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ABSTRACT

Meta-learning is critical for a variety of practical ML systems – like personalized
recommendations systems – that are required to generalize to new tasks despite a
small number of task-specific training points. Existing meta-learning techniques use
two complementary approaches of either learning a low-dimensional representation
of points for all tasks, or task-specific fine-tuning of a global model trained using all
the tasks. In this work, we propose a novel meta-learning framework that combines
both the techniques to enable handling of a large number of data-starved tasks. Our
framework models network weights as a sum of low-rank and sparse matrices. This
allows us to capture information from multiple domains together in the low-rank
part while still allowing task specific personalization using the sparse part. We
instantiate and study the framework in the linear setting, where the problem reduces
to that of estimating the sum of a rank-r and a k-column sparse matrix using a
small number of linear measurements. We propose an alternating minimization
method with hard thresholding – AMHT-LRS– to learn the low-rank and sparse
part effectively and efficiently. For the realizable, Gaussian data setting, we show
that AMHT-LRS indeed solves the problem efficiently with nearly optimal samples.
We extend AMHT-LRS to ensure that it preserves privacy of each individual user in
the dataset, while still ensuring strong generalization with nearly optimal number of
samples. Finally, on multiple datasets, we demonstrate that the framework allows
personalized models to obtain superior performance in the data-scarce regime.

1 INTRODUCTION

Typical real world settings – like multi user/enterprise personalization – have a long tail of tasks with
a small amount of training data. Meta-learning addresses the problem by learning a "learner" that
extracts key information/representation from a large number of training tasks, and can be applied to
new tasks despite limited number of task specific training data points.

Most existing meta-learning approaches can be categorized as: 1) Neighborhood Models: these
methods learn a global model, which is then "fine-tuned" to specific tasks (Guo et al., 2020; Howard &
Ruder, 2018; Zaken et al., 2021), 2) Representation Learning: these methods learn a low-dimensional
representation of points which can be used to train task-specific linear learners (Javed & White,
2019; Raghu et al., 2019; Lee et al., 2019; Bertinetto et al., 2018; Hu et al., 2021). In particular,
task-specific fine-tuning has demonstrated exceptional results across many natural language tasks
(Devlin et al., 2018; Liu et al., 2019; Yang et al., 2019; Lan et al., 2019). However, such fine-tuned
models update all parameters, so each fine-tuned total parameter footprint is same as the original
model. This implies that fine-tuning large models –like say a standard BERT model (Devlin et al.,
2018) with about 110M parameters – for thousands or millions of tasks would be quite challenging
even from storage point of view. One potential approach to handle the large number of parameters is
to fine-tune only the last layer, but empirical findings suggest that such solutions can be significantly
less accurate than fine-tuning the entire model (Chen et al., 2020a; Salman et al., 2020). Moreover,
representation learning based approaches apply strict restrictions like each task’s parameters have to
be in a low-dimensional subspace which tend to affect performance in general (Sec. 3).

In this work, we propose and study the LRS framework that combines both the above mentioned
complementary approaches. That is, LRS restricts the model parameters Θ(i) for the ith task as
Θ(i) := U ·W(i) + B(i), where first term denotes applying a low-dimensional linear operator on
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W(i), while B(i) is restricted to be sparse. That is the first term is based on representing parameters
of each task in a low dimensional subspace while the second term allows task-specific fine-tuning but
only of a few parameters. Note that methods that only allows fine-tuning of batch-norm statistics, or
of the final few layers can also be thought of as "sparse" fine-tuning but with a fixed set of parameters.
In contrast, we allow the tunable parameters to be selected from any part of the network.

The framework allows collaboration among different tasks so as to learn accurate model despite lack
of data per task. Similarly, presence of sparse part allows task-specific personalization of arbitrary
but a small set of weights. Finally, the framework allows tasks/users to either contribute to a central
model using privacy preserving bill-board models (see Section 2.2) or also allows flexibility where
certain tasks only learns their parameters locally and do not contribute to the central model.

While the framework applies more generally, to make the exposition easy to follow, we instantiate it
in the case of linear models. In particular, suppose the goal is to learn a linear model for the ith task
that is parameterized by θ(i), i.e., expected prediction for the data point x ∈ Rd is given by 〈x, θ(i)〉.
θ(i) is modeled as θ(i) := U?w?(i) + b?(i) for all tasks 1 ≤ i ≤ t, where U? ∈ Rd×r (where r � d)
is a tall orthonormal matrix that captures task representation and is shared across all the tasks.

Note that estimation of the low-rank and sparse part is similar to the robust-PCA (Netrapalli et al.,
2014) that is widely studied in the structured matrix estimation literature. However, in that setting,
the matrices are fully observed and the goal is to separate out the low-rank and the sparse part. In
comparison, in the framework proposed in this work, we only get a few linear measurements of the
underlying matrix due to which the estimation problem is significantly more challenging. We address
this challenge of estimating U? along with w?(i), b?(i) (for each task) using a simple alternating
minimization style iterative technique. Our method – AMHT-LRS– alternatingly estimates the global
parameters U? as well as the task-specific parameters w?(i) and b?(i) independently for each task.
To ensure sparsity of b we use an iterative hard-thresholding style estimator (Jain et al., 2014).

