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ABSTRACT
Text-driven 3D indoor scene generation aims to automatically gen-
erate and arrange the objects, which form a 3D scene that accurately
captures the semantics detailed in the given text description. Recent
works have shown the potential to generate 3D scenes guided by
specific object categories and room layouts but lack a robust mech-
anism to maintain consistent spatial relationships in alignment
with the provided text description during the 3D scene generation.
Besides, the annotations of the object and relationships of the 3D
scenes are usually time- and cost-consuming, which are not easily
obtained for the model training. Thus, in this paper, we conduct a
dataset and benchmark for assessing spatial relations in text-driven
3D scene generation, which contains a comprehensive collection of
3D scenes, including textual descriptions, annotating object spatial
relations, and providing both template and free-form natural lan-
guage descriptions. We also provide a pseudo description feature
generation method to address the 3D scenes without language
annotations. We design an aligned latent space for spatial relation
in 3D scenes and text description, in which we can sample the fea-
tures according to the spatial relation for the few-shot learning. We
also propose newmetrics to investigate the ability of the approach
to generate correct spatial relationships among objects.

KEYWORDS
3D scene generation, 3D Vision-Language Learning, Dataset and
Evaluation Metric, Few shot learning

1 INTRODUCTION
Text-driven 3D indoor scene generation is an important task to cre-
ate realistic rooms with suitable objects(i.e., furniture) and layouts.
It requires the ability of the model to generate scenes automatically
and maintain consistent semantics in alignment with the provided
text description. It has gained much attention for its potential ap-
plications in interior design, virtual reality, and video games[26].
It can significantly minimize repetition and boost productivity by
eliminating manual scene creation requirements. Moreover, it pro-
vides interior designers with a valuable resource to quickly generate
room designs and gather client feedback, opening up numerous
practical applications.

Recent works have shown the potential to generate 3D scenes
guided by specific object categories and room layouts. They have
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There is a bed and a  

some wardrobes in the 

room.

Nightstand is beside to

single bed. Wardrobe is

left to single bed. Chair

is near the wardrobe

 (a) No Semantic Constraint

 (b) Instance-level semantic constraint

 (c)Instance and spatial relation semantic constraints

Figure 1: Different annotations of the 3D scene generation.

achieved tasks like automatic layout synthesis, scene completion,
and object suggestion[10, 13, 21]. For example, Sync2Gen [23] uti-
lizes a trained parametric prior distribution to effectively control the
generation of unrealistic indoor scenes by feed-forward neural mod-
els. ATISS [13] utilizes autoregressive transformers to predict object
locations in sequence. However, they are not designed to maintain
consistent spatial relationships with the description. Furthermore,
due to the time- and cost-consuming of language annotations, lan-
guage annotations of the spatial relationships in the 3D scene are
not easily obtained for the training. There is also no available bench-
mark to evaluate the abilities of the approach to control the spatial
relationships for text-driven 3D indoor scene generation precisely.

To tackle these issues, we propose a new benchmark for assess-
ing spatial relationships in text-driven 3D scene generation. We
offer the dataset and spatial relations metrics to assist research in
the text-driven 3D scene generation domain. As shown in Fig. 1,
compared with the current works to generate 3D scenes without
semantic constraints (a) or only with instance-level semantic con-
straint (b), our new proposed dataset and method aims to address

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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both instance and spatial relation semantic constraints (c) for the
3D scene generation. The task requires combining the objects with
the proper layout and understanding and effectively controlling the
relationship among multiple objects during the generation process.
We also investigate text-driven 3D scene generation tasks with few
language annotations. The main contribution can be summarized
as follows:

(1) New dataset. We propose a new dataset for text-driven 3D
scene generation. Currently, there is no suitable dataset with
text description of the scene for text-driven 3D scene gener-
ation. We extend the 3D-FRONT to construct a text-driven
3D scene generation dataset with spatial relations descrip-
tion. We annotate the spatial relations of the objects in the
scenes and provide two types of text descriptions, includ-
ing the template descriptions and free-form nature language
descriptions for the text-driven 3D scene generation dataset.

(2) Pseudo description feature generation method for few-
shot text-driven 3D scene generation. We design an aligned
latent space for spatial relation in 3D scenes and text descrip-
tion, in which we can sample the features according to the
spatial relation for the few-shot learning.

(3) New metrics. We propose two metrics to evaluate the accu-
racy of the described spatial relationship generated in the 3D
scene. We evaluate the spatial relationship of the scenes from
three aspects: local and relation metrics. The local metric
evaluates the accuracy of the pair relation between two ob-
jects, while the relation metric evaluates the model’s ability
to address different relation types.

