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ABSTRACT

Building effective LLM agents requires strong instruction-following capabil-
ity in addition to domain knowledge. While human-annotated long-form QA
(LFQA) datasets contain rich factual content, we find that directly fine-tuning on
them degrades instruction-following performance, making it impractical to cre-
ate domain-specific agents. Recent research on instruction-tuning has focused on
augmenting existing instruction-tuning or conversational datasets to create com-
plex instruction-tuning dataset, enabling LLMs to better handle fine-grained and
nuanced instructions. While effective, these augmentation approaches risk dis-
torting semantic meaning of the long-form QA datasets. We propose REFER
(REstructure, Feature Extract, Reverse constraint generation), a framework that
transforms human-annotated long-form QA datasets into high-quality instruction-
tuning datasets focused on verifiable constraints. REFER preserves the origi-
nal semantics while integrates fine-grained format constraints into the dataset,
enabling LLMs to improve instruction-following capability without sacrificing
domain knowledge. Extensive evaluations on instruction-following benchmarks
show that LLaMA-2-7B models fine-tuned with REFER exhibit stronger general-
ization in complex and multi-turn instruction following compared to both standard
instruction-tuning and direct LFQA fine-tuning. REFER also emphasizes security
and efficient where all the data augmentation is performed without external APIs,
and supervised fine-tuning uses lightweight, reproducible LoRA adapters. Our
results demonstrate that REFER enables the practical creation of domain-specific
LLM agents with enhanced instruction-following capability which is something
unattainable with naive LFQA fine-tuning.

1 INTRODUCTION

Figure 1: LLM Agent fine-tuning

The robust instruction-following abilities of LLMs have enabled human to use LLMs at areas that
required precision and stability. IFEval (Zhou et al., 2023) is the first research that formalizes the
evaluation of instruction-following when multiple constraints or sub-instructions are involved. IFE-
val (Zhou et al., 2023) has since inspired research into how prompts with multiple constraints can
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improve a model’s ability to follow nuanced instructions. Recently, a growing number of studies
have begun to augment existing instruction-tuning dataset, such as Alpaca (Taori et al., 2023) and
ShareGPT, to include additional fine-grained constraints. Format constraints are especially useful in
real-world systems where output must follow fixed format such as number of words, capital letters
and number of paragraphs.

Recent research such as Conifer (Sun et al., 2024) and UltraIF (An et al., 2025) have focused on
improving complex-instruction following capabilities of smaller open-source LLMs by leverage the
power of stronger LLMs to generate complex instruction-tuning dataset. Other studies such as From
Complex to Simple (He et al., 2024a) and Verifiable Format Control (Wang et al., 2025) adapting
contrastive learning approaches, where student models are prompted with complex task and their
outputs are refined by stronger teacher models or rule-based method to form positive and negative
training pairs. These data are the employed in reinforcement learning (Ouyang et al., 2022) to further
improve the complex instruction following capability of student models. A primary drawback of
using large language models to generate instruction-tuning dataset is the lack of factual grounding,
as it is often impossible to verify the factuality of the generated content. Moreover, these approaches
largely ignore the answer component of source datasets, instead generating responses solely from
the LLM without reference to the original answers making them are unsuitable for transforming
long-form QA datasets into complex instruction following tasks.

More recent research has leveraged the “reverse engineering” capabilities of large language models
(LLMs) to construct high-quality instruction tuning datasets. Qi et al (Qi et al., 2025) utilized back
translation to inject constraints into the question of existing instruction tuning dataset such as Alpaca
(Taori et al., 2023), Evol-Instruct (Xu et al., 2025) to create complex instruction-tuning datasets.
Pham et al. (Pham et al., 2024) employed back-translation techniques to generate instructions for
the ChapterBreak (Sun et al., 2022) and Red Pajama (Weber et al., 2024) datasets. While these
approaches preserve the original meaning of the datasets, several limitations remain when applied
to human-annotated LFQA datasets. First, the phrasing of questions often lacks lexical diversity.
Second, the answers tend to lack structural variety compared to those generated by large language
models. Our proposed framework addresses these issues by enriching the diversity and structure of
the source datasets before applying the “back-translation” approach for constraint generation.

Inspired by Verifiable Format Control (Wang et al., 2025) and Constraints Back Translation (Qi
et al., 2025), we designed a dataset of constraints which can be added to existing long-form QA
dataset without affecting its original meaning. We proposed a framework which leverage open-
source LLM and NLP tools to augment existing long-form QA dataset. Our main goal is to propose
a versatile framework that can transform existing domain specific dataset into instruction-tuning
dataset, the augmented dataset can be used to effectively create domain specific LLM agent with
enhanced instruction-following capabilities.

To demonstrate REFER’s advantages, we compare the model fine-tuned with dataset augmented by
REFER framework and model fine-tuned with dataset from other recent work in instruction-tuning.
Our contributions are summarized as follows:

1. We show that fine-tuning large language models (LLMs) directly on human-annotated long-
form QA dataset can degrade the model inherent instruction-following capability. This is
due to the long-form QA not align with the model supervised fine-tuning objective and
incoherence between questions and answers present in human annotated long-form QA.

2. We carefully curate a constraints dataset that contains various format constraints, which can
be integrated into existing long-form QA datasets. These datasets are specifically designed
to contain no semantic content and do not interfere with the original meaning of the source
datasets.

3. We propose a framework that applies our custom constraints to long-form QA datasets,
transforming them into instruction-tuning datasets focused on format alignment.

2 RELATED WORKS

Format following. Format alignment refers to a model’s ability to respect structural, stylistic, or
length-based constraints in its outputs. Earlier instruction-tuned models such as FLAN Wei et al.
(2022) and Self-Instruct (Wang et al., 2023) mainly focused on task completion, without explicitly
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enforcing output formats. Recent work (Wang et al., 2025) addresses this gap by generating format-
constrained data with the rule-based method. However, these efforts rarely leverage long-form QA,
which provides richer factual content, longer contexts, and greater domain diversity. Our work
closes this gap by introducing reverse constraint generation to inject format constraints into LFQA
data.