In general, even estimating U? is an NP-hard problem (Thekumparampil et al., 2021). One of the
main contributions of the paper is a novel analysis that shows that AMHT-LRS indeed efficiently
converges to the optimal solution in the realizable setting assuming the data is generated from a
Gaussian distribution. Formally, consider t, d-dimensional linear regression tasks (indexed by i ∈ [t])
with m samples {(x(i)

j , y
(i)
j )}mj=1 being provided to each of them such that

x
(i)
j ∼ N (0, Id) and y(i)

j | x
(i)
j = 〈x(i)

j ,U?w?(i) + b?(i)〉+ z
(i)
j for all i ∈ [t], j ∈ [m], (1)

where z(i)
j ∼iid N (0, σ2). Below, we state our main result informally in the noiseless setting (σ = 0):

Theorem (Informal, Noiseless setting). Suppose we are given m · t samples from t linear regression
tasks of dimension d as in equation 1. Goal is to learn a new regression task’s parameters using m
samples, i.e., learn the shared rank-r parameter matrix U? along with task-specific w?,b?. Then,
AMHT-LRS with total m · t = Ω̃(kdr4) samples and m = Ω̃(max(k, r3)) samples per task can
recover all the parameters exactly and in time nearly linear in m · t.

That is, AMHT-LRS is able to learn the underlying model exactly as long as the total number of
tasks is large enough, and per task samples scale only linearly in sparsity of b and cubically in the
rank of U?. Assuming r, k � d, additional parameter overhead per task is small, allowing efficient
deployment of such models in production. Finally, using the billboard model of (ε, δ) differential
privacy (DP) (Jain et al., 2021; Chien et al., 2021; Kearns et al., 2014), we can extend AMHT-LRS
to preserve privacy of each individual. Furthermore, for similar sample complexity as in the above
theorem albeit with slightly worse dependence on r, we can guarantee strong generalization error up
to a standard error term due to privacy.

Summary of our Contributions:

• We propose a theoretical framework for combining the meta-learning approaches of representation
learning and neighborhood model. Our model non-trivially generalizes guarantees of Thekumpara-
mpil et al. (2021); Tripuraneni et al. (2021); Boursier et al. (2022) to the setting where the parameter
matrix allows a low rank plus sparse decomposition.

• We propose an efficient method AMHT-LRS for the above problem and provide rigorous total
sample complexity and per-task sample complexity bounds that are nearly optimal (Theorem 1).
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• We provide a DP variant of AMHT-LRS that guarantees user level privacy. At a high-level we
show that under (ε, δ)-DP, one can obtain a generalization error as a non-private version but with
an additional error due to privacy budget (see Theorem 3).

• We demonstrate experiments on synthetic data and Movielens dataset using linear models (Sec. 3)
and toy neural nets (Appendix A); apart from showing the advantage of our framework, they also
show limitations of only using representation learning or a single model among other baselines.

Technical Challenges (Linear Models): Denote (W?)T = [w?(1), . . . ,w?(t)] ∈ Rr×t and B? =
[b?(1), . . . ,b?(t)] ∈ Rd×t; hence the matrix of optimal regressors is given by U?(W?)T+B?. There
are several technically novel steps that are required for recovering the model parameters in (1) that
combine both the representation and neighborhood models. In the general setting, even the task-
specific r-dimensional regression coefficients {w?(i)}i∈[t] are unknown and therefore, we are faced
with the additional challenge of learning {w?(i)}i∈[t] jointly along with the shared representation
matrix U? and the task-specific sparse parameter vectors {b?(i)}i∈[t]. Note that in the AM framework
proposed in Thekumparampil et al. (2021), the authors consider only the representation model and
not the neighborhood model (which is a simpler case of LRS setting). Similarly, in Netrapalli et al.
(2014), the authors design an AM algorithm for the problem of reconstructing the low rank and
sparse components of a matrix if the matrix is provided as an input. However, in our setting, we only
observe linear measurements of the individual columns of the parameter matrix. Therefore, informally
speaking, our analysis is faced with the key challenge of combining both sets of complementary
techniques in Thekumparampil et al. (2021); Netrapalli et al. (2014). This leads to the analysis of
several crucial steps in each iteration: 1) We track the incoherence of several intermediate matrices
corresponding to the latest estimates W(`),U(`) of W?,U?. 2) We also track the L2,∞ norm of the
matrix (I−U?(U?)T)U(`) to make progress on learning B?. In particular, the second step is the
most technically involved component of our analysis.