We conduct the experiments on our new proposed dataset and
compare our benchmark method with the current work on both
the newly proposed metrics and the traditional metrics. The results
show that our benchmark method showcases its superior flexibility
in scene qualities and spatial relations accuracy.

The remainder of this paper is organized as follows. Section 2
briefly surveys the related works. Section 4 introduces the bench-
mark method we propose to address the text-driven 3D scene gen-
eration. Section 3 presents the approach and details we design to
annotate and extend the 3D-FRONT datasets for text-driven 3D
scene generation. In Section 5, we proposed newmetrics to evaluate
how accurately the described spatial relationship is generated in
the 3D scene. Then, the experiments are introduced in Section 6 to
compare the benchmark method and current work in our proposed
dataset. Finally, Section 7 concludes this paper.

2 RELATEDWORK
3D scene datasets with Language: Similar to our work, prior
works have also explored grounding language in 3D. Notably, Chang
et al.[3] model spatial knowledge by leveraging statistics in 3D
scenes. They created a dataset with 609 annotations between 131
object pairs in 17 scenes for spatial relations. Also, Chang et al.
created a model for generating 3D scenes from text and created a
dataset of 1129 scenes from 60 seed sentences. Concurrent with
our work, Panos et al.[1] proposed ReferIt3D, a benchmark for
contrasting objects in 3D using natural and synthetic language.

However, unlike in prior works, our dataset provides the spatial
relations of the objects in the scenes with two types of text de-
scriptions, including the template descriptions and nature language
descriptions for the text-driven 3D scene generation dataset. Our
dataset contains more than 6000 scenes, which is much larger than
the datasets mentioned above.

3D Indoor scene generation: Different from the 3D Scene Re-
construction [8], 3D indoor scene generation aims to explore object
layout generation. Current works usual setting of task in indoor
scene synthesis is to retrieve 3D models from a given database and
predict the model positions for the generation of semantically and
functionally realistic indoor scenes.

Graph-based Scene Synthesis represents scenes as graphs, which
has been extensively studied in the last years. 3D scenes can be
hierarchically decomposed into multiple semantic levels of content.
Inspired by the works of indoor scene parsing [5, 22, 28] and 3D
scene understanding [25, 29], the researchers encode the 3D scenes
into different forms, such as parse trees[14], adjacency matrices[30],
scene graphs[11] and scene hierarchies[9], and then synthesize 3D
scenes by decoding those form. Huang et al. [7] propose to apply
holistic scene grammar to parse scenes as hierarchical structures
for reconstruction from a single image. Armeni et al.[2] consider
representing the entire building with rooms and objects in a scene
hierarchical representation. More recently, the performance has
been significantly enhanced by leveraging deep learning-based
approaches. Wang et al. [19] introduced an image-based generative
model with relation graphs. Li et al. [9] leveraged a recursive neural
network to model the furniture within a room with four walls
representing the objects and their relationships in a hierarchy, and
employed recursive neural networks.

Some works also present a framework for interior scene synthe-
sis with spatial prior neural networks. Ritchie et al.[15] andWang et
al.[20] proposed image-based deep convolutional generative mod-
els for related purposes. Zhang et al.[30] tackled the challenge of
free-form generation without imposing floor constraints using a
generative adversarial network and a hybrid representation. Due to
the effectiveness of transformers, the autoregressive-based model
of scene synthesis attempts to model the scenes. SceneFormer [21]
accomplished faster and more realistic 3D scene generation by
leveraging the self-attention of transformers. The method predicts
object locations in sequence based on either room layout or text
descriptions. ATISS [13] also utilizes autoregressive transformers
for tasks like automatic layout synthesis, scene completion, and
object suggestion. To further advance location recommendations
within incomplete indoor scenes, Zhou et al.[31] adopted neural
message passing. The method enables learning spatial and struc-
tural relationships between the objects by predicting the probability
of newly added objects.

Text-Conditioned Scene Synthesis: There are also otherworks
learning to produce furniture layouts under language, activity, hu-
man, and action constraints. Text-conditional generation or text-to-
scene translation tasks have been studied in recent years. Current
text-conditioned 3D scene synthesis relies on retrieving a similar
scene from the database, which does not enable generating scenes
according to the text description. For example, Ma et al.[12] intro-
duce a natural language framework to edit 3D indoor scenes with
an annotated large 3D scene database. They parse the command
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of edition from the users and transform it into a semantic scene
graph to retrieve the corresponding sub-scenes from the databases
that match the command. The 3D scene is synthesized by aligning
the augmented sub-scene with the user’s current scene. Chang et
al. [4] propose an interactive text-to-3D scene generation system,
which allows users to provide text as input. The system can use
the spatial knowledge learned from the existing databases to infer
the layout of the objects and form a scene that matches the input
description. Zhang et al. [27] propose an interactive scene synthe-
sis tool to quickly picture various potential synthesis results by
simultaneously editing groups of objects.

