

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ALIGN AND ADAPT: ENHANCING LLM FORMAT ALIGNMENT AND KNOWLEDGE ADAPTATION VIA RE- VERSE CONSTRAINTS GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Building effective LLM agents requires strong instruction-following capability in addition to domain knowledge. While human-annotated long-form QA (LFQA) datasets contain rich factual content, we find that directly fine-tuning on them degrades instruction-following performance, making it impractical to create domain-specific agents. Recent research on instruction-tuning has focused on augmenting existing instruction-tuning or conversational datasets to create complex instruction-tuning dataset, enabling LLMs to better handle fine-grained and nuanced instructions. While effective, these augmentation approaches risk distorting semantic meaning of the long-form QA datasets. We propose **REFER** (**R**estructure, **E**xtract, **R**everse constraint generation), a framework that transforms human-annotated long-form QA datasets into high-quality instruction-tuning datasets focused on verifiable constraints. **REFER** preserves the original semantics while integrates fine-grained format constraints into the dataset, enabling LLMs to improve instruction-following capability without sacrificing domain knowledge. Extensive evaluations on instruction-following benchmarks show that LLaMA-2-7B models fine-tuned with **REFER** exhibit stronger generalization in complex and multi-turn instruction following compared to both standard instruction-tuning and direct LFQA fine-tuning. **REFER** also emphasizes security and efficient where all the data augmentation is performed without external APIs, and supervised fine-tuning uses lightweight, reproducible LoRA adapters. Our results demonstrate that **REFER** enables the practical creation of domain-specific LLM agents with enhanced instruction-following capability which is something unattainable with naive LFQA fine-tuning.

1 INTRODUCTION

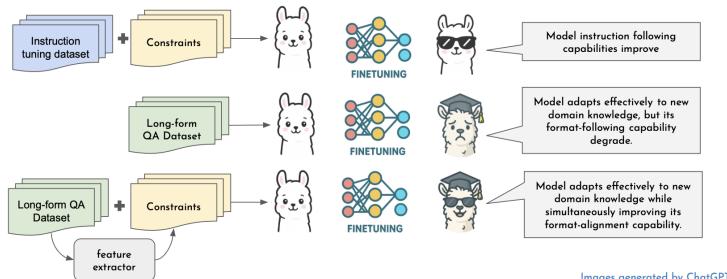


Figure 1: LLM Agent fine-tuning

The robust instruction-following abilities of LLMs have enabled human to use LLMs at areas that required precision and stability. IFEval (Zhou et al., 2023) is the first research that formalizes the evaluation of instruction-following when multiple constraints or sub-instructions are involved. IFEval (Zhou et al., 2023) has since inspired research into how prompts with multiple constraints can

improve a model’s ability to follow nuanced instructions. Recently, a growing number of studies have begun to augment existing instruction-tuning dataset, such as Alpaca (Taori et al., 2023) and ShareGPT, to include additional fine-grained constraints. Format constraints are especially useful in real-world systems where output must follow fixed format such as number of words, capital letters and number of paragraphs.

Recent research such as Conifer (Sun et al., 2024) and UltraIF (An et al., 2025) have focused on improving complex-instruction following capabilities of smaller open-source LLMs by leverage the power of stronger LLMs to generate complex instruction-tuning dataset. Other studies such as From Complex to Simple (He et al., 2024a) and Verifiable Format Control (Wang et al., 2025) adapting contrastive learning approaches, where student models are prompted with complex task and their outputs are refined by stronger teacher models or rule-based method to form positive and negative training pairs. These data are the employed in reinforcement learning (Ouyang et al., 2022) to further improve the complex instruction following capability of student models. A primary drawback of using large language models to generate instruction-tuning dataset is the lack of factual grounding, as it is often impossible to verify the factuality of the generated content. Moreover, these approaches largely ignore the answer component of source datasets, instead generating responses solely from the LLM without reference to the original answers making them are unsuitable for transforming long-form QA datasets into complex instruction following tasks.

More recent research has leveraged the “reverse engineering” capabilities of large language models (LLMs) to construct high-quality instruction tuning datasets. Qi et al (Qi et al., 2025) utilized back translation to inject constraints into the question of existing instruction tuning dataset such as Alpaca (Taori et al., 2023), Evol-Instruct (Xu et al., 2025) to create complex instruction-tuning datasets. Pham et al. (Pham et al., 2024) employed back-translation techniques to generate instructions for the ChapterBreak (Sun et al., 2022) and Red Pajama (Weber et al., 2024) datasets. While these approaches preserve the original meaning of the datasets, several limitations remain when applied to human-annotated LFQA datasets. First, the phrasing of questions often lacks lexical diversity. Second, the answers tend to lack structural variety compared to those generated by large language models. Our proposed framework addresses these issues by enriching the diversity and structure of the source datasets before applying the “back-translation” approach for constraint generation.

Inspired by Verifiable Format Control (Wang et al., 2025) and Constraints Back Translation (Qi et al., 2025), we designed a dataset of constraints which can be added to existing long-form QA dataset without affecting its original meaning. We proposed a framework which leverage open-source LLM and NLP tools to augment existing long-form QA dataset. Our main goal is to propose a versatile framework that can transform existing domain specific dataset into instruction-tuning dataset, the augmented dataset can be used to effectively create domain specific LLM agent with enhanced instruction-following capabilities.

To demonstrate REFER’s advantages, we compare the model fine-tuned with dataset augmented by REFER framework and model fine-tuned with dataset from other recent work in instruction-tuning. Our contributions are summarized as follows:

1. We show that fine-tuning large language models (LLMs) directly on human-annotated long-form QA dataset can degrade the model inherent instruction-following capability. This is due to the long-form QA not align with the model supervised fine-tuning objective and incoherence between questions and answers present in human annotated long-form QA.
2. We carefully curate a constraints dataset that contains various format constraints, which can be integrated into existing long-form QA datasets. These datasets are specifically designed to contain no semantic content and do not interfere with the original meaning of the source datasets.
3. We propose a framework that applies our custom constraints to long-form QA datasets, transforming them into instruction-tuning datasets focused on format alignment.

2 RELATED WORKS

Format following. Format alignment refers to a model’s ability to respect structural, stylistic, or length-based constraints in its outputs. Earlier instruction-tuned models such as FLAN Wei et al. (2022) and Self-Instruct (Wang et al., 2023) mainly focused on task completion, without explicitly

108 enforcing output formats. Recent work (Wang et al., 2025) addresses this gap by generating format-
 109 constrained data with the rule-based method. However, these efforts rarely leverage long-form QA,
 110 which provides richer factual content, longer contexts, and greater domain diversity. Our work
 111 closes this gap by introducing reverse constraint generation to inject format constraints into LFQA
 112 data.

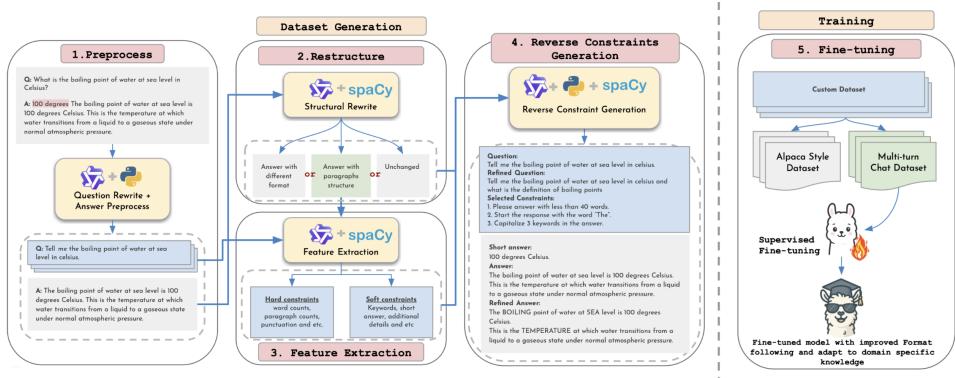
113 **Back Translation.** Instruction Induction (Honovich et al., 2023) demonstrates that LLMs are
 114 capable to infer underlying tasks and generate instructions from demonstrations. Recent researches
 115 (Pham et al., 2024; Qi et al., 2025) have leveraged the “reverse engineering” capabilities of large
 116 language models (LLMs) to construct high-quality instruction tuning datasets. Different from them,
 117 our work focus on transforming existing long-form QA dataset into complex instruction tuning
 118 datasets using both rule based and LLM based reverse constraint generation. Unlike datasets used
 119 by Qi et al., LFQA (e.g., Natural Questions (Kwiatkowski et al., 2019)) is rich in domain knowledge
 120 but structurally limited. Our proposed framework is capable of enhancing structural diversity while
 121 preserving semantics, making LFQA suitable for complex instruction-tuning.

