
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Graph Contrastive Learning Meets Graph Meta Learning: A
Unified Method for Few-shot Node Tasks

Anonymous Author(s)

ABSTRACT
Graph Neural Networks (GNNs) have become popular tools for
Graph Representation Learning (GRL). One fundamental problem
is few-shot node classification. Most existing methods follow the
meta learning paradigm, showing the ability of fast generaliza-
tion to few-shot tasks. However, recent works indicate that graph
contrastive learning combined with fine-tuning can significantly
outperform meta learning methods. Despite the empirical success,
there is limited understanding of the reasons behind it. In our
study, we first identify two crucial advantages of contrastive learn-
ing over meta learning, including (1) the comprehensive utiliza-
tion of graph nodes and (2) the power of graph augmentations.
To integrate the strength of both contrastive learning and meta
learning on the few-shot node classification tasks, we introduce a
new paradigm—Contrastive Few-Shot Node Classification (COLA).
Specifically, COLA identifies semantically similar nodes only from
augmented graphs, enabling the construction of meta-tasks without
label information. Therefore, COLA can incorporate all nodes to
construct meta-tasks, reducing the risk of overfitting. Through ex-
tensive experiments, we validate the necessity of each component
in our design and demonstrate that COLA achieves new state-of-
the-art on all tasks.

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
Few-shot learning, Node classification, Unsupervised learning

ACM Reference Format:
Anonymous Author(s). 2023. Graph Contrastive Learning Meets Graph
Meta Learning: A Unified Method for Few-shot Node Tasks. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Graph Neural Networks (GNNs) [10, 17] have emerged as the pre-
dominant encoders for Graph Representation Learning (GRL) in
modern research, with node classification standing out as an essen-
tial domain of exploration. While a significant portion of the study
has centered on employing GNNs in supervised or semi-supervised

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

contexts [33, 36], these approaches often require abundant anno-
tated data. Nevertheless, acquiring high-quality labels is challenging
in many scenarios, leading to a growing interest in exploring few-
shot transductive node classification (FSNC), where only limited
labeled samples are provided for novel classes. Real-world appli-
cations of FSNC span areas like classifying papers by topic from
emerging research fields in a citation network [37] and categorizing
newly introduced products within a co-purchasing network [26].

The majority of current study on FSNC [5, 13, 18, 20, 25, 35, 40]
is rooted in the meta learning paradigm [6, 27]. Essentially, meta
learning creates a series of meta-tasks during training to emulate
real-world few-shot scenarios. To tackle a few-shot problem with
𝑁 classes and 𝑘 samples per class, meta learning iteratively trains
over numerous 𝑁 -way 𝑘-shot meta tasks derived from the training
classes. Each meta-task consists of a support set and a query set,
sampled from nodes belonging to a fixed number (𝑁) of classes.
The objective is to develop an algorithm that can perform well
on the query set by training on only a few support samples. By
constructing and resolving meta-tasks iteratively, models can learn
the latent task distribution and adapt to tasks with novel classes.

Another emerging trend to effectively handle few-shot tasks is
contrastive learning (CL). CL leverages positive and negative sam-
ple pairs to learn embeddings such that similar samples are brought
closer in the embedding space while dissimilar ones are pushed
apart. Several studies [32] have underscored the importance of
transferable and discriminative representations for few-shot tasks.
Observing the success of CL in other domains like computer vi-
sion [2, 3, 9], a recent exploration [30] on FSNC used pre-trained
node embeddings learned from existing Graph Contrastive Learn-
ing (GCL) methods [15, 21] to train a linear classifier for few-shot
tasks. This strategy has achieved notable success even without label
information, surpassing previous state-of-the-art (SOTA) perfor-
mance established by conventional meta learning methods.

To understand the success behind CL, we analyze and validate
two critical factors contributing to contrastive learning’s excep-
tional performance. The first factor is the use of data augmenta-
tion. By maximizing the similarity between a data point and its
augmented version, CL ensures the model learns discriminative
embeddings with minimal redundant information from the graph,
which is essential for few-shot tasks. Secondly, CL’s self-supervised
learning (SSL) nature becomes especially powerful within the frame-
work of FSNC and its transductive setting because label information
is ignored in SSL. This enables CL to incorporate information of
all graph nodes beyond the labeled ones, largely increasing the
training sample size. In contrast, meta learning inherently relies on
label information. Consequently, it can only include nodes from
the training classes in meta-tasks, losing a significant portion
of graph information. Furthermore, when the number of available
training classes is limited, the meta-tasks may lack the necessary
diversity to ensure robust generalization across few-shot scenarios.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

t

A

Sample N
classes

B

Sample N
nodes

Sample k nodes
per class

Find k
semantically

similar samples
per node

C D E

F G H
COLA

Meta
Learning

O

M

I

J

P

L

A
C

D E

B
F

G

H

Nodes unavailable for training
Nodes available for training
(color represents label)

Figure 1: Illustration of a 2-way 3-shot meta-task construc-
tion. COLA can leverage all nodes in the graph to construct
meta-tasks, while previous meta learning methods can only
use nodes from training classes.

Hence, one natural question emerges: Can we leverage the ad-
vantages of contrastive learning to enhance the current meta learning
framework? To address this question, we propose a new paradigm
for few-shot node classification termed Contrastive Few-Shot Node
Classification (COLA). Unlike original meta-tasks, which require
nodes within the same class to construct support sets, COLA con-
structs meta-taskswithout labels (as illustrated in Figure 1). Hence,
COLA can use all node information like CL can while benefiting
from the few-shot-oriented meta learning framework.

Creating support and query sets is the core of𝑁 -way𝑘-shotmeta-
tasks construction. Inspired by self-supervised contrastive learning,
COLA randomly samples 𝑁 query nodes, with each representing
one way in meta learning. The main challenge is constructing the
support set including 𝑘 samples semantically similar to each query
node without label information. To achieve this, we use GNNs
to get node embeddings from three augmented graphs. Given a
query node, we first obtain its embedding from the first graph. If
we find a set of embeddings from the second graph that matches
the query embedding closely, then this set should maintain high
similarity with the query node’s embedding from the third graph.
We then treat this embedding set as the support set and maximize
the similarity between this set and the query embedding from the
third graph.

Our framework has several advantages: (1) We propose a novel
method that utilizes the invariant information among three aug-
mented graphs to construct semantically correct meta-taskswithout
label information; (2) Unlike conventional meta-tasks constructed
based on training labels, COLA meta-tasks are based on semantic
similarity, preventing overfitting to training classes. (3) COLAmeta-
tasks use all nodes in training, incorporating much more graph
information than traditional meta learning methods that only use
labeled nodes. We conduct extensive experiments on seven real-
world datasets and examine the necessity of each component in
our framework. Our results demonstrate that COLA outperforms
all previous methods, achieving new state-of-the-art performance
on few-shot node classification. COLA’s outstanding performance
demonstrates that meta-learning remains a powerful solution for
few-shot tasks when all graph nodes are used.

2 RELATEDWORK
Graph Few-shot Learning.While GNNs for node classification
are generally semi-supervised [17], considerable efforts were spent
on removing the labeling dependency [10, 29, 33]. However, they
cannot handle unseen classes during the test phase. This inspired re-
search on the few-shot node classification problem. The majority of
research employs a meta learning paradigm. Meta-GNN [40] adapts
the optimization-based meta learning method MAML [6] to graph
data. GFL [38] enables few-shot classification on unseen graphs
with seen node classes. GPN [5] uses ProtoNet [27], a metric-based
meta learning method, and refines prototypes with the weights
learned by a GCN [17]. G-Meta [13] leverages subgraph information
and achieves good performance on both transductive and inductive
FSNC. RALE [20] assigns relative and absolute locations to each
node within meta-tasks. TENT [35] applies node-level, class-level,
and task-level adaptations in each task to mitigate task variance
impact. Recently, TLP [30], inspired by graph contrastive learn-
ing, trains a few-shot classifier using pre-trained node embeddings,
thereby significantly enhancing the performance over existing meta
learning approaches. Its success prompts us to delve further into
the potential of contrastive learning.

GraphContrastive Learning.Contrastive Learningmethods [2,
3, 9] have been adapted to the graph domain. DGI [34] learns node
representations by maximizing mutual information (MI) between
local and global graph features. GRACE [41] maximizes node-level
agreement between two corrupted views. MVGRL [11] maximizes
the MI between node representations of one view and graph rep-
resentations of another view. GraphCL [39] applies various data
augmentation techniques to the graph and then employs a con-
trastive loss function to move the representations of augmented
views of the same graph closer. MERIT [15] leverages bootstrapping
within a Siamese network and multi-scale graph contrastive learn-
ing to enhance node representation learning. SUGRL [21] employs
node embeddings from MLP as anchors and takes advantage of
structural and neighbor information to obtain two kinds of posi-
tive samples. Different from previous methods, SUGRL takes the
combination of triplet loss instead of InfoNCE loss [23]. BGRL [31]
extends the non-contrastive setting [9] that does not need negative
samples to graph problems. TLP [30] trains a linear classifier on
top of embedding learned from various graph contrastive learning
methods, where SUGRL consistently delivers superior performance
on few-shot tasks.