In this paper, our proposed work can directly generate the layout
of the objects under the constraints of the text description, which is
more flexible and accurate for implementing specific design ideas
for building 3D indoor scenes. We design a few-shot method to
apply the scenes without text annotation to train the model. We
also provide a new metric to investigate the ability of approach
models to generate correct spatial relationships among objects.

3 NEW DATASET AND METRICS FOR
TEXT-DRIVEN 3D SCENE GENERATION

While existing research has introduced some datasets containing
3D scenes, these datasets were not specifically tailored for text-
driven 3D scene generation, making it challenging to assess the
precision of the generated outcomes. To address the deficiency of
suitable datasets for constructing 3D scene models from textual
descriptions, we introduce a new dataset built upon the foundation
of the 3D-FRONT dataset. Our new proposed dataset has scenes
with multiple objects and textual descriptions for the generation
task, which includes 13 types of relationships of the objects. (More
details can be found in the Supplementary materials)

3.1 Scene Data Processing and Text generation
Scene Data Processing. Our dataset is extended from 3D-FRONT
dataset[6]. We select samples from the original dataset in three cat-
egories: bedrooms, living rooms, and dining rooms. In accordance
with the methodologies outlined in recent studies[17][10], we have
applied the identical dataset filtering procedures as employed in
the ATISS framework. These procedures involved excluding scenes
that exhibited excessive complexity, excessive simplicity, and the
absence of typical object relationships. This process yielded 4041,
900, and 813 scenes in their respective subsets. In all these scenes,
the number of objects ranged from 3 to 13, ensuring that the quan-
tity of textual descriptions would not be excessive or insufficient.
Each scene contains several types of information, including the
object class, object positions, orientations, and object coordinates
marked with eight points. We extract this information to generate
template-based textual descriptions and provide essential data for
natural language models.

Template-based textual descriptions generation. The origi-
nal 3D-FRONT dataset has no textual description for text-driven 3D
scene generation. To equip the 3D-Front dataset with text descrip-
tions, we propose an algorithm for labeling fundamental spatial
relationships by drawing insights from the extracted scene data.
The initial text content contains 𝐶2

𝑛 (n is the number of objects in
the scene) textual descriptions and is redundant. Hence, we applied

a filtering algorithm based on probability to handle the previously
acquired set of text descriptions. The filtering model considers
the occurrences of typical relationships, volumes, and distances
between objects to evaluate the importance of specific texts. By
employing this recursive calculation approach, we establish a mech-
anism that prioritizes selecting significant relationships and those
involving the key objects (the objects with big volumes and more
relationships) within the scene. Simultaneously, it maintains a cer-
tain likelihood of selecting less conspicuous relationships, thereby
upholding the diversity of textual descriptions.

Natural language descriptions generation. To get closer to
the text-driven 3D scene generation application scenario, we gen-
erate natural language descriptions with ChatGPT, a powerful lan-
guage model for dialogue. The rewritten description by the Chat-
GPT is more natural to the human inputs. It provides a more robust
evaluation of the text-driven 3D scene generation models’ capac-
ity to extract and comprehend crucial information from natural
language. Additionally, these descriptions offer a broader range of
challenges and diversity for the task.

4 APPROACH
In the text-driven 3D scene generation process, the input is a textual
description, and the task involves creating 3D indoor scenes while
adhering to specified spatial relationship constraints described in
the text. Building on the principles of contemporary 3D indoor syn-
thesis approaches, additional constraints, such as the floor shape
(represented as a top-down orthographic projection of the floor),
are also considered. An overview of our approach is illustrated in
Figure2. The approach is designed in an auto-regressive process
that inputs a top-down orthographic projection of the floor, an in-
complete scene, and the accompanying text description. According
to the inputs above, the approach generates the attributes of the
objects, which normally contain 3D coordinates, rotation, and size,
to form the final scene.

As shown in the left part of Fig.2, Our proposed approach ini-
tially employs a transformer-based scene encoder model to handle
diverse inputs, including layout features and the objects within
the scene. The outputs of the scene encoder are then applied to an
attribute prediction network to decide the attributes of the newly
generated object. During the generation process, the text features
are applied to control the relationships of the objects through the
cross-attention mechanism.