Organization: In Sec. 2, we introduce the general low rank+sparse (LRS) framework. In Sec. 2.1,
we provide theoretical guarantees for the canonical linear model in the LRS framework and provide a
differentially private version in Sec. 2.2. We analyze a special setting in Appendix B as warm-up
(Rmk. 3) while detailed proofs are delegated to Appendix C, D. In Sec. 3 and Appendix A, we
provide experimental results on synthetic and real datasets. In Appendix E, we discuss how to obtain
a good initialization for our methods in the realizable setting via Method of Moments.

2 LRS FRAMEWORK FOR META-LEARNING/PERSONALIZATION

Notations: [m] to denotes the set {1, 2, . . . ,m}. For a matrix A, Ai denotes ith row of A. For a
vector x, xi denotes ith element of x. We sometimes use xj to denote an indexed vector; in this case
xj,i denotes the ith element of xj . ||·||2 denotes euclidean norm of a vector and the operator norm of
a matrix. ||·||∞, ||·||0 will denote the `∞ and `0 norms of a vector respectively. ||·||2,∞, ||·||F will be
used to denote the L2,∞ and Frobenius norm of a matrix respectively. For a sparse vector v ∈ Rd,
we define the support supp(v) ⊆ [d] to be a set of indices such that vi 6= 0 for all i ∈ supp(v) and
vi = 0 otherwise. We use I to denote the identity matrix. Õ(·) notation subsumes logarithmic factors.
X(i) ∈ Rm×d denotes the matrix of covariates for the ith task such that X

(i)
j = (x

(i)
j )T. Similarly,

we write y(i), z(i) ∈ Rm to denote the task-specific response vector and noise vector respectively.

Let x ∈ Rd be the input point, and let ŷ = f(x; Θ) be the predicted label using a DNN f with
parameters Θ. Let there be t tasks/domains. Then, the goal is to personalize Θ to Θ(i) for each task
i ∈ [t] such that a) Θ(i) does not over-fit despite a small number of data-points labelled as task i, b)
{Θ(i), 1 ≤ i ≤ t} can be stored and inferred fast even for large t, say for t ≥ 1M , c) the framework
allows enough flexibility to ensure that different tasks/domains/users can contribute their data at
different levels of privacy risks. Our method LRS attempts to address all the three requirements using
a simple low-rank+sparse approach: we model each Θ(i) as Θ(i) := U ·W(i) + B(i), where UW(i)

denotes a linear operation on W(i) in a r-dimensional basis specified by U (can be very large for e.g.
standard BERT with ∼ 110M parameters), and B(i) is a k-sparse matrix. That is, we represent Θ(i)

as a combination of a small number of parameter matrices represented by U , along with a sparse set
of weights that can be fine-tuned arbitrarily for a given task.
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Note that due to low-dimensional and sparse representation, LRS should require relatively small
number of points per task. In the next section, we formally prove this claim for a simple linear setting
with Gaussian data. Furthermore, for each task the additional number of parameters is relatively
small – assuming r and k are small – which implies that memory cost can be controlled. The latency
cost also remains same as the baseline model, assuming we can explicitly compute Θ(i) on the fly.
Finally, the model allows tasks/domains/users to contribute data to learn U with differential privacy
(see Section 2.2), but it also admits domains/tasks who are not inclined to share data, and can just
fine-tune their model privately by learning W(i) and B(i) in isolation.

Comparison with Hu et al. (2021): LORA (Low Rank Adaptation of Large Language Models)
was proposed by Hu et al. (2021) for meta-learning with large number of tasks at scale. Although
the authors demonstrate promising experimental results, LORA only allows a central model (in a
low dimensional manifold) and does not incorporate sparse fine-tuning. Hence, LORA becomes
ineffective when the output dimension is small (say 1). The said limitation of LORA has been
demonstrated in detailed experiments on the MovieLens 1M dataset (a standard recommendation
dataset) in Sec. 3. Moreover, the low rank fine-tuning (as proposed in LORA) is limited when output
dimension is small. Finally, LORA does not have any theoretical guarantees even in simple settings.

Comparison with representation learning style models: A recent line of work (Thekumparampil
et al., 2021; Du et al., 2020; Tripuraneni et al., 2021; Boursier et al., 2022; Jain et al., 2021) proposes
a similar model to LRS but is specific to representation learning. These papers only consider a
low-rank representation of the task parameters but no sparse fine-tuning. Moreover, the proposed
algorithms in these papers have not been explored at scale and mostly been applied to vanilla linear
models (without considering privacy constraints or extension to more complex models). Even from a
theoretical point of view, these methods do not apply in our case due to the additional non-convex
sparsity constraint.

Comparison with Prompt-based and Batch-norm Fine-tuning: Another popular approach for
personalization is to use prompt-based or batch-norm based fine-tuning (Wang et al., 2022; Liu et al.,
2021; Lester et al., 2021); this usually involves a task-based feature embedding concatenated with the
covariate. Note that in a linear model, such an approach will only lead to an additional scalar bias
which can be easily modeled in our framework; thus our framework is richer and more expressive
with a smaller number of parameters. We have compared against such techniques in our experiments
and demonstrated their limitations in both real and synthetic datasets (see Sec. 3).

