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Graph Contrastive Learning Meets Graph Meta Learning: A
Unified Method for Few-shot Node Tasks

Anonymous Author(s)

ABSTRACT
Graph Neural Networks (GNNs) have become popular tools for
Graph Representation Learning (GRL). One fundamental problem
is few-shot node classification. Most existing methods follow the
meta learning paradigm, showing the ability of fast generaliza-
tion to few-shot tasks. However, recent works indicate that graph
contrastive learning combined with fine-tuning can significantly
outperform meta learning methods. Despite the empirical success,
there is limited understanding of the reasons behind it. In our
study, we first identify two crucial advantages of contrastive learn-
ing over meta learning, including (1) the comprehensive utiliza-
tion of graph nodes and (2) the power of graph augmentations.
To integrate the strength of both contrastive learning and meta
learning on the few-shot node classification tasks, we introduce a
new paradigm—Contrastive Few-Shot Node Classification (COLA).
Specifically, COLA identifies semantically similar nodes only from
augmented graphs, enabling the construction of meta-tasks without
label information. Therefore, COLA can incorporate all nodes to
construct meta-tasks, reducing the risk of overfitting. Through ex-
tensive experiments, we validate the necessity of each component
in our design and demonstrate that COLA achieves new state-of-
the-art on all tasks.
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1 INTRODUCTION
Graph Neural Networks (GNNs) [10, 17] have emerged as the pre-
dominant encoders for Graph Representation Learning (GRL) in
modern research, with node classification standing out as an essen-
tial domain of exploration. While a significant portion of the study
has centered on employing GNNs in supervised or semi-supervised
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contexts [33, 36], these approaches often require abundant anno-
tated data. Nevertheless, acquiring high-quality labels is challenging
in many scenarios, leading to a growing interest in exploring few-
shot transductive node classification (FSNC), where only limited
labeled samples are provided for novel classes. Real-world appli-
cations of FSNC span areas like classifying papers by topic from
emerging research fields in a citation network [37] and categorizing
newly introduced products within a co-purchasing network [26].

The majority of current study on FSNC [5, 13, 18, 20, 25, 35, 40]
is rooted in the meta learning paradigm [6, 27]. Essentially, meta
learning creates a series of meta-tasks during training to emulate
real-world few-shot scenarios. To tackle a few-shot problem with
𝑁 classes and 𝑘 samples per class, meta learning iteratively trains
over numerous 𝑁 -way 𝑘-shot meta tasks derived from the training
classes. Each meta-task consists of a support set and a query set,
sampled from nodes belonging to a fixed number (𝑁 ) of classes.
The objective is to develop an algorithm that can perform well
on the query set by training on only a few support samples. By
constructing and resolving meta-tasks iteratively, models can learn
the latent task distribution and adapt to tasks with novel classes.

Another emerging trend to effectively handle few-shot tasks is
contrastive learning (CL). CL leverages positive and negative sam-
ple pairs to learn embeddings such that similar samples are brought
closer in the embedding space while dissimilar ones are pushed
apart. Several studies [32] have underscored the importance of
transferable and discriminative representations for few-shot tasks.
Observing the success of CL in other domains like computer vi-
sion [2, 3, 9], a recent exploration [30] on FSNC used pre-trained
node embeddings learned from existing Graph Contrastive Learn-
ing (GCL) methods [15, 21] to train a linear classifier for few-shot
tasks. This strategy has achieved notable success even without label
information, surpassing previous state-of-the-art (SOTA) perfor-
mance established by conventional meta learning methods.

To understand the success behind CL, we analyze and validate
two critical factors contributing to contrastive learning’s excep-
tional performance. The first factor is the use of data augmenta-
tion. By maximizing the similarity between a data point and its
augmented version, CL ensures the model learns discriminative
embeddings with minimal redundant information from the graph,
which is essential for few-shot tasks. Secondly, CL’s self-supervised
learning (SSL) nature becomes especially powerful within the frame-
work of FSNC and its transductive setting because label information
is ignored in SSL. This enables CL to incorporate information of
all graph nodes beyond the labeled ones, largely increasing the
training sample size. In contrast, meta learning inherently relies on
label information. Consequently, it can only include nodes from
the training classes in meta-tasks, losing a significant portion
of graph information. Furthermore, when the number of available
training classes is limited, the meta-tasks may lack the necessary
diversity to ensure robust generalization across few-shot scenarios.
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Figure 1: Illustration of a 2-way 3-shot meta-task construc-
tion. COLA can leverage all nodes in the graph to construct
meta-tasks, while previous meta learning methods can only
use nodes from training classes.

Hence, one natural question emerges: Can we leverage the ad-
vantages of contrastive learning to enhance the current meta learning
framework? To address this question, we propose a new paradigm
for few-shot node classification termed Contrastive Few-Shot Node
Classification (COLA). Unlike original meta-tasks, which require
nodes within the same class to construct support sets, COLA con-
structs meta-taskswithout labels (as illustrated in Figure 1). Hence,
COLA can use all node information like CL can while benefiting
from the few-shot-oriented meta learning framework.

Creating support and query sets is the core of𝑁 -way𝑘-shotmeta-
tasks construction. Inspired by self-supervised contrastive learning,
COLA randomly samples 𝑁 query nodes, with each representing
one way in meta learning. The main challenge is constructing the
support set including 𝑘 samples semantically similar to each query
node without label information. To achieve this, we use GNNs
to get node embeddings from three augmented graphs. Given a
query node, we first obtain its embedding from the first graph. If
we find a set of embeddings from the second graph that matches
the query embedding closely, then this set should maintain high
similarity with the query node’s embedding from the third graph.
We then treat this embedding set as the support set and maximize
the similarity between this set and the query embedding from the
third graph.

Our framework has several advantages: (1) We propose a novel
method that utilizes the invariant information among three aug-
mented graphs to construct semantically correct meta-taskswithout
label information; (2) Unlike conventional meta-tasks constructed
based on training labels, COLA meta-tasks are based on semantic
similarity, preventing overfitting to training classes. (3) COLAmeta-
tasks use all nodes in training, incorporating much more graph
information than traditional meta learning methods that only use
labeled nodes. We conduct extensive experiments on seven real-
world datasets and examine the necessity of each component in
our framework. Our results demonstrate that COLA outperforms
all previous methods, achieving new state-of-the-art performance
on few-shot node classification. COLA’s outstanding performance
demonstrates that meta-learning remains a powerful solution for
few-shot tasks when all graph nodes are used.

2 RELATEDWORK
Graph Few-shot Learning.While GNNs for node classification
are generally semi-supervised [17], considerable efforts were spent
on removing the labeling dependency [10, 29, 33]. However, they
cannot handle unseen classes during the test phase. This inspired re-
search on the few-shot node classification problem. The majority of
research employs a meta learning paradigm. Meta-GNN [40] adapts
the optimization-based meta learning method MAML [6] to graph
data. GFL [38] enables few-shot classification on unseen graphs
with seen node classes. GPN [5] uses ProtoNet [27], a metric-based
meta learning method, and refines prototypes with the weights
learned by a GCN [17]. G-Meta [13] leverages subgraph information
and achieves good performance on both transductive and inductive
FSNC. RALE [20] assigns relative and absolute locations to each
node within meta-tasks. TENT [35] applies node-level, class-level,
and task-level adaptations in each task to mitigate task variance
impact. Recently, TLP [30], inspired by graph contrastive learn-
ing, trains a few-shot classifier using pre-trained node embeddings,
thereby significantly enhancing the performance over existing meta
learning approaches. Its success prompts us to delve further into
the potential of contrastive learning.