Few-shot LearningwithContrastive Learning.Recent works
in computer vision show that meta learning and contrastive learn-
ing can benefit from each other. Some recent few-shot auxiliary
learningworks [4, 8, 28] view few-shot learning as themain task and
combine the few-shot loss with self-supervised auxiliary tasks. Liu
et al. [19] employs supervised contrastive learning on meta-tasks,
where support images and query images are processed with de-
signed data augmentations to construct hard samples. CPLAE [7]
represents support and query samples using concatenated embed-
dings of both the original and augmented versions. It then regards
prototypes of support samples as the anchor samples in contrastive
learning. However, these methods are suboptimal on graph tasks
due to their reliance on label information and domain-specific data
augmentations. PsCo [14] employs a Moco[3] inspired momentum

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Graph Contrastive Learning Meets Graph Meta Learning: A Unified Method for Few-shot Node Tasks Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

network with a queue system, aiming to improve the diversity of
meta-tasks in the unsupervised meta learning setting. However,
the queue-like setup is redundant in graph-based node classifica-
tion where each batch provides embeddings for all nodes in the
graph. MetaContrastive [22] proposes a meta learning framework
to enhance contrastive learning by transforming contrastive learn-
ing setup to meta-tasks. Notably, in the field of graph learning,
there is no work that enhances meta learning with the advan-
tages of contrastive learning, and it is challenging to tailor
these previousmethods from the image domain for the graph.
We also provide experimental results in Table 3 by adapting some
works in the image domain to FSNC to validate the assertion.

3 NOTATIONS AND PRELIMINARIES
We first introduce some preliminary concepts and notations. In this
work, we consider an undirected attributed graph G = (V, E,A, 𝑋),
whereV = {𝑣1, · · · , 𝑣 |V | } is the set of nodes, E = {𝑒1, · · · , 𝑒 | E | } is
the set of edges. The adjacency matrix A ∈ {0, 1} |V |× |V | describes
the graph structure, with A𝑖 𝑗 = 1 indicating an edge between nodes
𝑣𝑖 and 𝑣 𝑗 and A𝑖 𝑗 = 0 otherwise. The feature matrix 𝑋 ∈ R |V |×𝑑

contains the node features, where x𝑖 ∈ R𝑑 represents the feature
of node 𝑣𝑖 and 𝑑 is the feature dimension. Our work focuses on the
node classification problem, where each node 𝑖 has a label 𝑦𝑖 ∈ 𝐶

and 𝐶 is the set of labels with |𝐶 | different classes.
Few-shot Node Classification. In node classification, nodes

are usually divided into train, validation, and test sets, denoted as
𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑋𝑣𝑎𝑙 , and 𝑋𝑡𝑒𝑠𝑡 , respectively. However, unlike supervised
node classification where the node labels of train/validation/test
sets are sampled from the same label set 𝐶 , the label of nodes in
few-shot learning are sampled from non-overlapped label sets for
train/validation/test set, denoted as𝐶𝑡𝑟𝑎𝑖𝑛 ,𝐶𝑣𝑎𝑙 . and𝐶𝑡𝑒𝑠𝑡 . Further,
it holds that 𝐶𝑡𝑟𝑎𝑖𝑛 ∩𝐶𝑡𝑒𝑠𝑡 = ∅. Few-shot Learning typically deals
with 𝑁 -way 𝑘-shot tasks, where the objective is to classify nodes
into one of 𝑁 distinct classes using only 𝑘 labeled samples per class.

Meta Learning.Meta learning [6, 27] tries to solve the few-shot
problems by designing a novel training strategy. The overall pro-
cess of meta learning can be divided into meta-train and meta-test
phases. During meta-train phase, the model is trained to simulate
the few-shot learning environment. It enables the model to quickly
adapt to new few-shot tasks with limited labeled data during the
meta-test phase. Specifically, at each training episode, meta learning
constructs 𝑁 -way 𝑘-shot tasks using samples from the training set
𝑋𝑡𝑟𝑎𝑖𝑛 . To form an 𝑁 -way 𝑘-shot task, meta learning first randomly
select a class set 𝐶𝑚𝑒𝑡𝑎 with 𝑁 classes from 𝐶𝑡𝑟𝑎𝑖𝑛 and then gener-
ate a support set S = {(x𝑖 , 𝑦 𝑗) |𝑦 𝑗 ∈ 𝐶𝑚𝑒𝑡𝑎, 𝑖 = 1, · · · , 𝑁 ×𝑘} and a
query set Q = {(x𝑖 , 𝑦 𝑗) |𝑦 𝑗 ∈ 𝐶𝑚𝑒𝑡𝑎, 𝑖 = 1, · · · , 𝑁 × 𝑞}(S ∩ Q = ∅)
by sampling 𝑘 support and 𝑞 query samples from each class in
𝐶𝑚𝑒𝑡𝑎 , respectively. The objective is to train on the support set
so that it can perform well on the query set. In meta-test phase,
the 𝑁 -way 𝑘-shot tasks are constructed with samples in 𝑋𝑡𝑒𝑠𝑡 in a
similar way.

4 CONTRASTIVE FEW-SHOT NODE
CLASSIFICATION (COLA)

In this section, we first identify two critical components that con-
tribute hugely to the success of contrastive learning on FSNC but

Only train Train+val Only test All

2-way 5-shot task on Cora using GRACE + Finetune
Aug w/o Aug

Figure 2: 2-way 5-shot task on Cora using GRACE+finetune.
Accuracy of four situations w/ and w/o augmentations.

are not present in meta learning. Then, we introduce a new par-
adigm COLA, which leverages the strengths of both contrastive
learning and meta learning. The key idea is to construct meta-tasks
without labels. We use the invariant information among three aug-
mented graphs to construct semantically correct meta-tasks. We
then take the supervised contrastive loss to learn the meta-tasks.

4.1 Analysis on Success of Contrastive Learning
in Few-Shot Node Classification

Althoughmost current works on transductive FSNC follow themeta
learning framework (details discussed in Section 2), a recent study
TLP [30] highlights the effectiveness of graph contrastive learning
combined with fine-tuning. The authors conducted experiments
using various existing graph contrastive learning methods and fine-
tuned a linear classifier on top of the learned representation, which
resulted in significant performance improvements on few-shot node
classification tasks compared to SOTA supervised meta learning
methods.

To understand the strong performance of contrastive learning,
we analyze the difference between contrastive learning and meta
learning. Both techniques strive to bring the embeddings of se-
mantically similar nodes closer and separate embeddings of se-
mantically dissimilar ones. However, the definition of semantical
similarity is different in the two methods. Meta learning regards all
node embeddings from the same class as similar, while those
from different classes as dissimilar. In contrast, self-supervised con-
trastive learning only considers the embeddings of the same node
in different augmented graphs as similar.

Such a definition of similarity provides contrastive learning with
a distinct advantage in transductive FSNC problems. It allows the
model to utilize all node embeddings in a given graph explicitly.
Conversely, meta learning relies on labels from training classes
𝐶𝑡𝑟𝑎𝑖𝑛 , thus, only nodes from these classes are involved in the meta-
train phase, increasing the likelihood of overfitting to the training
classes and limiting the model’s ability to transfer knowledge to
test classes. Especially when the number of training classes is insuf-
ficient, the diversity of meta-tasks is not guaranteed, thus hurting
the generalization ability of meta learning. Further, leveraging the
graph augmentation technique is another difference between con-
trastive learning and meta learning, which is already known to be

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

2

5

(", $)

&!

&"

&#

("", $")

("#, $#)

("!, $!)

GNN
Encoder

EMA

Shared

Support Embedding

Lookup Embedding

top-k similarity lookup

2
5

Query
Set

Support
Set

Supervised
Contrastive

Loss

stop
grad

GNN
Encoder

GNN
Encoder

Projection
Head 2 5

Query Embedding

Figure 3: An overview of the COLA Framework. The construction of a 2-way 3-shot meta-task is illustrated. Two nodes 2 and 5
are sampled as the query set. The query node’s embedding in Lookup Embedding matches with all node embeddings in Support
Embedding. Top-𝑘 similar embeddings are selected for the support set. Supervised contrastive loss is calculated for each task.

effective in learning discriminative representation [32]. We conjec-
ture the above two differences contribute most to the success of
contrastive learning in FSNC.

We then conduct extensive ablation studies to validate our hy-
pothesis. We present one experimental result in Figure 2 and include
other results in Appendix C. The experiment is conducted on a 2-
way 5-shot task from Cora [37] dataset, and the node embeddings
pre-trained from a GCL model named GRACE [41] are used to train
a classifier for few-shot tasks. We control the nodes used for pre-
training to be sampled from 𝐶𝑡𝑟𝑎𝑖𝑛 , 𝐶𝑡𝑟𝑎𝑖𝑛 ∪ 𝐶𝑣𝑎𝑙 , 𝐶𝑡𝑒𝑠𝑡 , and the
whole graph. 𝐶𝑡𝑟𝑎𝑖𝑛 , 𝐶𝑣𝑎𝑙 and 𝐶𝑡𝑒𝑠𝑡 contain 3, 2, 2 non-overlapped
classes, respectively. We then assess the model on few-shot tasks
sampled from 𝐶𝑡𝑒𝑠𝑡 .