Private Meta-learning: Model-personalization is a key application of meta-learning, where we wish
to have a personalized model for each user i.e. each user represents a task. Due to sensitivity of
user-data, we would want to preserve privacy of each user for which we use user-level (ε, δ)-DP as
the privacy notion (see Definition 1). In this setting, each user i ∈ [t] holds a set of data samples
D(i) = {x(i)

j , 1 ≤ j ≤ m}. Furthermore, users interact via a central algorithm that maintains the
common representation matrix U which is guaranteed to be DP w.r.t. all the data samples of any
single user. The central algorithm publishes the current U to all the users (a.k.a. on a billboard)
and obtains further updates from the users. It has been shown in prior works (Jain et al., 2021;
Chien et al., 2021; Thakkar et al., 2019) that such a billboard mechanism allows for significantly
more accurate privacy preserving methods while ensuring user-level privacy. In particular, it allows
learning of U effectively, while each user can keep a part of the model which is personal to them, e.g.,
the W?(i),B?(i)’s in our context. See (Jain et al., 2021, Section 3) for more details about billboard
model in the personalization setting. Traditionally, such model of private computation is typically
called the billboard model of DP, which in turn is a subclass of joint DP (Kearns et al., 2014).
Definition 1. Differential Privacy Dwork et al. (2006b;a); Bun & Steinke (2016) A randomized
algorithmA is (ε, δ)-differentially private if for any pair of data sets D and D′ that differ in one user
(i.e., |D4D′| = 1), and for all S in the output range of A, we have

Pr[A(D) ∈ S] ≤ eε · Pr[A(D′) ∈ S] + δ,

where probability is over the randomness of A. Similarly, an algorithm A is ρ-zero Concentrated DP
(zCDP) if Dα (A(D)||A(D′)) ≤ αρ, where Dα is the Rényi divergence of order α.

In Definition 1, when we define the notion of neighborhood, we define it w.r.t. the addition (removal)
of a single user (i.e., additional removal of all the data samples Di for any user i ∈ [t]). In the
literature Dwork & Roth (2014), the definition is referred to as user-level DP.
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2.1 LINEAR LRS: ALGORITHM AND ANALYSIS

In this section, we describe our LRS framework for the linear setting, provide an efficient algorithm
for parameter estimation, and provide rigorous analysis under realizable setting with Gaussian
data. We then extend our framework, algorithm and analysis to allow user-level differential privacy.
Consider the linear LRS model introduced in Section 1 where we have t d-dimensional linear
regression tasks (indexed by i ∈ [t]) with m samples {(x(i)

j , y
(i)
j )}mj=1 being provided to each of

them such that the ith sample for the jth task (x
(i)
j , y

(i)
j ) is generated independently according to eq.

1. So the problem reduces to that of designing statistically and computationally efficient algorithms
to estimate the common representation learning parameter U? as well as task-specific parameters
{w?(i)}i∈[t], {b?(i)}i∈[t]. The ERM for this model assuming squared loss is given by:

(LRS) minimize L(U,W,B) =
∑
i∈[t]

∑
j∈[m]

1

2

(
y

(i)
j − 〈x

(i)
j ,Uw(i) + b(i)〉

)2

s.t. UTU = I,
∣∣∣∣∣∣b(i)

∣∣∣∣∣∣
0
≤ k ∀i ∈ [t] and ||Bi||0 ≤ ζ ∀i ∈ [d], (2)

where U ∈ Rd×r, W = [w(1) w(2) . . . w(t)]T ∈ Rt×r stores the task-specific coefficients, and
B = [b(1) b(2) . . . b(t)] ∈ Rd×t stores the task-specific sparse vectors for fine-tuning. Note that
LRS is non-convex due to: a) bilinearity of U,W, b) non-convexity of `0 norm constraint.

We propose AMHT-LRS that handles the non-convexity in the objective and the constrained set
by carefully combining alternating minimization for U, w and b with hard thresholding to ensure
sparsity of b. Let HT : Rd × R → Rd be a hard thresholding function that takes a vector v ∈ Rd
and a parameter ∆ as input and returns a vector v′ ∈ Rd such that v′i = vi if |vi| > ∆ and 0
otherwise. Let U+(`−1), {w(i,`−1)}i∈[t] and {b(i,`−1)}i∈[t] be the latest iterates at the beginning of
the `th iteration. First, for each task i ∈ [t], given estimates U+(`−1),w(i,`−1), we can update b(i,`)

by solving the following problem:

argminb∈Rd
∣∣∣∣∣∣X(i)(U+(`−1)w(i,`−1) + b)− y(i)