GraphContrastive Learning.Contrastive Learningmethods [2,
3, 9] have been adapted to the graph domain. DGI [34] learns node
representations by maximizing mutual information (MI) between
local and global graph features. GRACE [41] maximizes node-level
agreement between two corrupted views. MVGRL [11] maximizes
the MI between node representations of one view and graph rep-
resentations of another view. GraphCL [39] applies various data
augmentation techniques to the graph and then employs a con-
trastive loss function to move the representations of augmented
views of the same graph closer. MERIT [15] leverages bootstrapping
within a Siamese network and multi-scale graph contrastive learn-
ing to enhance node representation learning. SUGRL [21] employs
node embeddings from MLP as anchors and takes advantage of
structural and neighbor information to obtain two kinds of posi-
tive samples. Different from previous methods, SUGRL takes the
combination of triplet loss instead of InfoNCE loss [23]. BGRL [31]
extends the non-contrastive setting [9] that does not need negative
samples to graph problems. TLP [30] trains a linear classifier on
top of embedding learned from various graph contrastive learning
methods, where SUGRL consistently delivers superior performance
on few-shot tasks.

Few-shot LearningwithContrastive Learning.Recent works
in computer vision show that meta learning and contrastive learn-
ing can benefit from each other. Some recent few-shot auxiliary
learningworks [4, 8, 28] view few-shot learning as themain task and
combine the few-shot loss with self-supervised auxiliary tasks. Liu
et al. [19] employs supervised contrastive learning on meta-tasks,
where support images and query images are processed with de-
signed data augmentations to construct hard samples. CPLAE [7]
represents support and query samples using concatenated embed-
dings of both the original and augmented versions. It then regards
prototypes of support samples as the anchor samples in contrastive
learning. However, these methods are suboptimal on graph tasks
due to their reliance on label information and domain-specific data
augmentations. PsCo [14] employs a Moco[3] inspired momentum
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network with a queue system, aiming to improve the diversity of
meta-tasks in the unsupervised meta learning setting. However,
the queue-like setup is redundant in graph-based node classifica-
tion where each batch provides embeddings for all nodes in the
graph. MetaContrastive [22] proposes a meta learning framework
to enhance contrastive learning by transforming contrastive learn-
ing setup to meta-tasks. Notably, in the field of graph learning,
there is no work that enhances meta learning with the advan-
tages of contrastive learning, and it is challenging to tailor
these previousmethods from the image domain for the graph.
We also provide experimental results in Table 3 by adapting some
works in the image domain to FSNC to validate the assertion.

3 NOTATIONS AND PRELIMINARIES
We first introduce some preliminary concepts and notations. In this
work, we consider an undirected attributed graph G = (V, E,A, 𝑋 ),
whereV = {𝑣1, · · · , 𝑣 |V | } is the set of nodes, E = {𝑒1, · · · , 𝑒 | E | } is
the set of edges. The adjacency matrix A ∈ {0, 1} |V |× |V | describes
the graph structure, with A𝑖 𝑗 = 1 indicating an edge between nodes
𝑣𝑖 and 𝑣 𝑗 and A𝑖 𝑗 = 0 otherwise. The feature matrix 𝑋 ∈ R |V |×𝑑

contains the node features, where x𝑖 ∈ R𝑑 represents the feature
of node 𝑣𝑖 and 𝑑 is the feature dimension. Our work focuses on the
node classification problem, where each node 𝑖 has a label 𝑦𝑖 ∈ 𝐶

and 𝐶 is the set of labels with |𝐶 | different classes.
Few-shot Node Classification. In node classification, nodes

are usually divided into train, validation, and test sets, denoted as
𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑋𝑣𝑎𝑙 , and 𝑋𝑡𝑒𝑠𝑡 , respectively. However, unlike supervised
node classification where the node labels of train/validation/test
sets are sampled from the same label set 𝐶 , the label of nodes in
few-shot learning are sampled from non-overlapped label sets for
train/validation/test set, denoted as𝐶𝑡𝑟𝑎𝑖𝑛 ,𝐶𝑣𝑎𝑙 . and𝐶𝑡𝑒𝑠𝑡 . Further,
it holds that 𝐶𝑡𝑟𝑎𝑖𝑛 ∩𝐶𝑡𝑒𝑠𝑡 = ∅. Few-shot Learning typically deals
with 𝑁 -way 𝑘-shot tasks, where the objective is to classify nodes
into one of 𝑁 distinct classes using only 𝑘 labeled samples per class.

Meta Learning.Meta learning [6, 27] tries to solve the few-shot
problems by designing a novel training strategy. The overall pro-
cess of meta learning can be divided into meta-train and meta-test
phases. During meta-train phase, the model is trained to simulate
the few-shot learning environment. It enables the model to quickly
adapt to new few-shot tasks with limited labeled data during the
meta-test phase. Specifically, at each training episode, meta learning
constructs 𝑁 -way 𝑘-shot tasks using samples from the training set
𝑋𝑡𝑟𝑎𝑖𝑛 . To form an 𝑁 -way 𝑘-shot task, meta learning first randomly
select a class set 𝐶𝑚𝑒𝑡𝑎 with 𝑁 classes from 𝐶𝑡𝑟𝑎𝑖𝑛 and then gener-
ate a support set S = {(x𝑖 , 𝑦 𝑗 ) |𝑦 𝑗 ∈ 𝐶𝑚𝑒𝑡𝑎, 𝑖 = 1, · · · , 𝑁 ×𝑘} and a
query set Q = {(x𝑖 , 𝑦 𝑗 ) |𝑦 𝑗 ∈ 𝐶𝑚𝑒𝑡𝑎, 𝑖 = 1, · · · , 𝑁 × 𝑞}(S ∩ Q = ∅)
by sampling 𝑘 support and 𝑞 query samples from each class in
𝐶𝑚𝑒𝑡𝑎 , respectively. The objective is to train on the support set
so that it can perform well on the query set. In meta-test phase,
the 𝑁 -way 𝑘-shot tasks are constructed with samples in 𝑋𝑡𝑒𝑠𝑡 in a
similar way.

4 CONTRASTIVE FEW-SHOT NODE
CLASSIFICATION (COLA)

In this section, we first identify two critical components that con-
tribute hugely to the success of contrastive learning on FSNC but

Only train Train+val Only test All

2-way 5-shot task on Cora using GRACE + Finetune
Aug w/o Aug

Figure 2: 2-way 5-shot task on Cora using GRACE+finetune.
Accuracy of four situations w/ and w/o augmentations.

are not present in meta learning. Then, we introduce a new par-
adigm COLA, which leverages the strengths of both contrastive
learning and meta learning. The key idea is to construct meta-tasks
without labels. We use the invariant information among three aug-
mented graphs to construct semantically correct meta-tasks. We
then take the supervised contrastive loss to learn the meta-tasks.

4.1 Analysis on Success of Contrastive Learning
in Few-Shot Node Classification

Althoughmost current works on transductive FSNC follow themeta
learning framework (details discussed in Section 2), a recent study
TLP [30] highlights the effectiveness of graph contrastive learning
combined with fine-tuning. The authors conducted experiments
using various existing graph contrastive learning methods and fine-
tuned a linear classifier on top of the learned representation, which
resulted in significant performance improvements on few-shot node
classification tasks compared to SOTA supervised meta learning
methods.

