matrix

H ∼ N(0n, Σ̃
(L)), it holds that Hi,1 ∼ N(0, Σ̃

(L)
ii ). By (46), we have

PH∼N(0n,Σ̃(L))

[
∥H∥2F ≤ ϵKL−1

]
≤ PH∼N(0n,Σ̃(L))

[
H2

i,1 ≤ ϵKL−1
]

= PZ∼N(0,1)

[
Z2 ≤ ϵKL−1

Σ̃
(L)
ii

]
≤ PZ∼N(0,1)

[
Z2 ≤ ϵnKL−1

tr(Σ̃(L))

]
≤ PZ∼N(0,1)

[
Z2 ≤ ϵn

δ0

]
= 2Φ

(√
ϵn

δ0

)
− 1,

(48)

where Φ(x) = PZ∼N(0,1)[Z ≤ x] denotes the cumulative distribution function of the standard normal
distribution N(0, 1).

Combining (47) and (48), we get

EH∼N(0n,Σ̃(L))

[
Dir(H)

∥H∥2F

]
≤ 1

ϵKL−1
· EH∼N(0n,Σ̃(L))[Dir(H)] + 4Φ

(√
ϵn

δ0

)
− 2.

By (45) , we let L→∞ and get

lim sup
L→∞

EH∼N(0n,Σ̃(L))

[
Dir(H)

∥H∥2F

]
≤ 1

ϵKL−1
· lim sup

L→∞
EH∼N(0n,Σ̃(L))[Dir(H)] + 4Φ

(√
ϵn

δ0

)
− 2

=
1

ϵ
· 0 + 4Φ

(√
ϵn

δ0

)
− 2 = 4Φ

(√
ϵn

δ0

)
− 2.

(49)

Notice that the left hand side of (49) is independent of the choice of ϵ. Since Φ is a continuous map,
we let ϵ→ 0+ and get

lim sup
L→∞

EH∼N(0n,Σ̃(L))

[
Dir(H)

∥H∥2F

]
≤ 4Φ(0)− 2 = 0.

Therefore, we have

lim
L→∞

M
(L)
GEV(σ

2
w) = lim

L→∞
EH∼N(0n,Σ̃(L))

[
Dir(H)

∥H∥2F

]
= 0.
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F BEST REPORTED DEPTHS OF EXISTING OVER-SMOOTHING-RELATED
APPROACHES ON OGBN-ARXIV

Table 2: Summary of depths with optimal test accuracies of existing over-smoothing-related ap-
proaches on OGNB-Arxiv. The corresponding optimal test accuracies are also indicated in parenthe-
ses.

Models Depth (test accuracy)
GCN (Kipf & Welling, 2017) 2 (69.53)
DropEdge (Rong et al., 2020) 2 (68.67)

PairNorm (Zhao & Akoglu, 2020) 2 (65.74)
DropNode (Huang et al., 2020) 16 (67.17)
MeanNorm (Yang et al., 2020) 16 (70.40)
GroupNorm (Zhou et al., 2020) 16 (70.50)
NodeNorm (Zhou et al., 2021b) 16 (70.75)

GCNII (Chen et al., 2020b) 16 (72.61)
GPRGNN (Chien et al., 2021) 16 (70.30)

DAGNN (Liu et al., 2020) 16 (71.82)
EGNN (Zhou et al., 2021a) 32 (72.7)

JKNet (Xu et al., 2018) 16 (66.41)
APPNP (Gasteiger et al., 2019) 16 (66.95)

SPoG-ResGCN(Ours) 64 (72.97)

In Table 2, we summarize the best depths of existing approaches aiming to tackle the over-smoothing
issue. The best depth refers to the depth that achieves the highest test accuracy on OGBN-Arxiv. For
approaches that utilize random dropping or normalization techniques, we all employ vanilla GCNs as
the underlying model. Most of the results are directly cited from Chen et al. (2022b), while the result
of EGNN is cited from the original paper (Zhou et al., 2021a). We see that the best performance
in most of these studies is still achieved with less than 20 layers, suggesting that the curse of depth
continues to constrain the potential of GCNs.
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G SPOGINIT ALGORITHM DETAILS

In Section 4, SPoGInit aims to find a better initialization by minimizing

w1VFSP + w2VBSP − w3M
(L)
GEV.

