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Abstract

This paper introduces SUNMASK, an approach for generative sequence modeling1

based on masked unrolled denoising autoencoders. By explicitly incorporating a2

conditional masking variable, as well as using this mask information to modulate3

losses during training based on expected exemplar difficulty, SUNMASK models4

discrete sequences without direct ordering assumptions. The addition of masking5

terms allows for fine-grained control during generation, starting from random6

tokens and a mask over subset variables, then predicting tokens which are again7

combined with a subset mask for subsequent repetitions. This iterative process8

gradually improves token sequences toward a structured output, while guided by9

proposal masks. The broad framework for unrolled denoising autoencoders is10

largely independent of model type, and we utilize both transformer and convolution11

based architectures in this work. We demonstrate the efficacy of this approach both12

qualitatively and quantitatively, applying SUNMASK to generative modeling of13

symbolic polyphonic music, and language modeling for English text.14

1 Introduction15

Generative modeling approaches can stratified into different modeling approaches based on factoriza-16

tion to form two broad categories, autoregressive modeling (AR) and non-autoregressive modeling17

(NAR). We introduce SUNMASK, a NAR generative model for structured sequences.18

1.1 Autoregressive Models19

AR modeling with deep neural networks has been a dominant approach to generative modeling20

and feature learning [38, 70, 73, 39, 76, 74] which has many crucial advantages in both training21

and inference. One key concern is the necessity of defining a "dependency chain" in the form of22

a (typically) directed acyclic graph (DAG). Sampling during inference can be accomplished in a23

straightforward manner using ancestral sampling - sampling from the first variable or variables in the24

DAG, using those to conditionally estimate a probability distribution for subsequent variables.25

Many applications have straightforward orderings in which to define this chain of variables, based26

on domain knowledge. For example following the flow of time for timeseries modeling is often27

a logical choice, allowing models to make predictions into the future from the past. However in28

many other domains, for example images, language, or music, the process of defining a dependency29

chain over input variables (e.g. pixels, characters, words, or notes) is far from straightforward, as30

for any arbitrary ordering there can frequently be examples where this ordering creates long-term31

dependencies, or otherwise makes satisfaction of dependencies during training and evaluation more32

difficult than another alternative ordering.33

This divide becomes further compounded in many creative applications to these domains, as creators34

typically iterate repeatedly: forming a concept, applying an initial sequence of steps to create the35
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framing of the concept, and seeing where the creative flow may lead to alterations in the original36

concept, thus altering future steps. Though the resulting output may be perceived in a time-ordered37

fashion (for example, reading a book or listening to a song), the initial creation was performed38

globally and holistically. This global view is often critical to creating elements such as foreshadowing39

and tension which make the resulting output interesting or enjoyable. This iterative process is directly40

at odds with a strict AR factorization, and requires well trained AR models to cope with a high degree41

of uncertainty and multi-modality for long range dependencies, which can lead to logical mistakes or42

other errors.43

1.2 Non-Autoregressive Models44

An alternative methodology for generative modeling is non-autoregression (NAR), broadly covering a45

large number of different modeling approaches which attempt to remove assumptions about variable46

ordering, instead either hand-defining per-exemplar orderings, or modeling variables jointly without47

resorting to chain rule factorization. One way to define an ordering over variables is via masking48

of inputs or intermediate network representations [22, 71, 72, 77, 73, 57], and indeed modern AR49

approaches such as transformers [75] use an autoregressive mask internally to define the chain of50

variables order. These masks can either be constant over all training (as in standard AR transformers51

and PixelCNN [73]) or dynamic per example (as in MADE [22]). When masks are dynamic per52

example, we begin to see the relationship between enforcing AR via masking and NAR methods, as53

although some ordering is assumed this ordering is no longer constant, and it becomes possible to54

use the same trained model to evaluate the probability of a particular output variable under multiple55

possible orderings.56

Closely linked to masking methods are so called diffusion models, which relax the variable ordering57

problem through noise prediction [67, 69, 30]. Rather than predicting a new variable or variables58

given previous ones in an arbitrarily chosen DAG, diffusion models focus on predicting a less59

noisy version of many variables jointly, given a set of noisy input variables. Iteratively applying60

this learned denoising improvement operator should eventually result in predicting a fully clean61

output estimate, given either a noisy version of the target domain, or even starting from pure noise.62