To understand the strong performance of contrastive learning,
we analyze the difference between contrastive learning and meta
learning. Both techniques strive to bring the embeddings of se-
mantically similar nodes closer and separate embeddings of se-
mantically dissimilar ones. However, the definition of semantical
similarity is different in the two methods. Meta learning regards all
node embeddings from the same class as similar, while those
from different classes as dissimilar. In contrast, self-supervised con-
trastive learning only considers the embeddings of the same node
in different augmented graphs as similar.

Such a definition of similarity provides contrastive learning with
a distinct advantage in transductive FSNC problems. It allows the
model to utilize all node embeddings in a given graph explicitly.
Conversely, meta learning relies on labels from training classes
𝐶𝑡𝑟𝑎𝑖𝑛 , thus, only nodes from these classes are involved in the meta-
train phase, increasing the likelihood of overfitting to the training
classes and limiting the model’s ability to transfer knowledge to
test classes. Especially when the number of training classes is insuf-
ficient, the diversity of meta-tasks is not guaranteed, thus hurting
the generalization ability of meta learning. Further, leveraging the
graph augmentation technique is another difference between con-
trastive learning and meta learning, which is already known to be
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Figure 3: An overview of the COLA Framework. The construction of a 2-way 3-shot meta-task is illustrated. Two nodes 2 and 5
are sampled as the query set. The query node’s embedding in Lookup Embedding matches with all node embeddings in Support
Embedding. Top-𝑘 similar embeddings are selected for the support set. Supervised contrastive loss is calculated for each task.

effective in learning discriminative representation [32]. We conjec-
ture the above two differences contribute most to the success of
contrastive learning in FSNC.

We then conduct extensive ablation studies to validate our hy-
pothesis. We present one experimental result in Figure 2 and include
other results in Appendix C. The experiment is conducted on a 2-
way 5-shot task from Cora [37] dataset, and the node embeddings
pre-trained from a GCL model named GRACE [41] are used to train
a classifier for few-shot tasks. We control the nodes used for pre-
training to be sampled from 𝐶𝑡𝑟𝑎𝑖𝑛 , 𝐶𝑡𝑟𝑎𝑖𝑛 ∪ 𝐶𝑣𝑎𝑙 , 𝐶𝑡𝑒𝑠𝑡 , and the
whole graph. 𝐶𝑡𝑟𝑎𝑖𝑛 , 𝐶𝑣𝑎𝑙 and 𝐶𝑡𝑒𝑠𝑡 contain 3, 2, 2 non-overlapped
classes, respectively. We then assess the model on few-shot tasks
sampled from 𝐶𝑡𝑒𝑠𝑡 .

The results reveal several insights: although the number of nodes
belonging to𝐶𝑡𝑟𝑎𝑖𝑛 ∪𝐶𝑣𝑎𝑙 far exceeds the number of nodes in𝐶𝑡𝑒𝑠𝑡 ,
only using samples from 𝐶𝑡𝑒𝑠𝑡 to pretrain achieves better result
than the other two settings. Note that the label information is not
included in the pretraining process. This experiment validates that
explicitly leveraging test class samples during training can avoid
overfitting. Besides, using all nodes can maximize the utilization
of graph information. Another observation is that eliminating aug-
mentation leads to a performance decrease. Thus, the discriminative
representation acquired by contrastive learning through data aug-
mentation techniques is also crucial for few-shot tasks.

From experimental results, we can see the explicit use of all
nodes and data augmentation are crucial to contrastive learning
performance. These insights inspire us to propose a more robust
meta learning framework that can effectively leverage these ad-
vantages of contrastive learning while also benefiting from the
generalization capabilities of meta learning.

4.2 Meta-task Construction without Labels
In this section, we introduce our framework COLA, and the overall
framework is illustrated in Figure 3 and Algorithm 1. COLA aims
to construct meta-tasks without labels, such that all nodes can be
explicitly used during training.

Inspired by contrastive learning, we first sample 𝑁 nodes and
regard them as 𝑁 distinct classes to form the query set Q. Denote
the query set Q = {𝑣1, · · · , 𝑣𝑁 }, where 𝑣𝑖 is the query node of the
𝑖-th way. To construct an 𝑁 -way 𝑘-shot meta-task, the support set
S should include 𝑘 samples that have similar semantics to the query
sample from each of the 𝑁 ways. Then, how to find semantically
similar samples is the main challenge.

One naive idea is to use a GNN to get node embeddings and
select nodes with top-𝑘 similar embeddings to the query node’s
embedding as its support set. However, the support nodes selected
in this way will only enlarge the similarity between nodes which
the GNN initially regards similar—if the GNN happens to give two
semantically distinct nodes similar embeddings at first, such a way
will update the model so that their embeddings are more and more
similar, ultimately collapsing the model. Inspired by CL, one remedy
is to take the query node’s embedding from one augmented view
and match it against the embeddings of all nodes from another view
to select the top-𝑘 similar support nodes. This solution enhances
the robustness of the selection as nodes with similar embeddings
across different augmented graphs are more likely those “truly”
semantically similar ones. However, it still does not solve the model
collapse risk, meaning an initially bad GNN gets worse and worse.

We thus introduce a third augmented view and a momentum
GNN to ensure a more robust and comprehensive meta-task con-
struction. The core idea is as follows. We first generate query node
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embeddings from one augmented view. To select semantically sim-
ilar support nodes, we do not compare to these query node em-
beddings directly. Instead, we additionally generate a lookup em-
bedding for each query node in a second augmented graph, and
match these lookup embeddings with support embeddings gen-
erated from a third augmented graph to select the support nodes
(shown in Figure 3). The three different views greatly enhance the
robustness of the meta-task construction. Furthermore, the lookup
embeddings and support embeddings are obtained from a momen-
tum GNN instead of the GNN to train (the one used to get the query
embeddings), so that model collapse is prevented. Finally, the GNN
is trained to maximize the similarity between the query embedding
and the support embeddings of the selected support nodes. We em-
pirically verified all our designs via a thorough ablation study (see
Section 5.3). Below we detail the meta-task construction process.

For a graph G, let A(G) denote the distribution of graph data
augmentation of G. These augmentations [39] typically involve one
or more operations, such as node dropping, edge perturbation, and
attribute masking. For the given graph represented as (𝑋,A), we ap-
ply three different data augmentationsA1,A2,A3 ∼ A and generate
the corresponding augmented graphs (𝑋1,A1), (𝑋2,A2), (𝑋3,A3).

We then use GNNs to generate Lookup, Support, and Query
Embeddings from the augmented graphs. Formally,

𝐿 := 𝑓ema (𝑋1,A1), 𝑆 := 𝑓ema (𝑋2,A2), 𝑄 := 𝑔(𝑓 (𝑋3,A3)), (1)

where Lookup Embedding 𝐿 and Support Embedding 𝑆 are gener-
ated by a momentum encoder 𝑓ema, and the Query Embedding 𝑄 is
generated by a trainable graph encoder 𝑓 with a projection head 𝑔.
Weights of 𝑓ema are the moving average from 𝑓 . Details about the
momentum encoder will be discussed later.