The results reveal several insights: although the number of nodes
belonging to𝐶𝑡𝑟𝑎𝑖𝑛 ∪𝐶𝑣𝑎𝑙 far exceeds the number of nodes in𝐶𝑡𝑒𝑠𝑡 ,
only using samples from 𝐶𝑡𝑒𝑠𝑡 to pretrain achieves better result
than the other two settings. Note that the label information is not
included in the pretraining process. This experiment validates that
explicitly leveraging test class samples during training can avoid
overfitting. Besides, using all nodes can maximize the utilization
of graph information. Another observation is that eliminating aug-
mentation leads to a performance decrease. Thus, the discriminative
representation acquired by contrastive learning through data aug-
mentation techniques is also crucial for few-shot tasks.

From experimental results, we can see the explicit use of all
nodes and data augmentation are crucial to contrastive learning
performance. These insights inspire us to propose a more robust
meta learning framework that can effectively leverage these ad-
vantages of contrastive learning while also benefiting from the
generalization capabilities of meta learning.

4.2 Meta-task Construction without Labels
In this section, we introduce our framework COLA, and the overall
framework is illustrated in Figure 3 and Algorithm 1. COLA aims
to construct meta-tasks without labels, such that all nodes can be
explicitly used during training.

Inspired by contrastive learning, we first sample 𝑁 nodes and
regard them as 𝑁 distinct classes to form the query set Q. Denote
the query set Q = {𝑣1, · · · , 𝑣𝑁 }, where 𝑣𝑖 is the query node of the
𝑖-th way. To construct an 𝑁 -way 𝑘-shot meta-task, the support set
S should include 𝑘 samples that have similar semantics to the query
sample from each of the 𝑁 ways. Then, how to find semantically
similar samples is the main challenge.

One naive idea is to use a GNN to get node embeddings and
select nodes with top-𝑘 similar embeddings to the query node’s
embedding as its support set. However, the support nodes selected
in this way will only enlarge the similarity between nodes which
the GNN initially regards similar—if the GNN happens to give two
semantically distinct nodes similar embeddings at first, such a way
will update the model so that their embeddings are more and more
similar, ultimately collapsing the model. Inspired by CL, one remedy
is to take the query node’s embedding from one augmented view
and match it against the embeddings of all nodes from another view
to select the top-𝑘 similar support nodes. This solution enhances
the robustness of the selection as nodes with similar embeddings
across different augmented graphs are more likely those “truly”
semantically similar ones. However, it still does not solve the model
collapse risk, meaning an initially bad GNN gets worse and worse.

We thus introduce a third augmented view and a momentum
GNN to ensure a more robust and comprehensive meta-task con-
struction. The core idea is as follows. We first generate query node

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Graph Contrastive Learning Meets Graph Meta Learning: A Unified Method for Few-shot Node Tasks Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

embeddings from one augmented view. To select semantically sim-
ilar support nodes, we do not compare to these query node em-
beddings directly. Instead, we additionally generate a lookup em-
bedding for each query node in a second augmented graph, and
match these lookup embeddings with support embeddings gen-
erated from a third augmented graph to select the support nodes
(shown in Figure 3). The three different views greatly enhance the
robustness of the meta-task construction. Furthermore, the lookup
embeddings and support embeddings are obtained from a momen-
tum GNN instead of the GNN to train (the one used to get the query
embeddings), so that model collapse is prevented. Finally, the GNN
is trained to maximize the similarity between the query embedding
and the support embeddings of the selected support nodes. We em-
pirically verified all our designs via a thorough ablation study (see
Section 5.3). Below we detail the meta-task construction process.

For a graph G, let A(G) denote the distribution of graph data
augmentation of G. These augmentations [39] typically involve one
or more operations, such as node dropping, edge perturbation, and
attribute masking. For the given graph represented as (𝑋,A), we ap-
ply three different data augmentationsA1,A2,A3 ∼ A and generate
the corresponding augmented graphs (𝑋1,A1), (𝑋2,A2), (𝑋3,A3).

We then use GNNs to generate Lookup, Support, and Query
Embeddings from the augmented graphs. Formally,

𝐿 := 𝑓ema (𝑋1,A1), 𝑆 := 𝑓ema (𝑋2,A2), 𝑄 := 𝑔(𝑓 (𝑋3,A3)), (1)

where Lookup Embedding 𝐿 and Support Embedding 𝑆 are gener-
ated by a momentum encoder 𝑓ema, and the Query Embedding 𝑄 is
generated by a trainable graph encoder 𝑓 with a projection head 𝑔.
Weights of 𝑓ema are the moving average from 𝑓 . Details about the
momentum encoder will be discussed later.

Then we present the process of constructing meta-tasks. We first
get query nodes’ embeddings from Lookup Embedding 𝐿 and denote
them as {𝐿𝑣1 , · · · , 𝐿𝑣𝑁 }. For each 𝑖 ∈ [1, · · · , 𝑁], we then measure
the similarity between 𝐿𝑣𝑖 and all node embeddings {𝑆1, · · · , 𝑆 |V | }
in Support Embedding 𝑆 . The 𝑘 embeddings in 𝑆 with the highest
similarity scores will be selected as the support set, leading to 𝑁𝑘

samples in the support set. We denote them as {𝑆𝑣1
𝑖
, · · · , 𝑆

𝑣𝑘
𝑖
}𝑁
𝑖=1,

where 𝑆
𝑣
𝑗

𝑖

is the 𝑗-th support sample of the 𝑖-th query node. Finally,
we get query nodes’ embedding from Query Embedding 𝑄 and
denote them as {𝑄𝑣1 , · · · , 𝑄𝑣𝑁 } and use them as the query set to
construct a meta-task together with the support set. The task T
can be represented as T = {𝑄𝑣𝑖 , {𝑆𝑣 𝑗

𝑖

}𝑘
𝑗=1}

𝑁
𝑖=1.

Our method uses the fact that the most essential graph informa-
tion should be invariant across different augmented views. Given
a query node 𝑣𝑖 , if we find 𝑘 embeddings (in 𝑆) that are very
similar to 𝑣𝑖 ’s embedding from one augmented view (𝐿), then
these 𝑘 embeddings should also be closely similar to 𝑣𝑖 ’s em-
bedding from a different augmented view 𝑄 . Leveraging such
invariance leads to more robust meta-task construction. To further
verify the importance of each of the three embeddings, we have car-
ried out comprehensive ablation studies presented in Section 5.3.1.

The momentum encoder is another important component of our
meta-task construction. Formally, denote the parameters of 𝑓ema
by 𝜃ema and parameters of 𝑓 by 𝜃 , 𝜃ema is updated by exponential
moving average (EMA): 𝜃ema = 𝑚𝜃ema + (1 − 𝑚)𝜃, where 𝑚 is
the momentum coefficient to control what degree it preserves the

Algorithm 1 COLA Meta-task Construction
Require: 𝑓 : GNN encoder, 𝑔 : projection head, 𝑓ema: momentum

GNN encoder,𝑋 : feature matrix,𝐴: adjacency matrix, |𝑉 |: num-
ber of nodes, 𝑁 : number of classes, 𝑘 : number of samples in
support set, 𝑑 : embedding dimension, 𝑇 : number of meta-tasks.

1: Generate three views: (𝑋1, 𝐴1), (𝑋2, 𝐴2), (𝑋3, 𝐴3);
2: Compute Query (𝑄), Support (𝑆), Lookup (𝐿) Embeddings by

Eq(1);
3: Randomly sample 𝑁 nodes to construct query set;
4: for each node 𝑣𝑖 in query set do
5: Get query node’s embedding 𝐿𝑣𝑖 from 𝐿;
6: Compute cosine similarity between 𝐿𝑣𝑖 and all node em-

beddings in 𝑆 ;
7: Regard the 𝑘 embeddings with the highest similarity score

as support set;
8: Get query node’s embedding 𝑄𝑣𝑞 from Q;
9: end for
10: Compute contrastive loss 𝐿𝐶𝑂𝐿𝐴 using Eq(2).

history. By employing a momentum encoder instead of the same
trainable GNN encoder, the support set candidate pool (𝑆) remains
consistent across episodes and is less susceptible to noise or non-
informative information from the rapidly changing encoder. Lookup
Embedding and Support Embedding share the same momentum
encoder, allowing for more accurate and consistent matching. The
importance of the momentum encoder is validated in Section 5.3.2.

