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I. INTRODUCTION

Automating real-world systems is challenging due to dy-
namic environments, perception uncertainties, and model dis-
turbances. Because of this complexity, machine learning (ML)
is often considered the most suitable paradigm for real-world
system autonomy. However, purely ML-based models lack
explainablity, safety guarantees, and depend on large high-
quality training datasets. In contrast, model-based methods
provide guarantees and explainability for autonomous systems,
but often require substantial engineering and expert knowledge
to achieve performant models.

In my research, I aim to unlock the potential of ML-
based techniques for real-world systems by leveraging
formal methods to achieve data-efficient, safe, and inter-
pretable autonomy (see Fig. 1). Advancing ML with formal
methods offers two key advantages: 1) Formal methods en-
hance interpretability and can provide hard safety guarantees.
2) Encoding abstract knowledge with formal methods makes it
computationally tractable and can guide even in environments
with low-quality or limited data.

Past and Current Work. The first thrust of my research
develops algorithms for reliable machine learning. In partic-
ular, I focus on provably safe reinforcement learning (RL)
algorithms that provide hard guarantees for complex safety
specifications during training and deployment [19, 24, 26].
I demonstrate the capability of my algorithms in realistic
dynamic environments such as navigation of unmanned surface
vessels [23]. My second thrust uses formal methods, i.e.,
set-based reachability analysis and temporal logic, to make
abstract domain knowledge computationally tractable [33].
Here, I formalize complex specifications for rule-compliant
motion planning [21, 25], and, more recently, specifications
that are translating qualitative observations in systems biology
[27]. My third thrust aims to facilitate realistic motion planning
research and increase comparability. To this end, I introduced
CommonOcean, a dedicated software and benchmarking plat-
form for maritime vessel navigation [21, 22, 28].

Research Vision. Ultimately, I envision that advancing
ML with formal methods will enable the development of a
foundational framework for real-world autonomy capable to
tap unstructured and multi-modal information sources, includ-
ing implicit and mathematical representations of system mod-
els as well as time-series, text, or traffic data. This foundational
framework would feature a modular architecture to account for
different abstraction levels and context-adaptablity in order to
achieve robust and transparent ML.
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Fig. 1. I develop and integrate formal methods that guide machine learning
to obtain effective, data-efficient, safe, and interpretable autonomous systems.

II. PAST AND CURRENT WORK

Provably safe reinforcement learning. For real-world
autonomy, regulatory bodies and end-users demand explain-
able and verifiable systems. RL is capable of solving the
complex motion planning tasks required for operation of
autonomous systems. Yet, vanilla RL is inherently unsafe
due to random exploration and unpredictable behavior in
out-of-distribution states. Thus, there is a push for safe RL
[17], which typically considers safety specifications softly
through the reward function [6] or constraint optimization [1].
Such safe RL approaches achieve safety only in expectation.
However, for many real-world applications a single safety
violation can be disastrous, e.g., a forceful collision of a robot
arm with a person could severely injure the person.

To address this gap, I developed provably safe RL algo-
rithms [19, 23, 24, 26], which provide hard guarantees for
RL agents during training and deployment by combining
formal methods with RL. Formal methods are rigorous mathe-
matical methods that either synthesize specification-compliant
controllers or verify specifications for systems. Specifically,
I employ set-based reachability analysis [3] for verifying
actions of RL agents. Set-based reachability computes compact
sets that enclose all possible system behaviors for a set of
inputs and states. Due to the polynomial runtime complexity
and continuous-domain computations of set-based reachability
analysis, this method scales to high-dimensional state spaces
and seamlessly integrates bounded uncertainty and dynamic
obstacles [3], which is challenging for alternative verification
methods such as model-checking [2], control barrier func-
tions [7, 30], and Hamilton-Jacobi-Isaac reachability analysis
[15, 34]. My work addresses two key barriers to the adoption
of provably safe RL in the real world: high customization
and simplistic safety specifications. In [19], I proposed a



general and real-time-capable algorithm for provable collision
avoidance of autonomous systems operating in dynamic en-
vironments. In [23], I developed the first provably safe RL
algorithm that guarantees compliance with complex traffic
rules for multi-agent maritime navigation.

Codifying abstract knowledge with formal methods.
For real-world systems, data is multi-modal and sparse or
costly to generate or collect. In biology, for example, large-
scale genetic and protein data is available, but certain steps
in diagnostics and drug discovery still lack adequate models
[12], e.g., in situ measurement often remains unfeasible or is
prohibitively costly. In such circumstances, it is paramount
to tap all available information sources, including abstract
domain knowledge such as system dynamics and documented
heuristics. In the growing field of neuro-symbolic AI [4, 6, 29],
my research combines formal methods with ML to guide
learning when available knowledge is abstract.