Then we present the process of constructing meta-tasks. We first
get query nodes’ embeddings from Lookup Embedding 𝐿 and denote
them as {𝐿𝑣1 , · · · , 𝐿𝑣𝑁 }. For each 𝑖 ∈ [1, · · · , 𝑁 ], we then measure
the similarity between 𝐿𝑣𝑖 and all node embeddings {𝑆1, · · · , 𝑆 |V | }
in Support Embedding 𝑆 . The 𝑘 embeddings in 𝑆 with the highest
similarity scores will be selected as the support set, leading to 𝑁𝑘

samples in the support set. We denote them as {𝑆𝑣1
𝑖
, · · · , 𝑆

𝑣𝑘
𝑖
}𝑁
𝑖=1,

where 𝑆
𝑣
𝑗

𝑖

is the 𝑗-th support sample of the 𝑖-th query node. Finally,
we get query nodes’ embedding from Query Embedding 𝑄 and
denote them as {𝑄𝑣1 , · · · , 𝑄𝑣𝑁 } and use them as the query set to
construct a meta-task together with the support set. The task T
can be represented as T = {𝑄𝑣𝑖 , {𝑆𝑣 𝑗

𝑖

}𝑘
𝑗=1}

𝑁
𝑖=1.

Our method uses the fact that the most essential graph informa-
tion should be invariant across different augmented views. Given
a query node 𝑣𝑖 , if we find 𝑘 embeddings (in 𝑆) that are very
similar to 𝑣𝑖 ’s embedding from one augmented view (𝐿), then
these 𝑘 embeddings should also be closely similar to 𝑣𝑖 ’s em-
bedding from a different augmented view 𝑄 . Leveraging such
invariance leads to more robust meta-task construction. To further
verify the importance of each of the three embeddings, we have car-
ried out comprehensive ablation studies presented in Section 5.3.1.

The momentum encoder is another important component of our
meta-task construction. Formally, denote the parameters of 𝑓ema
by 𝜃ema and parameters of 𝑓 by 𝜃 , 𝜃ema is updated by exponential
moving average (EMA): 𝜃ema = 𝑚𝜃ema + (1 − 𝑚)𝜃, where 𝑚 is
the momentum coefficient to control what degree it preserves the

Algorithm 1 COLA Meta-task Construction
Require: 𝑓 : GNN encoder, 𝑔 : projection head, 𝑓ema: momentum

GNN encoder,𝑋 : feature matrix,𝐴: adjacency matrix, |𝑉 |: num-
ber of nodes, 𝑁 : number of classes, 𝑘 : number of samples in
support set, 𝑑 : embedding dimension, 𝑇 : number of meta-tasks.

1: Generate three views: (𝑋1, 𝐴1), (𝑋2, 𝐴2), (𝑋3, 𝐴3);
2: Compute Query (𝑄), Support (𝑆), Lookup (𝐿) Embeddings by

Eq(1);
3: Randomly sample 𝑁 nodes to construct query set;
4: for each node 𝑣𝑖 in query set do
5: Get query node’s embedding 𝐿𝑣𝑖 from 𝐿;
6: Compute cosine similarity between 𝐿𝑣𝑖 and all node em-

beddings in 𝑆 ;
7: Regard the 𝑘 embeddings with the highest similarity score

as support set;
8: Get query node’s embedding 𝑄𝑣𝑞 from Q;
9: end for
10: Compute contrastive loss 𝐿𝐶𝑂𝐿𝐴 using Eq( 2).

history. By employing a momentum encoder instead of the same
trainable GNN encoder, the support set candidate pool (𝑆) remains
consistent across episodes and is less susceptible to noise or non-
informative information from the rapidly changing encoder. Lookup
Embedding and Support Embedding share the same momentum
encoder, allowing for more accurate and consistent matching. The
importance of the momentum encoder is validated in Section 5.3.2.

4.3 Training Procedure
Meta-Train Phase. To train the model, we want to maximize the
similarity between the query embedding and corresponding sup-
port embeddings, thus we design the loss function inspired by the
supervised contrastive loss [16]. In our setting, for each way 𝑖 , the
query embedding is treated as the anchor sample. The support em-
beddings {𝑆𝑣1

𝑖
, · · · , 𝑆

𝑣𝑘
𝑖
} are considered as positive samples, while

support embeddings {𝑆𝑣1
𝑖′
, · · · , 𝑆

𝑣𝑘
𝑖′
}𝑖′≠𝑖 from other ways are viewed

as negative samples. Formally, the pseudo-supervised contrastive
loss for each meta-task can be expressed as follows:

𝐿𝐶𝑂𝐿𝐴 ({𝑄𝑣𝑖 , {𝑆𝑣 𝑗
𝑖

}𝑘𝑗=1}
𝑁
𝑖=1) = −

𝑁∑︁
𝑖=1

1
𝑘

𝑘∑︁
𝑗=1

log
exp(𝑄𝑣𝑖 · 𝑆𝑣 𝑗

𝑖

/𝜏)∑
v∈𝑆𝑡 exp(𝑄𝑣𝑖 · v/𝜏)

,

(2)
where 𝑄𝑣𝑖 is the query sample of the 𝑖-th way, and 𝑆

𝑣
𝑗

𝑖

is the 𝑗-th
support sample of 𝑄𝑣𝑖 . 𝑆𝑡 denotes all the support embeddings in
the current meta-task and 𝜏 is the temperature parameter. Finally,
the loss function of each meta-train episode is the average loss of
multiple meta-tasks.

Meta-Test Phase. During the meta-test phase, we discard the
momentum encoder and retain the GNN encoder. Then a linear
classifier is trained on top of the learned node embeddings from
the GNN encoder. To elaborate, we initially select 𝑁 classes from
𝐶𝑡𝑒𝑠𝑡 and sample 𝑘 labeled nodes from each class. The embeddings
of these samples then undergo supervised training to fit a linear
classifier. In the final step, we evaluate the performance using 𝑞

nodes from each of the 𝑁 classes.
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Table 1: Results on Cora, CiteSeer, CoraFull, and Roman-Empire datasets. (Top rows) Meta Learning. (Middle rows) Graph
Contrastive Learning with fine-tuning. (Bottom row) COLA (our method). All scores are averaged over 20 runs. Evaluation
metrics were scaled to 100 for readability purposes. In bold are methods with the best results for each task. In blue are methods
with the best results in each group.

Dataset Cora CiteSeer CoraFull Roman-Empire

Task 2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot 2-way 1-shot 2-way 5-shot

Meta learning

MAML [6] 52.59 ± 2.28 56.45 ± 2.41 51.77 ± 2.28 54.21 ± 2.30 22.47 ± 1.21 26.58 ± 1.32 53.65 ± 2.54 55.71 ± 2.36
ProtoNet [27] 51.69 ± 2.17 55.00 ± 2.39 51.43 ± 2.12 53.23 ± 2.28 34.17 ± 1.74 46.86 ± 1.74 53.73 ± 2.16 56.49 ± 2.03
Meta-GNN [40] 57.87 ± 2.52 57.35 ± 2.30 55.12 ± 2.62 60.59 ± 3.26 55.36 ± 2.49 71.42 ± 2.02 54.59 ± 2.70 59.31 ± 2.43
GPN [5] 56.09 ± 2.08 63.83 ± 2.86 59.33 ± 2.23 65.60 ± 2.47 56.48 ± 2.72 71.23 ± 2.11 58.42 ± 2.31 63.96 ± 2.27
G-Meta [13] 66.15 ± 3.00 82.85 ± 1.19 54.33 ± 2.02 61.47 ± 2.37 58.47 ± 2.37 72.03 ± 1.88 61.45 ± 2.35 62.99 ± 2.58
TENT [35] 54.33 ± 2.10 58.97 ± 2.40 60.06 ± 3.01 66.31 ± 2.45 49.83 ± 2.02 64.23 ± 1.75 60.32 ± 2.14 67.14 ± 1.95