Back Translation. Instruction Induction (Honovich et al., 2023) demonstrates that LLMs are ca-
pable to infer underlying tasks and generate instructions from demonstrations. Recent researches
(Pham et al., 2024; Qi et al., 2025) have leveraged the “reverse engineering” capabilities of large
language models (LLMs) to construct high-quality instruction tuning datasets. Different from them,
our work focus on transforming existing long-form QA dataset into complex instruction tuning
datasets using both rule based and LLM based reverse constraint generation. Unlike datasets used
by Qi et al., LFQA (e.g., Natural Questions (Kwiatkowski et al., 2019)) is rich in domain knowledge
but structurally limited. Our proposed framework is capable of enhancing structural diversity while
preserving semantics, making LFQA suitable for complex instruction-tuning.

Long-form question answering. LFQA is a challenging task in natural language processing, as it
requires language models to generate coherent, knowledge-grounded answer that may spans hun-
dreds of words. Unlike factoid QA (Stelmakh et al., 2022), where answers are usually labels or
short sentence, long-form QA tasks (Fan et al., 2019; Kwiatkowski et al., 2019) challenge a model’s
in-context memory, reasoning ability and discourse-level coherence. Long-form question answer-
ing datasets provide rich, diverse and contextually grounded knowledge which serves as a useful
resources to craft instruction following dataset. However, they are rarely leveraged for instruction
tuning. With appropriate data augmentation techniques, it is possible to transform long-form QA
data into effective fine-tuning dataset that enhance a model’s format following capabilities while
simultaneously adapting it to domain-specific content.

3 MOTIVATION

Building effective agents requires strong instruction-following capability in addition to domain
knowledge. Human-annotated LFQA datasets such as Natural Questions (Kwiatkowski et al., 2019)
and ELI5 (Fan et al., 2019) provide factually grounded knowledge and long-form answers with ci-
tations. However, directly fine-tuning LLMs on LFQA degrades instruction-following performance.
This is because questions from such datasets often lack lexical diversity and answers are structurally
limited. Moreover, question–answer coherence is often weak, since answers are extracted directly
from snippets found on website or in literature rather than written for each query. We designed a
framework that can mitigate these limitations and transform LFQA dataset into effective instruction-
tuning dataset.

4 PROPOSED FRAMEWORK: REFER(RESTRUCTURE, FEATURE EXTRACT,
REVERSE CONSTRAINT GENERATION)

Figure 2: Proposed Framework
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4.1 TASK DEFINITION

Our task is to transform LFQA data into instruction-tuning datasets where carefully designed con-
straints are integrated without altering factual meaning. Unlike prior work that only utilizes the
questions from the source dataset, REFER leverages both the question and its long-form answer to
preserve factual grounding. To further enhance model’s performance, we re-frame the data into a
multi-turn dialogue format. This design not only simulates realistic human–agent interactions but
also helps models deepen their understanding of domain-specific knowledge while strengthening
complex instruction following.

Figure 3: Feature Extraction

Figure 4: Multi-turn QA Dataset Generation

4.2 DATASET GENERATION PIPELINE

The REFER pipeline consists of four modules:

1. Pre-processing. Noise such as citations or page numbers is removed. The original ques-
tions are rewritten into diverse instruction (q) forms via few-shot prompting, enhancing
lexical variety.

2. Structural Rewrite. Original answers (a) are reformatted into answers different structures
(ar) (e.g., multiple paragraphs, Markdown, JSONL) using LLM prompting. This increases
structural diversity while preserving meaning.

3. Feature Extraction. We combine LLM specifically Qwen-3-32B (Yang et al., 2025) with
SpaCy (Matthew Honnibal, 2020) and Python rule-based methods to extract features de-
fined as H = {h1, h2, ..., hn} and S = {s1, s2, ..., sn} from the original answers. To
address the incoherence between questions (q) and answers (a), we employ a few-shot
prompting strategy to extract short, direct answers (as) from long-form responses. If the
short answer exists within the long-form answer (a), it indicates that the question (q) is
not sufficiently detailed to cover the full scope of the response. In such cases, we prompt
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Qwen-3-32B to refine the question accordingly. The detailed feature extraction module is
illustrated in Figure 3.

4. Reverse Constraint Generation. Constraints defined as C = c1, c2, ..., cn are derived
from answer features (H = {h1, h2, ..., hn} and S = {s1, s2, ..., sn}) (e.g., “limit to n
paragraphs”) and appended to the refined question (qr) to form a more complex instruction.
Beside reverse constraints, we also introduce lightweight structural edits to the answer
(e.g., keyword highlighting, capitalization). Figure 4 illustrates how all components are
integrated to create a multi-turn instruction-tuning dataset.

The multi-turn conversation dataset enable the models to learn format following constraints in QA
settings. By combining short, direct QA pairs with more complex long-form QA within the same
conversation, we can prevent the model from overgeneralizing toward producing long responses.
This balanced dataset also helps the models learn to answer domain-specific questions at varying
levels of granularity, further enhancing its responsiveness and adaptability.

5 EXPERIMENT SETUP

5.1 DATASET

We select Natural Questions (Kwiatkowski et al., 2019) created by Google as our source dataset. We
use a cleaned version of Natural Questions (Thakur et al., 2021) which consists of textual content
only, resulting in a smaller dataset of approximately 100,000 QA pairs. We sampled 40,000 QA
pairs from the cleaned dataset based on the word counts of each answer, ensure an even distribution
of answer length.

To evaluate the effectiveness of our framework in injecting new domain specific knowledge into
LLMs, we utilize LFRQA dataset (Han et al., 2024). Unlike existing QA datasets such as Natural
Questions (Kwiatkowski et al., 2019) and TriviaQA (Joshi et al., 2017), which primarily draw from
Wikipedia or general web documents, LFRQA (Han et al., 2024) is explicitly designed to measure
out-of-domain (OOD) performance. For our evaluation, we select the Finance and Lifestyle subsets
in LFRQA. We construct two instruction-tuning datasets by combining the finance and Lifestyle
subsets with general QA data from Natural Questions. Specifically

1. The first dataset includes 10,000 QA pairs from Natural Questions combined with 2,208
QA pairs from the Lifestyle subset.

2. The second dataset combines 10,000 QA pairs from Natural Questions with 3,612 QA pairs
from the Finance subset.

Each of these combined datasets is then processed through our REFER framework to produce multi-
turn conversational instruction datasets. We used four RTX 3090 GPUs with VLLM to enable
distributed inference, which took about 20 hours to process 40,000 QA pairs.

