

000 001 002 003 004 005 006 007 008 009 010 MASLEGALBENCH: BENCHMARKING MULTI-AGENT 011 012 013 014 015 016 017 018 019 020 021 022 023 024 SYSTEMS IN DEDUCTIVE LEGAL REASONING

005
006
Anonymous authors
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
888
889
889
890
891
892
893
894
895
896
897
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
987
988
989
989
990
991
992
993
994
995
995
996
997
997
998
999
999
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0598
0599
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0698
0699
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0789
0790
0791
0792
0793
0794
0795
0796
0797
0797
0798
0799
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0889
0890
0891
0892
0893
0894
0895
0896
0897
0897
0898
0

054 one of sub-tasks, including identifying the relevant legal rules and facts, establishing explicit cor-
 055 respondences between law and facts, leveraging common sense to infer additional relations, and
 056 ultimately deriving a well-grounded legal conclusion for the given issues. These subproblems can
 057 then be passed to the MAS, where the Meta-LLM collaborates with specialized agents to resolve
 058 them. To assess the potential of MAS in the legal domain, we manually configured a series of MAS
 059 systems and conducted extensive experiments.

060 Our contributions can be summarized as follows.
 061

062 **1) Legal benchmark for MAS.** To the best of our knowledge, this is the first benchmark that
 063 provides sufficiently rich context to enable multiple LLM agents to collaborate in reasoning and
 064 exploration. Additionally, it is the first benchmark that allows MAS to distill problem decomposition
 065 directly from real-world legal cases. Our benchmark is built on expert-authored court cases, each
 066 supplemented with rich contextual details and comprising a total of 950 legal questions.

067 **2) Legal MAS designs.** We manually design a series of MAS tailored to our benchmark for ex-
 068 ecuting legal tasks. These foundational MAS configurations enable us to validate the advantages of
 069 MAS over standalone LLM reasoning.

070 **3) Extensive experiments.** We conduct extensive experiments by varying MAS configurations and
 071 substituting different Meta-LLMs. The results demonstrate that introducing additional specialized
 072 agents enriches the available context, thereby enhancing LLM performance. Moreover, the ex-
 073 periments reveal notable inter-agent synergies: while individual agents may struggle when operating
 074 alone, their coordinated presence leads to substantially greater improvements.

075 2 PRELIMINARY

076 2.1 LEGAL REASONING

077 The study of legal reasoning has evolved through several principal paradigms. One line of work
 078 focuses on summarizing and structuring legal texts, making the content easier to understand for
 079 laypersons. Classic approaches include Legal Document Summarization (LDS) (Zhong & Litman,
 080 2022; Shen et al., 2022) and Legal Argument Mining (LAM) (Santin et al., 2023; Palau & Moens,
 081 2009). Another line of research emphasizes predictive modeling of new data, seeking to leverage
 082 historical information to generate insights for future scenarios. This line of research includes Legal
 083 Question Answering (LQA) (Zhang et al., 2023; Sovrano et al., 2020) and Legal judgments Predic-
 084 tion (LJP) (Huang et al., 2024; de Arriba-Pérez et al., 2022). Before the strong potential of LLMs
 085 was recognized, these tasks were typically framed as multi-class classification problems solved with
 086 classifiers.

087 Recently, with the rise of LLMs, the range of tasks and methods has expanded significantly, and their
 088 effectiveness has also been greatly improved. The powerful natural language capabilities of LLMs
 089 have inspired a range of tasks beyond classification, such as automated legal consultation (Cui et al.,
 090 2023) and contract generation (Wang et al., 2025). Subsequently, LLM agents have once again
 091 vitalized more complex forms of legal reasoning (Riedl & Desai, 2025), for instance ChatLaw (Cui
 092 et al., 2023), a multi-agent collaborative legal assistant.

093 2.2 EVALUATING LLMs IN LEGAL DOMAIN

094 As the potential applications of LLMs in the legal domain become increasingly evident, existing
 095 general-domain benchmarks fail to capture the full complexity and subtle nuances of real-world ju-
 096 dicial cognition and decision-making. To address that, LawBench conducts evaluations from three
 097 perspectives: how LLMs memorize, understand, and apply legal knowledge (Fei et al., 2023). Legal-
 098 Bench is a collaboratively built benchmark that encompasses a wider variety of tasks and legal do-
 099 mains. What's more, the emergence of LLM agents has broadened the influence of LLMs within
 100 the law of agency. For example, Riedl & Desai (2025) discusses several under-theorized key issues,
 101 including questions of loyalty and the role of third parties interacting with agents. LegalAgentBench
 102 also offers a testing dataset specifically designed for LLM agent workflows (Li et al., 2024).

108 2.3 ENHANCE LEGAL REASONING WITH MULTI-AGENT COLLABORATION
109110 LLMs generally encounter the following challenges in legal reasoning (Yuan et al., 2024): 1. In-
111 consistent reasoning. Legal reasoning typically requires multi-step, compositional logic (Servantez
112 et al., 2024). However, LLMs are prone to distraction during intermediate reasoning steps (Shi et al.,
113 2023). 2. Lack of grounding information. Legal provisions are often expressed in highly abstract
114 terms, while real-world cases involve concrete and nuanced facts. Bridging this gap and aligning
115 factual descriptions with legal concepts remains a major challenge. 3. Lack of domain knowl-
116 edge. LLMs may hallucinate inaccurate legal knowledge or struggle with gaps in common-sense
117 understanding (Dahl et al., 2024; Huang & Chang, 2022). Fundamentally, these challenges can be
118 mitigated through task decomposition and role specialization, which are core principles of MAS.119 Researchers have explored systems that incorporate auto-planners and sub-task agents to address
120 these challenges (Yuan et al., 2024). However, the training of such systems often relies heavily on
121 the correctness of the final outcome. To extend this line of research and provide a solid evaluation
122 foundation for future legal MAS, we propose MASLegalBench designed specifically to support
123 MAS.124 125 2.4 IRAC METHOD
126127 The IRAC method is a framework for organizing and structuring legal analysis, breaking down a
128 legal question into four distinct steps: Issue (the legal question), Rule (the relevant law), Application
129 (applying the law to the facts), and Conclusion (the final outcome)(IRAC Method, 2025). IRAC
130 reasoning is designed to address the limitation of classical deductive reasoning, where the truth of
131 the premises in a legal argument is often neither straightforward nor self-evident¹. IRAC provides a
132 logical framework for legal analysis as follows:133 1) **Issue.** This is the legal question raised by factual ambiguity, resolved through precedent. For
134 example, a filing deadline falling on a Sunday raises the issue of whether a Monday filing is timely.
135 2) **Rule.** It summarizes the legal principles relevant to the issue, distinguishing binding authority
136 from persuasive sources.
137 3) **Application.** This applies the rules to the specific facts, explaining why each rule does or does
138 not apply. This analysis, often considering both sides, is the core of IRAC, as it develops the answer
139 to the issue.
140 4) **Conclusion.** It directly answers the issue without introducing new rules or analysis, restating the
141 issue and providing the final determination based on the prior application of rules.143 It should be noted that each IRAC step relies on the facts: issues are identified from the facts, rules
144 are selected based on the facts, analysis interprets rules in light of the facts, and the conclusion
145 applies the rules to the facts to resolve each issue.146 147 3 TASK FORMULATIONS
148

149 150 3.1 EXTENDED IRAC REASONING

151 In this section, we refer to the IRAC method which is central to legal analysis. To address the lack
152 of common-sense reasoning highlighted in Section 2.3, we extend IRAC by introducing Common
153 Sense as a fifth component. Using this extended IRAC framework, any legal scenario can be system-
154 atically decomposed into these five components. With facts mentioned in Section 2.4, our task can
155 be described as a deductive reasoning process revolving around six elements: to resolve an **Issue**,
156 the MAS leverages **Facts** and relevant **Rules**, applies them through **Application**, and incorporates
157 **Common Sense** to derive inferred relations that ultimately lead to the **Conclusion**. Figure 1 illus-
158 trates this process. Using IRAC analysis, when an MAS is tasked with addressing a legal question,
159 it should follow the deductive reasoning steps outlined in Section 3.2.160 161 ¹Nadia E. Nedzel, *Legal Reasoning, Research, and Writing for International Graduate Students* (New York:
Aspen Publishers, 2021) <https://books.google.com/books?id=4mVIzwEACAAJ>.

