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Abstract

The advancement of Cell Painting, a relatively new morphological profiling assay, requires
adequate and effective image analysis methods suitable for high-content data. That is why,
developing deep learning methods for biological image analysis is extremely relevant. In
this paper, we present feature extraction results on Cell Painting images of phytopathogenic
fungi using deep learning techniques. We give an overview of the current method, which
is based on a supervised convolutional neural network, and present the prospects and
advantages of leveraging a self-supervised model based on vision transformers in the given
problem setting.
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1. Introduction

In morphological profiling for drug discovery, quantitative features are extracted to iden-
tify phenotypical characteristics of samples treated with various compounds. Cell Paint-
ing (Bray et al., 2016) is a relatively new morphological profiling assay, where up to 6 fluo-
rescent dyes are used to stain major cell compartments and subsequently retrieve relevant
biological information using high-throughput microscopy. The advantage of this method is
that it offers accurate insights into sub-cellular compartments, bringing detailed information
about the effects of screened drugs.

This technique produces large amounts of high-content data, whose relevant information
is often hidden under layers of complex and subtle correlated effects. Thus, it is of the utmost
importance to develop sophisticated image analysis techniques that allow the extraction of
meaningful insights associated with biological processes of interest. In this context, we focus
on developing deep learning models for the analysis of biological images, which benefits
the precision of morphology-based drug profiling. Several well-established computer vision
models have been already explored for Cell Painting in mammalian cells (e.g. (Moshkov
et al., 2024), (Kim et al., 2023)), demonstrating a prominent potential of the approach.

Applying Cell Painting to phytopathogenic filamentous fungi is of paramount impor-
tance as we strive to produce the next generation of sustainable products for crop protection.
In our study, we focus on the application of these techniques to the Cell Painting images of
the fungus Botrytis cinerea (Bi et al., 2023). In the experimental setup, 3 fluorescent dyes
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are used: Nile Red, Calcofluor (CFW), and Wheat Germ Agglutinin (WGA) to stain lipids,
cell wall, and apical cell wall, respectively. Additionally, label-free brightfield microscopy is
carried out, resulting in an overall 4-channel image for each condition.

In this paper, a supervised convolutional neural network (CNN)-based model is pre-
sented as a proof-of-concept, and the limitations of such an approach are outlined. We
further introduce a self-supervised method, which is currently under exploration, empha-
sizing its advantages in the given problem setting. We also provide an outlook for further
studies.

2. Image analysis models

In this section, deep learning models for the cellular feature extraction of the filamentous
fungi are discussed: a Deep Cosine Metric Learning (DCML) supervised model (Wojke and
Bewley, 2018), and a self-supervised DINO-based model (Caron et al., 2021).

2.1. Deep Cosine Metric Learning model

The DCML model is a CNN-based feature-extraction model that creates an embedding for
each input image, such that samples with similar phenotypes are positioned closer to each
other in the feature space, while samples with contrasting characteristics are positioned fur-
ther apart. To achieve this, the network learns on manually annotated data by optimizing
the cosine similarity of the samples with the same label. The learned embeddings can be
used for various downstream tasks, such as drug mode of action inference through clustering
analysis, or estimation of dose-response profiles (Lejeune et al., 2023). Even though this
method proves to be efficient, it has two significant limitations: it requires manually anno-
tated data, which is labor-intensive and prone to human error; and its prediction capabilities
hardly go beyond human accuracy.

2.2. Self-supervised model

The constraints of the DCML method can be circumvented by using self-supervised models.
In this case, the models do not rely on any labels and rather use a surrogate objective
to create expressive representations potentially useful for downstream tasks. Since data
do not require to be manually labeled, the model is not limited to known classes. Self-
supervised methods are currently state-of-the-art, notably in the analysis of natural data.
In our study, we focus on adapting the so-called DINO model used for unsupervised feature
learning. DINO employs two networks, each receiving the same image as input but with
different random transformations. Self-supervision occurs by matching their outputs, which
are compared using a cross-entropy loss.

Training a DINO-like model is notoriously data-intensive, and its adaptation to the
fungal images is currently ongoing. However, initial preliminary findings, using a pre-trained
network for the inference, demonstrate promising outcomes. Figure 1 shows a comparison
between compound activities evaluated from the features extracted with DCML and the
pre-trained DINO model. In WGA and NileRed image modalities both approaches show
similar results, indicating the DINO’s robustness. Moreover, by investigating the brightfield
image samples at 0.04 (center) and 0.8 (right) drug concentrations, a significant difference in
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effects on the fungi can be noted, which is captured by the DINO while the DCML network
fails to do so. We expect the performance to improve even further when being specifically
trained on fungal data.

Figure 1: Left: z-scores calculated from the distance to the negative control sample in the
feature space obtained with DCML and DINO model plotted against compound
concentration. Center, Right: fungi treated with the compound of 0.04 (center)
and 0.8 (right) concentrations in the brightfield modality.

3. Outlook and conclusion

Self-supervised models have already been successfully tested on Cell Painting data. How-
ever, with respect to previous results, our use case shows some distinguishing complex
factors. The target organisms are inherently multicellular, developing over time and go-
ing through radical changes in their cell biology and global shape, both across different
treatments and different species of interest, ranging from isolated round-shaped spores to
long branching mycelia. The high sensitivity of organism shape to treatment is one of the
most characteristic features of filamentous fungi and has to be carefully taken into account
in all morphology-based analyses. Deep-learning models have to be tailored to recognize,
characterize, and make abstractions of these differences in shape.

The goal of our analyses is to profile a compound in terms of its mechanism-of-action
(MoA), thereby leveraging the bulk of morphological information contained across all flu-
orescent channels. At the same time, however, the need for a precise characterization of
the drug’s effects beyond its MoA requires models that are channel-specific and sensitive
to the slightest morphological change. Whether this broad spectrum of read-outs can be
achieved with a single unifying model, or whether a set of different approaches are needed,
is one of the main open questions of our research. Such a finer level of interpretation could
potentially be achieved by combining morphology-based features with gene-expression in-
formation (under the form of -omics data). Cleverly combining these different levels of
information on drug effects, possibly by projecting them onto a common latent space (Bao
et al., 2022), would allow one to connect two very different levels of cellular responses,
greatly enhancing the predictive power of any downstream analyses.
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