Graph Contrastive Learning + Finetune

BGRL [31] 59.16 ± 2.48 81.31 ± 1.89 54.33 ± 2.14 66.74 ± 2.13 40.82 ± 1.95 69.98 ± 1.67 56.58 ± 2.31 66.39 ± 1.74
MVGRL [11] 74.96 ± 2.94 91.32 ± 1.47 63.39 ± 2.69 79.73 ± 1.92 66.40 ± 2.31 83.99 ± 1.51 64.32 ± 2.77 71.74 ± 1.69
MERIT [15] 70.63 ± 3.11 91.00 ± 1.22 65.64 ± 2.94 78.54 ± 2.43 65.17 ± 1.96 84.74 ± 1.44 64.83 ± 2.81 74.16 ± 1.74
GraphCL [39] 74.32 ± 3.26 90.43 ± 1.21 71.39 ± 3.17 79.60 ± 1.89 66.76 ± 2.75 84.55 ± 1.48 65.13 ± 2.98 73.01 ± 2.24
GRACE [41] 71.50 ± 1.42 88.49 ± 1.44 67.43 ± 2.51 82.09 ± 1.64 62.05 ± 2.22 81.54 ± 1.52 62.78 ± 1.76 74.50 ± 1.73
SUGRL [21] 81.52 ± 2.09 92.49 ± 1.02 72.43 ± 2.42 86.58 ± 1.19 73.95 ± 2.13 83.07 ± 1.21 64.69 ± 2.01 73.05 ± 1.69

COLA (ours) 84.58 ± 1.96 94.03 ± 1.48 76.54 ± 2.02 86.87 ± 1.49 74.36 ± 2.37 86.59 ± 2.26 68.59 ± 1.83 78.96 ± 1.87

5 EXPERIMENT
In this section, we demonstrate COLA outperforms all the base-
lines in each task and provide the ablation study to validate the
significance of each model component.

5.1 Datasets, Setup, and Baselines
5.1.1 Datasets. We conducted our experiments on seven bench-
mark datasets: Cora [37], CiteSeer [37], Amazon-Computer [26]
(Computer), CoraFull [1], Coauthor-CS [26] (CS), ogbn-arxiv [12]
and Roman-empire [24]. The first six are all commonly used ho-
mophilous graph datasets, and the last one is a heterophilous graph
dataset. In each run for the same dataset, the classes were randomly
divided into three subsets:𝐶𝑡𝑟𝑎𝑖𝑛 ,𝐶𝑣𝑎𝑙 , and𝐶𝑡𝑒𝑠𝑡 . The setting of the
split ratio follows previous works [30] and a detailed description of
these datasets is provided in Appendix A.

5.1.2 Implementation Details. We utilized Graph Convolutional
Networks [17] (GCNs) as the encoder for all homophilous graphs
and used GraphSAGE [10] as the encoder for the heterphilous graph,
and took a multi-layer perceptron (MLP) as the projection head.
Our data augmentation combines edge and feature dropout. The
number of training tasks for calculating the average loss function is
set to 20. We report mean accuracy and the 95% confidence interval
of 20 runs for both COLA and baseline models for a fair comparison.
All models were tested on a single NVIDIA A100 80GB GPU. The
detailed setting of hyperparameters and source code are provided
in Appendix B.

5.1.3 Baselines. We mainly compared our model with two groups
of baselines: meta learning and graph contrastive learning with
finetuning (proposed by TLP [30]). For meta learning, we first evalu-
ate two plain meta learning models without GNN [17] as backbone:
MAML [6] and ProtoNet [27], then we evaluate several meta learn-
ingworks for few-shot node classification: Meta-GNN [40], GPN [5],
G-Meta [13], and TENT [35]. For TLP methods, we adhered to the
settings and evaluated different graph contrastive learning meth-
ods for both contrastive-GCL and noncontrastive-GCL. They are
MVGRL [11], GraphCL [39], GRACE [41], MERIT [15], SUGRL [21],
and BGRL [31], respectively. Besides, to validate our assertion that
the works from the image domain may show suboptimal perfor-
mance when applied to FSNC, we apply two related works BFS [14]
and PsCo [14] to the graph domain.

5.2 Main Results
Evaluations were made under 2-way 1-shot/5-shot settings on Cora,
CiteSeer, Computer, and Roman-Empire datasets due to the limited
number of available classes. CoraFull, Coauthor-CS, and ogbn-arxiv
datasets were evaluated under 5-way 1-shot/5-shot settings. We
present the main results on Cora, CiteSeer, CoraFull, and Roman-
Empire datasets in Table 1 and include results on other datasets in
Appendix C. The comparison between COLA and related works in
the image domain is presented in Table 3.

Our method COLA outperforms all the other baselines in
every task.Comparedwithmeta learningmethods, COLA achieves
at least 11.18% and up to 20.56% absolute accuracy improvement.
The results demonstrate that the utilization of all nodes and a
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Table 2: Component Analysis of Query (𝑄), Support (𝑆), Lookup (𝐿) Embeddings on Cora and CiteSeer datasets. The first three
rows control different components in meta-task construction. The last row is COLA’s setting. In bold are the best results, and
underlines are the second best ones.

Cora CiteSeer

𝑄 𝑆 𝐿 2-way 1-shot 2-way 3-shot 2-way 5-shot 2-way 1-shot 2-way 3-shot 2-way 5-shot

✓ 61.90 ± 1.26 84.12 ± 2.24 88.24 ± 1.89 56.03 ± 1.73 71.46 ± 2.97 74.69 ± 2.22
✓ ✓ 75.79 ± 2.75 75.20 ± 2.68 79.44 ± 2.01 59.48 ± 2.83 63.73 ± 2.48 69.10 ± 2.31
✓ ✓ 76.24 ± 3.68 86.47 ± 1.45 85.78 ± 2.57 64.42 ± 2.34 69.33 ± 3.15 73.13 ± 2.27
✓ ✓ ✓ 84.58 ± 1.96 92.29 ± 1.71 94.03 ± 1.48 76.54 ± 2.02 80.26 ± 2.72 86.87 ± 1.49

Table 3: Comparisonwith relatedworks in the image domain.

Dataset Cora CoraFull

Task 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot

BFS [8] 70.46 ± 2.22 90.57 ± 1.89 60.44 ± 2.75 82.31 ± 1.66
PsCo [14] 71.70 ± 1.85 90.31 ± 1.64 62.46 ± 2.40 81.37 ± 2.17
COLA 84.58 ± 1.96 94.03 ± 1.48 74.36 ± 2.37 86.59 ± 2.26

discriminative data representation indeed benefit the learning on
few-shot tasks. Thus even when constructing meta-tasks without
label information, COLA can achieve excellent performance over
traditional meta learning methods.

Graph contrastive learning methods benefit from the learned
discriminative representations and show excellent ability to deal
with downstream few-shot tasks. SUGRL achieves the best perfor-
mance on most few-shot tasks. COLA outperforms SUGRL in each
task with a maximum relative accuracy improvement of 8.09%. This
demonstrates that the use of 𝑁 -way 𝑘-shot task construction in
COLA makes it more suitable for few-shot problems compared to
contrastive learning methods.

Moreover, while studies from the image domain present results
comparable to some graph contrastive learning benchmarks, COLA
still significantly outperforms these methods. This validates our
discussion on the challenges of directly adapting methodologies
from the image domain to the graph context.