122 **Long-form question answering.** LFQA is a challenging task in natural language processing, as it
 123 requires language models to generate coherent, knowledge-grounded answer that may spans hun-
 124 dreds of words. Unlike factoid QA (Stelmakh et al., 2022), where answers are usually labels or
 125 short sentence, long-form QA tasks (Fan et al., 2019; Kwiatkowski et al., 2019) challenge a model’s
 126 in-context memory, reasoning ability and discourse-level coherence. Long-form question answer-
 127 ing datasets provide rich, diverse and contextually grounded knowledge which serves as a useful
 128 resources to craft instruction following dataset. However, they are rarely leveraged for instruction
 129 tuning. With appropriate data augmentation techniques, it is possible to transform long-form QA
 130 data into effective fine-tuning dataset that enhance a model’s format following capabilities while
 131 simultaneously adapting it to domain-specific content.

132 3 MOTIVATION

133 Building effective agents requires strong instruction-following capability in addition to domain
 134 knowledge. Human-annotated LFQA datasets such as Natural Questions (Kwiatkowski et al., 2019)
 135 and ELI5 (Fan et al., 2019) provide factually grounded knowledge and long-form answers with ci-
 136 tations. However, directly fine-tuning LLMs on LFQA degrades instruction-following performance.
 137 This is because questions from such datasets often lack lexical diversity and answers are structurally
 138 limited. Moreover, question–answer coherence is often weak, since answers are extracted directly
 139 from snippets found on website or in literature rather than written for each query. We designed a
 140 framework that can mitigate these limitations and transform LFQA dataset into effective instruction-
 141 tuning dataset.

142 4 PROPOSED FRAMEWORK: REFER(RESTRUCTURE, FEATURE EXTRACT, 143 REVERSE CONSTRAINT GENERATION)



144
 145 Figure 2: Proposed Framework
 146

162
163

164 Our task is to transform LFQA data into instruction-tuning datasets where carefully designed
 165 constraints are integrated without altering factual meaning. Unlike prior work that only utilizes the
 166 questions from the source dataset, REFER leverages both the question and its long-form answer to
 167 preserve factual grounding. To further enhance model’s performance, we re-frame the data into a
 168 multi-turn dialogue format. This design not only simulates realistic human–agent interactions but
 169 also helps models deepen their understanding of domain-specific knowledge while strengthening
 170 complex instruction following.

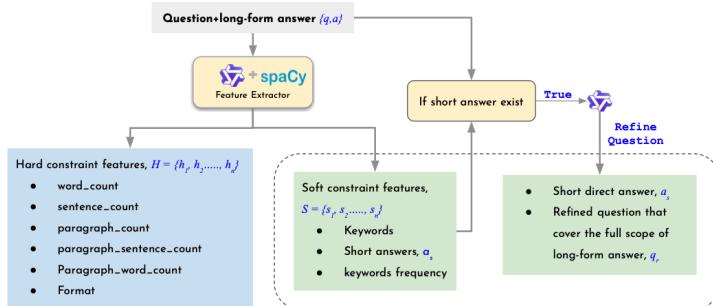
171
172
173
174
175
176
177
178
179
180
181

Figure 3: Feature Extraction

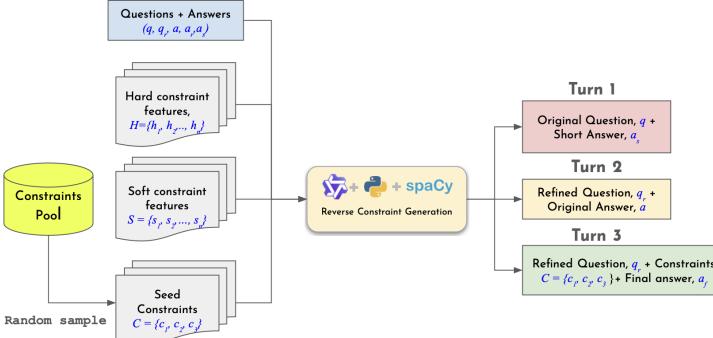
182
183
184
185

Figure 4: Multi-turn QA Dataset Generation

200
201

4.2 DATASET GENERATION PIPELINE

202
203

The REFER pipeline consists of four modules:

204
205
206
207
208
209
210
211
212
213
214
215

1. **Pre-processing.** Noise such as citations or page numbers is removed. The original questions are rewritten into diverse instruction (q) forms via few-shot prompting, enhancing lexical variety.
2. **Structural Rewrite.** Original answers (a) are reformatted into answers different structures (a_r) (e.g., multiple paragraphs, Markdown, JSONL) using LLM prompting. This increases structural diversity while preserving meaning.
3. **Feature Extraction.** We combine LLM specifically Qwen-3-32B (Yang et al., 2025) with SpaCy (Matthew Honnibal, 2020) and Python rule-based methods to extract features defined as $H = \{h_1, h_2, \dots, h_n\}$ and $S = \{s_1, s_2, \dots, s_n\}$ from the original answers. To address the incoherence between questions (q) and answers (a), we employ a few-shot prompting strategy to extract short, direct answers (a_s) from long-form responses. If the short answer exists within the long-form answer (a), it indicates that the question (q) is not sufficiently detailed to cover the full scope of the response. In such cases, we prompt

216 Qwen-3-32B to refine the question accordingly. The detailed feature extraction module is
 217 illustrated in Figure 3.

218 4. **Reverse Constraint Generation.** Constraints defined as $C = c_1, c_2, \dots, c_n$ are derived
 219 from answer features ($H = \{h_1, h_2, \dots, h_n\}$ and $S = \{s_1, s_2, \dots, s_n\}$) (e.g., “limit to n
 220 paragraphs”) and appended to the refined question (q_r) to form a more complex instruction.
 221 Beside reverse constraints, we also introduce lightweight structural edits to the answer
 222 (e.g., keyword highlighting, capitalization). Figure 4 illustrates how all components are
 223 integrated to create a multi-turn instruction-tuning dataset.

224 The multi-turn conversation dataset enable the models to learn format following constraints in QA
 225 settings. By combining short, direct QA pairs with more complex long-form QA within the same
 226 conversation, we can prevent the model from overgeneralizing toward producing long responses.
 227 This balanced dataset also helps the models learn to answer domain-specific questions at varying
 228 levels of granularity, further enhancing its responsiveness and adaptability.

231 5 EXPERIMENT SETUP

233 5.1 DATASET

234 We select Natural Questions (Kwiatkowski et al., 2019) created by Google as our source dataset. We
 235 use a cleaned version of Natural Questions (Thakur et al., 2021) which consists of textual content
 236 only, resulting in a smaller dataset of approximately 100,000 QA pairs. We sampled 40,000 QA
 237 pairs from the cleaned dataset based on the word counts of each answer, ensure an even distribution
 238 of answer length.