In particular, I employ temporal logic and reachability
analysis to re-shape abstract knowledge into a computationally
tractable representation that guides ML for motion planning
and system biology [25–27, 33]. For instance, I demon-
strated that translating qualitative observations on biomolec-
ular systems to temporal logic enables identifying realistic
candidates of biomolecular models, even in the absence of
quantitative data [27]. Similarly, integrating abstract knowl-
edge enhances real-world autonomous systems that operate in
high-dimensional continuous action spaces. Vanilla RL often
struggles in these spaces [31, 32], especially when relevant
actions are highly state-dependent and represent only a small
subset of the global action space. I developed the first action
masking approaches for continuous spaces, which use state-
dependent action sets derived from task knowledge to focus
RL exploration on the relevant solution subspace [25, 26, 33].
My experiments on robotics benchmarks in [33] showed this
focus leads to faster convergence and can even be necessary
to enable learning.

Evaluating real-world readiness. Evaluation of au-
tonomous systems is difficult [8, 11] since realistic open-
source simulation environments [10, 20] are challenging to
develop and open-access hardware platforms [14, 36] are
usually limited to simple tasks. Unmanned surface vessels
are a suitable real-world application for autonomous systems
research as they feature partially-observable multi-agent and
multi-objective tasks with complex environmental disturbances
and sparse multi-modal data. Solving this challenging appli-
cation would reduce ecological, economic, and health risks.
In 2023 alone, severe maritime collisions occurred every four
days, primarily due to human error [13], resulting in injuries or
environmental damage. Intriguingly, autonomous vessels can
even have a positive impact on the environment, such as by
cultivating seaweed for carbon capture [9, 35].

To tackle this relevant yet under-researched application, I
developed CommonOcean [22], the first dedicated open-source
framework for maritime motion planning research with easy-
to-use benchmarks and tools. In particular, CommonOcean
includes six software tools: 1) an interface to connect any

motion planner with CommonOcean traffic scenarios, 2) a
sailability checker, 3) vessel dynamics models and parameters
for multiple vessel types, 4) a formalization of universal
traffic rules in temporal logic [21], 5) a scenario converter for
maritime traffic data, and 6) a customizable simulation envi-
ronment that includes a parameterized rule-reactive navigation
model for open sea traffic [28].

III. RESEARCH AGENDA

Algorithms for reliable ML models. Although real-
world robotic systems share similar safety and task require-
ments, their integration typically has to be manually tailored
to ensure performance and robustness. Therefore, automati-
cally customizing global requirements to application-specific
constraints is needed for real-world autonomy. I envision
a modular framework with adaptive safeguards where the
models are fine-tuned as more data becomes available and
leverage expressive specification blueprints. To this end, I
aim to develop a capable context manager, probably based
on a foundation model [5, 18], that curates complex safety
specifications given the task and provides confidence metrics
to decide on a hierarchy of specifications. If specification
violations cannot be prevented, the specifications are soundly
relaxed while ensuring their maximal satisfaction.

Learning guidance with formal methods. Despite their
differences, biological processes and robot motion planning
share a common real-world challenge: data for machine learn-
ing is costly and often a priori unavailable. My work shows
that formal methods can enable learning by making abstract
knowledge computationally tractable. However, the burden of
syntactically and semantically correct conversion is mostly
carried by the engineer. For automated formal-methods-guided
ML, I plan to develop universal ML algorithms that leverage
various types of abstract knowledge to efficiently search for the
optimal solution. To this end, I envision learning semantically-
structured embedding spaces that allow for finding solutions in
a lower-dimensional space and context-adaptive action spaces,
which are automatically derived from diverse multi-modal
information sources.

Demonstrating feasibility with CommonOcean. Au-
tomating maritime navigation can erase health and environ-
mental hazards and serves as a prime example for demon-
strating the impact of my research. Vessel autonomy re-
mains an unsolved robotic challenge due to complex safety
requirements, low-frequency traffic data, and control-relevant
environmental disturbances. My long-term goal is to develop
CommonOcean as the premier platform for research on ad-
vanced vessel navigation and decision-making. A next step is
expanding the capabilities of the platform to reflect real-world
disturbances such as wind, waves, and current. Moreover, I
aim to develop an open-science real-world test bed to facili-
tate realistic research evaluation. This makes CommonOcean
attractive for application specialists as well as researchers from
robotics and neuro-symbolic AI. Ultimately, I aim for a
foundational ecosystem for reliable and efficient real-world
autonomy based on ML and guided by formal methods.
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