∣∣∣∣∣∣
2

such that ||b||0 ≤ k. (3)

While the problem is non-convex, we can still apply a projected gradient descent algorithm which
reduces to iterative hard thresholding. In particular, we use Algorithm 2 for the ith task where in
each iteration, we run a gradient descent step on the parameter vector estimate b (of b?(i)) and
subsequently apply HT(·,∆) function where ∆ > 0 is set appropriately. Next, given estimates
U+(`−1),b(i,`), we can update w(i,`) by solving the following task-specific optimization problem

argminw∈Rr
∣∣∣∣∣∣X(i)(U+(`−1)w + b(i,`))− y(i)

∣∣∣∣∣∣
2

for each i ∈ [t]. (4)

Subsequently, given the updated estimates of the task-specific parameters {w(i,`)}i∈[t] and
{b(i,`)}i∈[t], we update U+(`) (estimate of shared representation matrix) using:

argminU∈Rd×r
∑
i∈[t]

∣∣∣∣∣∣X(i)(Uw(i,`) + b(i,`))− y(i)
∣∣∣∣∣∣

2
. (5)

followed by a QR decomposition of the solution. Note that the above two problems ((4) and (5)) can
be solved using standard least squares regression methods. Finally, we must ensure independence
of the estimates (which are random variables themselves) from the data that is used in a particular
update. We can ensure such independence by using a fresh batch of samples in every iteration.

Analysis: As in prior works, we are interested in the few-shot learning regime when there are only a
few samples per task. From information theoretic viewpoint, we expect the number of samples per
task to scale linearly with the sparsity k and rank r and logarithmically with the dimension d. On
the other hand, U? has dr parameters and therefore, it is expected that the total number of samples
across all tasks scales linearly with dr which implies we would want the number of tasks t to scale
linearly with dimension d. Note that if the sparse vectors {b?(i)}i∈[t] have the same support (or a
high overlap between the supports), then the model parameters might not be uniquely identifiable.
This is because, in that case, the matrix B? can be represented as a low-rank matrix. To establish
identifiability of U? and sparse vectors b?, we make the following assumption:
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Algorithm 1 AMHT-LRS

Require: Data {(x(i)
j ∈ Rd, y(i)

j ∈ R)}mj=1 for all i ∈ [t], column sparsity k of B,∣∣∣∣∆(U+(0),U?)
∣∣∣∣
F
≤ B, maxi ‖b(i,0) − b?(i)‖∞ ≤ γ(0), Parameter ε > 0.

1: for ` = 1, 2, . . . do
2: Set T (`) = Ω

(
` log

(
γ(`−1)

ε

))
3: for i = 1, 2, . . . , t do
4: b(i,`) ← OptimizeSparseVector((X(i),y(i)),v = U+(`−1)w(i,`−1), α =

O
(
c`−1
4

B√
k

)
, β = O(c`−1

5 B), γ = γ(`−1),T = T (`)) for suitable constants c4, c5 > 0.

5: w(i,`) =
(

(X(i)U+(`−1))T(X(i)U+(`−1))
)−1(

(X(i)U+(`−1))T(y(i) −X(i)b(i,`))
)

6: end for
7: Set A :=

∑
i∈[t]

(
w(i,`)(w(i,`))T⊗

(∑m
j=1 x

(i)
j (x

(i)
j )T

))
and V :=

∑
i∈[t](X

(i))T
(
y(i)−

b(i,`)
)

(w(i,`))T. Compute U(`) = vec−1
d×r(A

−1vec(V)) and U+(`) ← QR(U(`))

8: γ(`) ← (c3)`−1εB for a suitable constant c3 < 1.
9: end for

10: Return w(`), U+(`) and {b(i,`)}i∈[t].

Assumption 1 (A1). Consider the matrix B? ∈ Rd×t whose ith column is the vector b?(i). Then
each row of B? is ζ-sparse i.e. ‖B?

i ‖0 ≤ ζ for all i ∈ [d], and each column is k-sparse.

Note that the orthonormal matrix U? cannot have extremely sparse columns otherwise it would
be information theoretically impossible to separate columns of U? from b?. Moreover, similar to
Tripuraneni et al. (2021), we need to ensure that each task contributes to learning the underlying
representation U?. These properties can be ensured by the standard incoherence assumptions
Tripuraneni et al. (2021); Collins et al. (2021); Netrapalli et al. (2014) and therefore, we have
Assumption 2 (A2). Let λ?1 and λ?r be the largest and smallest eigenvalues of the task diversity matrix
(r/t)(W?)TW? ∈ Rr×r. We assume that W? ∈ Rt×r and the representation matrix U? ∈ Rd×r

are µ?-incoherent i.e. ||W?||2,∞ ≤
√
µ?λ?r and ||U?||2,∞ ≤

√
µ?r
d .