4.3 Training Procedure
Meta-Train Phase. To train the model, we want to maximize the
similarity between the query embedding and corresponding sup-
port embeddings, thus we design the loss function inspired by the
supervised contrastive loss [16]. In our setting, for each way 𝑖 , the
query embedding is treated as the anchor sample. The support em-
beddings {𝑆𝑣1

𝑖
, · · · , 𝑆

𝑣𝑘
𝑖
} are considered as positive samples, while

support embeddings {𝑆𝑣1
𝑖′
, · · · , 𝑆

𝑣𝑘
𝑖′
}𝑖′≠𝑖 from other ways are viewed

as negative samples. Formally, the pseudo-supervised contrastive
loss for each meta-task can be expressed as follows:

𝐿𝐶𝑂𝐿𝐴 ({𝑄𝑣𝑖 , {𝑆𝑣 𝑗
𝑖

}𝑘𝑗=1}
𝑁
𝑖=1) = −

𝑁∑︁
𝑖=1

1
𝑘

𝑘∑︁
𝑗=1

log
exp(𝑄𝑣𝑖 · 𝑆𝑣 𝑗

𝑖

/𝜏)∑
v∈𝑆𝑡 exp(𝑄𝑣𝑖 · v/𝜏)

,

(2)
where 𝑄𝑣𝑖 is the query sample of the 𝑖-th way, and 𝑆

𝑣
𝑗

𝑖

is the 𝑗-th
support sample of 𝑄𝑣𝑖 . 𝑆𝑡 denotes all the support embeddings in
the current meta-task and 𝜏 is the temperature parameter. Finally,
the loss function of each meta-train episode is the average loss of
multiple meta-tasks.

Meta-Test Phase. During the meta-test phase, we discard the
momentum encoder and retain the GNN encoder. Then a linear
classifier is trained on top of the learned node embeddings from
the GNN encoder. To elaborate, we initially select 𝑁 classes from
𝐶𝑡𝑒𝑠𝑡 and sample 𝑘 labeled nodes from each class. The embeddings
of these samples then undergo supervised training to fit a linear
classifier. In the final step, we evaluate the performance using 𝑞

nodes from each of the 𝑁 classes.
5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Results on Cora, CiteSeer, CoraFull, and Roman-Empire datasets. (Top rows) Meta Learning. (Middle rows) Graph
Contrastive Learning with fine-tuning. (Bottom row) COLA (our method). All scores are averaged over 20 runs. Evaluation
metrics were scaled to 100 for readability purposes. In bold are methods with the best results for each task. In blue are methods
with the best results in each group.

Dataset Cora CiteSeer CoraFull Roman-Empire

Task 2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot 2-way 1-shot 2-way 5-shot

Meta learning

MAML [6] 52.59 ± 2.28 56.45 ± 2.41 51.77 ± 2.28 54.21 ± 2.30 22.47 ± 1.21 26.58 ± 1.32 53.65 ± 2.54 55.71 ± 2.36
ProtoNet [27] 51.69 ± 2.17 55.00 ± 2.39 51.43 ± 2.12 53.23 ± 2.28 34.17 ± 1.74 46.86 ± 1.74 53.73 ± 2.16 56.49 ± 2.03
Meta-GNN [40] 57.87 ± 2.52 57.35 ± 2.30 55.12 ± 2.62 60.59 ± 3.26 55.36 ± 2.49 71.42 ± 2.02 54.59 ± 2.70 59.31 ± 2.43
GPN [5] 56.09 ± 2.08 63.83 ± 2.86 59.33 ± 2.23 65.60 ± 2.47 56.48 ± 2.72 71.23 ± 2.11 58.42 ± 2.31 63.96 ± 2.27
G-Meta [13] 66.15 ± 3.00 82.85 ± 1.19 54.33 ± 2.02 61.47 ± 2.37 58.47 ± 2.37 72.03 ± 1.88 61.45 ± 2.35 62.99 ± 2.58
TENT [35] 54.33 ± 2.10 58.97 ± 2.40 60.06 ± 3.01 66.31 ± 2.45 49.83 ± 2.02 64.23 ± 1.75 60.32 ± 2.14 67.14 ± 1.95

Graph Contrastive Learning + Finetune

BGRL [31] 59.16 ± 2.48 81.31 ± 1.89 54.33 ± 2.14 66.74 ± 2.13 40.82 ± 1.95 69.98 ± 1.67 56.58 ± 2.31 66.39 ± 1.74
MVGRL [11] 74.96 ± 2.94 91.32 ± 1.47 63.39 ± 2.69 79.73 ± 1.92 66.40 ± 2.31 83.99 ± 1.51 64.32 ± 2.77 71.74 ± 1.69
MERIT [15] 70.63 ± 3.11 91.00 ± 1.22 65.64 ± 2.94 78.54 ± 2.43 65.17 ± 1.96 84.74 ± 1.44 64.83 ± 2.81 74.16 ± 1.74
GraphCL [39] 74.32 ± 3.26 90.43 ± 1.21 71.39 ± 3.17 79.60 ± 1.89 66.76 ± 2.75 84.55 ± 1.48 65.13 ± 2.98 73.01 ± 2.24
GRACE [41] 71.50 ± 1.42 88.49 ± 1.44 67.43 ± 2.51 82.09 ± 1.64 62.05 ± 2.22 81.54 ± 1.52 62.78 ± 1.76 74.50 ± 1.73
SUGRL [21] 81.52 ± 2.09 92.49 ± 1.02 72.43 ± 2.42 86.58 ± 1.19 73.95 ± 2.13 83.07 ± 1.21 64.69 ± 2.01 73.05 ± 1.69

COLA (ours) 84.58 ± 1.96 94.03 ± 1.48 76.54 ± 2.02 86.87 ± 1.49 74.36 ± 2.37 86.59 ± 2.26 68.59 ± 1.83 78.96 ± 1.87

5 EXPERIMENT
In this section, we demonstrate COLA outperforms all the base-
lines in each task and provide the ablation study to validate the
significance of each model component.

5.1 Datasets, Setup, and Baselines
5.1.1 Datasets. We conducted our experiments on seven bench-
mark datasets: Cora [37], CiteSeer [37], Amazon-Computer [26]
(Computer), CoraFull [1], Coauthor-CS [26] (CS), ogbn-arxiv [12]
and Roman-empire [24]. The first six are all commonly used ho-
mophilous graph datasets, and the last one is a heterophilous graph
dataset. In each run for the same dataset, the classes were randomly
divided into three subsets:𝐶𝑡𝑟𝑎𝑖𝑛 ,𝐶𝑣𝑎𝑙 , and𝐶𝑡𝑒𝑠𝑡 . The setting of the
split ratio follows previous works [30] and a detailed description of
these datasets is provided in Appendix A.

5.1.2 Implementation Details. We utilized Graph Convolutional
Networks [17] (GCNs) as the encoder for all homophilous graphs
and used GraphSAGE [10] as the encoder for the heterphilous graph,
and took a multi-layer perceptron (MLP) as the projection head.
Our data augmentation combines edge and feature dropout. The
number of training tasks for calculating the average loss function is
set to 20. We report mean accuracy and the 95% confidence interval
of 20 runs for both COLA and baseline models for a fair comparison.
All models were tested on a single NVIDIA A100 80GB GPU. The
detailed setting of hyperparameters and source code are provided
in Appendix B.

5.1.3 Baselines. We mainly compared our model with two groups
of baselines: meta learning and graph contrastive learning with
finetuning (proposed by TLP [30]). For meta learning, we first evalu-
ate two plain meta learning models without GNN [17] as backbone:
MAML [6] and ProtoNet [27], then we evaluate several meta learn-
ingworks for few-shot node classification: Meta-GNN [40], GPN [5],
G-Meta [13], and TENT [35]. For TLP methods, we adhered to the
settings and evaluated different graph contrastive learning meth-
ods for both contrastive-GCL and noncontrastive-GCL. They are
MVGRL [11], GraphCL [39], GRACE [41], MERIT [15], SUGRL [21],
and BGRL [31], respectively. Besides, to validate our assertion that
the works from the image domain may show suboptimal perfor-
mance when applied to FSNC, we apply two related works BFS [14]
and PsCo [14] to the graph domain.

5.2 Main Results
Evaluations were made under 2-way 1-shot/5-shot settings on Cora,
CiteSeer, Computer, and Roman-Empire datasets due to the limited
number of available classes. CoraFull, Coauthor-CS, and ogbn-arxiv
datasets were evaluated under 5-way 1-shot/5-shot settings. We
present the main results on Cora, CiteSeer, CoraFull, and Roman-
Empire datasets in Table 1 and include results on other datasets in
Appendix C. The comparison between COLA and related works in
the image domain is presented in Table 3.

Our method COLA outperforms all the other baselines in
every task.Comparedwithmeta learningmethods, COLA achieves
at least 11.18% and up to 20.56% absolute accuracy improvement.
The results demonstrate that the utilization of all nodes and a

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Graph Contrastive Learning Meets Graph Meta Learning: A Unified Method for Few-shot Node Tasks Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Component Analysis of Query (𝑄), Support (𝑆), Lookup (𝐿) Embeddings on Cora and CiteSeer datasets. The first three
rows control different components in meta-task construction. The last row is COLA’s setting. In bold are the best results, and
underlines are the second best ones.