Given this framing it is clear that diffusion models are closely linked to denoising methods in63

general, specifically denoising autoencoders, as well as modern density modeling approaches such64

as generative adversarial networks (GAN [23]), variational autoencoders (VAE [41]), flow-based65

models (NICE [15], RealNVP [16], Normalizing Flows [61], IAF [42], MAF [57]), iterative canvas66

sampling (DRAW [24]), and noise contrastive estimation (NCE [27]). Particular applications of67

this denoising philosophy such as BERT [14], WaveGrad [9], and GLIDE [56], have resulted in68

large quality improvements for feature learning and data generation for text, images, and audio69

[46, 66, 60, 29].70

1.3 Trade-offs Between AR and NAR Approaches71

The choice between AR and NAR methods is not clear-cut. For many domains, high-quality models72

exist using both approaches but we can define some crucial parameters. Some NAR methods such as73

GAN or VAE are capable of generating output in only one inference step, however they are typically74

hard to train on certain data modalities (e.g. text data) comparing to AR counterparts. Other NAR75

methods such as diffusion models typically allow for choosing a diffusion length during inference,76

which is independent of that used at training. Choosing a low diffusion length can frequently lead to77

poor sample quality, and tuning this setting (among many others) is critical to high quality generation.78

However if the tuned diffusion length for a given sequence (of length T ) is shorter than the length79

of those sequences, the NAR method has a computational advantage over the equivalent AR model80

(which would require T steps for a T length sequence). In addition, the ability to tune this diffusion81

length can be useful in interactive applications, or when a variety of output is desirable. This82

setting can also be a curse, as even well-trained models perform poorly with improper diffusion83

settings. Several branches of current research are focused on improving guarantees [35, 68, 40] and84

convergence speed for diffusion models [43, 44, 36, 79].85

1.4 SUNMASK, a non-autoregressive sequence model86

We introduce SUNMASK, a NAR sequence model which uses masks over noised, discrete data87

to learn a self-improvement operator to transition from categorical noise to the data distribution in88
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iterated steps. Given a target data representation, we train a model which can map from a noisy89

version of input data to a corrected form of the input. In this work, we use multinomial noise - namely90

entries are corrupted to 1 of P possible values (for a given set size P ), with the number of noised91

entries defining the relative noise level for the training example. This is similar to many diffusion92

approaches at a high level, and particularly shown to be an effective tool in SUNDAE [65] and93

Coconet [33]. In addition to the use of multinomial noise, we also form a mask representing where94

the data was noised, feeding this mask alongside the input data to form a conditional probability95

distribution.

Figure 1: Step-unrolled denoising training for SUNMASK on polyphonic music, unrolled step length
2. Training data (left) consists of four voices corrupted by sampling a random mask per voice and
replacing the masked data (red) with random pitches (green). SUNMASK takes both mask and
corrupted training data as input, predicting denoised original data as output. In the second step, the
model takes a sampled version of the model step predictions and the same mask as input, outputting
another prediction of the original data.96

2 Method97

The relationship between discrete diffusion and denoising autoencoders has been explored in previous98

work [31, 65, 3, 32]. We build upon this foundation, combined with many insights from prior99

orderless modeling approaches, crucially Orderless NADE [72], Coconet [33] (which is a more100

modern variant of Orderless NADE), and SUNDAE [65].101

SUNMASK is built around a process xt ∼ fθ(·|xt−1;m) on a space X = {1, . . . , v}N of arrays of102

categorical variables. This parametric transition function fθ takes an additional argument m ∈ 0, 1N .103

During training, m indicates variables that were not corrupted, and as a consequence we can use it104

during inference to tell fθ which variables to trust.105

Given a sequence of masks m0, . . . ,mT−1, the generating distribution of our model derives from a106

prior p0 (typically uniform noise) and repeated application of fθ:107

pT (xT ;m0, . . . ,mT−1) =
( ∑
x1,...,xT−1∈X

T∏
t=1

fθ(xt|xt−1;mt−1)
)
p0(x0) (1)