239 To evaluate the effectiveness of our framework in injecting new domain specific knowledge into
 240 LLMs, we utilize LFRQA dataset (Han et al., 2024). Unlike existing QA datasets such as Natural
 241 Questions (Kwiatkowski et al., 2019) and TriviaQA (Joshi et al., 2017), which primarily draw from
 242 Wikipedia or general web documents, LFRQA (Han et al., 2024) is explicitly designed to measure
 243 out-of-domain (OOD) performance. For our evaluation, we select the Finance and Lifestyle subsets
 244 in LFRQA. We construct two instruction-tuning datasets by combining the finance and Lifestyle
 245 subsets with general QA data from Natural Questions. Specifically

246 1. The first dataset includes 10,000 QA pairs from Natural Questions combined with 2,208
 247 QA pairs from the Lifestyle subset.
 248 2. The second dataset combines 10,000 QA pairs from Natural Questions with 3,612 QA pairs
 249 from the Finance subset.

250 Each of these combined datasets is then processed through our REFER framework to produce multi-
 251 turn conversational instruction datasets. We used four RTX 3090 GPUs with VLLM to enable
 252 distributed inference, which took about 20 hours to process 40,000 QA pairs.

253 5.2 BASELINES

254 We use the LLaMA-2-7B-Chat (Touvron et al., 2023) model as our pretrained model. The same
 255 training configuration is applied across all models. Specifically, we set the batch size to 8, the
 256 maximum sequence length to 4096, and the learning rate to 3×10^{-5} , using a cosine learning rate
 257 scheduler. Each model is trained for 2 epochs. To further improve training efficiency and reduce
 258 memory usage, we adopt the LoRA (Hu et al., 2021) fine-tuning method, with a LoRA rank of 16
 259 and a LoRA alpha of 32. All models are trained on four RTX 3090 GPUs, with DeepSpeed utilized
 260 to enable distributed training. The total training time averages approximately 16 hours. The detailed
 261 dataset used for each model is shown in Table 1.

262 5.3 INSTRUCTION-FOLLOWING BENCHMARKS

263 **IFEval.** Instruction Following Evaluation (IFEval) (Zhou et al., 2023) is a widely adopted bench-
 264 mark for assessing complex instruction-following. It contains 541 tasks, each task consists of 1 to 3
 265 verifiable constraints which is objectively verified via rule-based scripts. IFEval provides two overall

Models	Descriptions
Llama-2-7B (<i>Base</i>)	Base model.
Llama-2-7B (<i>LFQA</i>)	Llama-2-7B-Chat fine-tuned with original Natural Questions dataset reformatted into the ChatML structure.
Llama-2-7B (<i>REFER</i>)	Llama-2-7B-Chat fine-tuned with Natural Questions Dataset Refined with our REFER framework.
Conifer	Llama-2-7B-Chat fine-tuned with dataset proposed by Sun et al. (2024).
UltraIF	Llama-2-7B-Chat fine-tuned with dataset proposed by An et al. (2025).
ComToSim*	Llama-2-7B-Chat fine-tuned with dataset proposed by He et al. (2024a).
VFF*	Llama-2-7B-Chat fine-tuned with dataset proposed by Wang et al. (2025).

Table 1: Details of baseline models. The reported results of models marked with * are extracted directly from the research papers.

scores: I-level (number of task where all constraints in a prompt satisfied) and C-level (percentage of individual constraints satisfied).

Multi-IF. Multi-IF (He et al., 2024b) extends IFEval to multi-turn and multilingual evaluation. It measures whether LLMs can consistently follow constraints across turns of conversations and transfer instruction-following capabilities to other languages when the instruction-tuning dataset is in English. Multi-IF poses greater challenge than typical single turn evaluation as LLMs often struggle to consistently adhere to instructions that were successfully executed in previous turns.

LiveBench. LiveBench (White et al., 2025) is a contamination free benchmark that refreshes every six months with newly created test cases from recent sources (e.g., arXiv papers, news). Similar to IFEval, LiveBench also scores answers automatically according to objective ground truth values which alleviate evaluator bias when LLMs are used as judges. We focus on its instruction-following subset for evaluation.

5.4 SYSTEM ANALYSIS

Constraint Compatibility. REFER generates constraints either by reverse generation from features extracted in answers, or apply light modifications to the original answer based on selected constraints. Constraint compatibility analysis allows us to understand whether the system is compatible with diverse datasets.

Semantic Preservation. To ensure that the addition of constraints into the dataset does not alter meaning of content, we compare original and refined answers using ROUGE-score Lin (2004). We report ROUGE-1, ROUGE-2, ROUGE-3, and ROUGE-L.

5.5 DOMAIN ADAPTATION ANALYSIS

we randomly sample 200 questions each from the Finance and Lifestyle subsets of LFRQA (Han et al., 2024). To prevent the models from relying on surface-level token patterns rather than true knowledge understanding, we use GPT 4o to paraphrase each question. We then prompt the fine-tuned models and base model to answer the rewritten questions and compare the generated responses against the original human-written ground truth answers.

BERTScore. We use BERTScore (Zhang et al., 2020) which compares contextual embeddings of answers generated by model and ground truth. This evaluation allows us to evaluate whether the fine-tuned models can retain and express domain-specific knowledge in a manner that is semantically consistent with the ground truth.

LLM-based Evaluation. Following recent work (Wei et al., 2025; Dubois et al., 2025), we use GPT 4o as a preference-based evaluator to compare fine-tuned and base model outputs. We present these two responses (a1 and a2) along with the corresponding ground truth answer (g) and the paraphrased question (q) to GPT 4o. The model is prompted to select the response that is more closely aligns with the ground truth.

324 6 RESULTS AND ANALYSIS

327 6.1 INSTRUCTION-FOLLOWING BENCHMARKS

329 **The main result of IFEval** (Zhou et al., 2023) is reported in Table 2 and Table 3. VFF proposed
 330 by Wang et al. (2025) reports only the I-level and C-level scores, whereas ComToSim introduced
 331 by He et al. (2024a) provides all the detailed scores of the benchmark. According to Wang et al.
 332 (2025), VFF is first trained via supervised fine-tuning, followed by reinforcement learning. Based
 333 on the research proposed by He et al. (2024a) Models labeled as *Generation* are trained on dataset
 334 generated by GPT 3.5 turbo. Models labeled as *Discrimination* are trained using dataset created
 335 with discrimination-based approach where the output of backbone models are refined by GPT 3.5
 336 turbo.

337 Based on the results, both of our *REFER* models consistently outperform the baselines in length
 338 generalization, highlighting the benefits of using long-form QA datasets. Our *REFER* models
 339 achieve overall higher C-level scores compared to the baselines and perform better in 5 out of 9
 340 constraint categories. Unlike the baselines that rely on instruction-tuning datasets as their source,
 341 our framework leverages LFQA datasets, which inherently lack any instruction-tuning function.

342 The *LFQA* model shows significant performance degradation due to several factors. First, there
 343 is incoherence between the questions and answers in the dataset. Second, the lack of clear instruc-
 344 tions and alignment between question and answer structures likely introduces a distribution shift
 345 from instruction-tuned objectives. These results demonstrate the importance of introducing format
 346 constraints into domain-specific datasets before fine-tuning LLMs.

347 To isolate the impact of our multi-turn design, we transformed the final round of our *REFER* dataset
 348 into a standard single-turn Alpaca-style instruction tuning format and fine-tuned the same model
 349 using the same hyper-parameters. The model fine-tuned with Alpaca dataset are labeled as *Alpaca*.
 350 This experiment shows that the model benefits from multi-turn QA fine-tuning.

352 Models	ChangeCase	Combination	Content	Format	Keywords	Language
GPT 4*	75.28	70.77	96.23	94.27	84.05	96.77
ComToSim _{Generation} *	41.57	15.38	71.70	70.70	53.37	58.06
ComToSim _{Discrimination} *	49.44	06.15	77.36	64.97	53.99	74.19
VFF*	—	—	—	—	—	—
Conifer	34.83	24.62	77.36	64.97	64.42	70.97
UltraFL	55.05	32.31	69.81	66.24	60.74	80.65
Llama-2-7B (Base)	32.61	07.71	81.19	63.70	62.63	41.98
Llama-2-7B (LFQA)	8.99	1.54	7.55	12.1	33.73	3.23
Llama-2-7B (Alpaca)	31.50	15.40	60.40	59.90	55.80	61.30
Llama-2-7B (REFER)	59.55	27.68	60.38	64.97	48.47	77.42
Mistral-7B (Base)	65.16	26.15	90.57	75.16	75.46	77.42
Mistral-7B (LFQA)	21.34	10.77	35.85	11.45	56.44	48.39
Mistral-7B (REFER)	64.03	26.15	90.57	75.16	76.07	74.19

363 Table 2: IFEval benchmark main results (Part A). The results marked with * are extracted directly
 364 from the research papers. We employ the strict metric from IFEval to calculate the accuracy scores.