Cora CiteSeer

𝑄 𝑆 𝐿 2-way 1-shot 2-way 3-shot 2-way 5-shot 2-way 1-shot 2-way 3-shot 2-way 5-shot

✓ 61.90 ± 1.26 84.12 ± 2.24 88.24 ± 1.89 56.03 ± 1.73 71.46 ± 2.97 74.69 ± 2.22
✓ ✓ 75.79 ± 2.75 75.20 ± 2.68 79.44 ± 2.01 59.48 ± 2.83 63.73 ± 2.48 69.10 ± 2.31
✓ ✓ 76.24 ± 3.68 86.47 ± 1.45 85.78 ± 2.57 64.42 ± 2.34 69.33 ± 3.15 73.13 ± 2.27
✓ ✓ ✓ 84.58 ± 1.96 92.29 ± 1.71 94.03 ± 1.48 76.54 ± 2.02 80.26 ± 2.72 86.87 ± 1.49

Table 3: Comparisonwith relatedworks in the image domain.

Dataset Cora CoraFull

Task 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot

BFS [8] 70.46 ± 2.22 90.57 ± 1.89 60.44 ± 2.75 82.31 ± 1.66
PsCo [14] 71.70 ± 1.85 90.31 ± 1.64 62.46 ± 2.40 81.37 ± 2.17
COLA 84.58 ± 1.96 94.03 ± 1.48 74.36 ± 2.37 86.59 ± 2.26

discriminative data representation indeed benefit the learning on
few-shot tasks. Thus even when constructing meta-tasks without
label information, COLA can achieve excellent performance over
traditional meta learning methods.

Graph contrastive learning methods benefit from the learned
discriminative representations and show excellent ability to deal
with downstream few-shot tasks. SUGRL achieves the best perfor-
mance on most few-shot tasks. COLA outperforms SUGRL in each
task with a maximum relative accuracy improvement of 8.09%. This
demonstrates that the use of 𝑁 -way 𝑘-shot task construction in
COLA makes it more suitable for few-shot problems compared to
contrastive learning methods.

Moreover, while studies from the image domain present results
comparable to some graph contrastive learning benchmarks, COLA
still significantly outperforms these methods. This validates our
discussion on the challenges of directly adapting methodologies
from the image domain to the graph context.

Note that, in the transductive setting adopted by all baselines, the
full graph is given in advance and even meta learning methods still
see and aggregate the test nodes. The difference is that they don’t
construct meta-tasks for these test nodes, while ours does, which
leads to a more thorough utilization of the full graph information.

5.3 Model Design Component Analysis
5.3.1 Query, Support, Lookup Embeddings. First, we examine the
primary design elements of COLA: Query (𝑄), Support (𝑆), and
Lookup Embeddings (𝐿) and present the results in Table 2. To un-
derstand the distinct function of each one, we investigate three
alternative scenarios. In the first scenario, we only use the Query
Embedding. The query sample 𝑄𝑣𝑖 is extracted from the Query
Embedding and has to align with all nodes within the Query Em-
bedding itself to identify the support set. The second scenario omits
the Lookup Embedding. Here, query sample 𝑄𝑣𝑖 is compared with
all nodes from Support Embedding to find the top-𝑘 similar ones in

Table 4: Relationship between themomentum parameter and
accuracy on CiteSeer.

momentum 0 0.5 0.8 0.9 1

2-way 1-shot 70.46 74.47 75.13 76.54 54.85
2-way 5-shot 78.05 81.09 83.34 86.87 65.43

𝑆 . The third scenario excludes Support Embedding, so we use the
query embedding 𝐿𝑣𝑖 from Lookup Embedding to compare with all
node embeddings in Query Embedding.

Compared with COLA, the first and second scenarios regard the
query embedding as its own lookup tool. This reduces the amount
of information in the meta-task, leading to suboptimal results. In
the second scenario, the use of Support Embedding further de-
teriorates the performance since the inconsistency between the
Query and Support Embeddings’ encoders leads to a mismatch.
The third scenario involves the Lookup Embedding, but both the
query and support set are derived from Query Embedding, which
means the model cannot take advantage of the extra information
gained from two different augmented views. We also find that even
some of these suboptimal setups can still outperform meta learning
methods, underscoring the importance of using all available nodes.

Our COLA model significantly outperforms the three scenarios,
illustrating the importance of each component in its design. In
essence, we benefit from the invariant information among these
three augmented graphs to construct meta-tasks, such that the
support set selected by Lookup Embedding has very similar seman-
tics to the query set. This ensures our model keeps constructing
semantically correct meta-tasks.

5.3.2 Momentum Encoder. To generate Support and Lookup Em-
bedding, COLAuses amomentumGNNencoder 𝑓ema, whoseweights
are an exponential moving average of the weights of the trained
GNN encoder. The momentum encoder is more stable than the
trainable GNN encoder. We test different values of the momentum
variable from 0 to 1 and present the results in Table 4. Value 0 means
the encoder is updated to the trained GNN encoder at each step
and value 1 means the encoder is never updated. The results show
that using the shared weight encoder (momentum=0) will harm
the model performance. A static encoder (momentum=1) always
contains the exact same information and constrains the information
support embeddings can bring. A larger momentum (around 0.9)
can help the momentum encoder memorize historical information,
contributing to a consistent and stable Support Embedding.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0 10 20 30 40 50
Training Epochs

50

60

70

80

Tr
ue

 R
at

io
 (%

)

True Label Ratio on Cora

2-way 1-shot
2-way 3-shot
2-way 5-shot

(a) True Label Ratio on Cora

0 10 20 30 40 50
Training Epochs

50

60

70

80

Tr
ue

 R
at

io
 (%

)

True Label Ratio on CiteSeer

2-way 1-shot
2-way 3-shot
2-way 5-shot

(b) True Label Ratio on CiteSeer

COLA 32 128 512 ALL
of negative samples

70

80

90

Ac
cu

ra
cy

 (%
)

Accuracy with different # of negatives
2-way 1-shot
2-way 3-shot
2-way 5-shot

(c) Increasing the # of negatives

Figure 4: (a) and (b): true label ratio that measures the ratio of the selected support samples actually having the same label as
the query sample. (c): Performance drops with extra negative samples.

5.4 Deep Investigation of COLA
5.4.1 True Label Ratio. We propose use true label ratio to evaluate
the quality of task construction. True label ratio is calculated by

𝑅𝑡𝑟𝑢𝑒 =

∑𝑁
𝑖=1

∑𝑘
𝑗=1 (𝑦𝑣 𝑗

𝑖

==𝑦𝑣𝑖)

𝑁𝑘
, where 𝑦𝑣𝑖 is the label of query node 𝑣𝑖

and 𝑦
𝑣
𝑗

𝑖

is the label of the 𝑗-th support node of 𝑣𝑖 , 𝑁𝑘 is the total
number of support samples. It aims to measure how many nodes
in the support set have the same label with corresponding query
node. To better visualize the trend, we only present the true label
ratio within 50 epochs in Figure 4a and 4b. Note that 𝑅𝑡𝑟𝑢𝑒 still
increases after epoch 50. The trend of𝑅𝑡𝑟𝑢𝑒 reflects that the model is
gradually selecting more and more support nodes that have exactly
the same label as the query node. For example, the initial true label
ratio for Cora’s 2-way 5-shot problem is around 0.41 and it steadily
increases to 0.8, indicating that only around 2 selected support
samples in this task have false labels. This measure verifies that the
proposed method can construct semantically correct meta-tasks
even without label information.

5.4.2 Analysis of the number of negatives. Contrastive learning
methods benefit from both the data augmentation and the large
number of negative samples. Although COLA’s loss has a similar
form to supervised contrastive loss, the number of negative samples
is relatively small. This is because all the negative samples of a node
only come from the support set of other ways, e.g. (𝑁 − 1)𝑘 for
a 𝑁 -way 𝑘-shot problem. Consequently, we examine whether the
meta-tasks constructed by COLA will benefit from a large number
of negative samples just like contrastive learning does. Thus, we
vary the number of negatives from (𝑁 − 1)𝑘 to |V| (number of
nodes in the graph) and present the result in Figure 4c. We get
a conclusion that is contrary to expectations: the performance of
our model is negatively impacted by increasing the number of
negative samples in each case. We conjecture that the advantages
contrastive learning gains from a high number of negative samples
do not transfer well to few-shot tasks. Consequently, it underscores
the need for a unified method (COLA) that is more suitable for
FSNC.

5.4.3 Using all nodes and data augmentation indeed contributes
to the success of COLA.. We evaluate whether the utilization of
all nodes and data augmentation will be helpful in our model and

Table 5: Results of w/ and w/o augmentations and nodes from
𝐶𝑡𝑒𝑠𝑡 on CiteSeer dataset.