5.2 BASELINES

We use the LLaMA-2-7B-Chat (Touvron et al., 2023) model as our pretrained model. The same
training configuration is applied across all models. Specifically, we set the batch size to 8, the
maximum sequence length to 4096, and the learning rate to 3 × 10−5, using a cosine learning rate
scheduler. Each model is trained for 2 epochs. To further improve training efficiency and reduce
memory usage, we adopt the LoRA (Hu et al., 2021) fine-tuning method, with a LoRA rank of 16
and a LoRA alpha of 32. All models are trained on four RTX 3090 GPUs, with DeepSpeed utilized
to enable distributed training. The total training time averages approximately 16 hours. The detailed
dataset used for each model is shown in Table 1.

5.3 INSTRUCTION-FOLLOWING BENCHMARKS

IFEval. Instruction Following Evaluation (IFEval) (Zhou et al., 2023) is a widely adopted bench-
mark for assessing complex instruction-following. It contains 541 tasks, each task consists of 1 to 3
verifiable constraints which is objectively verified via rule-based scripts. IFEval provides two overall
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Models Descriptions

Llama-2-7B (Base) Base model.

Llama-2-7B (LFQA) Llama-2-7B-Chat fine-tuned with original Natural Questions dataset reformatted into the ChatML structure.

Llama-2-7B (REFER) Llama-2-7B-Chat fine-tuned with Natural Questions Dataset Refined with our REFER framework.

Conifer Llama-2-7B-Chat fine-tuned with dataset proposed by Sun et al. (2024).

UltraIF Llama-2-7B-Chat fine-tuned with dataset proposed by An et al. (2025).

ComToSim* Llama-2-7B-Chat fine-tuned with dataset proposed by He et al. (2024a).

VFF* Llama-2-7B-Chat fine-tuned with dataset proposed by Wang et al. (2025).

Table 1: Details of baseline models. The reported results of models marked with * are extracted
directly from the research papers.

scores: I-level (number of task where all constraints in a prompt satisfied) and C-level (percentage
of individual constraints satisfied).

Multi-IF. Multi-IF (He et al., 2024b) extends IFEval to multi-turn and multilingual evaluation. It
measures whether LLMs can consistently follow constraints across turns of conversations and trans-
fer instruction-following capabilities to other languages when the instruction-tuning dataset is in
English. Multi-IF poses greater challenge than typical single turn evaluation as LLMs often struggle
to consistently adhere to instructions that were successfully executed in previous turns.

LiveBench. LiveBench (White et al., 2025) is a contamination free benchmark that refreshes every
six months with newly created test cases from recent sources (e.g., arXiv papers, news). Similar
to IFEval, LiveBench also scores answers automatically according to objective ground truth values
which alleviate evaluator bias when LLMs are used as judges. We focus on its instruction-following
subset for evaluation.

5.4 SYSTEM ANALYSIS

Constraint Compatibility. REFER generates constraints either by reverse generation from features
extracted in answers, or apply light modifications to the original answer based on selected con-
straints. Constraint compatibility analysis allows us to understand whether the system is compatible
with diverse datasets.

Semantic Preservation. To ensure that the addition of constraints into the dataset does not alter
meaning of content, we compare original and refined answers using ROUGE-score Lin (2004). We
report ROUGE-1, ROUGE-2, ROUGE-3, and ROUGE-L.

5.5 DOMAIN ADAPTATION ANALYSIS

we randomly sample 200 questions each from the Finance and Lifestyle subsets of LFRQA (Han
et al., 2024). To prevent the models from relying on surface-level token patterns rather than true
knowledge understanding, we use GPT 4o to paraphrase each question. We then prompt the fine-
tuned models and base model to answer the rewritten questions and compare the generated responses
against the original human-written ground truth answers.

BERTScore. We use BERTScore (Zhang et al., 2020) which compares contextual embeddings
of answers generated by model and ground truth. This evaluation allows us to evaluate whether the
fine-tuned models can retain and express domain-specific knowledge in a manner that is semantically
consistent with the ground truth.

LLM-based Evaluation. Following recent work (Wei et al., 2025; Dubois et al., 2025), we use GPT
4o as a preference-based evaluator to compare fine-tuned and base model outputs. We present these
two responses (a1 and a2) along with the corresponding ground truth answer (g) and the paraphrased
question (q) to GPT 4o. The model is prompted to select the response that is more closely aligns
with the ground truth.
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6 RESULTS AND ANALYSIS

6.1 INSTRUCTION-FOLLOWING BENCHMARKS

The main result of IFEval (Zhou et al., 2023) is reported in Table 2 and Table 3. VFF proposed
by Wang et al. (2025) reports only the I-level and C-level scores, whereas ComToSim introduced
by He et al. (2024a) provides all the detailed scores of the benchmark. According to Wang et al.
(2025), VFF is first trained via supervised fine-tuning, followed by reinforcement learning. Based
on the research proposed by He et al. (2024a) Models labeled as Generation are trained on dataset
generated by GPT 3.5 turbo. Models labeled as Discrimination are trained using dataset created
with discrimination-based approach where the output of backbone models are refined by GPT 3.5
turbo.

Based on the results, both of our REFER models consistently outperform the baselines in length
generalization, highlighting the benefits of using long-form QA datasets. Our REFER models
achieve overall higher C-level scores compared to the baselines and perform better in 5 out of 9
constraint categories. Unlike the baselines that rely on instruction-tuning datasets as their source,
our framework leverages LFQA datasets, which inherently lack any instruction-tuning function.

The LFQA model shows significant performance degradation due to several factors. First, there
is incoherence between the questions and answers in the dataset. Second, the lack of clear instruc-
tions and alignment between question and answer structures likely introduces a distribution shift
from instruction-tuned objectives. These results demonstrate the importance of introducing format
constraints into domain-specific datasets before fine-tuning LLMs.

To isolate the impact of our multi-turn design, we transformed the final round of our REFER dataset
into a standard single-turn Alpaca-style instruction tuning format and fine-tuned the same model
using the same hyper-parameters. The model fine-tuned with Alpaca dataset are labeled as Alpaca.
This experiment shows that the model benefits from multi-turn QA fine-tuning.