In the implementation of of SPoGInit algorithm, we always use one random weight sample to get
point estimates V̂FSP, V̂BSP, M̂

(L)
GEV of VFSP,VBSP,M

(L)
GEV, respectively. Given any Xavier-initialized

{Ŵ (l)}Ll=1, SPoGInit scales the weights layer-wise by γ = (γ(l))l∈[L] ∈ RL
>0 to yield new initial-

ization θ(γ) = {W (l)}Ll=1 = {γ(l)Ŵ (l)}Ll=1 that achieves proper signal propagation. To be more
specific, SPoGInit algorithm solves the optimization problem

min
γ

F (θ(γ)) := w1V̂FSP(γ) + w2V̂BSP(γ)− w3M̂
(L)
GEV(γ), (50)

where

V̂FSP := (M̂
(1)
FSP/M̂

(L−1)
FSP − 1)2 =

[
∥H(1)(θ(γ))∥F
∥H(L−1)(θ(γ))∥F

− 1

]2
,

V̂BSP := (M̂
(2)
BSP/M̂

(L−1)
BSP − 1)2 =

[
∥g(2)(θ(γ))∥F
∥g(L−1)(θ(γ))∥F

− 1

]2
,

M̂
(L)
GEV :=

Dir(H(L)(θ(γ))

∥H(L)(θ(γ)∥2F
,

with g(l)(θ(γ)) := ∂ℓ/∂W (l).

Now we explain SPoGInit (Algorithm 1) in detail.

In lines 2-3, we initialize the weight parameters and weight scales γ(l)(0) = 1. We iteratively update
θ(γ) as follows.

In lines 5-6, at each iteration, we sample random node features from a standard Gaussian distribution
and node labels from a discrete uniform distribution. This trick can help enhance data independence
and solve over-fitting problems (Dauphin & Schoenholz, 2019).

In line 7, we calculate the objective function F (θ(γ(t))) as defined in (50).

In lines 8-12, we update the weight parameters θ(γ(t)) by optimizing the objective function through
the projected gradient descent method to the scales {γ(l)(t)}Ll=1 for each layer. We adopt the projected
gradient descent method to ensure the scales {γ(l)(t)}Ll=1 remain positive.

Algorithm 1 SPoGInit: searching for weight initialization with better Signal Propagation on Graph

1: normalized adjacency matrix Â, input dimension d0, number of labels C, network depth L,
hidden dimension d, learning rate η, total iterations T , metric weights w1, w2, w3.

2: initialize γ(l)(0) = 1 and sample {Ŵ (l)}Ll=1 by Xavier initialization.
3: initialize θ(γ(0)) ≜ {W (l)(0)}Ll=1 by W (l)(0)← γ(l)(0) · Ŵ (l).
4: for t = 0, 1, · · · , T − 1 do
5: generate input X(t) ∈ Rn×d0 with X(t)ik

iid∼ N(0, 1). ▷ Sampling and Evaluation
6: generate label yi(t)

iid∼ Uniform{1, 2, . . . , C} for any node i ∈ [n].
7: calculate the objective function F (θ(γ(t))) by Â, X(t), y(t) and θ(γ(t)).
8: for layers l = 1, 2, . . . , L do ▷ Update
9: γ(l)(t+ 1)← γ(l)(t)− η∇γ(l)F (θ(γ(t))).

10: γ(l)(t+ 1)← Proj[10−6,∞)(γ
(l)(t+ 1)).

11: W (l)(t+ 1)← γ(l)(t+ 1) · Ŵ (l).
12: θ(γ(t+ 1)) ≜ {W (l)(t+ 1)}Ll=1.

13: return θ(γ(T )).

Specifically, we explain how to compute the derivative of the objective function with respect to the
scale γ. Through the chain rule, we can calculate the derivative of the objective function with respect

37



Under review as a conference paper at ICLR 2024

to the scale γ(l) as follows:

∂F (θ(γ)

∂γ(l)
=

dl−1∑
k′=1

dl∑
k=1

∂F (θ(γ)

∂W
(l)
k′k

∂W
(l)
k′k

∂γ(l)
=

dl−1∑
k′=1

dl∑
k=1

∂F (θ(γ)

∂W
(l)
k′k

Ŵ
(l)
k′k

=

dl−1∑
k′=1

dl∑
k=1

∂F (θ(γ)

∂W
(l)
k′k

W
(l)
k′k

γ(l)
.

In practice, we employ two alternative methods: 1. direct computation as shown above, 2. black-
box optimization through forward passes to approximate the gradient, which saves computational
resources (Conn et al., 2009).