366 Models	Length	Punctuation	Startend	I-Level	C-Level
GPT 4*	73.43	66.67	95.52	76.16	82.97
ComToSim _{Generation} *	27.97	9.09	56.72	34.01	46.16
ComToSim _{Discrimination} *	34.27	07.58	73.13	38.82	48.56
VFF*	—	—	—	40.48	54.08
Conifer	40.56	12.12	43.28	38.45	49.40
UltraFL	43.36	30.30	61.19	44.73	54.92
Llama-2-7B (Base)	39.26	13.65	49.37	30.12	40.37
Llama-2-7B (LFQA)	23.78	21.21	7.46	9.80	16.91
Llama-2-7B (Alpaca)	41.30	15.20	34.30	32.5	43.90
Llama-2-7B (REFER)	44.06	56.06	77.61	43.25	55.16
Mistral-7B (Base)	49.65	9.09	71.64	50.83	61.51
Mistral-7B (LFQA)	44.06	22.73	31.34	20.89	32.25
Mistral-7B (REFER)	50.34	9.09	74.63	51.20	61.75

376 Table 3: IFEval benchmark main results (Part B). The results marked with * are extracted directly
 377 from the research papers. We employ the strict metric from IFEval to calculate the accuracy scores.

378
 379 **The main result of Multi-IF** (He et al., 2024b) is reported in Table 4. The results show trends
 380 similar to IFEval, where the *LFQA* model exhibits significant degradation in instruction-following
 381 performance. The *REFER* model performs noticeably better than Conifer and the base model,
 382 while performing slightly below the UltraIF model. Although the datasets generated by our *REFER*
 383 framework are exclusively in English, the results show that models fine-tuned using *REFER* exhibit
 384 cross-lingual generalization in instruction-following tasks. This suggests that with a well-designed
 385 instruction tuning strategy, models can transfer instruction-following capabilities to other languages
 386 even without fine-tuning on multilingual training data.

Turn 1	Average	Italian	Spanish	Hindi	Portuguese	English	French	Chinese	Russian
Conifer	39.71	41.43	43.64	20.70	42.13	46.75	44.76	37.66	34.80
UltraIF	44.01	48.16	46.55	37.84	46.14	51.40	43.46	45.35	37.84
Llama-2-7B (<i>Base</i>)	33.77	36.74	35.41	16.93	38.67	42.57	36.02	29.91	26.33
Llama-2-7B (<i>LFQA</i>)	14.24	15.89	14.54	13.96	14.87	14.00	13.96	13.51	13.30
Llama-2-7B (<i>alpaca</i>)	32.25	35.83	34.66	15.35	35.00	42.94	33.16	26.51	25.61
Llama-2-7B (<i>REFER</i>)	42.39	43.98	46.73	19.43	41.74	52.60	44.10	40.48	41.77
Turn 2	Average	Italian	Spanish	Hindi	Portuguese	English	French	Chinese	Russian
Conifer	27.00	27.93	31.64	16.49	27.99	30.31	30.68	28.78	19.85
UltraIF	32.30	37.46	36.30	18.16	32.83	38.51	34.51	34.39	22.22
Llama-2-7B (<i>Base</i>)	26.47	29.46	30.89	11.63	28.95	34.32	29.58	24.37	16.27
Llama-2-7B (<i>LFQA</i>)	9.71	11.30	9.67	8.68	10.35	10.23	9.49	8.75	8.81
Llama-2-7B (<i>alpaca</i>)	23.90	26.65	28.81	12.08	23.63	31.42	25.02	22.09	15.58
Llama-2-7B (<i>REFER</i>)	30.33	33.87	35.66	12.73	30.20	38.27	34.86	30.29	20.99
Turn 3	Average	Italian	Spanish	Hindi	Portuguese	English	French	Chinese	Russian
Conifer	20.82	21.67	22.84	12.50	23.97	23.27	22.30	21.89	16.46
UltraIF	25.64	28.72	28.95	15.70	26.77	29.47	27.27	27.88	17.91
Llama-2-7B (<i>Base</i>)	21.53	23.17	24.10	11.30	23.54	27.29	23.10	20.19	15.02
Llama-2-7B (<i>LFQA</i>)	9.99	10.97	10.37	8.86	10.16	10.68	9.65	9.60	9.06
Llama-2-7B (<i>alpaca</i>)	19.44	20.50	22.04	11.28	20.72	24.77	20.18	17.88	13.95
Llama-2-7B (<i>REFER</i>)	25.24	27.22	28.51	12.16	26.61	31.68	28.19	24.38	18.29

404
 405 Table 4: Detailed Multi-IF benchmark of Llama-2-7B models fine-tuned with different version of
 406 Natural Questions datasets.

407
 408 **The main result of LiveBench** (He et al., 2024b) is reported in Table 5. As shown in Table 6, all
 409 fine-tuned models exhibit performance degradation. The *LFQA* model shows the most significant
 410 decline in performance as expected. The UltraIF model also experiences noticeable degradation,
 411 while our *REFER* and Conifer models demonstrate comparatively smaller declines in performance.
 412 This trend can be attributed to the nature of LiveBench which leverages real-world data to construct
 413 its evaluation set, making it more challenging than other benchmarks. The UltraIF model which
 414 fine-tuned on synthetic datasets generated by the LLaMA-3.1-70B model, has limited exposure to
 415 real-world contexts. In contrast, the Conifer model which trained on the ShareGPT dataset generated
 416 by the more powerful GPT-4 Achiam et al. (2023), benefits from exposure to more up-to-date data.
 417 Our *REFER* model, which utilizes a human-annotated dataset augmented with the Qwen-3-32B
 418 model, making it more robust in real-world scenarios.

Models	Base Model	Paraphrase	Simplify	StoryGeneration	Summarize	Average
GPT-4o	GPT-4o	62.67	67.75	66.25	63.1	64.94
Mistral-7B (<i>Base</i>)	Mistral-7B-Instruct-v0.2	37.85	49.97	42.47	37.23	41.88
Mistral-7B (<i>LFQA</i>)	Mistral-7B-Instruct-v0.2	24.23	20.62	23.15	23.52	22.88
Mistral (<i>REFER</i>)	Mistral-7B-Instruct-v0.2	38.95	48.77	44.13	35.62	41.87
Llama-2-7B (<i>Base</i>)	Llama-2-7B-chat	28.67	47.05	37.22	33.67	36.65
Llama-2-7B (<i>LFQA</i>)	Llama-2-7B-chat	21.95	23.73	17.42	19.18	20.57
Llama-2-7B (<i>REFER</i>)	Llama-2-7B-chat	26.95	38.10	23.80	32.63	30.37

426
 427 Table 5: LiveBench Benchmark Main Results.