Theorem 1. Consider the LRS problem equation 2 with t linear regression tasks and samples
obtained by equation 1. Let model parameters satisfy assumptions A1, A2. Let the row sparsity of B?

satisfy ζ = O
(
t(r2µ?)−1

√
λ?r
λ?1

)
, and let k = O

(
d · (λ

?
r

λ?1
)2
)

. Suppose Algorithm 1 is initialized with

U+(0) such that
∣∣∣∣(I−U?(U?)T)U+(0)

∣∣∣∣
F

= O
(√

λ?r
λ?1

)
and

∣∣∣∣U+(0)
∣∣∣∣

2,∞ = O(
√
µ?r/d), and is

run for L = Õ(1) iterations. Then, with high probability, the outputs U+(L), {b(i,L)}i∈[t] satisfy:∣∣∣∣∣∣(I−U?(U?)T)U+(L)
∣∣∣∣∣∣
F

=
Õ(1)σS√
µ?λ?r

,
∣∣∣∣∣∣b(i,L) − b?(i)

∣∣∣∣∣∣
∞
≤ O(1)σS√

k
, i ∈ [t], (6)

where S =
(
µ?
√

r3d
mt +

√
r3

mλ?r
+
√

k
m

)
provided the total number of samples satisfies:

m = Ω̃
(
k+ r2µ?

(λ?1
λ?r

)2

+
σ2r3

λ?r

)
, mt = Ω̃

(
r3dµ?

(
r(µ?)4(λ?r)

2k+µ?
(λ?1
λ?r

)2

+σ2
(

1 +
1

λ?r

)))
For a new task, modified AMHT-LRS (Alg. 6 in Appendix D) has the following generalization bound:

L(U,w,b)− L(U?,w?,b?) = Õ
(
σ2
(
S2 +

k + r

m

))
.

Note that the per-task sample complexity of our method roughly scales as m = (r3 + k), which is
information theoretically optimal in k and is roughly r2 factor larger. Total sample complexity scales
as mt = kdr4, which is roughly kr3 multiplicative factor larger than the information theoretic bound.
Note that typically r and k are considered to be small, so the additional factors are small, but we
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leave further investigation into obtaining tighter bounds for future work. Finally, the generalization
error scales as σ2(r + k)/m which is nearly optimal. Note that, ignoring meta-learning, and directly
optimizing the single-task error would lead to significantly larger error of σ2d/m.

Remark 1 (Runtime and Memory). The run-time of Algorithm 1 is dominated by the update for
U+(`). For each iteration `, Step 8 has a time complexity of O((dr)3 + (mt)(dr)2); however in
practice, a gradient descent step for the update of U(`) can bring down the time complexity to
O(mtdr). Moreover, the memory usage of Algorithm 1 is O((dr)2 + tr2).

Remark 2 (Initialization). Note that Algorithm 1 has local convergence properties as described in
Theorem 1. In practice, typically we use random initialization for U+(0). However, similar to the
representation learning framework in Tripuraneni et al. (2021), we can use the Method of Moments
to obtain a good initialization. See Appendix E for more details.

Remark 3 (Special Settings). In the setting where for each task, we just need to learn a single central
model for all tasks and sparse fine-tune the weights for each task i.e. w?(i) = 1 for all i ∈ [t] is
fixed, AMHT-LRS obtains global convergence guarantees (Theorem 4 in Appendix B). Moreover,
if the central model U? is also frozen, then the task-based sparse fine-tuning reduces to standard
compressed sensing. In the realizable setting, our framework recovers the standard generalization
error of σ2k/m in compressed sensing (Jain & Kar, 2017)[Chapter 7].

Remark 4 (Sample complexity comparison). Note that the theoretical guarantees in representation
models studied in Tripuraneni et al. (2021); Thekumparampil et al. (2021); Collins et al. (2021)
cannot capture the sparse fine-tuning in each task (with potentially arbitrary magnitude). However,
since our framework combines neighborhood and representation models, our sample complexity
guarantees are sub-optimal by only a factor of r2 (generalization error is optimal) when restricted to
the special case of representation model (Thekumparampil et al., 2021).

2.2 PRIVATE LINEAR LRS: PRIVACY PRESERVING META-LEARNING

Algorithm 2 OPTIMIZE SPARSE VECTOR

Require: Data (X,y) ∈ Rm×d × Rm where we min-
imize ||y −X(v? + b?)||2 such that ||b?||0 ≤ k.
Estimate v (of v?) and initialization b (of b?). It-
erations T, parameters α, β, γ > 0 and suitable
constants c > 0, 0 < c1 < 1/2.

1: for j = 1,2,. . . , T do
2: c← b− 1

m · (X
(i))T(X(i)b + X(i)v − y(i))

3: ∆← α+ c1

(
γ + β√

k

)
and b← HT(c,∆)

4: γ ← 2c1γ + 2(α+ c1√
k
β)

5: end for
6: Return vector b.