Additionally, we provide specific hyperparameter choices for SPoGInit in vanilla GCN experiments.
We set total iterations T as 500 and learning rate η as 0.1. Considering the sensitivity of the training
process to weight gradients, we assign a higher weight to the backward propagation. Finally, we set
the forward propagation and backward propagation weights as w1 = 1 and w2 = 10. Moreover, to
balance the scale of the graph embedding variation, we utilize the inverse of the Dirichlet energy of
the input data as the weight: w3 = ∥X∥2F/Dir(X).
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H SUPPLEMENTAL EXPERIMENT RESULTS

H.1 DATASETS

Datasets: We focus on seven benchmark datasets for semi-supervised node classification. The
small-scale datasets include Cora, Pubmed, and Citeseer Yang et al. (2016). The large-scale datasets
comprise OGBN-Arxiv, IGB-tiny19, and Arxiv-year. These large-scale datasets are selected from
three popular publicly available graph benchmarks: Open Graph Benchmark (OGB) Hu et al.
(2020), Illinois Graph Benchmark (IGB) Khatua et al. (2023), and Large Scale Non-Homophilous
Graphs Benchmark Lim et al. (2021). We use a standard training/validation/test split Yang et al.
(2016) for Cora, Pubmed, and Citeseer datasets. On large-scale datasets, we adopt standard train-
ing/validation/test splits. Statistics of the datasets are summarized in Table 3.

Table 3: Statistics of the seven datasets used in the experiments (Section 5 and Appendix H).
Dataset Nodes Features Edges Class Homophily Training/Validation/Test

Cora 2708 1433 10556 7 0.81 5.2%/18.5%/36.9%
Pubmed 19717 500 88648 3 0.80 0.3%/2.5%/5.1%
Citeseer 3327 3703 9104 6 0.74 3.6%/15.0%/30.1%

OGBN-Arxiv 169343 128 1166243 40 0.66 53.7%/17.6%/28.7%
IGB-Tiny19 100000 1024 447416 19 0.56 60%/20%/20%
Arxiv-year 169343 128 1166243 5 0.22 50%/25%/25%

H.2 EXPERIMENTAL SETTINGS AND HYPERPAMETERS

Settings for the initialization experiments of vanilla GCN.

In Figures 4, 8, 9 and 10, the number of hidden units is set to be 64. The models are trained using the
Adam optimizer with the tanh activation function. For the Adam optimizer, we set the momentum
coefficients to 0.9 and 0.9995, and perform grid searches over the learning rates ranging from
10−3, 10−4, 5× 10−5, to 10−5. Table 4 reports the settings for training epochs and early stopping
patience with different network depths. To investigate the training degradation issue, we exclude
dropout Srivastava et al. (2014) and weight decay.

In this work, we replicate all training experiments across three random seeds. Additionally, we
replicate all experiments at initialization across 20 random seeds.

Table 4: Epochs settings of Figures 4, 8, and 9.
GCN layers Hyperparameters
4/8/16 layers epochs; 800, patience: 200
32 layers epochs: 1200, patience: 300
64 layers epochs: 1500, patience: 375
128 layers epochs: 2000, patience: 400

Settings for the experiments of skip-connection-based GCNs.

• Model performance. In Figures 5, 3 (b) and 11, we set the number of hidden units to
64. We add batch normalization and dropout to all models to enhance the generalization
performance, as they are commonly used in the training of GNNs on large-scale datasets.
The epoch settings of different datasets are as follows: 1000 epochs for OGBN-Arxiv,
1500 epochs for Arxiv-year, and 1000 epochs for IGB-Tiny 19. The Adam optimizer’s two
momentum coefficients are set to be 0.9 and 0.9995. The weight decay is fixed to 0. We
replicate all training experiments across three random seeds. Additional hyperparameters
are reported in Table 5.

• Backward propagation analysis. For the early training experiments in Figures 7, 14,
15, 16, 17, and the initialization experiments in Figures 12, 13, we maintain most of the
settings in the model performance experiments (including learning rates, hidden units,
initializations, weight decay, and momentum coefficients in Adam). To investigate backward
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propagation issues, we exclude batch normalization and dropout. We replicate the early-
training experiments across five random seeds.

Table 5: Hyperparameters of Figures 5 and 11
Models Hyperparameters
JKNet hidden units: 64, initialization: Xavier, learning rate: 0.005, dropout:0.5.