Due to the text description of the 3D scenes is not easy to obtain
in the application, we also consider the few-shot setting of the
text-driven 3D scene generation, while most of the scenes for the
model training lack text descriptions. Beyond the directly utilized
text description of the scene, as shown in the right part of Fig.2, we
propose a pseudo feature generation method to utilize the scenes
without description, which can further improve the abilities of our
approach under the few-shot setting.

4.1 Scene Feature encoders
Our approach receives various inputs, encompassing the floor lay-
out, objects in the partially assembled scene, and the accompanying
text description. To comprehensively incorporate all the informa-
tion necessary for generating new objects, we introduce multiple
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Figure 2: The framework of our proposed method.

feature encoders, including layout, object, and text encoders, as a
vital component in the initial phase of our approach.

The role of the layout encoder is to encode the layout’s shape into
a feature vector denoted as 𝐹 . This is accomplished using the ResNet-
18 network, which extracts features from a top-down orthographic
projection layout image. On the other hand, the object encoder
is designed to encode various attributes of the objects generated
in the early stages, including their category, location, angles, and
size. We transform the 𝐹𝑐 ∈ 𝑅𝐶 , the size 𝐹𝑠 ∈ 𝑅3, the location
of the centroid 𝐹𝑙 ∈ 𝑅3, and the angles 𝐹𝑎 ∈ 𝑅1 of the objects
into representations and concatenate them into a single vector.
Specifically, the category is embedded using a fully connected layer,
while positional encoding[18] is applied to the remaining attributes.
Besides, The text encoder is a pre-trained language model to encode
the text descriptions into the language model space denoted as 𝑇 .

Subsequently, we implement a transformer model to address the
layout feature 𝐹 , the object feature 𝑂 , and text description features
𝑇 for text-driven 3D scene generation. We first concatenate the
layout features 𝐹 and object features𝑂 into a sequence to feed into
the transformer model.

4.2 Attribute prediction network
The attribute prediction network plays a crucial role in acquiring
the ability to generate objects with appropriate compositions. As

illustrated in Fig.2, this network is purposefully designed to forecast
the attributes of the next object in the scene.

Firstly, the network uses a transformer model to address the
output of the token by the scene feature encoders. Specifically, there
is an empty token that represents a new object for the generation
process. The output of this empty token is regarded as the attribute
features.

Initially, it predicts the object’s category and then concatenates
the embedded location features 𝐹𝑐 with the attribute feature, result-
ing in 𝑃 × 𝐹𝑐 , to predict the object’s angle, Where 𝑃 is the injected
features mentioned in the Eq.2. Similarly, for object size prediction,
the location, angle, and size are predicted, embedded, and combined
with the attribute feature in an autoregressive manner.

4.3 Cross-attention semantic injection
To apply the text description to guide the 3D scene generation,
we designed a two-stage cross-attention semantic injection for the
generation model in both the scene encoder stage and the attribute
prediction stage.

Both the scenes feature encoders and the attribute prediction
network takes a transformer to model the different inputs. Thus,
we design a cross-attention mechanism to inject the semantics of
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the description for generation, which is described by the equations:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑

)𝑉 (1)

where 𝑄 = 𝑓𝑞 (𝑞) is obtained from the latent features 𝑞 of the trans-
former encoder, which is further input into the attribute prediction
network. 𝐾 = 𝑓𝑘 (𝑐), and𝑉 = 𝑓𝑣 (𝑐) is obtained from the embedding
of the text description𝑐 . 𝑓𝑞 ,𝑓𝑘 ,𝑓𝑣 are mapping function. Finally, We
apply a residual way to update the latent features 𝑞 as follows:

𝑃 = 𝑞 + 𝑓𝑝 (𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 )) (2)

where 𝑓𝑝 is the mapping function.

4.4 Pesudo Feature generation for few-shot
learning

Due to the lack of text description of the 3D scenes in the applica-
tion, how to utilize the scenes without text description to train a
text-driven 3D scene generationmodel is necessary to be studied for
real-world application. Beyond the directly utilized text description
of the scene, a logical approach to training the model using auto-
matically generating text descriptions. Actually, we do not need to
generate real text descriptions during the training stage. A more
efficient way is to develop a latent space of spatial relations for
the scenes. During the training stage, we can sample the pseudo
features from the latent space according to scenes, while in the
test stage, we can map the text description into the latent space for
generation.

Instead of relying on directly generated text descriptions, we
propose pseudo-feature generation for spatial relationships within
3D indoor scenes during training. First, we apply the few-shot
samples to learn a latent space of the spatial relation.