Models ChangeCase Combination Content Format Keywords Language

GPT 4* 75.28 70.77 96.23 94.27 84.05 96.77
ComToSimGeneration∗ 41.57 15.38 71.70 70.70 53.37 58.06
ComToSimDiscrimination∗ 49.44 06.15 77.36 64.97 53.99 74.19
VFF* – – – – – –
Conifer 34.83 24.62 77.36 64.97 64.42 70.97
UltraIF 55.05 32.31 69.81 66.24 60.74 80.65
Llama-2-7B (Base) 32.61 07.71 81.19 63.70 62.63 41.98
Llama-2-7B (LFQA) 8.99 1.54 7.55 12.1 33.73 3.23
Llama-2-7B (Alpaca) 31.50 15.40 60.40 59.90 55.80 61.30
Llama-2-7B (REFER) 59.55 27.68 60.38 64.97 48.47 77.42
Mistral-7B (Base) 65.16 26.15 90.57 75.16 75.46 77.42
Mistral-7B (LFQA) 21.34 10.77 35.85 11.45 56.44 48.39
Mistral-7B (REFER) 64.03 26.15 90.57 75.16 76.07 74.19

Table 2: IFEval benchmark main results (Part A). The results marked with * are extracted directly
from the research papers. We employ the strict metric from IFEval to calculate the accuracy scores.

Models Length Punctuation Startend I-Level C-Level

GPT 4* 73.43 66.67 95.52 76.16 82.97
ComToSimGeneration∗ 27.97 9.09 56.72 34.01 46.16
ComToSimDiscrimination∗ 34.27 07.58 73.13 38.82 48.56
VFF* – – – 40.48 54.08
Conifer 40.56 12.12 43.28 38.45 49.40
UltraIF 43.36 30.30 61.19 44.73 54.92
Llama-2-7B (Base) 39.26 13.65 49.37 30.12 40.37
Llama-2-7B (LFQA) 23.78 21.21 7.46 9.80 16.91
Llama-2-7B (Alpaca) 41.30 15.20 34.30 32.5 43.90
Llama-2-7B (REFER) 44.06 56.06 77.61 43.25 55.16
Mistral-7B (Base) 49.65 9.09 71.64 50.83 61.51
Mistral-7B (LFQA) 44.06 22.73 31.34 20.89 32.25
Mistral-7B (REFER) 50.34 9.09 74.63 51.20 61.75

Table 3: IFEval benchmark main results (Part B). The results marked with * are extracted directly
from the research papers. We employ the strict metric from IFEval to calculate the accuracy scores.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

The main result of Multi-IF (He et al., 2024b) is reported in Table 4. The results show trends
similar to IFEval, where the LFQA model exhibits significant degradation in instruction-following
performance. The REFER model performs noticeably better than Conifer and the base model,
while performing slightly below the UltraIF model. Although the datasets generated by our REFER
framework are exclusively in English, the results show that models fine-tuned using REFER exhibit
cross-lingual generalization in instruction-following tasks. This suggests that with a well-designed
instruction tuning strategy, models can transfer instruction-following capabilities to other languages
even without fine-tuning on multilingual training data.

Turn 1 Average Italian Spanish Hindi Portuguese English French Chinese Russian

Conifer 39.71 41.43 43.64 20.70 42.13 46.75 44.76 37.66 34.80
UltraIF 44.01 48.16 46.55 37.84 46.14 51.40 43.46 45.35 37.84
Llama-2-7B (Base) 33.77 36.74 35.41 16.93 38.67 42.57 36.02 29.91 26.33
Llama-2-7B (LFQA) 14.24 15.89 14.54 13.96 14.87 14.00 13.96 13.51 13.30
Llama-2-7B (alpaca) 32.25 35.83 34.66 15.35 35.00 42.94 33.16 26.51 25.61
Llama-2-7B (REFER) 42.39 43.98 46.73 19.43 41.74 52.60 44.10 40.48 41.77

Turn 2 Average Italian Spanish Hindi Portuguese English French Chinese Russian

Conifer 27.00 27.93 31.64 16.49 27.99 30.31 30.68 28.78 19.85
UltraIF 32.30 37.46 36.30 18.16 32.83 38.51 34.51 34.39 22.22
Llama-2-7B (Base) 26.47 29.46 30.89 11.63 28.95 34.32 29.58 24.37 16.27
Llama-2-7B (LFQA) 9.71 11.30 9.67 8.68 10.35 10.23 9.49 8.75 8.81
Llama-2-7B (alpaca) 23.90 26.65 28.81 12.08 23.63 31.42 25.02 22.09 15.58
Llama-2-7B (REFER) 30.33 33.87 35.66 12.73 30.20 38.27 34.86 30.29 20.99

Turn 3 Average Italian Spanish Hindi Portuguese English French Chinese Russian

Conifer 20.82 21.67 22.84 12.50 23.97 23.27 22.30 21.89 16.46
UltraIF 25.64 28.72 28.95 15.70 26.77 29.47 27.27 27.88 17.91
Llama-2-7B (Base) 21.53 23.17 24.10 11.30 23.54 27.29 23.10 20.19 15.02
Llama-2-7B (LFQA) 9.99 10.97 10.37 8.86 10.16 10.68 9.65 9.60 9.06
Llama-2-7B (alpaca) 19.44 20.50 22.04 11.28 20.72 24.77 20.18 17.88 13.95
Llama-2-7B (REFER) 25.24 27.22 28.51 12.16 26.61 31.68 28.19 24.38 18.29

Table 4: Detailed Multi-IF benchmark of Llama-2-7B models fine-tuned with different version of
Natural Questions datasets.

The main result of LiveBench (He et al., 2024b) is reported in Table 5. As shown in Table 6, all
fine-tuned models exhibit performance degradation. The LFQA model shows the most significant
decline in performance as expected. The UltraIF model also experiences noticeable degradation,
while our REFER and Conifer models demonstrate comparatively smaller declines in performance.
This trend can be attributed to the nature of LiveBench which leverages real-world data to construct
its evaluation set, making it more challenging than other benchmarks. The UltraIF model which
fine-tuned on synthetic datasets generated by the LLaMA-3.1-70B model, has limited exposure to
real-world contexts. In contrast, the Conifer model which trained on the ShareGPT dataset generated
by the more powerful GPT-4 Achiam et al. (2023), benefits from exposure to more up-to-date data.
Our REFER model, which utilizes a human-annotated dataset augmented with the Qwen-3-32B
model, making it more robust in real-world scenarios.