ResGCN hidden units: 64, initialization: Conventional, learning rate: 0.005, dropout:0.6.

GCNII αl: 0.5, λ: 0.5, hidden units: 64, initialization: Xavier,
learning rate: 0.005, dropout:0.1.

SPoG-ResGCN hidden units: 64, initialization: SPoGInit, learning rate: 0.005, dropout:0.6.

Overall settings

All experiments on large-sized datasets, e.g., OGBN-Arxiv, are conducted on a single NVIDIA V100
32 GB GPU, while small-sized datasets experiments are completed using a single NVIDIA T4 16
GB GPU.

H.3 ADDITIONAL EXPERIMENTS FOR SPOGINIT

Signal propagation experiments on additional datasets
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Figure 8: The (a) forward metrics, (b) backward metrics, and (c) graph embedding variation metrics
of deep vanilla GCNs with different initialization methods on the Citeseer dataset.
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Figure 9: The (a) forward metrics, (b) backward metrics, and (c) graph embedding variation metrics
of deep vanilla GCNs with different initialization methods on the Pubmed dataset.

In Figures 8 and 9, we present the average forward propagation metrics, backward propagation metrics,
and graph embedding variation metrics of tanh-activated vanilla GCNs with various initialization
methods, depths, and datasets. We replicate these experiments across 20 random seeds. Results
demonstrate that deep vanilla GCNs with Xavier and Conventional initializations suffer from poor
forward-backward propagation and graph embedding variation. In contrast, SPoGInit stabilizes the
forward-backward propagation and enhances the graph embedding variation.

Performance on additional datasets

In Table 6, we present the average training and test accuracies of tanh-activated GCNs with different
initialization methods, depths, and datasets. We replicate this experiment across three random seeds.
The results show that vanilla GCNs with Xavier initialization and Conventional initialization suffer
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Table 6: Training and test accuracies of vanilla GCNs with different initialization methods, depths,
and datasets. The abbreviation "OOM" means out of memory.

Datasets Init. Training accuracies for different depths Test accuracies for different depths
4 8 16 32 64 128 4 8 16 32 64 128

Cora
Conventional 100 100 73.6 63.6 43.8 49.8 79.3 71.2 57.8 47.8 36.9 37.1

Xavier 100 100 100 91.0 87.4 81.0 79.4 78.4 75.2 71.6 70.5 64.8
SPoGInit 100 100 99.3 100 92.6 88.1 79.7 77.9 77.0 74.7 74.0 72.3

Pubmed
Conventional 100 100 88.9 73.3 75.6 60.6 76.3 72.6 67.3 68.9 62.3 49.0

Xavier 100 100 100 97.8 91.7 74.4 76.6 75.9 75.9 76.3 78.1 68.7
SPoGInit 100 100 99.4 98.3 89.4 86.1 76.3 76.4 77.9 75.9 77.2 75.9

Citeseer
Conventional 100 99.2 97.8 43.1 63.6 34.2 67.6 59.3 52.1 40.2 37.8 29.3

Xavier 100 100 98.1 94.7 91.9 85.6 67.5 67.5 62.3 56.5 56.7 54.1
SPoGInit 100 100 98.3 94.7 93.6 91.4 67.8 65.1 59.9 62.2 57.7 54.9

OGBN-Arxiv
Conventional 74.5 70.5 50.3 31.7 27.3 OOM 70.1 67.8 49.9 33.2 35.9 OOM

Xavier 75.2 74.4 68.3 56.2 40.5 OOM 70.4 68.6 66.3 57.4 39.0 OOM
SPoGInit 75.5 75.1 70.9 63.5 OOM OOM 70.3 69.2 67.7 63.4 OOM OOM

from performance degradation on various datasets. Our proposed SPoGInit effectively alleviates
the performance degradation and outperforms the baseline initializations in deep GCNs on various
datasets.

H.4 EXPERIMENTS ON MISSING FEATURE FOR SPOGINIT

In order to investigate the performance of GCNs with the SPoGInit method on long-range datasets,
we employ the missing feature setting Zhao & Akoglu (2020) to construct the long-range setting. In
the missing feature setting, a subset of nodes in the validation and test sets lacks features, and the
proportion of these nodes is the missing fraction. In the missing feature setting, with semi-supervised
node classification as the fundamental task, the depth of GNNs (number of propagations) plays a
crucial role in the endeavor to reconstruct effective feature representations for these nodes.
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Figure 10: The test accuracies of tanh-activated deep GCNs with different initializations with 100%
missing fraction on (a) the Cora dataset, (b) the Citeseer dataset, and (c) the Pubmed dataset. SPoGInit
achieves the best performance at large depth and outperforms the other baselines in this missing
feature setting.