In practice, p0 is typically elementwise iid uniform noise, and the masks m0, . . . ,mT−1 are drawn108

according to a schedule and may be held constant for several steps.109

To train fθ, we take a training example x ∼ pdata and draw a mask m. We apply the corruption110

procedure x0 ∼ q(·|x;m) to obtain x0 which equals x where the mask m is true and uniform random111

values elsewhere. Then we iterate xt ∼ fθ(·|xt−1;m) with the aim of reconstructing x.112

As in SUNDAE, the transition fθ models the variables as conditionally independent of one another.113

However SUNDAE has no direct concept of masking. SUNMASK thus combines past insights from114

the masked NAR models Orderless NADE and Coconet with existing concepts from SUNDAE, along115

with new model classes and inference schemes to form a powerful generative model. Similar to116

SUNDAE, our objective is to minimize 1
2 (L

(1) + L(2)) where117

L(t)(θ) = −Em0,··· ,mt−1
E x ∼ pdata

x0 ∼ q(·|x,m0)
x1 ∼ fθ(·|x0;m0)
x2 ∼ fθ(·|x1;m1)

· · ·
xt−1 ∼ fθ(·|xt−2;mt−2)

[∑
i(1−m

(i)
t−1) log f

(i)
θ (x(i)|xt−1;mt−1)∑

i 1−m
(i)
t−1

]

(2)
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is the reconstruction loss for the elements of x that were corrupted. As in Orderless NADE [72]118

and Coconet [33], we weigh each term according to the size of the mask, to ensure that the overall119

weight on each conditional f (i)
θ is uniform across i. Unlike previous methods, we target only masked120

variables in the loss. In practice we choose m0 = · · · = mt−1 during training and t = 2. Since we121

only go to t = 2, keeping the mask constant is a close enough approximation to the masking schedule122

used in inference. The choice of t = 2 is driven by the ablation study in SUNDAE, where t = 2 was123

found to account for nearly all performance gains in translation experiments, with higher unrollings124

showing no additional benefit. In addition higher values of t unrolling generally increase memory125

usage, making the training of high order unrollings complicated.126

Coupled with multi-step unrolling, the SUNMASK training scheme encourages learning complex127

relationships between the mask and the data, allowing the potential for multi-level trust over the input128

data: variables with a mask value of 1 which appear correct (given context), variables of mask value 1129

which appear incorrect, variables of mask value 0 which appear correct, and variables of mask value130

0 which appear incorrect. Denoising only methods (such as SUNDAE [65]) would need to form131

an internal, non-controllable mask in order to disentangle these states, and 0 mask models (such as132

Coconet [33]) have controllable input masks but combine both masked states.133

SUNMASK allows for direct control at inference using both proposal masks and noising of variables,134

combining elements of both SUNDAE and Coconet. We show a high level example of the unrolled135

training scheme, mask proposals, and input data processing in Figure 1.136

2.1 SUNMASK, SUNDAE, and Coconet Comparison137

The overall unrolled mask and iterative inference setting is largely independent of architecture choice,138

and as long as the internal architecture does not make any ordering assumption over the input data139

we can incorporate it into SUNMASK. We use two primary archetypes for the internal model in140

this paper: Attentional U-Net and Relative Transformer. Detailed description of the respective141

architectures can be seen in the Appendix.142

SUNMASK uses an unrolled training scheme, similar to that shown in SUNDAE, as well as a mask143

which is input to the model and defines manipulated variables as in Coconet. The loss is masked based144

on this manipulation mask, unlike Coconet or SUNDAE. The SUNMASK loss is further weighted by145

the total amount of masked variables. Comparisons of various high level modeling features between146

SUNMASK, Coconet, and SUNDAE are shown in Table 1.147

Table 1: Comparison of model features for
SUNMASK, Coconet, and SUNDAE

Model SUNMASK Coconet SUNDAE
Mask input to model ✓ ✓ X

Masked loss ✓ X X
Re-weighted loss ✓ ✓ X

Unrolled loss ✓ X ✓
Inference mask schedule ✓ ✓ X
Sampling rejection step ✓ X ✓

Mask control preserves data ✓ X X

2.2 Model Training148

During training, the internal architecture is combined with a step unrolled training procedure, as149

highlighted by SUNDAE [65]. Rather than directly randomizing positions, we re-write this as a150

masking scheme, first sampling a mask (with 0 randomize, 1 keep, which we denote as 0-active151

format) then performing randomization to one of P possibilities, for the masked subset of K variables.152