Models Base Model Paraphrase Simplify StoryGeneration Summarize Average

GPT-4o GPT-4o 62.67 67.75 66.25 63.1 64.94

Mistral-7B (Base) Mistral-7B-Instruct-v0.2 37.85 49.97 42.47 37.23 41.88
Mistral-7B (LFQA) Mistral-7B-Instruct-v0.2 24.23 20.62 23.15 23.52 22.88
Mistral (REFER) Mistral-7B-Instruct-v0.2 38.95 48.77 44.13 35.62 41.87

Llama-2-7B (Base) Llama-2-7B-chat 28.67 47.05 37.22 33.67 36.65
Llama-2-7B (LFQA) Llama-2-7B-chat 21.95 23.73 17.42 19.18 20.57
Llama-2-7B (REFER) Llama-2-7B-chat 26.95 38.10 23.80 32.63 30.37

Table 5: LiveBench Benchmark Main Results.

6.2 SYSTEM ANALYSIS

Constraint Compatibility. Constraints are generated either by extracting features from answers
(reverse generation) or by applying light modifications. Based on results shown in Table 8a, on
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Models Base Model Paraphrase Simplify Story Generation Summarize Average

Mistral-7B (Base) Mistral-7B-Instruct-v0.2 0.00% 0.00% 0.00% 0.00% 0.00%
Mistral-7B (LFQA) Mistral-7B-Instruct-v0.2 −35.98% −58.74% −45.49% −36.83% −44.26%
Mistral (REFER) Mistral-7B-Instruct-v0.2 +2.91% −2.40% +3.91% −4.32% +0.03%

Llama-2-7B (Base) Llama-2-7B-chat 0.00% 0.00% 0.00% 0.00% 0.00%
Llama-2-7B (LFQA) Llama-2-7B-chat −23.44% −49.56% −53.20% −43.04% −42.31%
Llama-2-7B (Alpaca) Llama-2-7B-chat −10.95% −31.03% −22.70% −16.48% −20.29%
Llama-2-7B (REFER) Llama-2-7B-chat −6.00% −19.02% −36.06% −3.09% −16.04%

Table 6: LiveBench Benchmarks (Percentage of performance gain).

Models BERTScore GPT4o Evaluation
Precision Recall F1 Align with g Score

Vanilla 80.52 85.95 83.13 85/200 42.50
Llama-2-7B (lifestyle) 84.93 86.61 85.74 115/200 57.50

Vanilla 81.82 86.13 83.91 87/200 43.50
Llama-2-7B (fiqa) 87.22 87.32 87.25 113/200 56.50

Table 7: Domain Adaptation Evaluation: BERTScore and LLM Evaluation

40k QA pairs, REFER produced 75,582 constraints, with only 2.16% being incompatible with the
dataset, showing the pool’s versatility across diverse datasets such as Natural Questions.

Semantic Preservation. Since long-form QA answers are knowledge-rich, modifications must not
alter factual meaning. Based on results shown in table 8b, we find high overlap between original and
refined answers, confirming that REFER preserves semantic fidelity while integrating constraints.

Dataset Analysis Value

Dataset Size 40,000

Total Constraints 75,582

Incompatible Constraints 1,635

Incompatible Constraints Ratio 2.16%

(a) The ratio of selected constraints incompatible
with the extracted features.

Evaluation Metrics Precision Recall F1-score

ROUGE-1 0.97 0.96 0.96

ROUGE-2 0.95 0.94 0.94

ROUGE-3 0.94 0.93 0.93

ROUGE-L 0.97 0.96 0.96

(b) ROUGE score of original answer compared to
refined answer.

Table 8: System analysis.

6.3 DOMAIN ADAPTATION ANALYSIS

BERTScore. BERTScore is used to measure the semantic similarity between generated answers
and human-written LFRQA references. As shown in Table 9, both fine-tuned models produce out-
puts that are more semantically aligned with the reference answers compared to the base model.
This suggests that the fine-tuned models tend to generate more domain-specific and contextually
appropriate responses.

LLM-Based Evaluation. We further conduct evaluation using GPT 4o for pairwise preference
comparison, with LFRQA ground-truth as reference. Results in Table 9 indicate that higher number
of outputs from fine-tuned models are preferred by the GPT 4o. This confirms that the fine-tuned
models produce more accurate, direct, and domain-relevant answers. These findings demonstrate
that REFER is effective in adapting models to new knowledge domains while improving answer
quality and precision. To strictly prevent data leakage and memorization, we utilized GPT-4 to
rewrite the evaluation set prompts and reference answers with different wording.

7 CONCLUSION

In this work, we propose REFER, a framework that transforms long-form QA datasets into high-
quality instruction-tuning data with verifiable constraints. To create domain-specific LLM agents,
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Models BERTScore GPT4o Evaluation
Precision Recall F1 Align with g Score

Vanilla 80.52 85.95 83.13 85/200 42.50
Llama-2-7B (lifestyle) 84.93 86.61 85.74 115/200 57.50

Vanilla 81.82 86.13 83.91 87/200 43.50
Llama-2-7B (fiqa) 87.22 87.32 87.25 113/200 56.50

Table 9: Domain Adaptation Evaluation: BERTScore and LLM Evaluation

REFER systematically augments and re-frames human-annotated long-form QA datasets into multi-
turn conversations, aligning large language models (LLMs) with format-following constraints while
simultaneously adapting them to new domain knowledge. Our evaluations on IFEval (Zhou et al.,
2023), Multi-IF (He et al., 2024b), and LiveBench (White et al., 2025) demonstrate that models
fine-tuned with REFER not only maintain strong instruction-following capabilities but also gener-
alize better in complex, multi-turn, and format-constrained scenarios. We contribute to the research
community by open-sourcing the REFER framework and the associated constraint pool dataset to
encourage other researchers to extend our work in future research in instruction tuning.
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Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
3558–3567, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1346. URL https://aclanthology.org/P19-1346/.

Rujun Han, Yuhao Zhang, Peng Qi, Yumo Xu, Jenyuan Wang, Lan Liu, William Yang Wang, Bonan
Min, and Vittorio Castelli. RAG-QA arena: Evaluating domain robustness for long-form retrieval
augmented question answering. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
pp. 4354–4374, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.249. URL https://aclanthology.org/2024.
emnlp-main.249/.

Qianyu He, Jie Zeng, Qianxi He, Jiaqing Liang, and Yanghua Xiao. From complex to simple:
Enhancing multi-constraint complex instruction following ability of large language models. In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 10864–10882, Miami, Florida, USA, November
2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.637.
URL https://aclanthology.org/2024.findings-emnlp.637/.