In Figure 10, we present the results of GCNs with different initializations and datasets in the missing
feature setting. We observe that SPoGInit achieves the best performance at large depths, showing the
importance of large depths for capturing long-range information.
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H.5 PERFORMANCE OF SKIP-CONNECTION-BASED GCNS

Experimental results of tanh-activated models
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(a) Arxiv-year training
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(b) OGBN-Arxiv training
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(c) IGB-tiny19 training
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(d) Arxiv-year test
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(e) OGBN-Arxiv test
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Figure 11: The average training accuracies (a)-(c) and test accuracies (d)-(f) of different skip-
connection-based GCNs with tanh activation on various datasets.

In Figure 11, we present the average training and test accuracies of tanh-activated models with various
depths. We see that SPoG-ResGCN stands out by achieving consistent performance gains as the
depth increases. Additionally, on the OGBN-Arxiv and Arxiv-year datasets, SPoG-ResGCN achieves
around 2.5% gains in test accuracy by deepening the model from 4 to 64 layers. These results
demonstrate that SPoG-ResGCN, with both ReLU and tanh activations, successfully overcomes the
curse of depths.

Optimal performance and the corresponding depths

In Tables 7 and 8, we present the optimal test accuracies and the corresponding depths for various
models and datasets. These values are derived from the results presented in Figures 5 and 11. Notably,
we see that SPoG-ResGCN outperforms all the baseline models and achieves optimal performances
at the largest depths across most datasets.

Table 7: Optimal test accuracies and the corresponding depths (the numbers in parentheses) of
ReLU-activated models.

Models OGBN-Arxiv IGB-Tiny19 Arxiv-year
APPNP 68.39±0.13 (4) 72.41±0.04 (32) 35.66±0.24 (4)
DAGNN 71.19±0.24 (16) 72.24±0.05 (4) 38.29±0.45 (4)
JKNet 72.46±0.17 (16) 70.96±0.09 (4) 51.31±0.02 (8)

ResGCN 72.46±0.12 (16) 72.08±0.15 (4) 52.98±0.09 (16)
GCNII 72.51±0.39 (8) 71.96±0.07 (4) 52.39±0.23 (8)

SPoG-ResGCN 72.76±0.35 (64) 73.36±0.05 (64) 54.22±0.14 (64)

H.6 BACKWARD METRICS OF BASELINE GCNS WITH SKIP CONNECTIONS

Skip connections significantly change the back-propagation computation. Therefore, in this sub-
section, we evaluate backward propagation by measuring the gradient norms of four representative
layers in an L-layer model: the first, the L/4-th, the L/2-th, and the 3L/4-th layers. For GCNII, we
evaluate its backward propagation metric by the gradient norms of W (1)

1 (see Equation 3) in these
layers. Additional settings can be seen in Appendix H.2.
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Table 8: Optimal test accuracies and the corresponding depths (the numbers in parentheses) of
tanh-activated models.

Models OGBN-Arxiv IGB-Tiny19 Arxiv-year
APPNP 68.03±0.07 (4) 72.42±0.12 (16) 35.14±0.11 (4)
DAGNN 71.21±0.07 (16) 72.16±0.05 (4) 36.95±0.05 (4)
JKNet 72.25±0.28 (16) 71.12±0.03 (32) 48.11±0.10 (8)

ResGCN 71.61±0.09 (16) 71.96±0.04 (4) 48.38±0.06 (32)
GCNII 72.23±0.26 (16) 72.01±0.12 (4) 50.25±0.06 (8)

SPoG-ResGCN 72.97±0.16 (64) 73.35±0.03 (8) 53.04±0.14 (64)

Gradient norms of α(l) in SPoG-ResGCN at initialization
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Figure 12: The gradient norms of the α(l) in ReLU-activated SPoG-ResGCNs with various depths
and layers at initialization on the Cora dataset. We replicate this experiment across 50 random seeds.

In Figure 12, we present the average gradient norms of α(l) in ReLU-activated SPoG-ResGCNs at
initialization. The results demonstrate that α(l) in SPoG-ResGCNs exhibit non-vanishing and stable
gradient norms at initialization in various depths and layers.