Note that, in the transductive setting adopted by all baselines, the
full graph is given in advance and even meta learning methods still
see and aggregate the test nodes. The difference is that they don’t
construct meta-tasks for these test nodes, while ours does, which
leads to a more thorough utilization of the full graph information.

5.3 Model Design Component Analysis
5.3.1 Query, Support, Lookup Embeddings. First, we examine the
primary design elements of COLA: Query (𝑄), Support (𝑆), and
Lookup Embeddings (𝐿) and present the results in Table 2. To un-
derstand the distinct function of each one, we investigate three
alternative scenarios. In the first scenario, we only use the Query
Embedding. The query sample 𝑄𝑣𝑖 is extracted from the Query
Embedding and has to align with all nodes within the Query Em-
bedding itself to identify the support set. The second scenario omits
the Lookup Embedding. Here, query sample 𝑄𝑣𝑖 is compared with
all nodes from Support Embedding to find the top-𝑘 similar ones in

Table 4: Relationship between themomentum parameter and
accuracy on CiteSeer.

momentum 0 0.5 0.8 0.9 1

2-way 1-shot 70.46 74.47 75.13 76.54 54.85
2-way 5-shot 78.05 81.09 83.34 86.87 65.43

𝑆 . The third scenario excludes Support Embedding, so we use the
query embedding 𝐿𝑣𝑖 from Lookup Embedding to compare with all
node embeddings in Query Embedding.

Compared with COLA, the first and second scenarios regard the
query embedding as its own lookup tool. This reduces the amount
of information in the meta-task, leading to suboptimal results. In
the second scenario, the use of Support Embedding further de-
teriorates the performance since the inconsistency between the
Query and Support Embeddings’ encoders leads to a mismatch.
The third scenario involves the Lookup Embedding, but both the
query and support set are derived from Query Embedding, which
means the model cannot take advantage of the extra information
gained from two different augmented views. We also find that even
some of these suboptimal setups can still outperform meta learning
methods, underscoring the importance of using all available nodes.

Our COLA model significantly outperforms the three scenarios,
illustrating the importance of each component in its design. In
essence, we benefit from the invariant information among these
three augmented graphs to construct meta-tasks, such that the
support set selected by Lookup Embedding has very similar seman-
tics to the query set. This ensures our model keeps constructing
semantically correct meta-tasks.

5.3.2 Momentum Encoder. To generate Support and Lookup Em-
bedding, COLAuses amomentumGNNencoder 𝑓ema, whoseweights
are an exponential moving average of the weights of the trained
GNN encoder. The momentum encoder is more stable than the
trainable GNN encoder. We test different values of the momentum
variable from 0 to 1 and present the results in Table 4. Value 0 means
the encoder is updated to the trained GNN encoder at each step
and value 1 means the encoder is never updated. The results show
that using the shared weight encoder (momentum=0) will harm
the model performance. A static encoder (momentum=1) always
contains the exact same information and constrains the information
support embeddings can bring. A larger momentum (around 0.9)
can help the momentum encoder memorize historical information,
contributing to a consistent and stable Support Embedding.
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Figure 4: (a) and (b): true label ratio that measures the ratio of the selected support samples actually having the same label as
the query sample. (c): Performance drops with extra negative samples.

5.4 Deep Investigation of COLA
5.4.1 True Label Ratio. We propose use true label ratio to evaluate
the quality of task construction. True label ratio is calculated by

𝑅𝑡𝑟𝑢𝑒 =

∑𝑁
𝑖=1

∑𝑘
𝑗=1 (𝑦𝑣 𝑗

𝑖

==𝑦𝑣𝑖 )

𝑁𝑘
, where 𝑦𝑣𝑖 is the label of query node 𝑣𝑖

and 𝑦
𝑣
𝑗

𝑖

is the label of the 𝑗-th support node of 𝑣𝑖 , 𝑁𝑘 is the total
number of support samples. It aims to measure how many nodes
in the support set have the same label with corresponding query
node. To better visualize the trend, we only present the true label
ratio within 50 epochs in Figure 4a and 4b. Note that 𝑅𝑡𝑟𝑢𝑒 still
increases after epoch 50. The trend of𝑅𝑡𝑟𝑢𝑒 reflects that the model is
gradually selecting more and more support nodes that have exactly
the same label as the query node. For example, the initial true label
ratio for Cora’s 2-way 5-shot problem is around 0.41 and it steadily
increases to 0.8, indicating that only around 2 selected support
samples in this task have false labels. This measure verifies that the
proposed method can construct semantically correct meta-tasks
even without label information.

5.4.2 Analysis of the number of negatives. Contrastive learning
methods benefit from both the data augmentation and the large
number of negative samples. Although COLA’s loss has a similar
form to supervised contrastive loss, the number of negative samples
is relatively small. This is because all the negative samples of a node
only come from the support set of other ways, e.g. (𝑁 − 1)𝑘 for
a 𝑁 -way 𝑘-shot problem. Consequently, we examine whether the
meta-tasks constructed by COLA will benefit from a large number
of negative samples just like contrastive learning does. Thus, we
vary the number of negatives from (𝑁 − 1)𝑘 to |V| (number of
nodes in the graph) and present the result in Figure 4c. We get
a conclusion that is contrary to expectations: the performance of
our model is negatively impacted by increasing the number of
negative samples in each case. We conjecture that the advantages
contrastive learning gains from a high number of negative samples
do not transfer well to few-shot tasks. Consequently, it underscores
the need for a unified method (COLA) that is more suitable for
FSNC.

5.4.3 Using all nodes and data augmentation indeed contributes
to the success of COLA.. We evaluate whether the utilization of
all nodes and data augmentation will be helpful in our model and

Table 5: Results of w/ and w/o augmentations and nodes from
𝐶𝑡𝑒𝑠𝑡 on CiteSeer dataset.

𝐶\𝐶𝑡𝑒𝑠𝑡 𝐶𝑡𝑒𝑠𝑡 All nodes

w/ aug 68.43 72.19 86.97
w/o aug 65.18 61.02 74.51

show the results of the CiteSeer dataset in Table 5. From the re-
sults, we can conclude that training without all nodes will lead to a
performance decrease, especially when nodes from 𝐶𝑡𝑒𝑠𝑡 are not
involved. We would like to emphasize that COLA’s success is not
solely due to the inclusion of test nodes. Despite other graph CL
methods also using test nodes, COLA consistently surpasses them.
This highlights COLA’s unique strengths beyond just test node in-
clusion. Data augmentation is also important for our method since
the meta-task construction relies on invariant graph information
across the three augmented views. These findings underscore the
fact that COLA significantly benefits from data augmentation, en-
abling the construction of meta-tasks that optimally leverage graph
information.

6 CONCLUSION
In this paper, we focus on the transductive few-shot node classifica-
tion. We first identify several key components behind the success of
contrastive learning on FSNC, including the comprehensive use of
graph nodes and the power of graph augmentations. We then intro-
duce a new paradigm—Contrastive Few-Shot Node Classification
(COLA). Unlike traditional meta learning methods that require la-
bel information, COLA finds semantically similar node embeddings
to construct meta-tasks by leveraging the invariant information
across three augmented graphs. COLA contains the advantages of
both contrastive learning and meta learning on the few-shot node
classification tasks. Through extensive experiments, we validate the
essentiality of each component in our design and demonstrate that
COLA achieves new state-of-the-art on all tasks. One limitation of
our method is the increased computational cost due to the sorting
operation used to find the support set, though this increase is linear
to |V| and has no significant negative impacts in practice, which
is detailed discussed in Appendix E. We believe our research will
bring some new insights to the FSNC field.
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A DATASET DESCRIPTION
We provide the dataset description in this section. The statistic
descriptions are provided in Table 6. Note that two classes in Cora-
Full dataset have extreme few samples, and cannot provide enough
query set samples for validation or test, thus these two classes are
omitted in all experiments.