162 3.2 LEGAL MAS DESIGN
163

164 1) **Problem decomposition** Meta-LLM should first decompose the case C into several potential
165 domains, including the identification of the facts, the relevant rules, the application which is alignment
166 of facts and rules, and the incorporation of common sense. This decomposition is performed
167 recursively until each sub-task s_t is atomic, meaning s_t can be completed in a single reasoning step,
168 making it more manageable for specialized agents to complete. This can be formalized as Algorithm 1.

169 2) **Completion of sub-tasks.** Each sub-task should be handled by a specialized role-
170 based agent, with different tasks being accomplished within distinct domains of knowledge.
171 Following an extended IRAC approach, we design four distinct role-based agents
172 $[A_{\text{facts}}, A_{\text{rule}}, A_{\text{analysis}}, A_{\text{commonsense}}]$, each responsible for handling a specific reasoning step.

173 **Algorithm 1** Recursive Task Decomposition for Meta-LLM
174

175 1: **Initialize:** MetaLLM, Case introduction C , Guideline prompt for task decomposition p_{template}
176 2: Sub-tasks queue S_{queue} , Sub-tasks results S
177 3: Compute sub-task set: $[s_{t_1}, s_{t_2}, \dots] = \text{MetaLLM}(C, p_{\text{template}})$
178 4: $S_{\text{queue}} = S_{\text{queue}} \cup [s_{t_1}, s_{t_2}, \dots]$
179 5: **for** each sub-task s_{t_i} in $[s_{t_1}, s_{t_2}, \dots]$ **do**
180 6: Evaluate s_{t_i} for atomicity
181 7: **if** s_{t_i} is not atomic **then** $S_{\text{queue}} = S_{\text{queue}} \cup \text{MetaLLM}(s_{t_i}, p_{\text{template}})$
182 8: **else** $S = S \cup \{s_{t_i}\}$
183 9: **end if**
184 10: **end for**
185 11: **return** S

186 3) **Integration by the Meta-LLM.** After receiving the outputs from all sub-tasks, the Meta-LLM
187 is responsible for integrating the results, supplementing any missing reasoning if necessary, and
188 ultimately deriving the final conclusion.

189 Ultimately, the complete algorithm for a legal MAS can be summarized in Algorithm 2 .

190 **Algorithm 2** Legal MAS
191

192 1: **Initialize:** MetaLLM, Case introduction C , Guideline prompt for task decomposition p_{template}
193 2: Guideline prompt for task accomplishment p_{task}
194 3: Role-based agents $A = [A_{\text{facts}}, A_{\text{rule}}, A_{\text{analysis}}, A_{\text{commonsense}}]$, Answer list $R = []$
195 4: Compute sub-task set: Sub-tasks results $S = \text{Task Decomposition}(\text{MetaLLM}, C, p_{\text{template}})$
196 5: **for** each sub-task s_{t_i} in S **do**
197 6: Evaluating s_{t_i} to the appropriate role-based agent A_{t_i} from A
198 7: Append $A_{t_i}(s_{t_i}, p_{\text{task}})$ to R
199 8: **end for**
200 9: **return** $\text{MetaLLM}(C, R)$

201 4 MASLEGALBENCHMARK
202

203 In this section, we present our choice of the General Data Protection Regulation (GDPR)² as the
204 legal scenario. We collected real-world reports published by legal experts and extracted various
205 types of knowledge from these reports to generate our benchmark.

206 4.1 DATA COLLECTION
207

208 Our data collection primarily focuses on simulating experts' problem decomposition processes and
209 on capturing rich contextual knowledge to conduct deductive reasoning. To ensure our data con-
210 tains the complete context, we gathered real GDPR court cases authored by experts, each of which
211 provides a detailed and comprehensive account of a specific case. All data are sourced from the
212 GDPR Enforcement Tracker³, under the UK category. The original data are provided in PDF for-
213 mat with multi-level headings. We employed an LLM agent for PDF analysis, complemented by
214 human checks, to construct a hierarchical tree structure for each document. For more details about
215 the source data, please refer to Appendix A.

²<https://gdpr-info.eu/>

³<https://www.enforcementtracker.com/>

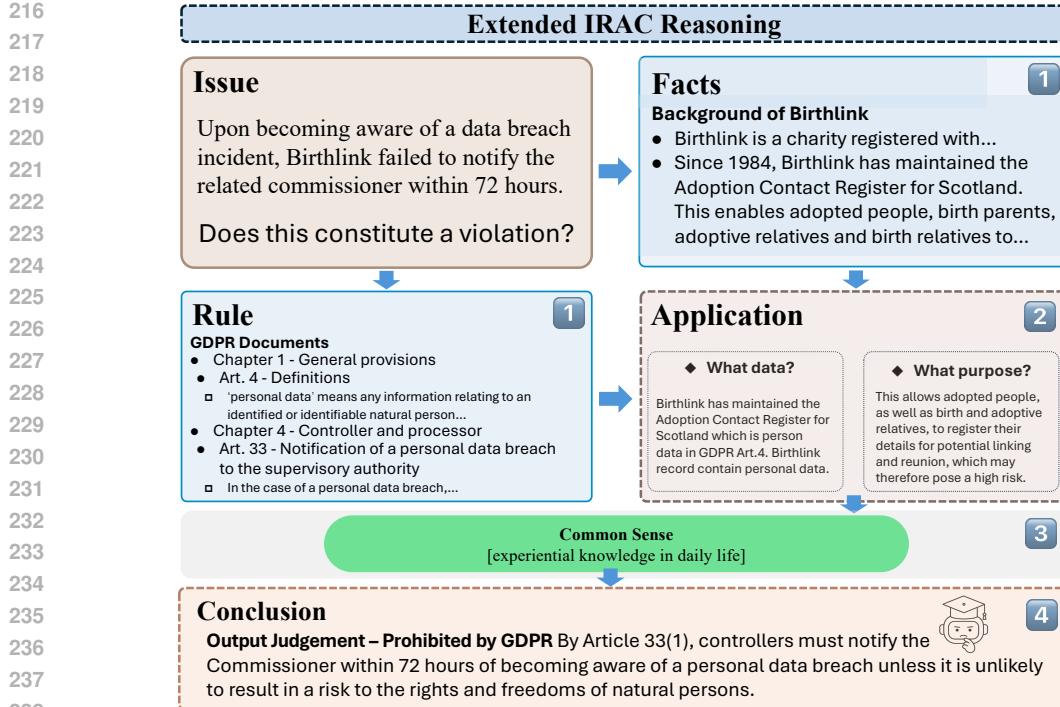


Figure 1: An overview of the enhanced IRAC reasoning process. Here, we take Birthlink (a company) as an example. In this case, a single issue is decomposed into several smaller questions, which are assigned to different agents: identifying the relevant facts and rules, inferring their alignment, and supplementing with common sense, before passing the results to the Meta-LLM for the final conclusion.

4.2 BENCHMARK CONSTRUCTION

After constructing the structure of each document, we relied on this hierarchical tree to identify the sections shared among all documents. We conclude that each document contains several sections, including at least an introduction, related legal framework, case background, legal nature of every entity, the commissioner's findings of infringement, final decision, calculation of penalties and an annex. Intuitively, we define the following mapping relations to bridge the actual data with our conceptual framework discussed in Section 3:

Document Section	Mapping Type
Related legal framework	Legal rules
Case background	Reality facts
Legal nature of every entity	Application (Rule–Facts Alignment)
Commissioner's findings of infringement	Issue & Conclusion

Furthermore, we consider the infringement findings of the commissioner as comprising two parts: the issues and the corresponding legal conclusion. From the collected reports, we aim to construct a set of legal questions, framing the problem so that, given reality issues as input, the Meta-LLM is tasked with generating the corresponding legal conclusion.