Backward metrics of baseline GCNs with skip connections at initialization
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(b) ResGCN
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Figure 13: The backward metrics of four layers in ReLU-activated baseline models with various
depths at initialization on the Cora dataset. We replicate this experiment across 20 random seeds.

In Figure 13, we present the average backward metrics of baselines with different depths at initializa-
tion. Results demonstrate that JKNet and GCNII suffer from serious gradient vanishing problems at
initialization, while the gradient norms of ResGCN explode at initialization.

Backward metrics of skip-connections based GCNs during early training
In Figures 14, 15, 16, and 17, we present the backward metrics of JKNet, ResGCN, GCNII, and
SPoG-ResGCN with different depths in early training. We see that, across the early 300 epochs,
JKNet exhibits stable backward propagation in its first layer, while the gradient norms of the other
layers vanish as the depth increases. Across early 300 epochs, the gradient norms of GCNII vanish as
the depths increase, while the gradient norms of ResGCN explode. In contrast, the gradient norms of
SPoG-ResGCN quickly improve during early training.
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(b) L/4-th layer
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(c) L/2-th layer
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(d) 3L/4-th layer

Figure 14: The backward metrics of four layers in ReLU-activated JKNet with different depths in 300
epochs for training on IGB-Tiny19 dataset. We replicate this experiment across five random seeds.
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(b) L/4-th layer
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(c) L/2-th layer

0 100 200 300
Epochs

10 2

100

102

104

106

Gr
ad

ie
nt

 N
or

m
 (3

L/
4-

th
 la

ye
r)

Depth: 4
Depth: 16
Depth: 64
Depth: 128
Depth: 256

(d) 3L/4-th layer

Figure 15: The backward metrics of the four layers in ReLU-activated ResGCN with different depths
in 300 epochs for training on IGB-Tiny19 dataset. We replicate this experiment across five random
seeds. The disappearing lines are caused by surpassing the machine precision.
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(c) L/2-th layer
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Figure 16: The backward metrics of W (l)
1 (see equation (3)) in ReLU-activated GCNII with various

depths and layers in 300 epochs for training on IGB-Tiny19 dataset. We replicate this experiment
across five random seeds. The disappearing lines are caused by surpassing the machine precision.
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(c) L/2-th layer
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Figure 17: The backward metrics of the four layers of ReLU-activated SPoG-ResGCN with different
depths in 300 epochs for training on IGB-Tiny19 dataset. We replicate this experiment across five
random seeds.
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I LIMITATION AND NEGATIVE SOCIAL IMPACT

In this paper, we employ signal propagation theory to analyze the curse of depth in Graph Con-
volutional Networks (GCNs). Additionally, we propose a solution (SPoGInit) to address signal
propagation issues and alleviate the curse of depths in GCNs. Interesting directions for future
work include applying signal propagation on the GNNs with attention mechanisms. This paper is a
theoretical and algorithmic paper on graph neural nets, and does not seem to pose negative social
impact.

45


	Introduction
	Preliminaries and Background
	Graph convolutional networks
	Initialization

	Theoretical analysis of GCN initializations
	Theoretical results for vanilla GCN
	Theoretical results for ResGCN 

	SPoGInit: initialization guided by signal propagation on graph
	SPoGInit for ResGCN

	Experiments
	Experiments for vanilla GCNs
	Experiments for Skip-connection-based GCN models

	Conclusion
	 Appendix
	Related works
	Supplemental notation and preliminaries
	Notation
	Supplemental skip-connected-based GCN architectures

	Convolutional kernel
	Signal propagation theory for vanilla GCN
	NNGP correspondence for vanilla GCN
	Some discussion w.r.t. G
	Proof of Theorem 3.1 (Signal propagation on ReLU-like-activated vanilla GCN)
	Proof of Theorem 3.2 (Signal propagation on ReLU-activated vanilla GCN)
	Signal propagation on tanh-activated vanilla GCN

	Signal propagation theory for linear ResGCN
	NNGP correspondence for linear ResGCN
	Proof of Theorem 3.3 (signal propagation on linear ResGCN)

	Best reported depths of existing over-smoothing-related approaches on OGBN-Arxiv
	SPoGInit algorithm details
	Supplemental experiment results
	Datasets
	Experimental settings and hyperpameters
	Additional experiments for SPoGInit
	Experiments on missing feature For SPoGInit
	Performance of skip-connection-based GCNs
	Backward metrics of baseline GCNs with skip connections

	Limitation and negative social impact