Given a 3D indoor scene, we directly embed the spatial relation
of the two objects by concatenating the object embedding and the
positions. For the objects in the 3D scene, we embed the object into
the feature𝑂 , which contains the category, location, angle, and size
features of the objects from the feature encoder. Thus, we can ran-
domly choose two objects in the scene and concatenate the object
features 𝑂𝑖 and 𝑂 𝑗 into 𝑆 = 𝑂𝑖 × 𝑂 𝑗 as the scene representation
of the objects and their relation in the scene. The representation
above cannot apply to the training because it does not correlate
with the semantic space of the text description. Thus, the next step
is to learn a common space to bridge the scene representation and
the text description.

We utilize the few-shot samples to help build the common space
to achieve the above purpose. We adopt a pre-trained language
model to encode the text description of the two objects into the text
features𝑇 . Then, two mapping functions 𝐹𝑆 and 𝐹𝑇 are designed to
reduce the gap between the text features 𝑇 and the scene represen-
tation 𝑆 . We apply the few-shot samples to pre-train the mapping
functions by minus the difference between matched mapping fea-
tures 𝐹𝑆 (𝑆) and 𝐹𝑇 (𝑇 ) in the learned latent space.

In this way, we construct the relation between the scene repre-
sentation and the text description. It allows us to apply the scene
representation to replace the text description for training and apply
the scene without text description to train the text-driven gener-
ation model. Through the learned common space, we can utilize
the mapping scene representation 𝐹𝑆 (𝑆) as the pseudo feature to

replace the text description in the training stage. While in the test-
ing stage, we use the mapping text description features 𝐹𝑇 (𝑇 ) to
control the generation process by input text description.

4.5 Training and the Objectives
This section summarizes the training objectives of our approach in
the training stage.

During the learning of the latent space of spatial relations, we
learn two mapping networks 𝐹𝑇 and 𝐹𝑆 to map the features text
description 𝑇 and spatial relation 𝑆 into a common latent space by
reducing the reconstruction loss as follows:

𝐿𝑟𝑒𝑐 = ∥𝐹𝑆 (𝑆) − 𝐹𝑇 (𝑇 )∥ (3)

where the ∥, ∥ is the 𝐿2 distance function loss.
The model is trained by reducing the difference between at-

tributes of the predicted object and the ground-truth object in the
scene. For the object category, we adopt the cross-entropy loss as
follows:

𝐿𝑐𝑎𝑡 = −
∑︁

𝑦𝑖𝑙𝑜𝑔𝑦𝑖 (4)

while 𝑦𝑖 is the predicted category of the object, and the 𝑦𝑖 is the
ground-truth category.

As for the object’s location, angle, and size, we follow [16] and
model them with a mixture of logistics distributions. For the object
attributes [𝑠, 𝑡, 𝑟 ], where object size 𝑠 ∈ 𝑅3, object location 𝑡 ∈
𝑅3 and object rotation 𝑟 ∈ 𝑅1. We apply the mixture of logistic
distributions to model them, take the object size 𝑠 as an example:

𝑠 ∼
𝐾∑︁
𝑘=1

𝜋𝑠
𝑘
𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (𝜇𝑠

𝑘
, 𝑠𝑠
𝑘
) (5)

where 𝜋𝑠
𝑘
, 𝜇𝑠
𝑘
and 𝑠𝑠

𝑘
are the weight, mean and variance of the 𝑘-

th logistic distribution. Thus, we can apply the loss to maximize
the log-likelihood of training the model. During the test stage,
we can sample the parameters of the objects from the predicted
distributions.

5 THE NEWMETRICS FOR TEXT-DRIVEN 3D
SCENE GENERATION

To evaluate the quality of the generated scenes, current works[13,
17] have adopted the FID score, KID score, and CKL score to eval-
uate the generated scenes. The FID and KID scores measure the
quality of the generated scenes, while the CKL score reflects the
category distribution of the generated scenes. However, none of the
metrics above can reflect the abilities of the approach to capture
the semantics of the text description to form the 3D scenes. Thus,
we propose new metrics from local and relation metrics to address
the issues above. The local metric indicates the accuracy of the pair
relation between the objects, while the relation metric evaluates
the model’s ability to address different relation types.

The local metric aims to evaluate the accuracy of the pair relation
between the objects, which statistics the accuracy of the relations
at the level of sentences.