We employ DeepSeek-v3.1 to extract each issue from the reports and extract corresponding legal opinions as conclusion. In total, we construct 950 multiple choice questions (MCQs), comprising 647 yes/no questions and 303 single choice questions with four options each. For more details on our benchmark construction and statistics, please refer to Appendix B.

4.3 HUMAN EVALUATION

To verify the quality of the extracted sub-tasks, we conducted a human evaluation along the following three dimensions:

- 1) **Faithfulness.** Assesses whether the MCQs maintain semantic consistency to the original text.

270 2) **Clarity**. Assesses whether the extracted MCQs are expressed in a clear and unambiguous manner.

271 3) **Expertise**. Assesses whether the MCQs reflect appropriate legal expertise and professional depth.

272
273 The results are presented in Table 1. We in-
274 vited three students with legal backgrounds
275 or prior experience in legal-related research.
276 A total of 30 samples were randomly se-
277 lected, each including the original text, the
278 extracted question, and the corresponding an-
279 swer. Each sample was evaluated in three di-
280 mensions on a binary scale (0 or 1). This
281 result (over 90% on every criterion) demon-
282 strates that our benchmark consistently main-
283 tains high quality.

	Faithfulness	Clarity	Expertise
Evaluator 1	96.67	96.67	93.33
Evaluator 2	100	100	100
Evaluator 3	80.00	90.00	90.00
Average	92.22	95.56	94.44

284 Table 1: Human evaluation for our extracted bench-
285 mark. The results are reported in percentage form.

286 5 EXPERIMENT SETTINGS

287 In this section, we present the key experimental configurations. We manually designed a series
288 of simple MAS setups, to systematically investigate the potential of MAS composed of role-based
289 agents in the legal domain.

290 5.1 BENCHMARK SETUPS

291 As discussed in Section 4.2, our benchmark consists of two components: a predefined knowledge
292 base containing facts, rules, and legal analyses that support the derivation of alignment and inferred
293 relations, together with a set of MCQs that present issues and their corresponding conclusions. We
294 aim to simulate the workflow described in Section 3.2, where a complex legal question is decom-
295 posed into a series of smaller elementary problems, each assigned to agents specialized in different
296 reasoning steps. A RAG-based method is then employed to retrieve relevant outputs from these
297 agents, assisting the Meta-LLM in generating the final answers. In practice, our experiments handle
298 different steps in distinct ways. Specifically, since rules and facts are explicitly provided in the orig-
299 inal data, we adopt a straightforward approach by directly leveraging the segmented source data to
300 simulate the output of the corresponding agents. In contrast, application and common sense require
301 additional processing of the original data, which is carried out by the corresponding agents. As a
302 final judgments of the questions, Meta-LLM may generate answers (e.g., A, B, C, D, Yes, No) or
303 produce a refusal response when the available context is insufficient. All prompt templates used for
304 the agents and the Meta-LLM are provided in Appendix C.

305 We examine the performance of activating different sub-agents. In the following results, we use the
306 abbreviations LR, F, AR, and CS to denote the activation of agents managing Legal Rules, Facts,
307 Alignment Relations (Application), and Common Sense, respectively. The “+” symbol indicates
308 the simultaneous activation of multiple agents. For example, LR+F+AR+CS represents the full
309 deductive reasoning process, with agents from all four reasoning steps activated.

311 5.2 MODELS SELECTION

312 Our method adopts a RAG framework, where we implement two retrieval strategies: BM25
313 and embedding-based search (using the sentence-transformers/all-MiniLM-L6-v2 model (Hugging
314 Face)). In our experiments, all agents designed for sub-tasks are implemented with DeepSeek-v3.1,
315 while Meta-LLM explores a variety of leading open-source and closed-source models.

316 In the subsequent results, we report performance using the ‘search method@hit’ notation. For ex-
317 ample, ‘BM25@3’ indicates that BM25 is used as the search method and retrieve the top-3 ranked
318 outputs from sub-tasks, while ‘EMB’ indicates the use of embedding search.

321 5.3 BASELINES SELECTION

322 Since LR and F are directly provided in the original text, our agents do not perform additional
323 processing beyond segmentation. Therefore, we select experimental groups containing only these

two steps as baselines, namely LR, F, and LR+F. Moreover, this set of baselines can also be regarded as purely RAG-based LLMs, highlighting the necessity of MAS collaboration. In addition, we report the precision of a fully random choice baseline without refusal, which is 42.03% listed in the first line of Table 2.

6 EXPERIMENT RESULTS

In this section, we conduct extensive experiments to evaluate the performance of the MAS series we designed on our benchmark.

Meta-LLM	Activated Agents	Acc. (%)					
		BM25@1	BM25@3	BM25@5	EMB@1	EMB@3	EMB@5
Random	None	42.03	—	—	—	—	—
Llama3.1-8B	F	73.01	<u>81.26</u>	78.21	72.63	76.95	79.05
	LR	<u>76.22</u>	80.63	80.84	79.68	83.26	85.89
	F+LR	74.95	73.55	78.21	76.95	81.58	83.68
	AR	73.26	67.44	78.42	81.16	<u>84.21</u>	84.32
	CS	<u>82.84</u>	75.89	<u>82.74</u>	<u>85.89</u>	<u>84.84</u>	<u>86.21</u>
	AR+CS	72.84	77.58	78.11	<u>82.52</u>	82.84	83.26
Qwen2.5-7B	F+LR+AR	75.68	<u>81.05</u>	<u>84.84</u>	78.42	81.16	<u>85.89</u>
	F+LR+AR+CS	76.11	78.95	82.32	79.26	84.00	84.74
	F	53.79	60.42	63.47	57.16	64.11	68.53
	LR	58.95	62.95	70.63	<u>68.00</u>	<u>73.47</u>	<u>76.95</u>
	F+LR	60.53	64.95	68.63	62.00	69.58	72.42
	AR	52.53	52.74	58.84	66.95	<u>72.74</u>	74.42
Qwen3-8B	CS	62.84	<u>69.79</u>	<u>73.16</u>	<u>69.37</u>	72.00	74.53
	AR+CS	51.89	54.53	58.95	66.42	72.00	75.37
	F+LR+AR	<u>62.94</u>	66.00	70.84	64.84	70.11	74.21
	F+LR+AR+CS	<u>62.74</u>	<u>67.26</u>	<u>72.95</u>	64.95	70.95	<u>75.47</u>
	F	52.84	58.00	61.79	56.84	63.26	65.16
	LR	47.21	46.11	54.42	59.05	65.75	<u>70.32</u>
DeepSeek-v3.1	F+LR	52.63	53.26	59.58	57.05	<u>66.32</u>	<u>69.68</u>
	AR	46.89	46.11	48.42	<u>59.47</u>	61.89	62.63
	CS	53.47	57.26	58.95	57.37	61.12	60.63
	AR+CS	46.05	46.84	50.16	<u>59.79</u>	61.01	62.59
	F+LR+AR	<u>54.84</u>	<u>62.32</u>	<u>66.42</u>	58.84	<u>66.11</u>	68.74
	F+LR+AR+CS	<u>53.79</u>	<u>60.95</u>	<u>66.53</u>	59.33	64.95	67.58
GPT-4o-mini	F	34.00	45.47	50.53	44.84	56.21	59.26
	LR	28.84	37.37	46.32	50.11	57.05	59.79
	F+LR	36.84	38.32	46.32	<u>52.32</u>	<u>60.95</u>	<u>64.32</u>
	AR	24.00	30.21	34.84	41.79	45.26	48.42
	CS	29.58	34.95	39.37	39.37	40.00	42.95
	AR+CS	24.95	30.63	35.26	42.11	45.16	48.00
GPT-4o-mini	F+LR+AR	<u>40.84</u>	<u>52.11</u>	<u>56.84</u>	<u>52.21</u>	<u>60.21</u>	<u>63.05</u>
	F+LR+AR+CS	<u>40.95</u>	<u>51.89</u>	<u>54.42</u>	52.00	59.79	62.53
	F	65.05	73.89	78.00	70.00	77.37	79.68
	LR	57.37	70.21	79.79	<u>76.95</u>	<u>82.84</u>	<u>84.32</u>
	F+LR	66.74	72.32	78.32	73.26	<u>81.58</u>	<u>82.95</u>
	AR	61.26	67.26	70.32	74.00	79.16	79.16

Table 2: The results of different models on our benchmark vary across contexts and retrieval methods in legal judgment. **Bold-underlined** values indicate the context that yields the best performance, while **bold** values denote the second-best.