𝐶\𝐶𝑡𝑒𝑠𝑡 𝐶𝑡𝑒𝑠𝑡 All nodes

w/ aug 68.43 72.19 86.97
w/o aug 65.18 61.02 74.51

show the results of the CiteSeer dataset in Table 5. From the re-
sults, we can conclude that training without all nodes will lead to a
performance decrease, especially when nodes from 𝐶𝑡𝑒𝑠𝑡 are not
involved. We would like to emphasize that COLA’s success is not
solely due to the inclusion of test nodes. Despite other graph CL
methods also using test nodes, COLA consistently surpasses them.
This highlights COLA’s unique strengths beyond just test node in-
clusion. Data augmentation is also important for our method since
the meta-task construction relies on invariant graph information
across the three augmented views. These findings underscore the
fact that COLA significantly benefits from data augmentation, en-
abling the construction of meta-tasks that optimally leverage graph
information.

6 CONCLUSION
In this paper, we focus on the transductive few-shot node classifica-
tion. We first identify several key components behind the success of
contrastive learning on FSNC, including the comprehensive use of
graph nodes and the power of graph augmentations. We then intro-
duce a new paradigm—Contrastive Few-Shot Node Classification
(COLA). Unlike traditional meta learning methods that require la-
bel information, COLA finds semantically similar node embeddings
to construct meta-tasks by leveraging the invariant information
across three augmented graphs. COLA contains the advantages of
both contrastive learning and meta learning on the few-shot node
classification tasks. Through extensive experiments, we validate the
essentiality of each component in our design and demonstrate that
COLA achieves new state-of-the-art on all tasks. One limitation of
our method is the increased computational cost due to the sorting
operation used to find the support set, though this increase is linear
to |V| and has no significant negative impacts in practice, which
is detailed discussed in Appendix E. We believe our research will
bring some new insights to the FSNC field.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Graph Contrastive Learning Meets Graph Meta Learning: A Unified Method for Few-shot Node Tasks Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Aleksandar Bojchevski and Stephan Günnemann. 2017. Deep gaussian embed-

ding of graphs: Unsupervised inductive learning via ranking. arXiv preprint
arXiv:1707.03815 (2017).

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.
A simple framework for contrastive learning of visual representations. In Inter-
national conference on machine learning. PMLR, 1597–1607.

[3] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. 2020. Improved baselines
with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020).

[4] Zhengyu Chen, Jixie Ge, Heshen Zhan, Siteng Huang, and Donglin Wang.
2021. Pareto self-supervised training for few-shot learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 13663–13672.

[5] Kaize Ding, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, and Huan Liu.
2020. Graph prototypical networks for few-shot learning on attributed net-
works. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management. 295–304.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In International conference on
machine learning. PMLR, 1126–1135.

[7] Yizhao Gao, Nanyi Fei, Guangzhen Liu, Zhiwu Lu, and Tao Xiang. 2021. Con-
trastive prototype learning with augmented embeddings for few-shot learning.
In Uncertainty in Artificial Intelligence. PMLR, 140–150.

[8] Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick Pérez, and Matthieu
Cord. 2019. Boosting few-shot visual learning with self-supervision. In Proceed-
ings of the IEEE/CVF international conference on computer vision. 8059–8068.

[9] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan
Guo, Mohammad Gheshlaghi Azar, et al. 2020. Bootstrap your own latent-a new
approach to self-supervised learning. Advances in neural information processing
systems 33 (2020), 21271–21284.

[10] WilliamHamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[11] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view
representation learning on graphs. In International conference onmachine learning.
PMLR, 4116–4126.

[12] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[13] Kexin Huang and Marinka Zitnik. 2020. Graph meta learning via local subgraphs.
Advances in Neural Information Processing Systems 33 (2020), 5862–5874.

[14] Huiwon Jang, Hankook Lee, and Jinwoo Shin. 2023. Unsupervised Meta-
learning via Few-shot Pseudo-supervised Contrastive Learning. arXiv preprint
arXiv:2303.00996 (2023).

[15] Ming Jin, Yizhen Zheng, Yuan-Fang Li, Chen Gong, Chuan Zhou, and Shirui
Pan. 2021. Multi-scale contrastive siamese networks for self-supervised graph
representation learning. arXiv preprint arXiv:2105.05682 (2021).

[16] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,
Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised
contrastive learning. Advances in neural information processing systems 33 (2020),
18661–18673.

[17] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[18] Lin Lan, Pinghui Wang, Xuefeng Du, Kaikai Song, Jing Tao, and Xiaohong
Guan. 2020. Node classification on graphs with few-shot novel labels via meta
transformed network embedding. Advances in Neural Information Processing
Systems 33 (2020), 16520–16531.

[19] Chen Liu, Yanwei Fu, Chengming Xu, Siqian Yang, Jilin Li, Chengjie Wang, and Li
Zhang. 2021. Learning a few-shot embedding model with contrastive learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 8635–8643.

[20] Zemin Liu, Yuan Fang, Chenghao Liu, and Steven CH Hoi. 2021. Relative and
absolute location embedding for few-shot node classification on graph. In Pro-
ceedings of the AAAI conference on artificial intelligence, Vol. 35. 4267–4275.

[21] Yujie Mo, Liang Peng, Jie Xu, Xiaoshuang Shi, and Xiaofeng Zhu. 2022. Simple un-
supervised graph representation learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 36. 7797–7805.

[22] Renkun Ni, Manli Shu, Hossein Souri, Micah Goldblum, and Tom Goldstein.
2021. The close relationship between contrastive learning and meta-learning. In
International Conference on Learning Representations.

[23] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[24] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. 2023. A critical look at the evaluation of GNNs under heterophily:
are we really making progress? arXiv preprint arXiv:2302.11640 (2023).

[25] Yiyue Qian, Yiming Zhang, Yanfang Ye, Chuxu Zhang, et al. 2021. Distilling
Meta Knowledge on Heterogeneous Graph for Illicit Drug Trafficker Detection

on Social Media. Advances in Neural Information Processing Systems 34 (2021),
26911–26923.

[26] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[27] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for
few-shot learning. Advances in neural information processing systems 30 (2017).

[28] Jong-Chyi Su, Subhransu Maji, and Bharath Hariharan. 2020. When does self-
supervision improve few-shot learning?. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16.
Springer, 645–666.

[29] Ke Sun, Zhouchen Lin, and Zhanxing Zhu. 2020. Multi-stage self-supervised
learning for graph convolutional networks on graphs with few labeled nodes. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 5892–5899.

[30] Zhen Tan, SongWang, Kaize Ding, Jundong Li, and Huan Liu. 2022. Transductive
Linear Probing: A Novel Framework for Few-Shot Node Classification. arXiv
preprint arXiv:2212.05606 (2022).

[31] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos,
Petar Veličković, and Michal Valko. 2021. Bootstrapped representation learning
on graphs. In ICLR 2021 Workshop on Geometrical and Topological Representation
Learning.

[32] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip
Isola. 2020. Rethinking few-shot image classification: a good embedding is all
you need?. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XIV 16. Springer, 266–282.

[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[34] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep graph infomax. ICLR (Poster) 2, 3 (2019), 4.

[35] Song Wang, Kaize Ding, Chuxu Zhang, Chen Chen, and Jundong Li. 2022. Task-
adaptive few-shot node classification. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 1910–1919.

[36] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[37] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40–48.

[38] Huaxiu Yao, Chuxu Zhang, YingWei, Meng Jiang, SuhangWang, Junzhou Huang,
Nitesh Chawla, and Zhenhui Li. 2020. Graph few-shot learning via knowledge
transfer. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
6656–6663.

[39] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
neural information processing systems 33 (2020), 5812–5823.

[40] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji
Geng. 2019. Meta-gnn: On few-shot node classification in graph meta-learning.
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 2357–2360.

[41] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131
(2020).

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A DATASET DESCRIPTION
We provide the dataset description in this section. The statistic
descriptions are provided in Table 6. Note that two classes in Cora-
Full dataset have extreme few samples, and cannot provide enough
query set samples for validation or test, thus these two classes are
omitted in all experiments.

Cora [37] is a citation network comprised of scientific publica-
tions that are categorized into one of seven classes. Here, each node
represents a publication, with an edge indicating a citation relation-
ship between two nodes. Each node features a binary word vector
signifying the absence or presence of a word from a predefined
dictionary.

CiteSeer [37] is also a citation network similar to Cora, where
nodes represent scientific documents and edges represent citations.

Amazon-Computer [26] is a product co-purchasing network
where nodes represent products and edges represent that the two
products are frequently bought together. The label of each node is
the product category it belongs to.

Coauthor-CS [26] is a collaboration network, where nodes
represent authors and edges indicate the collaboration relationship
between two authors. The node feature includes information about
publishing history, affiliations, and research interests. The label
represents the field of the author’s research.

CoraFull [1] is also a citation network, which is extracted from
the original data from the entire Cora network. Cora is a small
subset of CoraFull.

Ogbn-arxiv [12] is a part of Open Graph Benchmark collection.
It consists of the co-authorship derived from ArXiv, where nodes
represent academic preprint papers and edges represent whether
the two papers share at least one same author.

Roman-Empire [24] is a heterphilic graph dataset. This dataset
is constructed by the Roman Empire article from EnglishWikipedia,
where where each node represents one word and each edge repre-
sents whether the two nodes have a dependency.