This random masking procedure is equivalent to the approach from SUNDAE, but using a mask153

allows us to further combine the mask information with the input data, in order to form a conditional154

probability estimate. In addition, this 0-active masking scheme makes direct comparison to masking155

schemes with absorbing states (such as OrderlessNADE [72], Coconet [33], VQ-Diffusion [25] and156

OA-ARDM [31]) simpler, as the mask can be directly multiplied with the data in a 0-active format.157

Convolutional SUNMASK incorporates mask information with a one-hot data representation by158

concatenation along the channel axis. Transformer SUNMASK uses a slightly different setting -159
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assuming input transformer data (T , B), with T timesteps, B batch elements, and vocabulary size P160

is transformed to a (T,B,L) dimensional embedding, we repeat the mask along the embedding axis161

L times, downweighting the values in the mask by 1√
L

for numerical reasons. Concatenating this162

reduced mask with the input embedding along the last axis is sufficient to form the desired conditional163

probability distribution. This stretched and reduced mask format provides more stable training than164

other schemes such as separately embedding the mask, then concatenating or summing with the input165

data embedding.166

Each training batch is randomly sampled from the training dataset, and a corresponding noise value167

drawn from rand(N) for N examples in the minibatch. This per-example noise value is then used168

to derive a per-step mask over T timesteps, by comparing noise rand(N) < rand(N,T ). During169

training, this means some examples have a high per-example noise value (e.g. .99), and thus many170

values masked and noised in the training, while other examples may have a low noise value (e.g.171

.01) drawn instead. Combined with a training loss which learns to denoise the input and focuses on172

imputing information about masked corrupted inputs, the overall model will learn a chain to go from173

more noisy data to less noisy step-wise, resulting in a learned improvement operator [32, 65].174

This improvement operator can be applied to noisy data or pure noise, and iterate toward a predictive175

sample from the training distribution. See Multinomial Diffusion [32] and SUNDAE [65] for more176

detail on this proof, as well as fundamental work on denoising autoencoders [1]. In SUNMASK, we177

combine the mask used to noise the input with the input data itself, while modifying the loss to predict178

only masked variables. In addition, we downweight the loss by 1
1+

∑
1−mt

for each batch element,179

meaning that losses for heavily masked entries are downweighted compared to losses on examples180

with little masking, in a form of curriculum weighting based on expected estimation difficulty.181

While a one step denoising scheme can be sufficient for learning the data manifold [3, 1], unrolling182

this denoising scheme into a multi-step process can have performance benefits. SUNMASK directly183

uses the unrolled loop scheme described in [65], using a step value of 2. For a detailed description of184

the step unrolled training scheme, see Appendix or the overview description from SUNDAE [65].185

The masked and unrolled training can be seen as a container for any internal model which does186

not make ordering assumptions, and we utilize both convolutional U-Net (a variant of GLIDE [56]187

U-Net) and Relative Transformer [12, 34, 59] models for various experiments, shown in Section 4.188

2.3 Inference Specific Settings189

Well-trained SUNMASK models should be applicable to full content generation, as well as a variety190

of partially conditional generative tasks such as infilling and human-in-the-loop creation. Basic191

sampling involves creating a set of variables, with all variables randomly set to 1 of P values in the192

domain (or partial randomization in the case of infilling) along with an accompanying mask, which is193

initially all 0 for full generation, or mixed 1s and 0s for partial generation tasks. Given this data and194

mask as input, the trained model then predicts a probability distribution over all possible P values, for195

all variables. Despite the use of masked losses in training, we sample these prediction distributions196

for all variables. These predictions are then accepted or rejected from the original set, resulting in a197

new variable set. We then sample a new mask (based on a predefined schedule) and combine it with198

the initial mask, then iterate this overall process, updating at least some of the variables at each step.199