Cora [37] is a citation network comprised of scientific publica-
tions that are categorized into one of seven classes. Here, each node
represents a publication, with an edge indicating a citation relation-
ship between two nodes. Each node features a binary word vector
signifying the absence or presence of a word from a predefined
dictionary.

CiteSeer [37] is also a citation network similar to Cora, where
nodes represent scientific documents and edges represent citations.

Amazon-Computer [26] is a product co-purchasing network
where nodes represent products and edges represent that the two
products are frequently bought together. The label of each node is
the product category it belongs to.

Coauthor-CS [26] is a collaboration network, where nodes
represent authors and edges indicate the collaboration relationship
between two authors. The node feature includes information about
publishing history, affiliations, and research interests. The label
represents the field of the author’s research.

CoraFull [1] is also a citation network, which is extracted from
the original data from the entire Cora network. Cora is a small
subset of CoraFull.

Ogbn-arxiv [12] is a part of Open Graph Benchmark collection.
It consists of the co-authorship derived from ArXiv, where nodes
represent academic preprint papers and edges represent whether
the two papers share at least one same author.

Roman-Empire [24] is a heterphilic graph dataset. This dataset
is constructed by the Roman Empire article from EnglishWikipedia,
where where each node represents one word and each edge repre-
sents whether the two nodes have a dependency.

We also present a histogram depicting the frequency of nodes
within each category in Fig 5. As the figure illustrates, each dataset
displays an imbalanced label distribution, with most exhibiting a
long-tail distribution. This suggests that the complexity of each
𝑁 -way 𝑘-shot meta-task will vary based on the sampled ways.

B REPRODUCIBILITY
We provide the source code of our method in this Github link:
https://anonymous.4open.science/r/COLA-E4A0/README.md.

We report the average performance over 20 runs for each method
and each task. All models were tested on a single NVIDIA A100
80GB GPU. The experiments on all baselines follow the setting of
previous work TLP [30]. In our method COLA, we use GCN with
ReLU activation function as the graph encoder for six homophilic
dataset and use GraphSAGE as encoder for the heterphilic dataset:
Roman-Empire. For all three augmentation operations, we take
the combination of randomly dropping edge and dropping feature
and the dropping ratio for Lookup and Support Embeddings are
set to the same value. We implement Grid Search in [0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7] to obtain the augmentation ratio for each dataset.
During the meta-train phase, we take the average loss function
over 20 pseudo-meta-tasks to obtain the final loss function. During

the meta-test phase, we use the average performance of 100 meta-
tasks and each meta-task includes 20 query samples for each way.
Hyperparameters like learning rate, weight decay, and temperature
parameter 𝜏 are presented in the YAML file of our provided codes.

C ADDITIONAL EXPERIMENTS
C.1 Extra experiments of Section 3.1: ablation

Study on GCL method with respect to nodes
sampling and data augmentation

In Section 4.1, we delved into the influence of classes from which
nodes are sampled, and the use of data augmentation within the
Graph Contrastive Learning (GCL) method GRACE [41]. Here, we
expand upon those results, providing further outcomes from addi-
tional datasets and tasks, with the aim of clarifying our preliminary
findings. As the GRACE method employs all nodes in each opti-
mization process, the experiment exceeds memory constraints with
the ogbn-arxiv dataset; we present results for other datasets in the
Figure 6.

Our conclusions are consistent across varied settings:

• Leveraging all nodes within the graph to compute con-
trastive loss leads to superior performance when compared
to using only a subset of nodes.

• Interestingly, there are instances where using nodes exclu-
sively from 𝐶𝑡𝑒𝑠𝑡 results in comparable, or even superior,
performance relative to the scenario where nodes from
𝐶𝑡𝑟𝑎𝑖𝑛 ∪𝐶𝑣𝑎𝑙 are used. Despite the latter containing signif-
icantly more nodes than the former, incorporating nodes
from test sets proves crucial in avoiding overfitting.

• In the majority of cases, the application of data augmenta-
tion techniques enhances model performance, given that
the core of contrastive learning is to ascertain invariant
information across distinct views. However, in a few scenar-
ios, the integration of data augmentation has an adverse ef-
fect onmodel performance.We conjecture one reasonmight
be that when the model inherently lacks adequate classifi-
cation capability, introducing data augmentation equates
to adding noise, thereby harming the effective learning of
representation.

C.2 Main results on Amazon-Computer,
Coauthor-CS and ogbn-arxiv datasets

We present our main results on Amazon-Computer, Coauthor-CS
and ogbn-arxiv datasets in Table 7. The results show that our
method COLA still achieves the best performance in each task.
The improvement is limited in some cases, e.g. 2-way 5-shot task of
Amazon-Computer and the 5-way 5-shot task of Coauthor-CS, since
the absolute accuracy is already close to 100%. In ogbn-arxiv dataset,
we can notice that almost all the contrastive-based GCL methods
face the out-of-memory (OOM) issue, but COLA will not since we
only involve a small subset of nodes to construct meta-tasks.

D ABLATION STUDY ILLUSTRATION
We investigated three scenarios in Section 5.3.1 to verify the func-
tion of each component design. In this section, we first provide the
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Table 6: Dataset Description and Meta-task Class Split Ratio.

# of nodes # of edges # of feature 𝐶 𝐶𝑡𝑟𝑎𝑖𝑛 𝐶𝑣𝑎𝑙 𝐶𝑡𝑒𝑠𝑡

Cora [37] 2,708 10,556 1,433 7 3 2 2

CiteSeer [37] 3,327 9,104 3,703 6 2 2 2

Amazon-Computer [26] 13,752 491,722 767 10 4 3 3

CoraFull [1] 19,793 126,842 8,710 70 38 15 15

Coauthor-CS [26] 18,333 163,788 6,805 15 5 5 5

ogbn-arxiv [12] 169,343 1,166,243 128 40 20 10 10

Roman-Empire [24] 22,662 32,927 300 18 8 5 5

Table 7: Results on Amazon-Computer, Coauthor-CS and ogbn-arxiv datasets. (Top rows) Meta Learning. (Middle rows) Graph
Contrastive Learning with fine-tuning. (Bottom row) COLA (our method). All scores are averaged over 20 runs. Evaluation
metrics were scaled to 100 for readability purposes. In bold are methods with the best results for each task. In blue are methods
with the best results in each group. 𝑂𝑂𝑀 indicates out of memory.