428
 429

6.2 SYSTEM ANALYSIS

430
 431 **Constraint Compatibility.** Constraints are generated either by extracting features from answers
 (reverse generation) or by applying light modifications. Based on results shown in Table 8a, on

432 433 434 435 436 437 438	439 440 441 442 443 444 445 446 447	448 449 450 451 452 453 454 455 456 457 458 459 460 461 462	450 451 452 453 454 455 456 457 458 459 460 461 462	450 451 452 453 454 455 456 457 458 459 460 461 462	450 451 452 453 454 455 456 457 458 459 460 461 462	450 451 452 453 454 455 456 457 458 459 460 461 462	450 451 452 453 454 455 456 457 458 459 460 461 462
Models	Base Model	Paraphrase	Simplify	Story Generation	Summarize	Average	
Mistral-7B (<i>Base</i>)	Mistral-7B-Instruct-v0.2	0.00%	0.00%	0.00%	0.00%	0.00%	
Mistral-7B (<i>LFQA</i>)	Mistral-7B-Instruct-v0.2	-35.98%	-58.74%	-45.49%	-36.83%	-44.26%	
Mistral (<i>REFER</i>)	Mistral-7B-Instruct-v0.2	+2.91%	-2.40%	+3.91%	-4.32%	+0.03%	
Llama-2-7B (<i>Base</i>)	Llama-2-7B-chat	0.00%	0.00%	0.00%	0.00%	0.00%	
Llama-2-7B (<i>LFQA</i>)	Llama-2-7B-chat	-23.44%	-49.56%	-53.20%	-43.04%	-42.31%	
Llama-2-7B (<i>Alpaca</i>)	Llama-2-7B-chat	-10.95%	-31.03%	-22.70%	-16.48%	-20.29%	
Llama-2-7B (<i>REFER</i>)	Llama-2-7B-chat	-6.00%	-19.02%	-36.06%	-3.09%	-16.04%	

Table 6: LiveBench Benchmarks (Percentage of performance gain).

442 443 444 445 446 447	448 449 450 451 452 453 454 455 456 457 458 459 460 461 462	450 451 452 453 454 455 456 457 458 459 460 461 462	BERTScore		GPT4o Evaluation	
			Precision	Recall	F1	Align with g
Vanilla	80.52	85.95	83.13	85/200	42.50	
Llama-2-7B (<i>lifestyle</i>)	84.93	86.61	85.74	115/200	57.50	
Vanilla	81.82	86.13	83.91	87/200	43.50	
Llama-2-7B (<i>figa</i>)	87.22	87.32	87.25	113/200	56.50	

Table 7: Domain Adaptation Evaluation: BERTScore and LLM Evaluation

40k QA pairs, REFER produced 75,582 constraints, with only 2.16% being incompatible with the dataset, showing the pool’s versatility across diverse datasets such as Natural Questions.

Semantic Preservation. Since long-form QA answers are knowledge-rich, modifications must not alter factual meaning. Based on results shown in table 8b, we find high overlap between original and refined answers, confirming that REFER preserves semantic fidelity while integrating constraints.

457 458 459 460 461	450 451 452 453 454 455 456 457 458 459 460 461 462	450 451 452 453 454 455 456 457 458 459 460 461 462
Dataset Analysis	Value	
Dataset Size	40,000	
Total Constraints	75,582	
Incompatible Constraints	1,635	
Incompatible Constraints Ratio	2.16%	

457 458 459 460 461	450 451 452 453 454 455 456 457 458 459 460 461 462	450 451 452 453 454 455 456 457 458 459 460 461 462
Evaluation Metrics	Precision	Recall
ROUGE-1	0.97	0.96
ROUGE-2	0.95	0.94
ROUGE-3	0.94	0.93
ROUGE-L	0.97	0.96

(a) The ratio of selected constraints incompatible with the extracted features.

(b) ROUGE score of original answer compared to refined answer.

Table 8: System analysis.

6.3 DOMAIN ADAPTATION ANALYSIS

BERTScore. BERTScore is used to measure the semantic similarity between generated answers and human-written LFRQA references. As shown in Table 9, both fine-tuned models produce outputs that are more semantically aligned with the reference answers compared to the base model. This suggests that the fine-tuned models tend to generate more domain-specific and contextually appropriate responses.

LLM-Based Evaluation. We further conduct evaluation using GPT 4o for pairwise preference comparison, with LFRQA ground-truth as reference. Results in Table 9 indicate that higher number of outputs from fine-tuned models are preferred by the GPT 4o. This confirms that the fine-tuned models produce more accurate, direct, and domain-relevant answers. These findings demonstrate that REFER is effective in adapting models to new knowledge domains while improving answer quality and precision. To strictly prevent data leakage and memorization, we utilized GPT-4 to rewrite the evaluation set prompts and reference answers with different wording.

7 CONCLUSION

In this work, we propose REFER, a framework that transforms long-form QA datasets into high-quality instruction-tuning data with verifiable constraints. To create domain-specific LLM agents,

Models	BERTScore		GPT4o Evaluation		
	Precision	Recall	F1	Align with g	Score
Vanilla	80.52	85.95	83.13	85/200	42.50
Llama-2-7B (<i>lifestyle</i>)	84.93	86.61	85.74	115/200	57.50
Vanilla	81.82	86.13	83.91	87/200	43.50
Llama-2-7B (<i>fiqa</i>)	87.22	87.32	87.25	113/200	56.50

Table 9: Domain Adaptation Evaluation: BERTScore and LLM Evaluation

REFER systematically augments and re-frames human-annotated long-form QA datasets into multi-turn conversations, aligning large language models (LLMs) with format-following constraints while simultaneously adapting them to new domain knowledge. Our evaluations on IFEval (Zhou et al., 2023), Multi-IF (He et al., 2024b), and LiveBench (White et al., 2025) demonstrate that models fine-tuned with REFER not only maintain strong instruction-following capabilities but also generalize better in complex, multi-turn, and format-constrained scenarios. We contribute to the research community by open-sourcing the REFER framework and the associated constraint pool dataset to encourage other researchers to extend our work in future research in instruction tuning.

REFERENCES

OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mo Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madeleine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Benjamin Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Sim'on Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Raphael Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Hendrik Kirchner, Jamie Ryan Kiros, Matthew Knight, Daniel Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrew Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel P. Mossing, Tong Mu, Mira Murati, Oleg Murk, David M'ely, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Ouyang Long, Cullen O'Keefe, Jakub W. Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alexandre Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Pondé de Oliveira Pinto, Michael Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack W. Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario D. Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,

540 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
 541 Nikolas A. Tezak, Madeleine Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
 542 ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cer'on Uribe, Andrea Vallone, Arun Vi-
 543 jayvergiya, Chelsea Voss, Carroll L. Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
 544 Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
 545 Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
 546 Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim ing
 547 Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
 548 Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report. 2023. URL
 549 <https://api.semanticscholar.org/CorpusID:257532815>.

550 Kaikai An, Li Sheng, Ganqu Cui, Shuzheng Si, Ning Ding, Yu Cheng, and Baobao Chang. Ultraif:
 551 Advancing instruction following from the wild. *arXiv preprint arXiv:2502.04153*, 2025.

552 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-controlled
 553 alpacaeval: A simple way to debias automatic evaluators, 2025. URL <https://arxiv.org/abs/2404.04475>.

554 Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. ELI5:
 555 Long form question answering. In Anna Korhonen, David Traum, and Lluís Màrquez (eds.),
 556 *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp.
 557 3558–3567, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
 558 v1/P19-1346. URL <https://aclanthology.org/P19-1346>.

559 Rujun Han, Yuhao Zhang, Peng Qi, Yumo Xu, Jenyuan Wang, Lan Liu, William Yang Wang, Bonan
 560 Min, and Vittorio Castelli. RAG-QA arena: Evaluating domain robustness for long-form retrieval
 561 augmented question answering. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
 562 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*,
 563 pp. 4354–4374, Miami, Florida, USA, November 2024. Association for Computational Linguis-
 564 tics. doi: 10.18653/v1/2024.emnlp-main.249. URL <https://aclanthology.org/2024.emnlp-main.249>.

565 Qianyu He, Jie Zeng, Qianxi He, Jiaqing Liang, and Yanghua Xiao. From complex to simple:
 566 Enhancing multi-constraint complex instruction following ability of large language models. In
 567 Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for
 568 Computational Linguistics: EMNLP 2024*, pp. 10864–10882, Miami, Florida, USA, November
 569 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.637.
 570 URL <https://aclanthology.org/2024.findings-emnlp.637>.