During inference we use several key techniques to improve generative quality. We use typicality200

sampling [52] on the output probability distribution and a variable number of diffusion steps, on201

the order of 100 to 2000. Masks are randomly sampled using the schedule defined in [33] which202

linearly decreases the number of masked variables over time according to αn = max(αmin, αmax −203
n
ηN (αmax − αmin)) with αmin = .001, αmax = .999, and η = 3/4 as in [33], along with an optional204

triangular linear ramp-up and ramp-down schedule for the probability of accepting predictions from205

the model into the current variable set at each step, as shown in [65]. Active balance, by increasing206

the probability of updating variables which have been updated less often, is another inference time207

option. Variables can also be re-noised at any step, randomly resetting any variable with a 0 value208

for the mask at that diffusion step. Some problems (primarily symbolic music modeling) showed209

increased variability from active balance and re-noising, but the usefulness of these options is task210

dependent.211

We caution that tuning hyperparameters for inference is critical to success, as improper settings can212

drastically lower the performance of SUNMASK, see Section 4 for variance over various inference213
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settings in different tasks. For human-in-the-loop applications, the existence of these controls can214

allow a number of fine-grained workflows to emerge, driven by expert users to create and curate215

interesting output [18, 11], demonstrated in Figure 3.216

3 Related Work217

We state here some key related approaches, as well as how our method differentiates from these218

previous settings. A number of recent publications on diffusion models and feature learning have219

incorporated masks as part of their overall training scheme [31, 7, 29], however these papers use220

masks for blanking, rather than as indicators over stochastic variables. Many infilling models [17,221

37, 14, 50, 10], and masked image models [29] feature conditional modeling with a mask (blank)222

token, predicting the variables masked from the input for feature learning or generative modeling.223

XLNet [77] combines the infilling and autoregressive paradigms, learning arbitrary permuted orders224

over masked out variables, using blank-out masking and randomly generated autoregressive ordering225

similar to OrderlessNADE and Coconet. Conditional diffusion generators [53, 63, 64] and GAN226

generators [20] have the combination of mask indicators as well as preserving stochasticity of the227

masked variables. However these methods do not use an unrolled training scheme, and generally228

target image related tasks, with the notable exception of maskGAN. Many models use a concept of a229

working canvas, and do repeated inference steps for generation or correction of data [24, 4, 45, 21,230

55], SUNMASK differs from these models due to architecture choices, training scheme, and loss231

weighting, as well as application domain [54, 58, 62, 25, 56, 60].232

3.1 Convolutional SUNMASK233

SUNMASK is most closely related to coconet [33] and SUNDAE [65]. Coconet (as an instance of234

OrderlessNADE), trains by sampling a random mask per training example, using this mask to set235

part of the input (in one hot format) to zero. The mask is further concatenated to the zeroed data236

along the channel axis, and this combined batch is passed through a deep convolutional network237

with small 3× 3 kernels. Convolutional SUNMASK uses a downweighted loss over only variables238

masked in the input. However, SUNMASK additionally uses the unrolled training scheme, as well as239

a different inference procedure due to preserving the values of masked out variables during training240

and sampling.241

Our best performing convolutional SUNMASK architecture takes hints from recent image transformer242

and vector quantized generators, exchanging the small kernels used in Coconet for extremely large243

kernels of shape 4× P over the time and feature dimensions, somewhat analogous to input patches,244

removing the model’s translation invariance over the feature axis by setting kernel dimension equal245

to the total feature size. However this makes the number of parameters per convolutional layer246

extremely large. Convolutional SUNMASK adopts an attentional U-Net structure which reduces only247

across the time axis, modified from GLIDE [56], rather than the deep residual convolution network248

used by Coconet. Combined with the addition of step unrolled training, we are only able to train249

convolutional SUNMASK with a batch size of 1 (expanded to effective batch size 2 due to step250

unrolling) on commodity GPU hardware with 16GB VRAM.251

Due to the design choice of extremely large kernel sizes which depend on the size of the domain, we252

only use convolutional SUNMASK for polyphonic music experiments, see Section 4 for more details.253

Exact specification of the convolutional U-Net architecture can be seen in the Appendix.254

3.2 Transformer SUNMASK255

Transformer SUNMASK relates closely to the transformer used in SUNDAE. The architecture uses a256

relative multi-head attention [12, 34] and has no autoregressive masking. SUNMASK transformer257

also uses larger batch sizes, typically 20 or larger, though this is far smaller than the batch sizes258

seen in the experiments of SUNDAE. Sequence length and data iterator strategy were both a critical259

aspect for training transformer SUNMASK. We found short sequences (from 32 to 128) worked best,260

along with iteration strategies that were example based. In the language experiments, padding each261

example to some max length resulted in more stable training than the typical language modeling262

approach of treating the corpus as one long sequence and slicing into even sized chunks, or iterating263

sequentially. The stability gap between padded sequences and non-overlapping chunking became264

especially apparent at sequence lengths above 128 with transformer SUNMASK.265
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Table 2: Quantitative results from the Bach Mock grading function [19].
Lower values represent better chorales.