Yun He, Di Jin, Chaoqi Wang, Chloe Bi, Karishma Mandyam, Hejia Zhang, Chen Zhu, Ning Li,
Tengyu Xu, Hongjiang Lv, Shruti Bhosale, Chenguang Zhu, Karthik Abinav Sankararaman, Eryk
Helenowski, Melanie Kambadur, Aditya Tayade, Hao Ma, Han Fang, and Sinong Wang. Multi-if:
Benchmarking llms on multi-turn and multilingual instructions following, 2024b. URL https:
//arxiv.org/abs/2410.15553.

Or Honovich, Uri Shaham, Samuel R. Bowman, and Omer Levy. Instruction induction: From
few examples to natural language task descriptions. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1935–1952, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.108. URL
https://aclanthology.org/2023.acl-long.108/.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
(eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada, July 2017. Association for Com-
putational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/
P17-1147/.

11

https://api.semanticscholar.org/CorpusID:257532815
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://aclanthology.org/P19-1346/
https://aclanthology.org/2024.emnlp-main.249/
https://aclanthology.org/2024.emnlp-main.249/
https://aclanthology.org/2024.findings-emnlp.637/
https://arxiv.org/abs/2410.15553
https://arxiv.org/abs/2410.15553
https://aclanthology.org/2023.acl-long.108/
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019. doi: 10.1162/tacl a 00276. URL
https://aclanthology.org/Q19-1026/.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Sofie Van Landeghem Adriane Boyd Matthew Honnibal, Ines Montani. spacy: Industrial-strength
natural language processing in python, 2020.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In Pro-
ceedings of the 36th International Conference on Neural Information Processing Systems, NIPS
’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Chau Minh Pham, Simeng Sun, and Mohit Iyyer. Suri: Multi-constraint instruction follow-
ing in long-form text generation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 1722–
1753, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.94. URL https://aclanthology.org/2024.
findings-emnlp.94/.

Yunjia Qi, Hao Peng, Xiaozhi Wang, Bin Xu, Lei Hou, and Juanzi Li. Constraint back-translation
improves complex instruction following of large language models, 2025. URL https://
arxiv.org/abs/2410.24175.

Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-Wei Chang. ASQA: Factoid questions meet
long-form answers. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 8273–8288,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.emnlp-main.566. URL https://aclanthology.org/2022.
emnlp-main.566/.

Haoran Sun, Lixin Liu, Junjie Li, Fengyu Wang, Baohua Dong, Ran Lin, and Ruohui Huang.
Conifer: Improving complex constrained instruction-following ability of large language models.
arXiv preprint arXiv:2404.02823, 2024.

Simeng Sun, Katherine Thai, and Mohit Iyyer. ChapterBreak: A challenge dataset for long-range
language models. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz
(eds.), Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 3704–3714, Seattle, United
States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.
271. URL https://aclanthology.org/2022.naacl-main.271/.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Nandan Thakur, Nils Reimers, Johannes Daxenberger, and Iryna Gurevych. Augmented SBERT:
Data augmentation method for improving bi-encoders for pairwise sentence scoring tasks. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pp. 296–310, Online, June 2021. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2021.naacl-main.28.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

12

https://aclanthology.org/Q19-1026/
https://aclanthology.org/2024.findings-emnlp.94/
https://aclanthology.org/2024.findings-emnlp.94/
https://arxiv.org/abs/2410.24175
https://arxiv.org/abs/2410.24175
https://aclanthology.org/2022.emnlp-main.566/
https://aclanthology.org/2022.emnlp-main.566/
https://aclanthology.org/2022.naacl-main.271/
https://github.com/tatsu-lab/stanford_alpaca
https://www.aclweb.org/anthology/2021.naacl-main.28
https://www.aclweb.org/anthology/2021.naacl-main.28


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13484–
13508, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.acl-long.754. URL https://aclanthology.org/2023.acl-long.754/.

Zhaoyang Wang, Jinqi Jiang, Huichi Zhou, Wenhao Zheng, Xuchao Zhang, Chetan Bansal, and
Huaxiu Yao. Verifiable format control for large language model generations. In Luis Chiruzzo,
Alan Ritter, and Lu Wang (eds.), Findings of the Association for Computational Linguistics:
NAACL 2025, pp. 3499–3513, Albuquerque, New Mexico, April 2025. Association for Compu-
tational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.194. URL
https://aclanthology.org/2025.findings-naacl.194/.

Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Cha-
lamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and
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A APPENDIX

A.1 PROMPT SETTINGS

The prompt templates used in data augmentation are shown in Figures 5, 6, and 7.

Question Rewrite Prompt Setting

You are given a simple question and answer. Please rewrite the question into 5 new instructions
with different vocabulary and writing style. Please maintain the original meaning of the question
and only output the new instructions. You can refer to the example for guidance.

Example:
Question: when did the first episode of law and order air

Answer: Law & Order is an American police procedural and legal drama television series,
created by Dick Wolf and part of the Law & Order franchise. It originally aired on NBC and,
in syndication, on various cable networks. Law & Order premiered on September 13, 1990,
and completed its 20th and final season on May 24, 2010. At the time of its cancellation,
Law & Order was the longest-running crime drama on American primetime television. Its
record of 20 seasons is a tie with Gunsmoke (1955–1975) for the longest-running live-action
scripted American prime-time series with ongoing characters. Although it has fewer episodes
than Gunsmoke, Law & Order ranks as the longest-running hour-long primetime TV series.
Gunsmoke, for its first six seasons, was originally a half-hour program.

New instructions:
1. Determine the original broadcast date of the first episode of Law & Order.
2. Find out when Law & Order made its television debut.
3. What is the airdate of the pilot episode of the TV show Law & Order?
4. Identify the premiere date of the crime drama series Law & Order.
5. On what date did Law & Order first appear on television?

Now complete the task below:
Question: {question}
Answer: {answer}
New instructions:

Figure 5: Rewrite original question to increase the diversity of the dataset.
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Short Answer Extraction Prompt Setting

You are given a question and a corresponding long-form answer. Your task is to extract the short,
direct answer if it is explicitly present in the long-form response. The direct answer should be
concise, without including additional explanation or context. If the question asks for a reason,
explanation, description, or opinion, and the provided answer consists only of that explanatory
content without a clearly extractable short answer, please output: [No direct answer]

Do not rewrite or summarize the long answer. Only extract the direct answer if it exists. Be strict
in identifying clear direct answers.