Definition 1: Local Accuracy. The description sentence con-
tains objects 𝐴 and 𝐵 with relation 𝑅 = 𝑟1, 𝑟2, .., 𝑟𝑛 . Then, the sen-
tence accuracy is defined as follows:
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𝑆𝐴(𝐴, 𝐵, 𝑅) = 𝑚𝑎𝑥
∑
𝑘 1 : 𝑟𝑘 ∈ 𝑟 (𝐴∗, 𝐵∗)

𝑛
(6)

where 𝐴∗, 𝐵∗ is the objects in the generated scene, which have the
same category label with the 𝐴, 𝐵. 𝑟 (𝐴∗, 𝐵∗) is the relation of the
𝐴∗, 𝐵∗ in the generated scene. 𝑛 is the amount of the relation in
a sentence. Then, Local Accuracy (LA) for a scene 𝑆 is defined as
follows:

𝐿𝐴(𝑆) =
∑
𝑖 𝑆𝐴(𝐴𝑖 , 𝐵𝑖 , 𝑅𝑖 ) ∗ 𝑛𝑖∑

𝑖 𝑛𝑖
(7)

where 𝐴𝑖 , 𝐵𝑖 , 𝑅𝑖 is the objects and relation of the 𝑖-th sentence in
the text description. 𝑛𝑖 is the amount of the relation in the 𝑖-th
sentence.

Local accuracy is the fundamental metric for evaluating each
description pair-wise relationship. If there is a pair of objects in the
generated scene that have the same object types and relationship,
we think this relationship in the description has been accurately
generated by the approach. We can adapt theMean Local Accu-
racy (MLA) of all the scenes as the first metric in our benchmark.

We also hope to investigate the abilities of the approach to ad-
dress different types of relationships. Thus, we design another
metric in our benchmark, namely relation accuracy.

Definition 2: relation accuracy. Let (𝐴𝑖 , 𝐵𝑖 , 𝑅𝑖 ) ∈ 𝑇𝐴 be the
set of all object-relation pairs of the description sentences men-
tioned in Definition 1. (𝐴∗

𝑖
, 𝐵∗
𝑖
, 𝑅∗
𝑖
) ∈ 𝐺𝐴 is the corresponding set

of the selected object pairs in the generated scenes to maximize the
𝑆𝐴(𝐴𝑖 , 𝐵𝑖 , 𝑅𝑖 ). Then, relation accuracy (RA) of relation type 𝑅𝑇 can
be defined as follows:

𝑅𝐴(𝑅𝑇 ) =
∑
𝑖 1 : 𝑟𝑡 ∈ 𝑅𝑖 ∧ 𝑟𝑡 ∈ 𝑅∗𝑖∑

𝑖 1 : 𝑟𝑡 ∈ 𝑅𝑖
(8)

where 𝑟𝑡 is the relation in the relation type 𝑅𝑇 . Similarly, we can
obtain the Mean Relation Accuracy (MRA) of all the types of
relationships in the description as the second metric in our bench-
mark.

6 EXPERIMENT
In this section, we introduce the experiments of this paper and ana-
lyze the effectiveness of our proposed approach. First, we briefly
introduce the dataset, the evaluation protocol, and implementa-
tion details. Then, we compare the proposed approach with the
state-of-the-art methods in both quantitative and qualitative results.
Furthermore, ablation studies are conducted to investigate the ef-
fectiveness of different components in our benchmark approach.

6.1 Datasets
The experiments are conducted on our proposed dataset RelScene,
which is extended from the 3D-Front dataset[6] with the annotated
text descriptions. For a fair comparison, we follow the current
works[17][10] to adopt the same dataset filtering procedures of the
ATISS and conduct experiments on three types of indoor rooms.
The few-shot setting experiments are conducted in the Bedroom,
which only utilizes the text description of the 5% scenes, while the
rest of the text descriptions of the scenes are unavailable.

Table 1: Performance comparison on Few-shot Text-
conditioned 3D scene generation with template description

Method MLA(↑) MRA(↑) FID(↓) KID(↓) CKL(↓)
ATISS* 0.156 0.143 19.48 2.05 0.95

w/o Psesudo 0.224 0.204 18.75 1.95 0.92

Our 0.330 0.295 18.12 1.72 0.54

Table 2: Performance comparison on Few-shot Text-
conditioned 3D scene generation with natural language de-
scription

Method MLA(↑) MRA(↑) FID(↓) KID(↓) CKL(↓)
ATISS* 0.132 0.117 19.60 2.12 0.96

w/o Psesudo 0.159 0.132 19.12 1.97 0.90

Our 0.297 0.284 18.50 1.77 0.54

6.2 Evaluation Protocol
To evaluate the quality of the generated scenes, we first compare the
approach with current works that are generated without semantic
constraints. We first follow the current works[13, 17] focus on
layout generation, which directly generates the sceneswith location,
angle, and the size of each object. To compare with those methods,
we adopt the FID score, KID × 0.001 score, and CKL × 0.01 score
in the experiments. For the FID and KID scores, we render the 256
× 256 top-down orthographic projections of generated and real
scenes to extract the features for testing.