Model Note Rhythm Parallel
Errors

Harmonic
Quality S Intervals A Intervals T Intervals B Intervals Repeated

Sequence Overall

Bach GT 0.24 ±0.15 0.23±0.14 0.0±0.69 0.41±0.2 0.47±0.28 0.49±0.22 0.53±0.24 0.69±0.4 1.29±0.88 4.91±1.63
BachMock 0.37±0.22 0.26±0.14 2.16±3.22 0.54±0.31 0.53±0.35 0.71±0.34 0.73±0.38 0.89±0.68 1.86±2.81 8.94±4.64
SMc-T-BEST20-200 0.39±0.16 0.53±0.26 0.0±0.81 0.68±0.27 0.59±0.25 0.88±0.42 0.80±0.20 0.71±0.27 1.44±0.52 7.16±0.97
AugGen 8.02±2.92
Coconet 0.44±0.23 1.85±0.39 2.61±6.56 1.38±0.39 0.70±0.17 0.86±0.73 0.86±0.42 1.02±0.38 6.07±1.76 17.00±6.58
SD 0.59±1.82 0.93±0.84 6.42±4.11 0.98±0.67 1.17±5.09 2.65±4.08 1.57±5.68 2.57±3.28 2.45±2.39 23.25±21.45
SD-T 0.63±2.40 0.60±0.96 3.82±4.98 0.96±0.64 1.21±5.03 3.40±4.99 3.02±5.02 2.36±3.90 1.52±3.43 20.09±23.88
SD-AT 0.52±2.42 0.60±0.95 3.18±5.10 0.96±0.64 1.24±5.00 3.93±5.03 2.22±5.04 2.00±3.91 1.80±3.39 18.90±24.15
SMc 0.87±2.05 0.63±0.77 1.38±6.00 1.02±0.49 1.41±5.28 2.02±4.36 1.94±5.72 2.91±4.94 2.32±2.31 22.47±20.80
SMc-A 1.02±2.22 0.47±0.77 3.92±3.91 0.91±0.55 2.32±5.23 3.54±4.98 2.74±5.30 5.96±4.59 2.23±3.82 27.82±18.82
SMc-T 0.57±1.79 0.69±0.35 1.28±3.73 0.93±0.49 0.80±4.51 0.99±4.01 1.20±4.68 1.40±3.91 1.81±0.83 13.43±19.27
SMc-AT 0.66±1.90 0.55±0.29 2.76±3.63 0.94±0.47 0.91±4.11 1.10±4.00 1.26±4.26 1.45±4.56 2.05±0.96 16.50±17.96
SMc-ATN 2.24±2.36 0.58±0.49 6.82±4.81 1.56±0.54 6.46±4.14 8.51±4.43 7.21±4.28 7.60±3.11 1.47±1.02 43.85±18.41
SMt 3.00±1.85 0.74±0.90 0.00±1.95 1.64±0.70 8.94±4.66 6.49±4.99 8.47±5.58 7.72±4.41 3.10±2.97 42.87
SMt-A 3.00±1.85 0.74±0.90 0.00±1.95 1.64±0.70 8.94±4.66 6.49±4.99 8.47±5.58 7.72±4.41 3.10±2.97 42.87
SMt-T 3.74±2.16 0.58±0.56 0.00±2.56 1.73±0.73 8.75±4.62 6.22±3.99 8.05±4.73 7.95±4.49 2.35±1.79 46.21±17.30
SMt-AT 3.74±2.16 0.58±0.56 0.00±2.56 1.73±0.73 8.75±4.62 6.22±3.99 8.05±4.73 7.95±4.49 2.35±1.79 46.21±17.30

We list the hyperparameters for the transformer SUNMASK models in the Appendix. Transformer266