378
379

6.1 MAIN RESULTS

380
381

Our main results are presented in Table 2, which suggest the following findings:

382
383
384
385
386
387

1) *Richer contexts can lead to better performance.* The results indicate that involving more agents and providing richer reasoning steps generally leads to improved performance. For instance, 'BM25@5' outperforms 'BM25@3' when using the GPT-4o-mini model. Similarly, F+LR+AR+CS surpasses AR+IR with the DeepSeek-v3.1 model. This effect is more pronounced in larger-parameter models, such as DeepSeek-v3.1 and GPT-4o-mini, suggesting that the improvements brought by MAS enable the Meta-LLM to better evaluate the execution results of these agents.

388
389
390
391
392

Notably, while performance within the same context is nearly proportional to the number of retrieved chunks, the advantage of additional agents becomes less evident when comparing across different contexts. These results lead us to two preliminary insights: (1) enriched contexts with a greater number of agents generally enhance performance, and (2) the contributions of different agents vary, with their interactions remaining insufficiently understood.

393
394
395
396
397

2) *Our designed MAS demonstrates clear benefits in enhancing performance.* In Table 2, the shaded areas correspond to the MAS we designed, which extend the agents' capabilities to handle alignment relations and infer relations based on common sense. Our results show that 44 out of the 60 top performances (bold values) are achieved under our designed MAS, demonstrating the effectiveness of our MAS design as well as its potential for legal tasks.

398
399
400
401
402
403
404

3) *The best performance is often achieved when agents handling Legal Rules or Common Sense are activated.* From the best-performing results in the table, we observe that, with the exception of Llama3.1-8B-Instruct achieving its top performance under the F with BM25@3, all other peak results (bold-underlined values) occur in settings that include either LR or CS. This observation recalls the issue mentioned in Section 2.3, where LLMs may hallucinate regarding common sense and legal knowledge, highlighting the importance of carefully integrating MAS in legal reasoning tasks.

405

4) *When heavily relying on the outputs generated by agents, the Meta-LLM may often refuse to perform the task due to insufficient context.*

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

Another notable finding is particularly evident with DeepSeek-v3.1 perform as Meta-LLM, whose accuracy under BM25 retrieval ranges only from 24.00% to 39.37%, even lower than random choice baseline. We conduct a case study on this phenomenon to investigate the underlying reasons, as illustrated in Figure 3. In this table, we report the proportion of cases where the Meta-LLM refused to provide an answer due to insufficient information. In the table, we observe that AR and AR+CS exhibit relatively high refusal rates, while F+LR+AR shows a lower refusal rate compared to F+LR. This indicates that activating AR agents may cause confusion and hinder effective judgment. This finding cautions that MAS should aim for collaborative integration of multiple agents rather than relying on a small subset of agents.

424
425

6.2 AGREEMENT ACROSS DIFFERENT MAS CONFIGURATIONS

426
427
428
429
430
431

In this subsection, we focus on the interplay between agents by examining the agreement across different MAS configurations. We first use the results of MAS led by DeepSeek-v3.1 as an illustrative example. In Figure 3, we first compute the Cohen's Kappa agreement of DeepSeek-v3.1 under the BM25 retrieval setting across different configurations. Each cell reports the average agreement over 'BM25@1, @3, @5' under the same context and model. The three lowest pairwise agreements are highlighted in the figure with their values explicitly shown. The results show that agreement is lowest between 'LR systems' or 'F systems'. This finding motivated us to further investigate heatmaps

Context	Refusal Rate (%)		
	BM25@1	BM25@3	BM25@5
F	18.21	9.58	8.21
LR	19.37	12.84	10.11
F + LR	16.21	12.00	9.26
AR	22.32	16.63	14.00
CS	16.63	12.42	11.05
AR+CS	21.16	16.74	14.21
F+LR+AR	15.05	8.53	8.21
F+LR+AR+CS	15.68	8.42	8.32

Table 3: Refusal rates of DeepSeek-v3.1 across different configurations under BM25 retrieval.

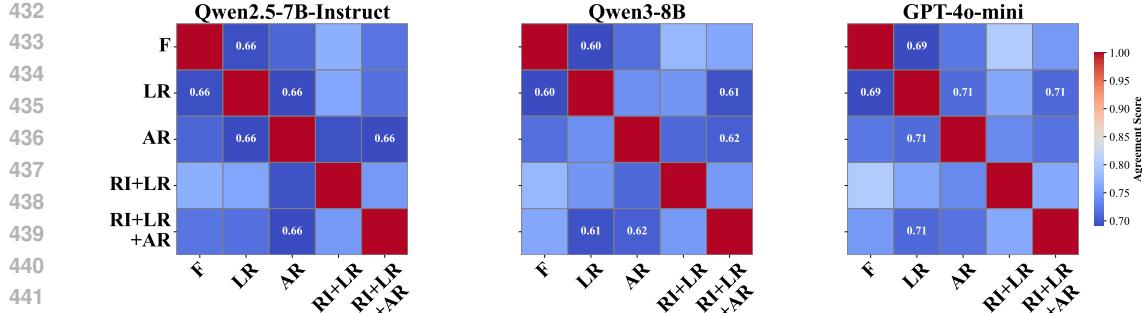


Figure 2: Heatmap of Cohen’s Kappa agreement across individual knowledge types and models. across multiple Meta-LLMs in Figure 2. These results reveal a common pattern: MAS with only LR and F tend to produce more inconsistent answers.

We then turn to an independent analysis of F, LR, F+LR, and F+LR+AR. Table 2 reveals a clearer trend under the BM25 retrieval method: performance generally follows the order F+LR+AR > F+LR > F/LR. When viewed through the lens of Figure 3 and Figure 2, this trend is further illustrated in the relatively high agreement between F+LR+AR and F+LR, as well as the consistently high agreement between F+LR and smaller systems (F and LR). In contrast, F+LR+AR shows noticeably larger discrepancies with F and LR. These results illustrate an iterative improvement process in MAS development, beginning with single-agent operations, progressing to dual-agent setups that collect both reality and legal knowledge, and culminating in more complex multi-agent systems that incorporate deductive reasoning. This process underscores the importance of collaborative interactions among multiple agents.

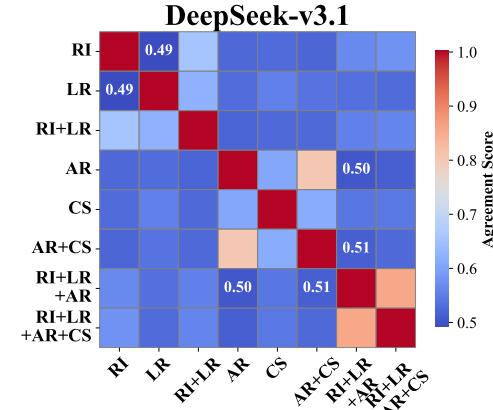


Figure 3: Heatmap of Cohen’s Kappa agreement across different configurations for DeepSeek-v3.1 under the BM25 setting.

7 COMPARISON WITH EXISTING BENCHMARKS

To emphasize the distinctive features of our benchmark and our contributions, Table 4 compares current legal benchmarks for LLMs with our proposed benchmark. To better illustrate our motivation, the criteria here are specifically designed to accommodate MAS. There already exist many comprehensive benchmarks which cover a wide range of tasks and various areas of law. Our work serves as a complement to these benchmarks, and we present the following comparison.