To evaluate the consistency of text, we also apply Mean Local
Accuracy (MLA) and Mean Relation Accuracy (MRA) to evaluate
the layout information predicted by the generation models, which
are introduced in Section 5. We obtain the scene information of the
objects, including the category, bounding box, and the angles in
the scene, and calculate the relation of the objects in the generated
scenes during the evaluation process.

6.3 Result analysis
6.3.1 Few-shot text-conditioned scene generation. Due to the anno-
tated text description of the 3D scenes are not easy to obtain, we
conducted the few-shot experiment to compare the abilities of the
different models. We compare with the modified ATISS methods,
which only utilize the scenes with the annotated text description for
training. Similarly, we first compare our approach with the ATISS
on MLA and MRA scores. Our approach improves the MLA scores
from 0.156 to 0.330. We can observe that our approach has more
significant improvement than text-conditioned scene generation
in both two scores. This indicates that our approach fits the role
of utilizing scenes without text descriptions to train the model
under the few-shot setting. We can see that the performance of
ATISS drops under the few-shot settings. It shows that the lack of
annotated training data impacts the performance of the generation
model. However, our approach proposes pseudo-feature generation
to utilize the scenes without a description, which can alleviate the
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Table 3: Performance comparison on 3D scene generation
without constraints

Metric Method Bedroom Living Dining

FID(↓)

DepthGAN [24] 40.15 81.13 88.10

Sync2Gen [23] 31.07 46.05 48.45

ATISS [13] 18.60 38.66 40.83

DiffuScene [17] 18.29 32.60 36.18

Ours 16.92 31.92 35.46

KID(↓)

DepthGAN [24] 18.54 50.63 63.81

Sync2Gen [23] 11.21 8.74 12.31

ATISS [13] 1.72 5.62 5.18

DiffuScene [17] 1.42 0.72 0.88

Ours 1.40 0.69 0.77

CKL(↓)

DepthGAN [24] 5.04 9.72 7.95

Sync2Gen [23] 2.24 4.96 7.52

ATISS [13] 0.78 0.64 0.69

DiffuScene [17] 0.35 0.22 0.21

Ours 0.33 0.20 0.20

impact of the lack of data, which only has a slight performance
dropping compared. The pseudo-feature generation can sample
pseudo-features based on the spatial relationships within 3D indoor
scenes during the training process, which can effectively train the
model with the scenes without description. As indicated in Table
1, the trends in method performance based on FID, KID, and CKL
scores also demonstrate that our approach surpasses the ATISS.

6.3.2 No semantic constraints scene generation methods. Although
our methodology tackles the generation of 3D indoor scenes driven
by text, our approach can also compare with the methods that
focus on scene generation without semantic constraints. As shown
in Tab.3, our approach outperforms the existing approaches by
achieving lower FID and KID scores across all four room types.
These scores serve as metrics for evaluating the similarity between
the generated scenes and real scenes. Compared to DiffuScene, we
reduced the FID score from 18.29 to 16.92 in the bedroom, 32.60
to 31.92 in the living room, and 36.18 to 35.46 in the dining room.
These lower FID and KID scores indicate that our approach produces
scenes that closely resemble real scenes. Although we only apply
the noise to replace the text description as input to generate scenes,
the prior learned from the training stage can help to improve the
quality of the scenes.

6.4 Ablation study
To investigate the effectiveness of our approach, we conducted the
ablation study without pseudo-feature generation. The evaluation
of MLA and MRA scores highlights the notable impact of pseudo-
feature generation, especially in the few-shot setting. As evidenced

Ours ATISS*

The wardrobe is back right to the 

double bed. The nightstand is directly  

back to the double bed. The second 

nightstand is direct ly front to the 

double bed.

The wardrobe is front left to the bed. 

The nightstand is directly left to the 

bed. The TV stand is directly front 

the bed.

The wardrobe is directly left to the 

singe bed. The nightstand is directly  

left to the singe bed. The second 

nightstand is  directly right to the 

s ing le  bed .  The  pendant lamp i s 

directly above the single bed.

The wardrobe is directly right to the 

double bed. The nightstand is left to 

the double bed. The TV stand is 

directly back the double bed.

(Few-shot)

The wardrobe is directly front to the 

double bed. The nightstand is directly 

front the double bed. The TV stand is 

directly right the double bed.