Dataset Amazon-Computer Coauthor-CS ogbn-arxiv

Task 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

Meta learning

MAML [6] 52.69 ± 2.23 59.19 ± 2.42 29.73 ± 1.54 43.78 ± 1.51 27.11 ± 1.49 28.83 ± 1.51
ProtoNet [27] 56.27 ± 2.54 63.11 ± 2.60 37.98 ± 1.69 51.10 ± 1.49 34.49 ± 1.72 46.21 ± 1.73
Meta-GNN [40] 60.54 ± 2.79 68.36 ± 3.15 54.17 ± 2.02 67.24 ± 1.56 27.42 ± 1.96 32.08 ± 1.65
GPN [5] 57.59 ± 2.67 74.86 ± 2.27 64.95 ± 1.43 75.42 ± 1.56 36.23 ± 1.48 48.85 ± 1.60
G-Meta [13] 62.56 ± 3.11 71.47 ± 2.97 59.87 ± 2.35 73.16 ± 1.40 26.45 ± 1.62 33.09 ± 1.65
TENT [35] 77.74 ± 3.16 86.06 ± 2.16 59.61 ± 1.87 74.84 ± 1.23 47.55 ± 1.93 61.98 ± 1.62

Graph Contrastive Learning ± Finetune

BGRL [31] 69.95 ± 3.15 83.99 ± 2.14 63.96 ± 2.19 89.53 ± 0.83 36.42 ± 1.70 53.63 ± 1.66
MVGRL [11] 65.95 ± 2.76 85.22 ± 2.08 69.64 ± 2.15 89.27 ± 1.04 𝑂𝑂𝑀 𝑂𝑂𝑀

MERIT [15] 77.35 ± 1.87 95.19 ± 0.69 85.74 ± 1.61 96.40 ± 0.39 𝑂𝑂𝑀 𝑂𝑂𝑀

GraphCL [39] 78.46 ± 3.05 93.53 ± 1.56 73.68 ± 2.49 89.74 ± 1.76 𝑂𝑂𝑀 𝑂𝑂𝑀

GRACE [41] 75.83 ± 2.84 88.46 ± 2.12 81.50 ± 1.88 92.24 ± 0.73 𝑂𝑂𝑀 𝑂𝑂𝑀

SUGRL [21] 85.49 ± 2.07 95.13 ± 0.89 92.47 ± 1.04 96.78 ± 0.33 57.46 ± 2.03 76.03 ± 1.38

COLA (ours) 87.52 ± 1.78 95.89 ± 1.02 93.23 ± 1.27 96.79 ± 0.68 60.41 ± 2.35 77.40 ± 2.09

illustration of these three scenarios for better understanding and
then present the ablation study on other datasets.

• The first scenario is shown in Figure 7a, where we only
have Query Embedding, thus both query and support sets
are generated from Query Embedding itself.

• The second scenario is shown in Figure 7b. This scenario
omits the Lookup Embedding, and the query embedding of
the query node 𝑣𝑖 has to match with all node embeddings
from Support Embedding.

• The third scenario is shown in Figure 7c. We discard the
Support Embedding here, and the lookup embedding of the
query node 𝑣𝑖 will match with all node embeddings from

Query Embedding. Thus, both query and support sets are
from Query Embedding.

We then provide the component analysis results on Amazon-
Computer, CoraFull, Coauthor-CS and ogbn-arxiv datasets in Ta-
ble 8 and Table 9.

E LIMITATION
One limitation of COLA is the computational cost due to the way
of meta-task construction, involving cosine similarity computation
between the query node and all graph nodes, followed by a sort
to obtain the top-𝑘 nodes. Assuming a graph with |V| nodes and
|E | edges, and node embeddings with dimension 𝑑 . Given 𝑡 𝑛-way
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Figure 5: Label frequency distribution visualization of all datasets.

𝑘-shot meta-tasks per training batch, the cosine similarity’s time
complexity is 𝑂 ( |V|𝑑𝑡𝑛), that of sorting operation is 𝑂 ( |V|

√
𝑘𝑡),

that of MPGNN is𝑂 ( |E |). Thus, the time complexity of our method
is 𝑂 ( |V|𝑑𝑡𝑛 + |E|). Excluding the GNN, with 𝑑, 𝑡, 𝑛 all being con-
stants, the complexity remains linear with respect to the number
of nodes. We illustrate the convergence time (in seconds) across
different datasets in Table 10. Although our convergence time is

relatively longer than most baselines, this marginal increase is
justifiable given the notable performance improvement.

Another limitation is that we do not explore much on different
choices of the loss function and take the supervised contrastive
loss [16] since in this work we focus more on the method to con-
struct meta-tasks without labels. Future work could explore more
on this aspect based on the meta-task construction.
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Figure 6: Case study on GRACE+finetune framework.
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Figure 7: Ablation Study Illustration.
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Table 8: Component Analysis of Query (𝑄), Support (𝑆), Lookup (𝐿) Embeddings on Amazon-Computer and CoraFull datasets.
The first three rows control different components in meta-task construction. The last row is COLA’s setting. In bold are the
best results, and underlines are the second best ones.

Amazon-Computer CoraFull

𝑄 𝑆 𝐿 2-way 1-shot 2-way 3-shot 2-way 5-shot 5-way 1-shot 5-way 3-shot 5-way 5-shot

✓ 71.04 ± 2.07 91.53 ± 2.26 92.76 ± 2.34 58.96 ± 1.99 76.48 ± 2.74 79.63 ± 2.39
✓ ✓ 78.58 ± 2.61 85.87 ± 3.13 86.41 ± 2.45 64.62 ± 3.23 68.74 ± 2.10 71.43 ± 2.55
✓ ✓ 80.06 ± 1.78 88.28 ± 2.33 90.37 ± 2.89 68.89 ± 2.09 75.17 ± 1.73 76.32 ± 2.76
✓ ✓ ✓ 87.52 ± 1.78 93.08 ± 1.04 95.89 ± 1.02 74.36 ± 2.37 83.17 ± 2.48 86.59 ± 2.26

Table 9: Component Analysis of Query (𝑄), Support (𝑆), Lookup (𝐿) Embeddings on Coauthor-CS and ogbn-arxiv datasets. The
first three rows control different components in meta-task construction. The last row is COLA’s setting. In bold are the best
results, and underlines are the second best ones.

Coauthor-CS ogbn-arxiv

𝑄 𝑆 𝐿 5-way 1-shot 5-way 3-shot 5-way 5-shot 5-way 1-shot 5-way 3-shot 5-way 5-shot

✓ 80.37 ± 2.86 90.45 ± 1.38 93.57 ± 1.19 30.17 ± 2.36 54.57 ± 2.04 58.94 ± 3.01
✓ ✓ 82.21 ± 3.43 84.90 ± 2.59 90.46 ± 1.76 42.49 ± 1.97 45.27 ± 2.00 49.68 ± 2.36
✓ ✓ 88.75 ± 1.96 92.39 ± 1.73 94.53 ± 1.87 50.88 ± 2.73 53.96 ± 3.25 61.05 ± 2.84
✓ ✓ ✓ 93.23 ± 2.17 96.42 ± 1.25 96.79 ± 0.68 60.41 ± 2.35 69.74 ± 2.28 77.40 ± 2.09

Table 10: Convergence time comparison (in seconds) on a single NVIDIA A100 80GB GPU.

Cora 2-way 1-shot Cora 2-way 5-shot CoraFull 5-way 1-shot CoraFull 5-way 5-shot

MAML 13.15 10.42 22.71 18.16
ProtoNet 17.40 16.83 31.39 19.38
Meta-GNN 26.33 25.03 92.99 83.32

GPN 13.3 10.67 34.43 53.04
G-Meta 46.62 191.82 196.01 662.54
TENT 64.46 43.90 58.12 58.92
BGRL 13.89 12.98 36.58 41.41
MVGRL 98.23 110.56 654.79 707.63
MERIT 955.60 1461.97 6240.12 8341.16
GraphCL 62.37 70.78 450.17 502.64
GRACE 8.38 6.80 74.42 41.53
SUGRL 25.05 16.07 542.86 428.57
COLA 83.43 103.64 619.65 817.43
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