In this section, we provide a user level
DP variant of Algorithm 1 in the billboard
model. We obtain DP for the computation
of each U(`) by perturbing the covariance
matrix A and the linear term V in the algo-
rithm with Gaussian noise to ensure that the
contribution of any single user is protected.
We start by introducing the function clip :
R × R → R that takes as input a scalar
x, parameter ρ and returns clip(x, ρ) =

x ·min
{

1, ρx

}
. We can extend the defini-

tion of clip to vectors and matrices by using
clip(v, ρ) = v · min

{
1, ρ
‖v‖2

}
for a vec-

tor v and clip(A, ρ) = A ·min
{

1, ρ
‖A‖F

}
for a matrix A. In order to ensure that
Algorithm 1 is private, for input parameters A1,A2,A3,Aw, we first clip the covariates and re-

sponses: for all i ∈ [t], j ∈ [m], we will have x̂
(i)
j ← clip

(
x

(i)
j ,A1

)
, ŷ(i)

j ← clip
(
y

(i)
j ,A2

)
,

̂
(x

(i)
j )Tb(i,`) ← clip

(
(x

(i)
j )Tb(i,`),A3

)
and ŵ(i,`) ← clip

(
w(i,`),Aw

)
. Now, we can modify Line

7 in Algorithm 1 as follows (let L be the number of iterations of Alg. 1):

A :=
1

mt

(∑
i∈[t]

(
ŵ(i,`)(ŵ(i,`))T ⊗

( m∑
j=1

x̂
(i)
j (x̂

(i)
j )T

))
+ N(1)

)
(7)

V :=
1

mt

(∑
i∈[t]

∑
j∈[m]

x̂
(i)
j

(
ŷ

(i)
j − (

̂
x

(i)
j )Tb(i,`)

)
(ŵ(i,`))T + N(2)

)
(8)

7
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(a) Overall RMSE (b) RMSE for data-starved tasks (c) RMSE for data surplus tasks

Figure 1: Decrease in RMSE on MovieLens data for AMHT-LRS algorithm on increase in fine-tunable
parameters. Note that AMHT-LRS outperforms other baselines for both data-starved and data-surplus tasks.

where, for some σDP > 0, each entry of N(1) is independently generated from
N
(
0,m2 · A4

1 · A4
w · L · σ2

DP

)
; similarly, each entry of N(2) is independently generated from

N
(
0,m2 · A2

1(A2 + A3)2A2
w · L · σ2

DP

)
. We are now ready to state our main result:

Theorem 2. Algorithm 1 (with modifications mentioned in equation 7 and equation 8) satisfies
σ−2
DP − zCDP and correspondingly satisfies (ε, δ)-differential privacy in the billboard model, when

we set the noise multiplier σDP ≥ 2ε−1
√

(log(1/δ) + ε). Furthermore, if ε ≤ log(1/δ), then
σDP ≥ ε−1

√
8 log(1/δ) suffices to ensure (ε, δ)-differential privacy.

Next, we characterize the generalization properties of modified AMHT-LRS:

Theorem 3. Consider the LRS problem equation 2 with all parameters m, t, ζ obeying the bounds

stated in Theorem 1 and furthermore, t = Ω̃(
(rd)3/2

√
log(1/δ)+ε

ε µ?). Suppose we run AMHT-LRS
(Step 7 in Alg. 1 replaced with 7 and 8) for L = Õ(1) iterations with A1 = Õ(

√
d),A2 =

Õ(
√
µ?λ?r + (maxi ‖b?(i)‖2)),A3 = Õ

(
λ?r

√
µ?

λ?1

)
,Aw = Õ(

√
µ?λ?r). Then, with high probability,

generalization error for a new task satisfies:

L(U,w,b)− L(U?,w?,b?) = Õ
(
σ2S2 +

dr2(log(1/δ) + ε)(λ?rµ
?)2

ε2t2
· (κ2 + r2d2)

)
where S =

(
µ?
√

r3d
mt +

√
r3

mλ?r
+
√

k
m

)
, η = Õ

(
t−1µ?r2d3/2

(
1+
√

λ?r
λ?1

+maxi∈[t]
‖b?(i)‖2√
µ?λ?r

)
σDP

)
and κ = 1 +

√
λ?r
λ?1

+ maxi∈[t]
‖b?(i)‖2√
µ?λ?r

.

Note that the modified AMHT-LRS ensures (ε, δ)−differential privacy without any assumptions.
However Thm. 3 still has good generalization properties; moreover, the per-task sample complexity
guarantee m still only needs to scale polylogarithmically with the dimension d. In other words, our
algorithm can ensure good generalization along with privacy in data-starved settings as long as the
number of tasks is large - scales as ∼ d3/2/ε. Similarly, generalization error for a new task has two
terms: the first has a standard dependence on noise σ2 and the second has a scaling of d3(εt)−2

which is standard in private linear regression and private meta-learning (Smith et al., 2017; Jain et al.,
2021). Detailed proofs of our main results namely Theorems 1,3 are delegated to Appendix C, D.