Figure 3: Text-conditioned scene generation. Our approach
can generate the scenes according to the description correctly.

by the results of MLA and MRA scores, the approach incorpo-
rating pseudo-feature generation outperforms the one without it.
This is attributed to the capability of pseudo-feature generation to
efficiently sample pseudo-features based on spatial relationships,
aidingmodel trainingwith scenes lacking textual descriptions. Addi-
tionally, comparing FID, KID, and CKL scores reaffirms the efficacy
of pseudo-feature generation.

We also compare the influence of the different amounts of anno-
tated data on our proposed method. From Tab.4, we can observe
that the method without pseudo feature generation has a larger
fluctuation and lower performance than our proposed method. We
can also observe that our approach has less improvement than the
ablation method. It indicates that the pseudo-feature generation
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Figure 4: Unconditioned scene generation. Red box: failure
cases with objects overlapping. Blue box: failure cases of
unreasonable combination of objects.

Table 4: Ablation study comparison on Few-shot Text-
conditioned 3D scene generation with template description

method 5% 30% 50% 70%

MLA(↑)
w/o Psesudo 0.224 0.246 0.267 0.285

Our 0.330 0.332 0.336 0.342

MRA(↑)
w/o Psesudo 0.204 0.226 0.254 0.283

Our 0.295 0.302 0.314 0.326

FID(↓)
w/o Psesudo 18.75 18.62 18.42 17.95

Our 18.12 18.05 17.92 17.85

KID(↓)
w/o Psesudo 1.95 1.95 1.87 1.82

Our 1.72 1.68 1.65 1.52

CKL(↓)
w/o Psesudo 0.92 0.82 0.78 0.74

Our 0.54 0.52 0.48 0.43

by our approach can approximately replace the text features in the
training stage.

6.5 Visualization results of the approach
Text-conditioned scene generation. We also represent the visu-
alization results of the text-conditioned scene generation in Fig. 3.
The first two lines of results are trained with the full training set
of the dataset. We can see that the ATISS fails to generate part of
the spatial relation. For example, in the first line, the ATISS gener-
ates the "left" relation of the wardrobe and bed, which is close to
the "front left" in the description. The position of the TV stand is
incorrect and conflicts with the “front" relation in the description.

However, when we apply the few-shot setting for the model train-
ing, the ATISS almost cannot generate the scenes according to the
description correctly. It is due to the training data is not enough for
the model. However, our approach benefits from the pseudo-feature
generation, which can effectively sample pseudo-features based on
spatial relationships to train the model with the scenes without
description. Thus, our approach can generate the scenes according
to the description correctly.

No semantic constraints scene generation. Examining the
visuals in Fig. 4, we compare the visualization results of our method
to the original ATISS approach, focusing specifically on scenarios
without text descriptions. Our method distinguishes itself by gen-
erating scenes with heightened diversity and improved plausibility,
with fewer occurrences of object overlap. The illustration in Fig.4
distinctly illustrates the challenges faced by the ATISS method,
particularly in dealing with significant issues of object overlap. For
example, we used the red box to highlight the objects overlapping in
Fig.4. The ATISS generates multiple objects without proper layout,
leading to overlapping issues. We also use the blue box to highlight
the unreasonable combination of multiple objects, such as inconsis-
tent rotation of the bed(line 3, column 4), misaligned nightstand(line
4, column 1) and sofa(line 4, column 4). These challenges primarily
arise from its insufficient ability to model spatial information about
objects accurately during the autoregressive generation process.

7 CONCLUSION
This paper presents a text-driven 3D indoor scene generationmethod,
which not only maintains consistent spatial relationships in align-
ment with the provided text description but can also be trained with
a few language-annotated scenes. A new benchmark to evaluate the
spatial relations in text-driven 3D scene generation. We extended
the 3D-FRONT to construct a new dataset for text-driven 3D scene
generation, which annotates the spatial relations of the objects in
the scenes and provides two types of text descriptions, including
template descriptions and nature language descriptions. Two new
metrics are proposed to investigate the ability of the approach to
generate correct spatial relationships among objects. The new met-
ric offers a means to assess the precision with which the described
spatial relationship is generated within the 3D scene. We conducted
experiments on our newly proposed dataset to compare it with the
current work with both new and traditional metrics, and the results
show that our benchmark method showcases its superior flexibility
in both scene qualities and spatial relations accuracy.

According to the results of the experiments, we can find that
many issues and challenges should be addressed in future work.
Through the experiment, the performance of the relation accuracy
scores has great potential improvement, which indicates that the
generation model should be further improved to address the whole
scene. We can also observe the performance of the approach under
the few-shot setting drops in all cases. Although our new proposed
approach can decrease the impact of the lack of description, it is
still a challenging task in further research.
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