We also present a histogram depicting the frequency of nodes
within each category in Fig 5. As the figure illustrates, each dataset
displays an imbalanced label distribution, with most exhibiting a
long-tail distribution. This suggests that the complexity of each
𝑁 -way 𝑘-shot meta-task will vary based on the sampled ways.

B REPRODUCIBILITY
We provide the source code of our method in this Github link:
https://anonymous.4open.science/r/COLA-E4A0/README.md.

We report the average performance over 20 runs for each method
and each task. All models were tested on a single NVIDIA A100
80GB GPU. The experiments on all baselines follow the setting of
previous work TLP [30]. In our method COLA, we use GCN with
ReLU activation function as the graph encoder for six homophilic
dataset and use GraphSAGE as encoder for the heterphilic dataset:
Roman-Empire. For all three augmentation operations, we take
the combination of randomly dropping edge and dropping feature
and the dropping ratio for Lookup and Support Embeddings are
set to the same value. We implement Grid Search in [0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7] to obtain the augmentation ratio for each dataset.
During the meta-train phase, we take the average loss function
over 20 pseudo-meta-tasks to obtain the final loss function. During

the meta-test phase, we use the average performance of 100 meta-
tasks and each meta-task includes 20 query samples for each way.
Hyperparameters like learning rate, weight decay, and temperature
parameter 𝜏 are presented in the YAML file of our provided codes.

C ADDITIONAL EXPERIMENTS
C.1 Extra experiments of Section 3.1: ablation

Study on GCL method with respect to nodes
sampling and data augmentation

In Section 4.1, we delved into the influence of classes from which
nodes are sampled, and the use of data augmentation within the
Graph Contrastive Learning (GCL) method GRACE [41]. Here, we
expand upon those results, providing further outcomes from addi-
tional datasets and tasks, with the aim of clarifying our preliminary
findings. As the GRACE method employs all nodes in each opti-
mization process, the experiment exceeds memory constraints with
the ogbn-arxiv dataset; we present results for other datasets in the
Figure 6.

Our conclusions are consistent across varied settings:

• Leveraging all nodes within the graph to compute con-
trastive loss leads to superior performance when compared
to using only a subset of nodes.

• Interestingly, there are instances where using nodes exclu-
sively from 𝐶𝑡𝑒𝑠𝑡 results in comparable, or even superior,
performance relative to the scenario where nodes from
𝐶𝑡𝑟𝑎𝑖𝑛 ∪𝐶𝑣𝑎𝑙 are used. Despite the latter containing signif-
icantly more nodes than the former, incorporating nodes
from test sets proves crucial in avoiding overfitting.

• In the majority of cases, the application of data augmenta-
tion techniques enhances model performance, given that
the core of contrastive learning is to ascertain invariant
information across distinct views. However, in a few scenar-
ios, the integration of data augmentation has an adverse ef-
fect onmodel performance.We conjecture one reasonmight
be that when the model inherently lacks adequate classifi-
cation capability, introducing data augmentation equates
to adding noise, thereby harming the effective learning of
representation.

C.2 Main results on Amazon-Computer,
Coauthor-CS and ogbn-arxiv datasets

We present our main results on Amazon-Computer, Coauthor-CS
and ogbn-arxiv datasets in Table 7. The results show that our
method COLA still achieves the best performance in each task.
The improvement is limited in some cases, e.g. 2-way 5-shot task of
Amazon-Computer and the 5-way 5-shot task of Coauthor-CS, since
the absolute accuracy is already close to 100%. In ogbn-arxiv dataset,
we can notice that almost all the contrastive-based GCL methods
face the out-of-memory (OOM) issue, but COLA will not since we
only involve a small subset of nodes to construct meta-tasks.

D ABLATION STUDY ILLUSTRATION
We investigated three scenarios in Section 5.3.1 to verify the func-
tion of each component design. In this section, we first provide the

10

https://anonymous.4open.science/r/COLA-E4A0/README.md

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Graph Contrastive Learning Meets Graph Meta Learning: A Unified Method for Few-shot Node Tasks Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 6: Dataset Description and Meta-task Class Split Ratio.

of nodes # of edges # of feature 𝐶 𝐶𝑡𝑟𝑎𝑖𝑛 𝐶𝑣𝑎𝑙 𝐶𝑡𝑒𝑠𝑡

Cora [37] 2,708 10,556 1,433 7 3 2 2

CiteSeer [37] 3,327 9,104 3,703 6 2 2 2

Amazon-Computer [26] 13,752 491,722 767 10 4 3 3

CoraFull [1] 19,793 126,842 8,710 70 38 15 15

Coauthor-CS [26] 18,333 163,788 6,805 15 5 5 5

ogbn-arxiv [12] 169,343 1,166,243 128 40 20 10 10

Roman-Empire [24] 22,662 32,927 300 18 8 5 5

Table 7: Results on Amazon-Computer, Coauthor-CS and ogbn-arxiv datasets. (Top rows) Meta Learning. (Middle rows) Graph
Contrastive Learning with fine-tuning. (Bottom row) COLA (our method). All scores are averaged over 20 runs. Evaluation
metrics were scaled to 100 for readability purposes. In bold are methods with the best results for each task. In blue are methods
with the best results in each group. 𝑂𝑂𝑀 indicates out of memory.

Dataset Amazon-Computer Coauthor-CS ogbn-arxiv

Task 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

Meta learning

MAML [6] 52.69 ± 2.23 59.19 ± 2.42 29.73 ± 1.54 43.78 ± 1.51 27.11 ± 1.49 28.83 ± 1.51
ProtoNet [27] 56.27 ± 2.54 63.11 ± 2.60 37.98 ± 1.69 51.10 ± 1.49 34.49 ± 1.72 46.21 ± 1.73
Meta-GNN [40] 60.54 ± 2.79 68.36 ± 3.15 54.17 ± 2.02 67.24 ± 1.56 27.42 ± 1.96 32.08 ± 1.65
GPN [5] 57.59 ± 2.67 74.86 ± 2.27 64.95 ± 1.43 75.42 ± 1.56 36.23 ± 1.48 48.85 ± 1.60
G-Meta [13] 62.56 ± 3.11 71.47 ± 2.97 59.87 ± 2.35 73.16 ± 1.40 26.45 ± 1.62 33.09 ± 1.65
TENT [35] 77.74 ± 3.16 86.06 ± 2.16 59.61 ± 1.87 74.84 ± 1.23 47.55 ± 1.93 61.98 ± 1.62

Graph Contrastive Learning ± Finetune

BGRL [31] 69.95 ± 3.15 83.99 ± 2.14 63.96 ± 2.19 89.53 ± 0.83 36.42 ± 1.70 53.63 ± 1.66
MVGRL [11] 65.95 ± 2.76 85.22 ± 2.08 69.64 ± 2.15 89.27 ± 1.04 𝑂𝑂𝑀 𝑂𝑂𝑀

MERIT [15] 77.35 ± 1.87 95.19 ± 0.69 85.74 ± 1.61 96.40 ± 0.39 𝑂𝑂𝑀 𝑂𝑂𝑀

GraphCL [39] 78.46 ± 3.05 93.53 ± 1.56 73.68 ± 2.49 89.74 ± 1.76 𝑂𝑂𝑀 𝑂𝑂𝑀

GRACE [41] 75.83 ± 2.84 88.46 ± 2.12 81.50 ± 1.88 92.24 ± 0.73 𝑂𝑂𝑀 𝑂𝑂𝑀

SUGRL [21] 85.49 ± 2.07 95.13 ± 0.89 92.47 ± 1.04 96.78 ± 0.33 57.46 ± 2.03 76.03 ± 1.38

COLA (ours) 87.52 ± 1.78 95.89 ± 1.02 93.23 ± 1.27 96.79 ± 0.68 60.41 ± 2.35 77.40 ± 2.09

illustration of these three scenarios for better understanding and
then present the ablation study on other datasets.

• The first scenario is shown in Figure 7a, where we only
have Query Embedding, thus both query and support sets
are generated from Query Embedding itself.

• The second scenario is shown in Figure 7b. This scenario
omits the Lookup Embedding, and the query embedding of
the query node 𝑣𝑖 has to match with all node embeddings
from Support Embedding.

• The third scenario is shown in Figure 7c. We discard the
Support Embedding here, and the lookup embedding of the
query node 𝑣𝑖 will match with all node embeddings from

Query Embedding. Thus, both query and support sets are
from Query Embedding.

We then provide the component analysis results on Amazon-
Computer, CoraFull, Coauthor-CS and ogbn-arxiv datasets in Ta-
ble 8 and Table 9.

E LIMITATION
One limitation of COLA is the computational cost due to the way
of meta-task construction, involving cosine similarity computation
between the query node and all graph nodes, followed by a sort
to obtain the top-𝑘 nodes. Assuming a graph with |V| nodes and
|E | edges, and node embeddings with dimension 𝑑 . Given 𝑡 𝑛-way

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Class
0

200

400

600

800

Fr
eq

ue
nc

y

Cora

(a) Cora Label Frequency.