Benchmark Name	Taxonomy	Data Type	Task Decomposition	Real Data?	Fine-grained?
LawBench (Fei et al., 2023)	Fixed	Hibird	✗	✓	✗
LegalAgentBench (Li et al., 2024)	Fixed	Chinese law	✗	✓	✓
AgentsBench (Jiang & Yang, 2025)	Fixed	Criminal Law	✓	✗	✗
MASLegalBench (Ours)	Flexible	Court Cases	✓	✓	✓

Table 4: Comparisons among existing benchmark on LLMs.

8 CONCLUSION

In this study, to better leverage MAS for legal applications, we constructed the first benchmark tailored to the unique strengths of MAS, grounded in the deductive reasoning commonly used in legal analysis. To gain further insights, we developed a series of MAS designed to handle legal tasks and conducted experiments using these systems. The results indicate that the complex reasoning required in legal tasks and the adaptive interactions within MAS both point toward the tendency of multiple LLMs to collaborate through division of labor. However, a limitation of our work is that we do not consider automated MAS systems, which represent a major trend in MAS development.

486 ETHICS STATEMENT
487

488 We declare that all authors of this paper acknowledge the ICLR Code of Ethics. We generate the
489 first benchmark on the integrity of MAS and legal tasks and a well-defined knowledge base based on
490 publicly available enforcement reports from experts. During the download of relevant reports, we
491 adhere to the official usage and access rules of the GDPR Enforcement Tracker⁴. Human evaluations
492 and annotations are conducted by three students with legal backgrounds or prior experience in legal-
493 related research to ensure the quality of the synthetic benchmark. Annotators are compensated at a
494 rate of 15 USD per hour, above the local minimum wage. To the best of our knowledge, this work
495 fully complies with open-source agreements.

496 Furthermore, we believe our benchmark can serve as a valuable asset for existing applications of
497 LLMs in legal domain by advancing the application of MAS in the legal domain.

499 REPRODUCIBILITY STATEMENT
500

501 To ensure the reproducibility of our experimental results, we put our detailed implementations under
502 Section 5. We also provide details about the source data and our benchmark in Appendix A
503 and Appendix B. All the prompt templates used in our experiments are listed in Appendix C. Our
504 reproducible code is also submitted as the Supplementary Materials. We will open-source the repro-
505 ductible data and code.

507 REFERENCES
508

509 Anthropic. Introduction to model context protocol, 2024. <https://modelcontextprotocol.io/introduction>.

510 Jiaxi Cui, Munan Ning, Zongjian Li, Bohua Chen, Yang Yan, Hao Li, Bin Ling, Yonghong Tian, and
511 Li Yuan. Chatlaw: A multi-agent collaborative legal assistant with knowledge graph enhanced
512 mixture-of-experts large language model. *arXiv preprint arXiv:2306.16092*, 2023.

513 Matthew Dahl, Varun Magesh, Mirac Suzgun, and Daniel E Ho. Large legal fictions: Profiling legal
514 hallucinations in large language models. *Journal of Legal Analysis*, 16(1):64–93, 2024.

515 Francisco de Arriba-Pérez, Silvia García-Méndez, Francisco J González-Castaño, and Jaime
516 González-González. Explainable machine learning multi-label classification of spanish legal
517 judgements. *Journal of King Saud University-Computer and Information Sciences*, 34(10):
518 10180–10192, 2022.

519 Zhiwei Fei, Xiaoyu Shen, Dawei Zhu, Fengzhe Zhou, Zhuo Han, Songyang Zhang, Kai Chen,
520 Zongwen Shen, and Jidong Ge. Lawbench: Benchmarking legal knowledge of large language
521 models, 2023. URL <https://arxiv.org/abs/2309.16289>.

522 Saktharam Gawade, Shivam Akhouri, Chinmay Kulkarni, Jagdish Samant, Pragya Sahu, Aastik, Jai
523 Pahal, and Saswat Meher. Multi agent based medical assistant for edge devices, 2025. URL
524 <https://arxiv.org/abs/2503.05397>.

525 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
526 *arXiv preprint arXiv:2212.10403*, 2022.

527 Wanhong Huang, Yi Feng, Chuanyi Li, Honghan Wu, Jidong Ge, and Vincent Ng. Cmdl: A large-
528 scale chinese multi-defendant legal judgment prediction dataset. In *Findings of the Association
529 for Computational Linguistics ACL 2024*, pp. 5895–5906, 2024.

530 Hugging Face. sentence-transformers/all-minilm-l6-v2. <https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2>.

531 IRAC Method. Irac methodology. <https://www.iracmethod.com/irac-methodology>,
532 2025. Accessed: 2025-09-24.

533
534
535
536
537
538
539
4⁴<https://www.enforcementtracker.com/>

540 Cong Jiang and Xiaolei Yang. Agentsbench: A multi-agent llm simulation framework for legal
 541 judgment prediction. *Systems*, 13(8), 2025. ISSN 2079-8954. doi: 10.3390/systems13080641.
 542 URL <https://www.mdpi.com/2079-8954/13/8/641>.

543

544 Zixuan Ke, Fangkai Jiao, Yifei Ming, Xuan-Phi Nguyen, Austin Xu, Do Xuan Long, Minzhi Li,
 545 Chengwei Qin, Peifeng Wang, Silvio Savarese, et al. A survey of frontiers in llm reasoning:
 546 Inference scaling, learning to reason, and agentic systems. *arXiv preprint arXiv:2504.09037*,
 547 2025a.

548 Zixuan Ke, Austin Xu, Yifei Ming, Xuan-Phi Nguyen, Caiming Xiong, and Shafiq Joty. Mas-zero:
 549 Designing multi-agent systems with zero supervision, 2025b. URL <https://arxiv.org/abs/2505.14996>.

550

551 Aobo Kong, Wentao Ma, Shiwan Zhao, Yongbin Li, Yuchuan Wu, Ke Wang, Xiaoqian Liu, Qicheng
 552 Li, Yong Qin, and Fei Huang. Sdpo: Segment-level direct preference optimization for social
 553 agents, 2025. URL <https://arxiv.org/abs/2501.01821>.

554

555 Haitao Li, Junjie Chen, Jingli Yang, Qingyao Ai, Wei Jia, Youfeng Liu, Kai Lin, Yueyue Wu, Guozhi
 556 Yuan, Yiran Hu, Wuyue Wang, Yiqun Liu, and Minlie Huang. Legalagentbench: Evaluating llm
 557 agents in legal domain, 2024. URL <https://arxiv.org/abs/2412.17259>.

558

559 Junkai Li, Yunghwei Lai, Weitao Li, Jingyi Ren, Meng Zhang, Xinhui Kang, Siyu Wang, Peng
 560 Li, Ya-Qin Zhang, Weizhi Ma, and Yang Liu. Agent hospital: A simulacrum of hospital with
 561 evolvable medical agents, 2025. URL <https://arxiv.org/abs/2405.02957>.

562

563 Raquel Mochales Palau and Marie-Francine Moens. Argumentation mining: the detection, classifi-
 564 cation and structure of arguments in text. In *Proceedings of the 12th international conference on
 565 artificial intelligence and law*, pp. 98–107, 2009.

566

567 Mark O. Riedl and Deven R. Desai. Ai agents and the law, 2025. URL <https://arxiv.org/abs/2508.08544>.

568

569 Piera Santin, Giulia Grundler, Andrea Galassi, Federico Galli, Francesca Lagioia, Elena Palmieri,
 570 Federico Ruggeri, Giovanni Sartor, and Paolo Torroni. Argumentation structure prediction in
 571 cjeu decisions on fiscal state aid. In *Proceedings of the Nineteenth International Conference on
 572 Artificial Intelligence and Law*, pp. 247–256, 2023.

573

574 Sergio Servantez, Joe Barrow, Kristian Hammond, and Rajiv Jain. Chain of logic: Rule-based
 575 reasoning with large language models. *arXiv preprint arXiv:2402.10400*, 2024.

576

577 Zejiang Shen, Kyle Lo, Lauren Yu, Nathan Dahlberg, Margo Schlanger, and Doug Downey. Multi-
 578 lexsum: Real-world summaries of civil rights lawsuits at multiple granularities. *Advances in
 579 Neural Information Processing Systems*, 35:13158–13173, 2022.