571 Yun He, Di Jin, Chaoqi Wang, Chloe Bi, Karishma Mandyam, Hejia Zhang, Chen Zhu, Ning Li,
 572 Tengyu Xu, Hongjiang Lv, Shruti Bhosale, Chenguang Zhu, Karthik Abinav Sankararaman, Eryk
 573 Helenowski, Melanie Kambadur, Aditya Tayade, Hao Ma, Han Fang, and Sinong Wang. Multi-if:
 574 Benchmarking llms on multi-turn and multilingual instructions following, 2024b. URL <https://arxiv.org/abs/2410.15553>.

575 Or Honovich, Uri Shaham, Samuel R. Bowman, and Omer Levy. Instruction induction: From
 576 few examples to natural language task descriptions. In Anna Rogers, Jordan Boyd-Graber,
 577 and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for
 578 Computational Linguistics (Volume 1: Long Papers)*, pp. 1935–1952, Toronto, Canada, July
 579 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.108. URL
<https://aclanthology.org/2023.acl-long.108>.

580 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 581 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.

582 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
 583 supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
 584 (eds.), *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
 585 (Volume 1: Long Papers)*, pp. 1601–1611, Vancouver, Canada, July 2017. Association for Com-
 586 putational Linguistics. doi: 10.18653/v1/P17-1147. URL <https://aclanthology.org/P17-1147>.

594 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 595 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 596 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 597 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the*
 598 *Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
 599 <https://aclanthology.org/Q19-1026/>.

600 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization*
 601 *branches out*, pp. 74–81, 2004.

602 Sofie Van Landeghem Adriane Boyd Matthew Honnibal, Ines Montani. spacy: Industrial-strength
 603 natural language processing in python, 2020.

604 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 605 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 606 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 607 and Ryan Lowe. Training language models to follow instructions with human feedback. In *Pro-
 608 ceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS
 609 '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

610 Chau Minh Pham, Simeng Sun, and Mohit Iyyer. Suri: Multi-constraint instruction follow-
 611 ing in long-form text generation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
 612 (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 1722–
 613 1753, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
 614 doi: 10.18653/v1/2024.findings-emnlp.94. URL [https://aclanthology.org/2024.
 615 findings-emnlp.94/](https://aclanthology.org/2024.findings-emnlp.94/).

616 Yunjia Qi, Hao Peng, Xiaozhi Wang, Bin Xu, Lei Hou, and Juanzi Li. Constraint back-translation
 617 improves complex instruction following of large language models, 2025. URL <https://arxiv.org/abs/2410.24175>.

618 Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-Wei Chang. ASQA: Factoid questions meet
 619 long-form answers. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of*
 620 *the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 8273–8288,
 621 Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
 622 tics. doi: 10.18653/v1/2022.emnlp-main.566. URL [https://aclanthology.org/2022.
 623 emnlp-main.566/](https://aclanthology.org/2022.emnlp-main.566/).

624 Haoran Sun, Lixin Liu, Junjie Li, Fengyu Wang, Baohua Dong, Ran Lin, and Ruohui Huang.
 625 Conifer: Improving complex constrained instruction-following ability of large language models.
 626 *arXiv preprint arXiv:2404.02823*, 2024.

627 Simeng Sun, Katherine Thai, and Mohit Iyyer. ChapterBreak: A challenge dataset for long-range
 628 language models. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz
 629 (eds.), *Proceedings of the 2022 Conference of the North American Chapter of the Association*
 630 *for Computational Linguistics: Human Language Technologies*, pp. 3704–3714, Seattle, United
 631 States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.
 632 271. URL <https://aclanthology.org/2022.naacl-main.271/>.

633 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 634 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
 635 https://github.com/tatsu-lab/stanford_alpaca, 2023.

636 Nandan Thakur, Nils Reimers, Johannes Daxenberger, and Iryna Gurevych. Augmented SBERT:
 637 Data augmentation method for improving bi-encoders for pairwise sentence scoring tasks. In
 638 *Proceedings of the 2021 Conference of the North American Chapter of the Association for Com-
 639 putational Linguistics: Human Language Technologies*, pp. 296–310, Online, June 2021. As-
 640 sociation for Computational Linguistics. URL [https://www.aclweb.org/anthology/
 641 2021.naacl-main.28](https://www.aclweb.org/anthology/2021.naacl-main.28).

642 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 643 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 644 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

648 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
 649 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
 650 In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual*
 651 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 13484–
 652 13508, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/
 653 v1/2023.acl-long.754. URL <https://aclanthology.org/2023.acl-long.754/>.

654

655 Zhaoyang Wang, Jingqi Jiang, Huichi Zhou, Wenhao Zheng, Xuchao Zhang, Chetan Bansal, and
 656 Huaxiu Yao. Verifiable format control for large language model generations. In Luis Chiruzzo,
 657 Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational Linguistics:*
 658 *NAACL 2025*, pp. 3499–3513, Albuquerque, New Mexico, April 2025. Association for Compu-
 659 tational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.194. URL
 660 <https://aclanthology.org/2025.findings-naacl.194/>.

661

662 Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
 663 Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Cha-
 664 lamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and
 665 Ce Zhang. Redpajama: an open dataset for training large language models, 2024. URL
 666 <https://arxiv.org/abs/2411.12372>.

667

668 Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 669 Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *Inter-*
 670 *national Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=gEZrGC0zdqR>.

671

672 Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Jie Huang, Dustin Tran, Daiyi
 673 Peng, Ruibo Liu, Da Huang, Cosmo Du, and Quoc V. Le. Long-form factuality in large language
 674 models. In *Proceedings of the 38th International Conference on Neural Information Processing*
 675 *Systems*, NIPS '24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN 9798331314385.

676

677 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha Jain, Ravid
 678 Schwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh
 679 Sandha, Siddartha Venkat Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie
 680 Neiswanger, and Micah Goldblum. Livebench: A challenging, contamination-limited LLM
 681 benchmark. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 682 <https://openreview.net/forum?id=sKYHBTaXVa>.

683

684 Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qing-
 685 wei Lin, and Dixin Jiang. Wizardlm: Empowering large pre-trained language models to follow
 686 complex instructions, 2025. URL <https://arxiv.org/abs/2304.12244>.

687

688 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 689 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 690 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 691 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 692 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 693 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 694 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 695 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 696 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

697

698 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
 699 ating text generation with bert, 2020. URL <https://arxiv.org/abs/1904.09675>.

700

701 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
 702 and Le Hou. Instruction-following evaluation for large language models, 2023. URL <https://arxiv.org/abs/2311.07911>.

702
703

A APPENDIX

704
705
706
707
708709

A.1 PROMPT SETTINGS

710
711
712
713714 The prompt templates used in data augmentation are shown in Figures 5, 6, and 7.
715
716
717
718
719
720
721
722723 **Question Rewrite Prompt Setting**
724725 You are given a simple question and answer. Please rewrite the question into 5 new instructions
726 with different vocabulary and writing style. Please maintain the original meaning of the question
727 and only output the new instructions. You can refer to the example for guidance.
728729 **Example:**
730731 Question: when did the first episode of law and order air
732
733734 Answer: Law & Order is an American police procedural and legal drama television series,
735 created by Dick Wolf and part of the Law & Order franchise. It originally aired on NBC and,
736 in syndication, on various cable networks. Law & Order premiered on September 13, 1990,
737 and completed its 20th and final season on May 24, 2010. At the time of its cancellation,
738 Law & Order was the longest-running crime drama on American primetime television. Its
739 record of 20 seasons is a tie with Gunsmoke (1955–1975) for the longest-running live-action
740 scripted American prime-time series with ongoing characters. Although it has fewer episodes
741 than Gunsmoke, Law & Order ranks as the longest-running hour-long primetime TV series.
742 Gunsmoke, for its first six seasons, was originally a half-hour program.
743744 **New instructions:**
745746

1. Determine the original broadcast date of the first episode of Law & Order.
2. Find out when Law & Order made its television debut.
3. What is the airdate of the pilot episode of the TV show Law & Order?
4. Identify the premiere date of the crime drama series Law & Order.
5. On what date did Law & Order first appear on television?

747748 Now complete the task below:
749750 Question: {question}
751752 Answer: {answer}
753754 **New instructions:**
755

Figure 5: Rewrite original question to increase the diversity of the dataset.