Class
0

200

400

600

Fr
eq

ue
nc

y

CiteSeer

(b) CiteSeer Label Frequency.

Class
0

2000

4000

Fr
eq

ue
nc

y

Computers

(c) Computers Label Frequency.

Class
0

200

400

600

800

Fr
eq

ue
nc

y

CoraFull

(d) CoraFull Label Frequency.

Class
0

1000

2000

3000

4000

Fr
eq

ue
nc

y

Coauthor-CS

(e) Coauthor-CS Label Frequency.

Class
0

10000

20000

Fr
eq

ue
nc

y

ogbn-arxiv

(f) ogbn-arxiv Label Frequency.

Class
0

1000

2000

3000

Fr
eq

ue
nc

y

Roman-Empire

(g) Roman-Empire Label Frequency.

Figure 5: Label frequency distribution visualization of all datasets.

𝑘-shot meta-tasks per training batch, the cosine similarity’s time
complexity is 𝑂 (|V|𝑑𝑡𝑛), that of sorting operation is 𝑂 (|V|

√
𝑘𝑡),

that of MPGNN is𝑂 (|E |). Thus, the time complexity of our method
is 𝑂 (|V|𝑑𝑡𝑛 + |E|). Excluding the GNN, with 𝑑, 𝑡, 𝑛 all being con-
stants, the complexity remains linear with respect to the number
of nodes. We illustrate the convergence time (in seconds) across
different datasets in Table 10. Although our convergence time is

relatively longer than most baselines, this marginal increase is
justifiable given the notable performance improvement.

Another limitation is that we do not explore much on different
choices of the loss function and take the supervised contrastive
loss [16] since in this work we focus more on the method to con-
struct meta-tasks without labels. Future work could explore more
on this aspect based on the meta-task construction.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Graph Contrastive Learning Meets Graph Meta Learning: A Unified Method for Few-shot Node Tasks Conference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Only train Train+val Only test All

2-way 1-shot task on Cora using GRACE + Finetune
Aug w/o Aug

(a) Cora 2-way 1-shot task.

Only train Train+val Only test All

2-way 5-shot task on Cora using GRACE + Finetune
Aug w/o Aug

(b) Cora 2-way 5-shot task.

Only train Train+val Only test All

2-way 1-shot task on CiteSeer using GRACE + Finetune
Aug w/o Aug

(c) CiteSeer 2-way 1-shot task.

Only train Train+val Only test All

2-way 5-shot task on CiteSeer using GRACE + Finetune
Aug w/o Aug

(d) CiteSeer 2-way 5-shot task.

Only train Train+val Only test All

5-way 1-shot task on CoraFull using GRACE + Finetune
Aug w/o Aug

(e) CoraFull 5-way 1-shot task.

Only train Train+val Only test All

5-way 5-shot task on CoraFull using GRACE + Finetune
Aug w/o Aug

(f) CoraFull 5-way 5-shot task.

0.6

0.65

0.7

0.75

0.8

0.85

Only train Train+val Only test All

5-way 1-shot task on Coauthor using GRACE + Finetune
Aug w/o Aug

(g) Coauthor-CS 5-way 1-shot task.

0.7

0.75

0.8

0.85

0.9

0.95

Only train Train+val Only test All

5-way 5-shot task on Coauthor using GRACE + Finetune
Aug w/o Aug

(h) Coauthor-CS 5-way 5-shot task.

Figure 6: Case study on GRACE+finetune framework.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference’17, July 2017, Washington, DC, USA Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

2

5

(", $)

&! ("!, $!)

top-k similarity lookup

2
5

Query
Set

Support
Set

Supervised
Contrastive

Loss

GNN
Encoder

Projection
Head 2 5

Query Embedding

Scenario 1: Query
Embedding Only

stop
grad

(a) Scenario 1: Only Query Embedding.

2

5

(", $)

&!

("", $")

("!, $!)

GNN
Encoder

EMA

Support Embedding

top-k similarity lookup 2
5

Query
Set

Support
Set

Supervised
Contrastive

Loss

stop
grad

GNN
Encoder

Projection
Head 2 5

Query Embedding

Scenario 2: Without
Lookup Embedding

&"

(b) Scenario 2: Without Lookup Embedding.

2

5

(", $)

&!

&#
("#, $#)

("!, $!)

GNN
Encoder

EMA

Lookup Embedding

top-k similarity lookup

2
5

Query
Set

Support
Set

Supervised
Contrastive

Loss

stop
grad

GNN
Encoder

Projection
Head 2 5

Query Embedding

Scenario 3: Without
Support Embedding

(c) Scenario 3: Without Support Embedding.

Figure 7: Ablation Study Illustration.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Graph Contrastive Learning Meets Graph Meta Learning: A Unified Method for Few-shot Node Tasks Conference’17, July 2017, Washington, DC, USA

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Table 8: Component Analysis of Query (𝑄), Support (𝑆), Lookup (𝐿) Embeddings on Amazon-Computer and CoraFull datasets.
The first three rows control different components in meta-task construction. The last row is COLA’s setting. In bold are the
best results, and underlines are the second best ones.

Amazon-Computer CoraFull

𝑄 𝑆 𝐿 2-way 1-shot 2-way 3-shot 2-way 5-shot 5-way 1-shot 5-way 3-shot 5-way 5-shot

✓ 71.04 ± 2.07 91.53 ± 2.26 92.76 ± 2.34 58.96 ± 1.99 76.48 ± 2.74 79.63 ± 2.39
✓ ✓ 78.58 ± 2.61 85.87 ± 3.13 86.41 ± 2.45 64.62 ± 3.23 68.74 ± 2.10 71.43 ± 2.55
✓ ✓ 80.06 ± 1.78 88.28 ± 2.33 90.37 ± 2.89 68.89 ± 2.09 75.17 ± 1.73 76.32 ± 2.76
✓ ✓ ✓ 87.52 ± 1.78 93.08 ± 1.04 95.89 ± 1.02 74.36 ± 2.37 83.17 ± 2.48 86.59 ± 2.26

Table 9: Component Analysis of Query (𝑄), Support (𝑆), Lookup (𝐿) Embeddings on Coauthor-CS and ogbn-arxiv datasets. The
first three rows control different components in meta-task construction. The last row is COLA’s setting. In bold are the best
results, and underlines are the second best ones.

Coauthor-CS ogbn-arxiv

𝑄 𝑆 𝐿 5-way 1-shot 5-way 3-shot 5-way 5-shot 5-way 1-shot 5-way 3-shot 5-way 5-shot

✓ 80.37 ± 2.86 90.45 ± 1.38 93.57 ± 1.19 30.17 ± 2.36 54.57 ± 2.04 58.94 ± 3.01
✓ ✓ 82.21 ± 3.43 84.90 ± 2.59 90.46 ± 1.76 42.49 ± 1.97 45.27 ± 2.00 49.68 ± 2.36
✓ ✓ 88.75 ± 1.96 92.39 ± 1.73 94.53 ± 1.87 50.88 ± 2.73 53.96 ± 3.25 61.05 ± 2.84
✓ ✓ ✓ 93.23 ± 2.17 96.42 ± 1.25 96.79 ± 0.68 60.41 ± 2.35 69.74 ± 2.28 77.40 ± 2.09

Table 10: Convergence time comparison (in seconds) on a single NVIDIA A100 80GB GPU.

Cora 2-way 1-shot Cora 2-way 5-shot CoraFull 5-way 1-shot CoraFull 5-way 5-shot

MAML 13.15 10.42 22.71 18.16
ProtoNet 17.40 16.83 31.39 19.38
Meta-GNN 26.33 25.03 92.99 83.32

GPN 13.3 10.67 34.43 53.04
G-Meta 46.62 191.82 196.01 662.54
TENT 64.46 43.90 58.12 58.92
BGRL 13.89 12.98 36.58 41.41
MVGRL 98.23 110.56 654.79 707.63
MERIT 955.60 1461.97 6240.12 8341.16
GraphCL 62.37 70.78 450.17 502.64
GRACE 8.38 6.80 74.42 41.53
SUGRL 25.05 16.07 542.86 428.57
COLA 83.43 103.64 619.65 817.43

15

	Abstract
	1 Introduction
	2 Related Work
	3 Notations and Preliminaries
	4 Contrastive Few-Shot Node Classification (COLA)
	4.1 Analysis on Success of Contrastive Learning in Few-Shot Node Classification
	4.2 Meta-task Construction without Labels
	4.3 Training Procedure

	5 Experiment
	5.1 Datasets, Setup, and Baselines
	5.2 Main Results
	5.3 Model Design Component Analysis
	5.4 Deep Investigation of COLA

	6 Conclusion
	References
	A Dataset Description
	B Reproducibility
	C Additional Experiments
	C.1 Extra experiments of Section 3.1: ablation Study on GCL method with respect to nodes sampling and data augmentation
	C.2 Main results on Amazon-Computer, Coauthor-CS and ogbn-arxiv datasets

	D Ablation Study Illustration
	E Limitation