SUNMASK was trained on every dataset used in this paper, and we show performance in Section 4,267

as well as comparisons to convolutional SUNMASK on symbolic polyphonic music modeling. Both268

convolutional and transformer based SUNMASK use the Adam optimizer, with gradient clipping by269

value at 3. Inference hyperparameter types and general sampling strategies used are the same with270

both models, though specific hyperparameter values may change between datasets.271

4 Experiments272

4.1 Quantitative Results273

We demonstrate the use of SUNMASK for polyphonic symbolic music modeling on the JSB dataset [2,274

5]. The JSB dataset consists of 382 four-part chorales, originally written by Johann Sebastian Bach.275

These chorales are quantized at the 16th note interval, cut into non-overlapping chunks of length 128,276

skipping chunks which would cross the end of a piece. This processing results in a training dataset277

of 4956 examples, with each example being size (4, 128). We train convolutional and transformer278

versions of both SUNMASK and SUNDAE for comparison, as well as the pretrained Coconet [33].279

For polyphonic music, the quantized data was rasterized in soprano, alto, tenor, bass (SATB) order, as280

in Music Transformer [34] and BachBot [47], then chunked into non-overlapping training examples.281

Results are shown in Table 2. These results are evaluated on Bach ground truth data (Bach GT),282

BachMock Transformer (BachMock [19, 49]) (closely related to the decoder from VQ-CPC [28]),283

Coconet, SUNDAE (SD), and SUNMASK convolutional (SMc) and SUNMASK transformer (SMt).284

Model variants are indicated with Active Balance (A), Typical Sampling (T), and Noise (N).285

The grading function used for evaluation, referred to as BachMock here, is designed specifically to286

correlate with expert analysis on Bach. In particular using this metric to choose correct examples in a287

paired comparison test, outperforms novice, intermediate, and expert listeners by varying margins [19].288

This indicates that scoring well on the aggregate metric should correlate to high sample quality. The289

metric has many sub-parts, ranking various musical attributes crucial to codifying the style of J.S.290

Bach. AugGen [49] incorporated this metric into an iterative training and sampling scheme which291

improved final generative capability for a fixed model, showing the effectiveness of BachMock in292

practice for ranking machine generated samples. For every grading function in Bach Mock grading293

function, we show the median value and ± standard deviation as well as the overall grade, and lower294

values are better. We see the strongest results for convolutional SUNMASK with typicality sampling.295

Combined with final top-N (N = 20) selection out of a candidate set of 200 samples, the overall296

sample quality outperforms strong baselines. In addition, the massive performance gain from top-N297

selection indicates that the variance is likely driven by failures during sampling, rather than more298

fundamental modeling errors.299
The EMNLP 2017 News dataset is a common benchmark for word-level language modeling [6],300

containing a large number of news article sentences [51]. Preprocessing steps collapse to sentences301

containing the most common 5700 words, resulting in a training set of 200k sentences with a test set302

of 10k. The overall maximum sentence length is 51. Common processing for this dataset includes303
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padding all sentences up to this maximum length, different than the standard long sequence chunking304

commonly used in other language modeling tasks.305

We show the results of several SUNMASK models for generating sentences similar to306

EMNLP2017News, comparing to benchmarks using the standard Negative BLEU/Self-BLEU evalua-307

tion [80, 6] over generated corpora of 1000 sentences in Figure 2. This set of scores, varied across308

temperature, is compared against baseline scores [48, 78, 8, 26, 13, 75], similar to the evaluation309

shown in SUNDAE [65]. These reference benchmarks used 10000 sentences to form performance310

estimates.

Figure 2: Negative BLEU/Self-BLEU scores on EMNLP2017 News. Left (x-axis) is better, lower
(y-axis) is better. Quality/variation is controlled by changing the temperature (t), and varying diffusion
schedule (s). For SUNMASK, typical sampling results [52] are shown.