580

581 Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael
 582 Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context.
 583 In *International Conference on Machine Learning*, pp. 31210–31227. PMLR, 2023.

584

585 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 586 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing
 587 Systems*, 36:8634–8652, 2023.

588

589 Francesco Sovrano, Monica Palmiran, Fabio Vitali, et al. Legal knowledge extraction for knowledge
 590 graph based question-answering. *Frontiers in Artificial Intelligence and Applications*, 334:143–
 591 153, 2020.

592

593 Steven H. Wang, Maksim Zubkov, Kexin Fan, Sarah Harrell, Yuyang Sun, Wei Chen, Andreas
 594 Plesner, and Roger Wattengofer. Acord: An expert-annotated retrieval dataset for legal contract
 595 drafting, 2025. URL <https://arxiv.org/abs/2501.06582>.

596

597 Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica,
 598 and Joseph E. Gonzalez. Berkeley function calling leaderboard. https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html,
 599 2024.

594 Yuzhe Yang, Yifei Zhang, Minghao Wu, Kaidi Zhang, Yunmiao Zhang, Honghai Yu, Yan Hu, and
595 Benyou Wang. Twinmarket: A scalable behavioral and social simulation for financial markets,
596 2025. URL <https://arxiv.org/abs/2502.01506>.

597

598 Weikang Yuan, Junjie Cao, Zhuoren Jiang, Yangyang Kang, Jun Lin, Kaisong Song, tianqianjin
599 lin, Pengwei Yan, Changlong Sun, and Xiaozhong Liu. Can large language models grasp legal
600 theories? enhance legal reasoning with insights from multi-agent collaboration, 2024. URL
601 <https://arxiv.org/abs/2410.02507>.

602

603 Pengsong Zhang, Xiang Hu, Guowei Huang, Yang Qi, Heng Zhang, Xiuxu Li, Jiaxing Song, Ji-
604 abin Luo, Yijiang Li, Shuo Yin, Chengxiao Dai, Eric Hanchen Jiang, Xiaoyan Zhou, Zhenfei
605 Yin, Boqin Yuan, Jing Dong, Guinan Su, Guanren Qiao, Haiming Tang, Anghong Du, Lili Pan,
606 Zhenzhong Lan, and Xinyu Liu. aixiv: A next-generation open access ecosystem for scientific
607 discovery generated by ai scientists, 2025. URL <https://arxiv.org/abs/2508.15126>.

608

609 Weiqi Zhang, Hechuan Shen, Tianyi Lei, Qian Wang, Dezhong Peng, and Xu Wang. Glqa: A
610 generation-based method for legal question answering. In *2023 International Joint Conference
611 on Neural Networks (IJCNN)*, pp. 1–8. IEEE, 2023.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A SOURCE DATA DESCRIPTIONS**
649650 **A.1 SOURCE DATA STATISTICS**
651652 Our source files are provided in PDF format, from which the dataset is constructed using publicly
653 available GDPR enforcement cases. In total, it contains 15 distinct cases. Each case document
654 ranges from 30 to 153 pages, with an average length of 59.80 pages. After preprocessing and
655 segmentation, each case document was divided into a set of minimal text chunks, ranging from 67 to
656 439 per file, with a average of approximately 185.53 chunks. This granularity ensures manageable
657 input sizes for downstream retrieval and reasoning tasks. Table 5 presents the length of each section
658 from the source documents, quantified by the number of chunks, which serves as the basis for
659 subsequent analysis.
660

Section	Min	Max	Average
Introduction	3	18	7.13
Legal Framework	2	55	18.27
Background	2	86	25.27
Nature	2	100	18.29
Infringements	14	129	59.27
Decision	1	118	28.93
Penalty	2	61	22.40
Annex	6	31	8.46

670 Table 5: Section length statistics in source documents (measured in chunks)
671672 **A.2 SOURCE DATA SAMPLE**
673674 Similar to Figure 1, we provide an illustrative example using the original Birthlink case file⁵. The
675 following illustrates the agenda structure of a source case document. The number on the right
676 indicates the starting chunk index of each section.
677

• I. INTRODUCTION AND SUMMARY	1
• II. LEGAL FRAMEWORK FOR THIS PENALTY NOTICE	11
• III. BACKGROUND TO THE INFRINGEMENTS	13
– A. Birthlink	14
– B. Destruction of Linked Records	20
– C. Birthlink’s Internal Investigation and Notification	30
– D. Impact of the Relevant Processing	35
• IV. THE COMMISSIONER’S FINDINGS OF INFRINGEMENT	52
– A. Controllership and jurisdiction	52
– B. Nature of the personal data and context of the processing	59
– C. The infringements — Articles 5(1)(f) and 32(1)-(2) UK GDPR	69
– D. The infringements — Article 5(2) UK GDPR	87
– E. The infringements — Article 33 UK GDPR	101
• V. DECISION TO IMPOSE A PENALTY	112
– A. Legal Framework — Penalties	112
– B. The Commissioner’s Decision on whether to Impose a Penalty	115
• VI. Calculation of Penalty	176
– A. Step 1 — Assessment of the seriousness of the infringement	180
– B. Step 2 — Accounting for turnover	185
– C. Step 3 — Calculation of the starting point	192

698 ⁵The source link for Birthlink reports: <https://ico.org.uk/media2/bvljtpy2/birthlink-mpn.pdf>
699
700
701

702	– D. Step 4 — Adjustment to take into account any aggravating or mitigating factors	193
703	– E. Step 5 — Adjustment to ensure the fine is effective, proportionate and dissuasive	197
704	– F. Financial hardship	203
705	– G. Conclusion-Penalty	211
706	• VII. PAYMENT OF THE PENALTY	212
707	• VIII. RIGHTS OF APPEAL	215
708	• Annex	
709		
710		
711	A.3 MAPPING OF SOURCE DATA AND IRAC METHOD	
712		
713	This appendix illustrates how each section of the source case documents corresponds to elements of	
714	the IRAC reasoning framework. Chunk numbers indicate the starting position of each section, and	
715	sub-sections are mapped to specific reasoning steps. As mentioned in Section 4.2, each section is	
716	mapped to the corresponding IRAC elements, establishing a clear relationship between the source	
717	data and the deductive reasoning process.	
718	Such a mapping allows us to systematically analyze how legal analysis is structured within each case,	
719	and how different reasoning steps are distributed throughout the document. By examining the chunk	
720	positions and section lengths, we can observe patterns in how legal arguments are developed, which	
721	sections tend to be more densely packed with rules versus facts. Analysis of the distributions shows	
722	that Rule sections are highly concentrated: they contain few chunks but carry key legal reasoning.	
723	In contrast, sections like Background and Infringements are larger, capturing detailed facts. This	
724	pattern indicates that in real-world cases, rules are concise yet critical, guiding the application and	
725	inference steps in the IRAC process.	
726		
727		
728		
729		
730		
731		
732		
733		
734		
735		
736		
737		
738		
739		
740		
741		
742	B BENCHMARK DETAILS	
743		
744	B.1 BENCHMARK CONSTRUCTION	
745	We extract questions corresponding to the ‘Issue & Conclusion’ sections using DeepSeek-v3.1. During	
746	this process, we aim to preserve the original meaning of the text as much as possible, ensuring	
747	that the extracted questions faithfully reflect the legal reasoning presented in the case. The prompts	
748	used for this extraction are provided in Table 6. Additionally, to obtain more analytical data, we first	
749	determine whether the original text contains a legal decision. Based on this determination, we then	
750	categorize and extract questions accordingly, allowing us to differentiate between decision-based	
751	questions or opinion-based questions (non-decision based questions).	
752		
753	B.2 BENCHMARK STATISTICS	
754		
755	Here, we provide additional benchmark data in Figure 5 and Figure 6, distinguishing questions along	
	two dimensions: (i) whether they are answered in a binary form (yes/no) or multiple choice (a–d),	