3 EMPIRICAL RESULTS

In this section, we conduct an empirical study of AMHT-LRS with the following two goals: a)
demonstrate that personalization with AMHT-LRS indeed improves accuracy for tasks with a small
number of points, b) for a fixed budget of parameters, AMHT-LRS is significantly more accurate
than existing baselines. For simplicity, we fix the model class to be linear and consider the following
baselines: 1) Single Model (ucentral): learns a single model for all tasks, 2) Full Fine-tuning
(uindv) separate model for each task aka standard fine-tuning, 3) Representation Learning or Rep.
Learning (uw): only low rank model (Thekumparampil et al., 2021) and 4) Prompt Learning
uT(x ||c): Modified covariate by concatenation with a task-embedding vector. Note that the models
considered in Hu et al. (2021); Chua et al. (2021); Denevi et al. (2018) all reduce to Full fine-tuning
models (that have a high memory footprint) in the experimental settings that we consider. Also, the

8
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above approaches are not just restricted to linear models and can be extended to complex model
classes such as Neural Networks (see Appendix A for extension to 3 layer Neural Net architectures).

We conduct experiments on two datasets: a. Synthetic dataset: here, for each task i ∈ [t], we
generate m = 100 samples {(x(i)

j , y
(i)
j )}j∈[m] where x

(i)
j ∼ N (0, Id×d), y(i)

j = 〈x(i)
j ,u?w?(i) +

b?(i)〉. We select d = 150, set k, ζ, the column and row sparsity level of {b?(i)}i∈[t] to be 10 and 5,
respectively. We sample u? uniformly from the unit sphere; non-zero elements of {b?(i)}i∈[t] and
w?(i) are sampled i.i.d. from N (0, 1) with the indices of zeros selected randomly.

b. MovieLens Data: The MovieLens 1M dataset comprises of 1M ratings of 6K users for 4K movies.
Each user is associated with some demographic data namely gender, age group, and occupation in the
MovieLens dataset. We partition the users into 241 disjoint clusters where each cluster represents a
unique combination of the demographic data. Each user group thus represents a "task" in the language
of our paper. We partition the data into training and validation in the following way: for each task,
we randomly choose 20% movies rated by at least one user from that task and put all ratings made by
users from that task for the chosen movie into the validation set. The remaining ratings belong to
the training set. Based on the ratings in the training set, we fit a matrix of rank 50 onto the ratings
matrix and obtain a 50 dimensional embedding of each movie. Thus we ensure that there is no data
leakage while creating the embeddings. For each task, the samples consist of (movie embedding,
average rating) tuples; the response is the average rating of the movie given by users in that task. The
number of samples per task varies from 22 to 3070 - clearly many clusters are data starved. We use
the training data to learn the different models (with some hyper-parameter tuning) mentioned earlier
and use them to predict the ratings in the validation data.

Empirical Observations on Synthetic Data: Figure 2 shows that not only having a single model can
lead to poor performance, but a fully fine-tuned model per task can also be highly inaccurate as
scarcity of data per task can leading to over-fitting. Finally, low-rank representation learning as well
as prompt tuning based techniques do not perform well due to lack of modeling power. In contrast,
our method is able to exactly recover the underlying parameters – as also predicted by Theorem 1 –
and provides 5 orders of magnitude better RMSE.

Empirical Observations on MovieLens:

Figure 2: Decrease in RMSE on Synthetic data for
AMHT-LRS on increase in fine-tunable parameters

The overall average validation RMSE for
AMHT-LRS and the different baselines that we
consider is shown in Fig. 1a against percentage
of fine-tunable parameters used by the model.
With respect to the single model as reference, in
the linear rank-1 case, the representation learn-
ing and the prompt learning based baselines
have 1 and 50 additional parameters per task
respectively; they are unable to personalize well.
In contrast, with only 10%(= 5) additional
parameters per task, AMHT-LRS has smaller
RMSE than fully fine-tuned model, which re-
quire 241x more parameters. However, for data-starved clusters/tasks (samples < 100), we observe
that fully fine-tuning approach start to overfit. In contrast, our method outperforms other baselines
for both data-starved and data-surplus tasks.

4 CONCLUSIONS

We presented a powerful theoretical framework to study meta-learning, and develop novel algorithms.
In particular, our framework combines representation learning and neighborhood fine-tuning based
approaches for meta-learning. We proposed AMHT-LRS method, that combines alternative mini-
mization – popular in representation learning – with hard thresholding based methods. We rigorously
proved that AMHT-LRS is statistically and computationally efficient, and is able to generalize to
new tasks with only O(r + k) samples, where r is the representation learning dimension and k is the
number of fine-tuning weights. Finally, we extended our result to ensure that privacy of each task
is preserved despite sharing information across tasks. Extending our framework to non-realizable
setting and adversarial settings are critical future directions.
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