Example 1:
Question: What is the boiling point of water at sea level in Celsius?
Answer: The boiling point of water at sea level is 100 degrees Celsius. This is the temperature
at which water transitions from a liquid to a gaseous state under normal atmospheric pressure.
Output: 100 degrees Celsius

Example 2:
Question: Can you explain the process of mitosis?
Answer: Mitosis is a type of cell division that results in two daughter cells each having the same
number and kind of chromosomes as the parent nucleus. The process consists of several stages
including prophase, metaphase, anaphase, and telophase. It is essential for growth and tissue
repair in multicellular organisms.
Output: [No direct answer]

Now complete the task below:
Question: {question}
Answer: {answer}

Figure 6: Extract short direct answer from long-form answer.

Question Refine Prompt Setting

You are given:
• Original question
• Short answer: A portion of the long-form answer that directly responds to the original

question.
• Long-form answer: A more detailed response that includes both the short answer and

additional relevant information.

Your task is to expand and improve the original question so that it better reflects the full scope
of the long-form answer. Focus on incorporating aspects of the long-form answer that would be
missing or unexpected if someone had only seen the original question and short answer. Only
output the refined question.

Original Question: {question}
Short answer: {short answer}
Long-form answer: {answer}
Refined question:

Figure 7: Refine original answer when short direct answer exist within the long-form answer. This
stage of question refine aims to improve the coherence between the question and answer.
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A.2 CONSTRAINTS POOL EXAMPLE

Below are some examples of constraints from our constraint pool. The constraints used in our
REFER system were written by humans and then rephrased into different versions with the same
meaning using GPT 4o. Each constraint in the pool is rewritten into 3 to 4 variants with different
wording and style to enhance the richness of the constraint pool.

{"category": "structure", "type": "length_constraint_less", "constraint":
"The response should be fewer than {num} words."}↪→

{"category": "structure", "type": "sentence_less", "constraint": "Keep
the response to fewer than {num} sentences."}↪→

{"category": "structure", "type": "sentence_more", "constraint":
["Provide a minimum of {num} sentences in your response.", "Please
only response with one sentence."]}

↪→
↪→
{"category": "structure", "type": "sentence_word_specific", "constraint":

"The {num_1} sentence should be at least {num_2} words."}↪→
{"category": "caps", "type": "caps_no_caps", "constraint": "Do not use

any uppercase letters in the response."}↪→
{"category": "caps", "type": "caps_only_capital", "constraint":

"Capitalize the first letter of every word in the response."}↪→
{"category": "caps", "type": "caps_paragraph", "constraint": "Ensure the

{num} paragraph is composed entirely of uppercase characters."}↪→
{"category": "decoration", "type": "start_self", "modification": [],

"constraint": "Start the response with \"{words}\"."}↪→
{"category": "decoration", "type": "enclose", "modification":

["<start_of_answer> ", " <end_of_answer>"], "constraint": "Place the
complete answer between \"<start_of_answer>\" and \"<end_of_answer>\"
labels."}

↪→
↪→
↪→
{"category": "highlight", "type": "highlight", "modification": ["<",

">"], "constraint": ["Highlight {num} keywords in the response.
Format each highlighted word as follows: <word>.", "Highlight 1
keyword in the response. Format the highlighted word as follows:
<word>."]}

↪→
↪→
↪→
↪→
{"category": "structure", "type": "paragraph_word_more", "constraint":

"Each paragraph must have a minimum of {num} words."}↪→

A.3 MULTI-TURN INSTRUCTION-TUNING DATASET EXAMPLE

We use the same system prompt to fine-tune all models. The system prompt is shown below.

{"role": "system", "content": "You are an expert assistant who
follows user instructions with precision. Always respond
accurately and strictly obey all constraints on content, format,
style, and wording."}

↪→
↪→
↪→

Each training instance consists of 2 to 3 rounds of conversation, with each round increasing in
instruction complexity and the level of detail in the answers. Below are examples from the dataset
generated by our REFER framework, using the Natural Questions dataset as the source.

Example 1:

• Round 1:

{"role": "user", "content": "What was the title of the debut
studio album by the band Florence and the Machine?"}↪→

{"role": "assistant", "content": "Florence and the Machine's
debut studio album is titled *Lungs*."}↪→

• Round 2:
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{"role": "assistant", "content": "Florence and the Machine
released their first extended play, A Lot of Love. A Lot
of Blood, in March 2009. Their debut studio album, Lungs,
was released in July 2009 through Island Records, reaching
number one on the UK Albums Chart in January 2010. The
album was subsequently certified quintuple platinum in the
United Kingdom, quadruple platinum in Ireland and triple
platinum in Australia. The album's lead single \"Kiss with
a Fist\" peaked at number 51 on the UK Singles Chart. This
was succeeded by the single \"Dog Days Are Over\", which
reached number 23 in the UK and number 21 on the Billboard
Hot 100 in the United States, and was certified quadruple
platinum by the Recording Industry Association of America
(RIAA). Third single \"Rabbit Heart (Raise It Up)\"
reached number 12 in the UK and number 41 in Ireland.
\"Drumming Song\" was released as the fourth single,
charting at number 54 in the UK. \"You've Got the Love\",
a cover of The Source's song of the same name, peaked at
number five in the UK and number nine in Australia. A
performance at the 2010 BRIT Awards on 17 February 2010
saw the Dizzee Rascal-assisted mash-up \"You Got the
Dirtee Love\" debut at number two in the UK. The album's
sixth and final single, \"Cosmic Love\", peaked at number
51 in the UK and number three in Ireland."}

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

• Round 3:
{"role": "user", "content": "What was the title of Florence

and the Machine's debut studio album, and what were some
of its notable chart achievements and singles? Ensure the
response contains the terms \"discography\", \"lungs\"."}

↪→
↪→
↪→
{"role": "assistant", "content": "Florence and the Machine

released their first extended play, A Lot of Love. A Lot
of Blood, in March 2009. Their debut studio album, Lungs,
was released in July 2009 through Island Records, reaching
number one on the UK Albums Chart in January 2010. The
album was subsequently certified quintuple platinum in the
United Kingdom, quadruple platinum in Ireland and triple
platinum in Australia.\n\nThe album's lead single \"Kiss
with a Fist\" peaked at number 51 on the UK Singles Chart.
This was succeeded by the single \"Dog Days Are Over\",
which reached number 23 in the UK and number 21 on the
Billboard Hot 100 in the United States, and was certified
quadruple platinum by the Recording Industry Association
of America (RIAA). Third single \"Rabbit Heart (Raise It
Up)\" reached number 12 in the UK and number 41 in
Ireland. \"Drumming Song\" was released as the fourth
single, charting at number 54 in the UK.\n\n\"You've Got
the Love\", a cover of The Source's song of the same name,
peaked at number five in the UK and number nine in
Australia. A performance at the 2010 BRIT Awards on 17
February 2010 saw the Dizzee Rascal-assisted mash-up \"You
Got the Dirtee Love\" debut at number two in the UK. The
album's sixth and final single, \"Cosmic Love\", peaked at
number 51 in the UK and number three in Ireland."}