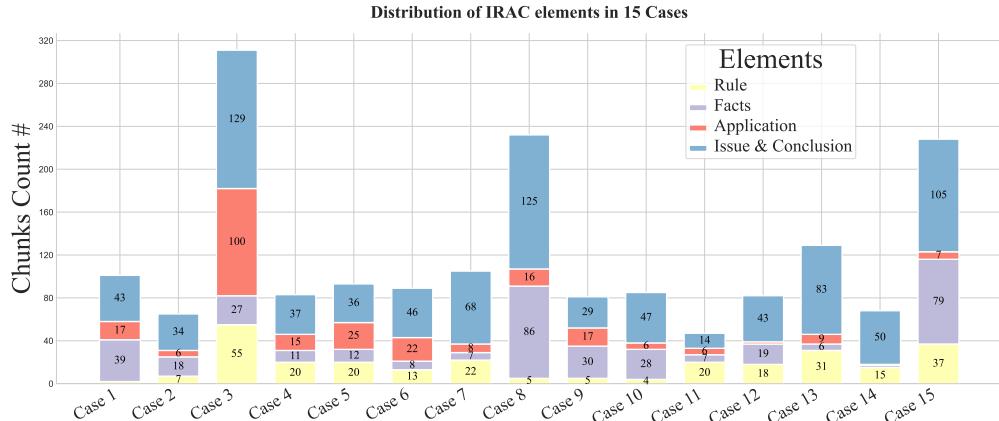


Figure 4: IRAC elements distribution across 15 cases. Each bar represents a case and is colored according to IRAC elements.

B BENCHMARK DETAILS

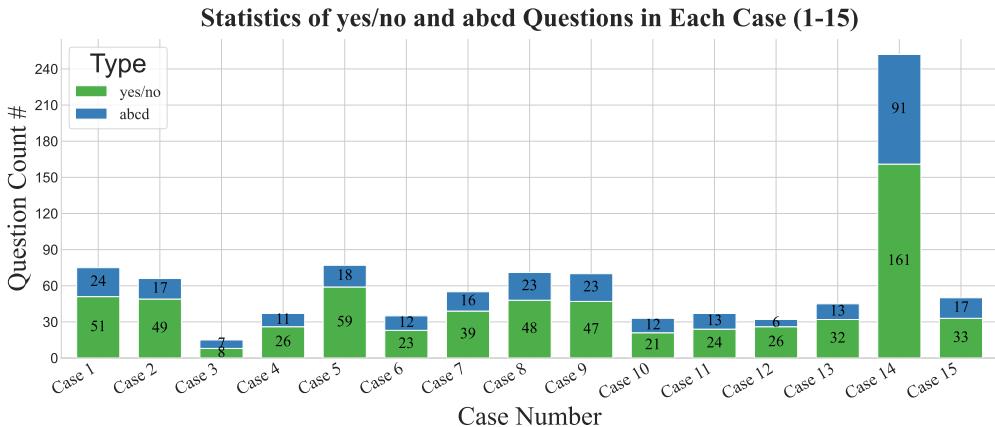
B.1 BENCHMARK CONSTRUCTION

We extract questions corresponding to the ‘Issue & Conclusion’ sections using DeepSeek-v3.1. During this process, we aim to preserve the original meaning of the text as much as possible, ensuring that the extracted questions faithfully reflect the legal reasoning presented in the case. The prompts used for this extraction are provided in Table 6. Additionally, to obtain more analytical data, we first determine whether the original text contains a legal decision. Based on this determination, we then categorize and extract questions accordingly, allowing us to differentiate between decision-based questions or opinion-based questions (non-decision based questions).

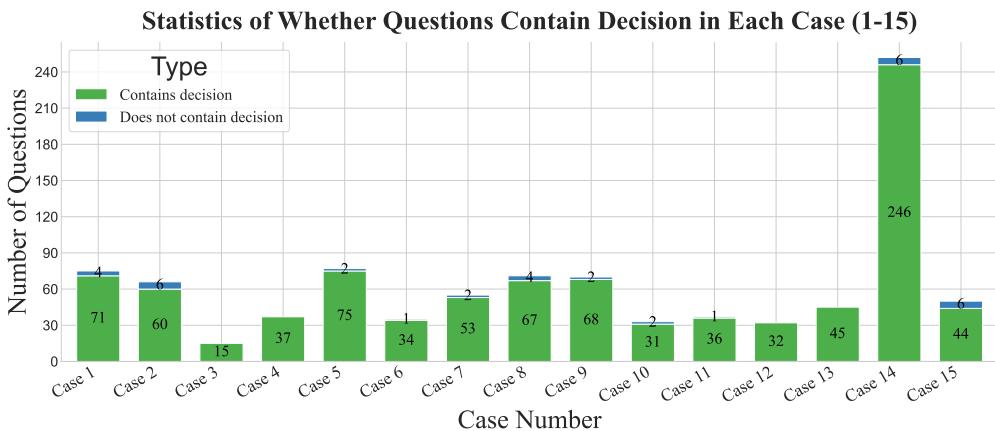
B.2 BENCHMARK STATISTICS

Here, we provide additional benchmark data in Figure 5 and Figure 6, distinguishing questions along two dimensions: (i) whether they are answered in a binary form (yes/no) or multiple choice (a–d),

756 and (ii) whether they involve a legal decision (as opposed to a legal opinion). Whether a question
 757 involves a legal decision was determined during the benchmark construction process. We consider
 758 that questions containing a legal decision tend to have more definitive answers, whereas questions
 759 without a decision typically reflect legal opinions, which may introduce some ambiguity.
 760



762 Figure 5: yes/no and abcd question distribution across 15 cases. Each bar represents a case and is
 763 divided by question type.
 764



767 Figure 6: Question distribution across 15 cases based on whether they contain a decision. Each bar
 768 represents a case and is divided by question type.
 769

770 B.3 BENCHMARK SAMPLE

771 Here, we provide sample benchmark questions along with their corresponding response. As in
 772 Figure 1, we use the Birthlink case as an illustrative example.
 773

774 **Benchmark Sample Question**

775 **Legal Decision: Yes**

776 **Question:** A company destroyed linked records through its processing activities, failing
 777 to ensure appropriate security of personal data including protection against unauthorized
 778 destruction. Does this constitute a violation of GDPR?
 779

800 **Options:**

- 801 • Yes
- 802 • No

803 **Correct Answer:** Yes

810
811**Benchmark Sample Question**

812

Legal Decision: Yes

813

Question: Did Birthlink violate Article 33(1) UK GDPR by failing to notify the Commissioner of a personal data breach within 72 hours of becoming aware of it and failing to implement appropriate measures to establish whether a breach had occurred?

814

Options:

815

- Yes
- No

816

Correct Answer: Yes

817

818

819

820

821

822

823

Benchmark Sample Question

824

Legal Decision: Yes

825

Question: When processing highly sensitive personal data that includes irreplaceable sentimental items, what level of security measures must an organization implement according to GDPR Article 32?

826

Options:

827

- A. Basic security measures appropriate for the risk level
- B. No specific security measures are required for charitable organizations
- C. Appropriate technical and organizational measures to ensure a level of security appropriate to the risk
- D. Security measures only if explicitly requested by data subjects

828

Correct Answer: C

829

830

831

832

833

834

835

836

837

838

839

Benchmark Sample Question

840

Legal Decision: Yes

841

Question: An organization processes highly sensitive personal data including sentimental items like handwritten letters and photographs for charitable purposes. The Commissioner finds that the nature of this processing, without appropriate security measures, was likely to result in high risk to data subjects. Which GDPR principle is most directly violated in this scenario?

842

Options:

843

- A. Principle of data minimization (Article 5(1)(c))
- B. Principle of integrity and confidentiality (Article 5(1)(f))
- C. Principle of purpose limitation (Article 5(1)(b))
- D. Principle of lawfulness of processing (Article 6)

844

845

846

847

Correct Answer: B

848

849

850

851

852

853

854

855

C PROMPT TEMPLATES

856

C.1 PROMPT FOR BENCHMARK CONSTRUCTION

857

858

859

860

861

862

863

In Section 4.2, we employ DeepSeek-v3.1 to assist in extracting legal questions from the source data, including both issues and corresponding conclusions. This approach allows us to systematically transform complex case documents into structured question–answer pairs suitable for benchmarking. The corresponding prompt templates used for guiding DeepSeek-v3.1 during this extraction process are provided in Table 6.