756 **Short Answer Extraction Prompt Setting**
 757

758 You are given a question and a corresponding long-form answer. Your task is to extract the short,
 759 direct answer if it is explicitly present in the long-form response. The direct answer should be
 760 concise, without including additional explanation or context. If the question asks for a reason,
 761 explanation, description, or opinion, and the provided answer consists only of that explanatory
 762 content without a clearly extractable short answer, please output: [No direct answer]
 763

764 Do not rewrite or summarize the long answer. Only extract the direct answer if it exists. Be strict
 765 in identifying clear direct answers.
 766

767 Example 1:
 768 Question: What is the boiling point of water at sea level in Celsius?
 769 Answer: The boiling point of water at sea level is 100 degrees Celsius. This is the temperature
 770 at which water transitions from a liquid to a gaseous state under normal atmospheric pressure.
 771 Output: 100 degrees Celsius
 772

773 Example 2:
 774 Question: Can you explain the process of mitosis?
 775 Answer: Mitosis is a type of cell division that results in two daughter cells each having the same
 776 number and kind of chromosomes as the parent nucleus. The process consists of several stages
 777 including prophase, metaphase, anaphase, and telophase. It is essential for growth and tissue
 778 repair in multicellular organisms.
 779 Output: [No direct answer]
 780

781 Now complete the task below:
 782 Question: {question}
 783 Answer: {answer}

Figure 6: Extract short direct answer from long-form answer.

784
 785 **Question Refine Prompt Setting**
 786

787 You are given:
 788

- 789 • Original question
- 790 • Short answer: A portion of the long-form answer that directly responds to the original
 791 question.
- 792 • Long-form answer: A more detailed response that includes both the short answer and
 793 additional relevant information.

794 Your task is to expand and improve the original question so that it better reflects the full scope
 795 of the long-form answer. Focus on incorporating aspects of the long-form answer that would be
 796 missing or unexpected if someone had only seen the original question and short answer. Only
 797 output the refined question.
 798

799 Original Question: {question}
 800 Short answer: {short_answer}
 801 Long-form answer: {answer}
 802 Refined question:
 803

Figure 7: Refine original answer when short direct answer exist within the long-form answer. This stage of question refine aims to improve the coherence between the question and answer.

810 A.2 CONSTRAINTS POOL EXAMPLE
811812 Below are some examples of constraints from our constraint pool. The constraints used in our
813 REFER system were written by humans and then rephrased into different versions with the same
814 meaning using GPT 4o. Each constraint in the pool is rewritten into 3 to 4 variants with different
815 wording and style to enhance the richness of the constraint pool.
816817
818 { "category": "structure", "type": "length_constraint_less", "constraint":
819 "→ The response should be fewer than {num} words." }
820 { "category": "structure", "type": "sentence_less", "constraint": "Keep
821 "→ the response to fewer than {num} sentences." }
822 { "category": "structure", "type": "sentence_more", "constraint":
823 "→ ["Provide a minimum of {num} sentences in your response.", "Please
824 "→ only response with one sentence."] }
825 { "category": "structure", "type": "sentence_word_specific", "constraint":
826 "→ "The {num_1} sentence should be at least {num_2} words." }
827 { "category": "caps", "type": "caps_no_caps", "constraint": "Do not use
828 "→ any uppercase letters in the response." }
829 { "category": "caps", "type": "caps_only_capital", "constraint":
830 "→ "Capitalize the first letter of every word in the response." }
831 { "category": "caps", "type": "caps_paragraph", "constraint": "Ensure the
832 "→ {num} paragraph is composed entirely of uppercase characters." }
833 { "category": "decoration", "type": "start_self", "modification": [],
834 "constraint": "Start the response with \"\{words\}\".")
835 { "category": "decoration", "type": "enclose", "modification":
836 "→ [<start_of_answer>, "<end_of_answer>"], "constraint": "Place the
837 "→ complete answer between \"\{start_of_answer\}\" and \"\{end_of_answer\}\"
838 "→ labels." }
839 { "category": "highlight", "type": "highlight", "modification": ["<","
840 "→ ">"], "constraint": ["Highlight {num} keywords in the response.
841 "→ Format each highlighted word as follows: <word>.", "Highlight 1
842 "→ keyword in the response. Format the highlighted word as follows:
843 "→ <word>."] }
844 { "category": "structure", "type": "paragraph_word_more", "constraint":
845 "→ "Each paragraph must have a minimum of {num} words." }
846847 A.3 MULTI-TURN INSTRUCTION-TUNING DATASET EXAMPLE
848849 We use the same system prompt to fine-tune all models. The system prompt is shown below.
850851
852 { "role": "system", "content": "You are an expert assistant who
853 "→ follows user instructions with precision. Always respond
854 "→ accurately and strictly obey all constraints on content, format,
855 "→ style, and wording." }
856857 Each training instance consists of 2 to 3 rounds of conversation, with each round increasing in
858 instruction complexity and the level of detail in the answers. Below are examples from the dataset
859 generated by our REFER framework, using the Natural Questions dataset as the source.
860861 **Example 1:**
862863 • Round 1:
864865 { "role": "user", "content": "What was the title of the debut
866 "→ studio album by the band Florence and the Machine?" }
867 { "role": "assistant", "content": "Florence and the Machine's
868 "→ debut studio album is titled *Lungs*." }
869870 • Round 2:
871

```

864 {"role": "assistant", "content": "Florence and the Machine
865    ↪ released their first extended play, A Lot of Love. A Lot
866    ↪ of Blood, in March 2009. Their debut studio album, Lungs,
867    ↪ was released in July 2009 through Island Records, reaching
868    ↪ number one on the UK Albums Chart in January 2010. The
869    ↪ album was subsequently certified quintuple platinum in the
870    ↪ United Kingdom, quadruple platinum in Ireland and triple
871    ↪ platinum in Australia. The album's lead single \"Kiss with
872    ↪ a Fist\" peaked at number 51 on the UK Singles Chart. This
873    ↪ was succeeded by the single \"Dog Days Are Over\", which
874    ↪ reached number 23 in the UK and number 21 on the Billboard
875    ↪ Hot 100 in the United States, and was certified quadruple
876    ↪ platinum by the Recording Industry Association of America
877    ↪ (RIAA). Third single \"Rabbit Heart (Raise It Up)\""
878    ↪ reached number 12 in the UK and number 41 in Ireland.
879    ↪ \"Drumming Song\" was released as the fourth single,
880    ↪ charting at number 54 in the UK. \"You've Got the Love\",
881    ↪ a cover of The Source's song of the same name, peaked at
882    ↪ number five in the UK and number nine in Australia. A
883    ↪ performance at the 2010 BRIT Awards on 17 February 2010
884    ↪ saw the Dizzee Rascal-assisted mash-up \"You Got the
885    ↪ Dirtee Love\" debut at number two in the UK. The album's
886    ↪ sixth and final single, \"Cosmic Love\", peaked at number
887    ↪ 51 in the UK and number three in Ireland."}