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Example 2:

• Round 1:
{"role": "user", "content": "Identify the name of the actress

that brought the character Teddy Altman to life on Grey's
Anatomy."}

↪→
↪→
{"role": "assistant", "content": "Kim Raver played Teddy

Altman on Grey's Anatomy."}↪→

• Round 2:

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

{"role": "user", "content": "Identify the actress who
portrayed the character Teddy Altman on Grey's Anatomy,
and provide some examples of her other notable television
roles."},{"role": "assistant", "content": "Kim Raver
Kimberly Jayne \"Kim\" Raver (born October 15, 1969) is an
American actress. She is best known for television roles
as Kim Zambrano on Third Watch, Audrey Raines on 24 and
Teddy Altman on ABC's medical drama Grey's Anatomy."}

↪→
↪→
↪→
↪→
↪→
↪→
↪→

• Round 3:

{"role": "user", "content": "Identify the actress who
portrayed the character Teddy Altman on Grey's Anatomy,
and provide some examples of her other notable television
roles. Ensure the answer contains no fewer than 2
sentences. Include the \"actress\" exactly once in your
answer. Start the response with the exact phrase
\"Welcome!\"."}

↪→
↪→
↪→
↪→
↪→
↪→
{"role": "assistant", "content": "Welcome! Kim Raver Kimberly

Jayne \"Kim\" Raver (born October 15, 1969) is an American
actress. She is best known for television roles as Kim
Zambrano on Third Watch, Audrey Raines on 24 and Teddy
Altman on ABC's medical drama Grey's Anatomy."}

↪→
↪→
↪→
↪→

Example 3:

• Round 1:

{"role": "user", "content": "What team did Kobe Bryant face
when he recorded his highest-scoring game of 81 points?"}↪→

{"role": "assistant", "content": "Kobe Bryant scored 81 points
against the Toronto Raptors in 2006."}↪→

• Round 2:

{"role": "user", "content": "What team did Kobe Bryant face
when he scored his career-high 81 points, and how does
this game fit into the broader context of his impressive
list of high-scoring performances in NBA history?"}

↪→
↪→
↪→
{"role": "assistant", "content": "List of 40-plus point games

by Kobe Bryant. The number of forty-plus point games
players accumulate over their careers is often reported in
media. Bryant has played 135 games in which he has scored
40 or more points; of these, 6 were 60-plus point games
and 26 were 50-plus point games. He is third behind Wilt
Chamberlain and Michael Jordan, who scored 40 or more in
284 and 211 games, respectively. In 2003, Bryant scored 40
points or more in nine consecutive games, tying Jordan,
who accomplished the same feat in the 1986{87 season. The
only player with longer streaks of 40 or more is
Chamberlain, who had 14 consecutive games twice in the
1961{62 season and 10 consecutive games in the 1962{63
season. In 2006, Bryant scored a career-high 81 points
against the Toronto Raptors. It was the second-highest
number of points scored in a game in NBA history, behind
only Chamberlain's 100-point performance in 1962. In 2007,
Bryant scored 50 points or more in four consecutive games;
this accomplishment is fifth in NBA history behind streaks
by Chamberlain, who had 50 or more in seven, six and five
(twice) consecutive games in the 1961{62 season. Bryant
has also played 12 playoff games in which he has scored
forty or more points. Out of the 134 games, 21 resulted in
Bryant notching a double-double and 42 resulted in losses.
Bryant became the oldest player to score 60+ points (60)
in his final game on April 13, 2016."}

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

• Round 3:
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{"role": "user", "content": "What team did Kobe Bryant face
when he scored his career-high 81 points, and how does
this game fit into the broader context of his impressive
list of high-scoring performances in NBA history? Ensure
each paragraph contains a minimum of 4 sentences. Ensure
the term \"double-double\" appears once in your reply."}

↪→
↪→
↪→
↪→
↪→
{"role": "assistant", "content": "List of 40-plus point games

by Kobe Bryant. The number of forty-plus point games
players accumulate over their careers is often reported in
media. Bryant has played 135 games in which he has scored
40 or more points; of these, 6 were 60-plus point games
and 26 were 50-plus point games. He is third behind Wilt
Chamberlain and Michael Jordan, who scored 40 or more in
284 and 211 games, respectively. In 2003, Bryant scored 40
points or more in nine consecutive games, tying Jordan,
who accomplished the same feat in the 1986{87 season. The
only player with longer streaks of 40 or more is
Chamberlain, who had 14 consecutive games twice in the
1961{62 season and 10 consecutive games in the 1962{63
season.\n\nIn 2006, Bryant scored a career-high 81 points
against the Toronto Raptors. It was the second-highest
number of points scored in a game in NBA history, behind
only Chamberlain's 100-point performance in 1962. In 2007,
Bryant scored 50 points or more in four consecutive games;
this accomplishment is fifth in NBA history behind streaks
by Chamberlain, who had 50 or more in seven, six and five
(twice) consecutive games in the 1961{62 season. Bryant
has also played 12 playoff games in which he has scored
forty or more points. Out of the 134 games, 21 resulted in
Bryant notching a double-double and 42 resulted in losses.
Bryant became the oldest player to score 60+ points (60)
in his final game on April 13, 2016."}

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs), specifically GPT-4o Achiam et al. (2023), are used in three major
areas of this paper.

• We create the constraint pools shown in Section A.2 with the assistance of the GPT-4o
model Achiam et al. (2023). First, we construct a dataset of seed constraints, each uniquely
written by humans. We then use GPT-4o to expand this dataset by rewriting each constraint
into 3–4 variants with different wording and style while preserving the original meaning.
This increases the diversity of the constraints and helps the fine-tuned model acquire new
skills without overfitting.

• We use the GPT-4o model to refine and correct any grammatical errors in our prompt set-
tings, as shown in Section A.1.

• We use the GPT-4o model to improve the clarity and fluency of the paper’s writing.

The use of open-source model, specifically Qwen-3-32B model is used in the REFER framework.
The details are shown in Section 4.
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