864 C.2 PROMPT FOR AGENTS
865

866 C.2.1 PROMPT FOR APPLICATION AGENTS
867

868 In Section 5.1, we employ specialized agents to extract Application relations directly from the source
869 case documents. This process simulates how a real agent would gather and organize information
870 from historical cases. The corresponding prompt templates used for guiding these agents are pro-
871 vided in Table 7.

872 C.2.2 PROMPT FOR COMMON SENSE AGENTS
873

874 We utilize agents to extract inferred relations based on common sense from the existing source data.
875 This approach simulates how an agent can leverage general reasoning and domain knowledge to
876 derive additional alignments that are not explicitly stated in the text. The prompts designed for these
877 Common Sense Agents are provided in Table 8

878 C.3 PROMPT FOR META-LLM
879

880 By aggregating the outputs from multiple agents along with the original issue, the Meta-LLM is
881 expected to identify the most convincing conclusion. This step simulates a human expert synthe-
882 sizing diverse sources of information to reach a reasoned judgment. The prompt used to guide the
883 Meta-LLM in this reasoning process is presented in Table 9.

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918
 919
 920
 921
 922

923 You are an GDPR Commissioner.
 924 Your task is to **rewrite the text into a MCQ question**.
 925 Instructions:
 926 1. Rewrite the text into a MCQ question, you should mainly focus on the following aspects:
 927 - Whether a behaviour or decision **violates the GDPR** or is **lawful**.
 928 - If the facts is not enough to be considered as a violation, you should consider it a behaviour not violated
 929 the specific regulation and also rewrite it into a question.
 930 - References to explicitly mentioned legal provisions or articles.
 931 - If the text **does not contain any facts or behaviours which can be used to judge whether the controller has
 932 infringed the GDPR**, return an empty list: [].
 933 - The question should not be reference to the original text.
 934 2. If a fact or behaviour is present, rewrite it into a **self-contained MCQ question** **based on the factual
 935 scenario**:
 936 - Present the **facts clearly**: who did what, how they did it, and under which circumstances.
 937 - Include **relevant legal provisions or articles**, if mentioned.
 938 - The question can sometimes switch between affirmative and negative forms of a statement, ex. ...is vio-
 939 lated... — > Yes can be switch to ...is comply... — > No.
 940 - Just use the name appeared in the text, ex. use 'company name' instead of 'Data controller'
 941 3. There can be 2 or 4 options in the MCQ question.
 942 - If there are 2 options, the options are Yes and No.
 943 - If there are 4 options, the options are A, B, C, D and the correct answer is one of them.
 944 - Only one option should be correct.
 945 4. Generate all the possible questions based on the factual scenario and provide them in the 'questions' field.
 946 5. The JSON must be valid and properly formatted.
 947 **#### Output JSON Format:**
 948 [
 949 {
 950 "whether_contains_decision": "true/false",
 951 "question": "...",
 952 "options": {
 953 "A": "...",
 954 "B": "...",
 955 "C": "...",
 956 "D": "..."
 957 },
 958 "correct_answer": "A/B/C/D"
 959 },
 960 {
 961 "whether_contains_decision": "true/false",
 962 "question": "...",
 963 "options": {
 964 "Yes",
 965 "No"
 966 },
 967 "correct_answer": "Yes/No"
 968 }
 969]
 970 **#### Input:**
 971 {content}

964 Table 6: This prompt is designed for the benchmark construction to extract issues and their cor-
 965 responding conclusions from legal case texts, and to convert them into a multiple-choice question
 966 (MCQ) format for evaluation purposes. Light blue text inside each “{}” block denotes a replaceable
 967 string variable.
 968
 969
 970
 971

972
 973
 974 You are an expert in GDPR.
 975 Your task is to extract **alignment relationships** between real entities or concepts (companies, organisations,
 976 charities, regulators, data, records, etc.) and their legal roles or definitions under the GDPR.
 977 Instructions:
 978 1. Identify all **entities** (e.g., companies, charities, regulators) and **concepts** (e.g., filing system, per-
 979 sonal data, special category data) **if explicitly extractable from the text**.
 980 2. For each entity/concept, determine if the text assigns:
 981 - A **legal role** (Controller, Processor, Supervisory Authority, Data Subject), OR
 982 - A **legal classification/definition** (Filing System, Personal Data, Special Category Data).
 983 If no alignment can be extracted, do not include an entry.
 984 3. Include the corresponding legal source only if explicitly mentioned; Otherwise, set legal_source to null.
 985 4. Extract relations between entities/concepts only if explicitly stated (e.g., “X is stored in Y”); leave empty if
 986 none. Do not infer new relations.
 987 5. Provide a short rationale for each item without referencing the original text.
 988 6. The JSON must be valid and properly formatted.
 989 ### Output JSON Format:
 990 {
 991 “entities_and_concepts”: [
 992 { “entity_or_concept”: “...”, “legal_alignment”: “...”, “legal_source”: “... or null”, “rationale”: “...” }
 993],
 994 “relations”: [
 995 { “source”: “...”, “relation”: “...”, “target”: “...”, “rationale”: “...” }
 996],
 997 }
 998 ### Input:
 999 {content}

Table 7: Prompt template for extracting application relations by agents. Light blue text inside each “{ }” block denotes a replaceable string variable.

1000
 1001
 1002 You are an expert in GDPR.
 1003 Your task is to extract inferred relationships between real entities or concepts (companies, organisations, chari-
 1004 ties, regulators, data, records, etc.) based on common sense.
 1005 Instructions:
 1006 1. Identify all entities (e.g., companies, charities, regulators) and concepts (e.g., filing system, personal data,
 1007 special category data) if they can be explicitly extracted from the text.
 1008 2. For each entity or concept, determine if the text explicitly assigns:
 1009 - A legal role (e.g., Controller, Processor, Supervisory Authority, Data Subject), OR
 1010 - A legal classification/definition (e.g., Filing System, Personal Data, Special Category Data).
 1011 If no alignment can be extracted, do not include an entry.
 1012 3. Extract relations between entities/concepts only if explicitly stated (e.g., “X is stored in Y”); leave empty if
 1013 none.
 1014 4. Include an inferred_alignments section only if strictly derivable from existing alignments and relations;
 1015 otherwise, leave empty.
 1016 5. Provide a short rationale for each item without referencing the original text.
 1017 6. The JSON must be valid and properly formatted.
 1018 ### Output JSON Format:
 1019 {
 1020 “inferred_alignments”: [
 1021 { “entity_or_concept”: “...”, “legal_alignment”: “...”, “legal_source”: “...”, “rationale”: “...” }
 1022]
 1023 }
 1024 ### Input:
 1025 {content}

Table 8: Prompt template for extracting inferred alignments by agents. Light blue text inside each “{ }” block denotes a replaceable string variable.

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044

1045 You are an expert in law.
 1046 Your task is to carefully read the given **context** and **question**, then provide the answer in JSON format.
 1047 Requirements:
 1. The JSON must contain two fields:
 - "rationale": a short reasoning process explaining why this answer follows from the context.
 - "answer": the final concise answer to the question.
 2. The reasoning should be **based only on the provided context**, without adding external knowledge unless strictly necessary.
 3. The JSON must be valid and properly formatted.
 1053 ### Output JSON Format:
 1054 {
 1055 "rationale": "...",
 1056 "answer": "..." (select from A/B/C/D/Yes/No)
 1057 }
 1058 Question: {question_content}
 1059 Context: {context}

1060 Table 9: Prompt template for the Meta-LLM to generate conclusion answers based on questions
 1061 and agents-provided context. Light blue text inside each “{}” block indicates a replaceable string
 1062 variable.
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079