```

- Round 3:

```

886 {"role": "user", "content": "What was the title of Florence
887    ↪ and the Machine's debut studio album, and what were some
888    ↪ of its notable chart achievements and singles? Ensure the
889    ↪ response contains the terms \"discography\", \"lungs\"."}
890 {"role": "assistant", "content": "Florence and the Machine
891    ↪ released their first extended play, A Lot of Love. A Lot
892    ↪ of Blood, in March 2009. Their debut studio album, Lungs,
893    ↪ was released in July 2009 through Island Records, reaching
894    ↪ number one on the UK Albums Chart in January 2010. The
895    ↪ album was subsequently certified quintuple platinum in the
896    ↪ United Kingdom, quadruple platinum in Ireland and triple
897    ↪ platinum in Australia.\n\nThe album's lead single \"Kiss
898    ↪ with a Fist\" peaked at number 51 on the UK Singles Chart.
899    ↪ This was succeeded by the single \"Dog Days Are Over\",
900    ↪ which reached number 23 in the UK and number 21 on the
901    ↪ Billboard Hot 100 in the United States, and was certified
902    ↪ quadruple platinum by the Recording Industry Association
903    ↪ of America (RIAA). Third single \"Rabbit Heart (Raise It
904    ↪ Up)\" reached number 12 in the UK and number 41 in
905    ↪ Ireland. \"Drumming Song\" was released as the fourth
906    ↪ single, charting at number 54 in the UK.\n\n\"You've Got
907    ↪ the Love\", a cover of The Source's song of the same name,
908    ↪ peaked at number five in the UK and number nine in
909    ↪ Australia. A performance at the 2010 BRIT Awards on 17
910    ↪ February 2010 saw the Dizzee Rascal-assisted mash-up \"You
911    ↪ Got the Dirtee Love\" debut at number two in the UK. The
912    ↪ album's sixth and final single, \"Cosmic Love\", peaked at
913    ↪ number 51 in the UK and number three in Ireland."}

```

Example 2:

- Round 1:

```

913 {"role": "user", "content": "Identify the name of the actress
914    ↪ that brought the character Teddy Altman to life on Grey's
915    ↪ Anatomy."}
916 {"role": "assistant", "content": "Kim Raver played Teddy
917    ↪ Altman on Grey's Anatomy."}

```

- Round 2:

```

918 {"role": "user", "content": "Identify the actress who
919   ↪ portrayed the character Teddy Altman on Grey's Anatomy,
920   ↪ and provide some examples of her other notable television
921   ↪ roles."}, {"role": "assistant", "content": "Kim Raver
922   ↪ Kimberly Jayne \"Kim\" Raver (born October 15, 1969) is an
923   ↪ American actress. She is best known for television roles
924   ↪ as Kim Zambrano on Third Watch, Audrey Raines on 24 and
925   ↪ Teddy Altman on ABC's medical drama Grey's Anatomy."}
926

```

- Round 3:

```

927 {"role": "user", "content": "Identify the actress who
928   ↪ portrayed the character Teddy Altman on Grey's Anatomy,
929   ↪ and provide some examples of her other notable television
930   ↪ roles. Ensure the answer contains no fewer than 2
931   ↪ sentences. Include the \"actress\" exactly once in your
932   ↪ answer. Start the response with the exact phrase
933   ↪ \"Welcome!\"."}
934 {"role": "assistant", "content": "Welcome! Kim Raver Kimberly
935   ↪ Jayne \"Kim\" Raver (born October 15, 1969) is an American
936   ↪ actress. She is best known for television roles as Kim
937   ↪ Zambrano on Third Watch, Audrey Raines on 24 and Teddy
938   ↪ Altman on ABC's medical drama Grey's Anatomy."}

```

Example 3:

- Round 1:

```

941 {"role": "user", "content": "What team did Kobe Bryant face
942   ↪ when he recorded his highest-scoring game of 81 points?"}
943 {"role": "assistant", "content": "Kobe Bryant scored 81 points
944   ↪ against the Toronto Raptors in 2006."}

```

- Round 2:

```

946 {"role": "user", "content": "What team did Kobe Bryant face
947   ↪ when he scored his career-high 81 points, and how does
948   ↪ this game fit into the broader context of his impressive
949   ↪ list of high-scoring performances in NBA history?"}
950 {"role": "assistant", "content": "List of 40-plus point games
951   ↪ by Kobe Bryant. The number of forty-plus point games
952   ↪ players accumulate over their careers is often reported in
953   ↪ media. Bryant has played 135 games in which he has scored
954   ↪ 40 or more points; of these, 6 were 60-plus point games
955   ↪ and 26 were 50-plus point games. He is third behind Wilt
956   ↪ Chamberlain and Michael Jordan, who scored 40 or more in
957   ↪ 284 and 211 games, respectively. In 2003, Bryant scored 40
958   ↪ points or more in nine consecutive games, tying Jordan,
959   ↪ who accomplished the same feat in the 1986{87 season. The
960   ↪ only player with longer streaks of 40 or more is
961   ↪ Chamberlain, who had 14 consecutive games twice in the
962   ↪ 1961{62 season and 10 consecutive games in the 1962{63
963   ↪ season. In 2006, Bryant scored a career-high 81 points
964   ↪ against the Toronto Raptors. It was the second-highest
965   ↪ number of points scored in a game in NBA history, behind
966   ↪ only Chamberlain's 100-point performance in 1962. In 2007,
967   ↪ Bryant scored 50 points or more in four consecutive games;
968   ↪ this accomplishment is fifth in NBA history behind streaks
969   ↪ by Chamberlain, who had 50 or more in seven, six and five
970   ↪ (twice) consecutive games in the 1961{62 season. Bryant
971   ↪ has also played 12 playoff games in which he has scored
972   ↪ forty or more points. Out of the 134 games, 21 resulted in
973   ↪ Bryant notching a double-double and 42 resulted in losses.
974   ↪ Bryant became the oldest player to score 60+ points (60)
975   ↪ in his final game on April 13, 2016."}

```

- Round 3:

```

972 {"role": "user", "content": "What team did Kobe Bryant face
973    ↳ when he scored his career-high 81 points, and how does
974    ↳ this game fit into the broader context of his impressive
975    ↳ list of high-scoring performances in NBA history? Ensure
976    ↳ each paragraph contains a minimum of 4 sentences. Ensure
977    ↳ the term \"double-double\" appears once in your reply."}
978 {"role": "assistant", "content": "List of 40-plus point games
979    ↳ by Kobe Bryant. The number of forty-plus point games
980    ↳ players accumulate over their careers is often reported in
981    ↳ media. Bryant has played 135 games in which he has scored
982    ↳ 40 or more points; of these, 6 were 60-plus point games
983    ↳ and 26 were 50-plus point games. He is third behind Wilt
984    ↳ Chamberlain and Michael Jordan, who scored 40 or more in
985    ↳ 284 and 211 games, respectively. In 2003, Bryant scored 40
986    ↳ points or more in nine consecutive games, tying Jordan,
987    ↳ who accomplished the same feat in the 1986{87 season. The
988    ↳ only player with longer streaks of 40 or more is
989    ↳ Chamberlain, who had 14 consecutive games twice in the
990    ↳ 1961{62 season and 10 consecutive games in the 1962{63
991    ↳ season.\n\nIn 2006, Bryant scored a career-high 81 points
992    ↳ against the Toronto Raptors. It was the second-highest
993    ↳ number of points scored in a game in NBA history, behind
994    ↳ only Chamberlain's 100-point performance in 1962. In 2007,
995    ↳ Bryant scored 50 points or more in four consecutive games;
996    ↳ this accomplishment is fifth in NBA history behind streaks
997    ↳ by Chamberlain, who had 50 or more in seven, six and five
998    ↳ (twice) consecutive games in the 1961{62 season. Bryant
999    ↳ has also played 12 playoff games in which he has scored
    ↳ forty or more points. Out of the 134 games, 21 resulted in
    ↳ Bryant notching a double-double and 42 resulted in losses.
    ↳ Bryant became the oldest player to score 60+ points (60)
    ↳ in his final game on April 13, 2016."}
1000

```

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMs)

Large Language Models (LLMs), specifically GPT-4o Achiam et al. (2023), are used in three major areas of this paper.

- We create the constraint pools shown in Section A.2 with the assistance of the GPT-4o model Achiam et al. (2023). First, we construct a dataset of seed constraints, each uniquely written by humans. We then use GPT-4o to expand this dataset by rewriting each constraint into 3–4 variants with different wording and style while preserving the original meaning. This increases the diversity of the constraints and helps the fine-tuned model acquire new skills without overfitting.
- We use the GPT-4o model to refine and correct any grammatical errors in our prompt settings, as shown in Section A.1.
- We use the GPT-4o model to improve the clarity and fluency of the paper’s writing.

The use of open-source model, specifically Qwen-3-32B model is used in the REFER framework. The details are shown in Section 4.