311

Figure 3: A Figure 4: B Figure 5: C

SUNMASK harmonization (bass, tenor, alto) of an existing melody (soprano)(A), with mask which
highlights the left half (0 to 64) soprano voice (B), left half mask with right half replacement (C)

4.2 Qualitative Study of Masking For General Task Control312

Given the flexibility of masking at inference, we perform a number of qualitative queries to inspect313

how the model adapts based on noise and mask value. Figures 3 4, and 5 demonstrate the use of314

SUNMASK for musical inpainting, holding the top voice (soprano) either fully or partially fixed to315

the well-known melody "Ode to Joy", by Ludwig van Beethoven. We see the trained model is more316

than capable of inpainting based on a pre-defined mask.317

We test masks which hold the whole soprano fixed, masks which cover only parts of the soprano but318

do not allow randomization away from those notes, and masks which cover parts of the soprano but319

allow rewriting of the non-masked parts of the soprano, as well as rewriting all other voices. The use320

of masks to focus on subsets of variables while preserving underlying intermediate predictions is321

8



unique to SUNMASK, as SUNDAE does not have an explicitly controllable input mask and Coconet322

does not have the ability to mask without also blanking the underlying variable.323

This control is also demonstrated in Table 3, where masking is used to variably increase or decrease324

the weight on various pre-specified terms, held fixed throughout inference. The combination of these325

words, and their mask status can be seen to influence the overall tone of the selected text passages326

which showed the strongest effect in a particular inference batch. Though the generation quality is327

flawed, we clearly see a relationship between the masked word and the emergent surrounding context,328

for example highlighting war draws forth divorce, attack, and leave, while play instead references329

Premier Cup and excitement. We see similar results on a batch scale, and full demonstration of the330

text samples can be seen in the Appendix.331

5 Conclusion332

We introduce SUNMASK, a method for masked unrolled denoising modeling of structured data.333

SUNMASK separates the role of masking and correction by conditioning predictions on the mask,334

allowing for fine-grained control at inference. When applied to text as well as symbolic polyphonic335

music, SUNMASK is competitive with strong baselines, outperforming reference baselines on music336

modeling. Leveraging the separation of mask and noise allows for subtle control at inference, paving337

the way for a variety of domain specific applications and generative pipelines for human-in-the-loop338

creation.339

Table 3: Qualitative samples using masks to emphasize the influence of particular words.
Samples from a SUNMASK Transformer trained on the word level EMNLP2017News dataset.

Success unmasked
disaster masked

I think I want to leave success at the end of the disaster , but because that ’ s a nice to say
it ’ s not good to be the challenge and this is a very good thing <eos>

That was the job I was success to have to pay my disaster but hopefully I have been able to
pull playing in the first couple of the season , I ’ ve been happy to go through this
team , he said <eos>

Success masked
disaster unmasked

Although more than 80 , 000 success have been displaced in the disaster since the last
year , more than 700 , 000 lives have been injured in the country , and 70 of them were
killed , according to the UN media <eos>

I haven ’ t had a success at the league , the disaster and picked running with the door ago
we have Champions , and I was a couple of pressure . . . and it was a lot of times <eos>

Celebration unmasked
crime masked

This is a fact on the celebration is such a really good crime , but it can be some of the most
good people around the world and I think it must be the good way to do it <eos>

It ’ s part of those celebration at the start of the crime , and it ’ s a lot of good pride over the
past few years , it ’ s going to be more happy to play through this world <eos>

Celebration masked
crime unmasked

Last year , the numbers of celebration applications have been adopted in crime since the
Middle since since year has watched a rate of more than 95 per cent in the UK since
2011 , 2015 to 45 per cent <eos>

The Prime Minister has been a celebration to the course of the crime deal which and to
have a relationship of the European Union , with the rest of the European Union has before
the scandal <eos>

War unmasked
play masked

The Prime Minister David Cameron said war had not be hard to play the divorce of the
European Union , and determined it would mark a divorce between the majority of the UK
and leave the bloc of the European Union <eos>

It may be really more special war . . . try to play it , and I hope we ’ re going to be able to
attack this team so we have to do it <eos>

War masked
play unmasked

But I was proud of the war I ’ ve got to play to it but I wish that ’ s because I want to do , and
I ’ m pretty excited before the end of the season , he said <eos>

We are in the Premier Cup war and we want to keep play with their top six that which we need
to play in the World Champions and at the end of the season that we have to be it well <eos>

Unconstrained
generations

By the time , the driver had been deployed to lie out to the incident , an new official said that the
woman had not been found a them <eos>

According to The Wall Post survey poll found that 80 per cent of eligible older registered who ,
they thought he would be the rate for 10 per cent less likely to vote , while 16 per cent of
those said they would still less likely to happen <eos>
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