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ABSTRACT

Transformers are the backbone of state-of-the-art systems across language, vision,
and multimodal learning tasks, yet the relevance scale of their functional blocks
(self-attention and feed-forward networks) is typically constant across inputs and
depth. This static design neglects context-sensitive regulation of information flow
through residual pathways. We introduce the contextual modulator: a lightweight,
input-aware mechanism that can scale the outputs of linear sublayers within a
block or the entire block output at token- and channel-level granularity. The mod-
ulator is implemented via compact parametric functions and adds negligible pa-
rameter overhead. Building on this idea, we propose TRANSPONDER, which inte-
grates contextual modulators throughout Transformer blocks to endow functional
residual architectures with fine-grained, input-adaptive control. TRANSPONDER
provides evident improvement over six other scaling or normalization methods
across LLaMA backbones ranging from 60M to 250M parameters, yielding con-
sistent perplexity reductions with < 1% additional parameters. Analysis reveals
depth-, module-, and token-specific scaling patterns, indicating that learned mod-
ulators act as input-adaptive regulators of residual information flow. TRANSPON-
DER provides a simple, general mechanism to augment Transformer-based models
with context-sensitive modulators, providing robust and significant performance
improvements without substantial architectural changes.

1 INTRODUCTION

Transformer architectures deliver state-of-the-art performance across vision, language, and mul-
timodal tasks (Vaswani et al., 2017; Devlin et al., 2019; Radford et al., 2018; Touvron et al.,
2023). In standard designs, information flows through a sequence of linear and nonlinear com-
ponents—query/key/value projections, attention output projections, and the two feed-forward net-
works (FFN) linear maps—interleaved with residual connections. After training, the scaling by
which these components contribute to the residual stream is effectively static for all the input tokens.
Several mechanisms attempt to manipulate residual or path scaling via global reparameterizations
(e.g., ReZero (Bachlechner et al., 2021), DeepNorm/DeepNet (Wang et al., 2024)) or depth-aware
normalization (Li et al., 2024; Sun et al., 2025). Yet these approaches assign fixed gains in spite of
the current token, channel, or depth position.

These designs clash with the core goal of representation learning: the relevance of a component’s
output is input-dependent. Rare tokens may call for amplifying specific heads; bursty channels may
require attenuation; deeper layers may benefit from different mixing strengths than shallow ones.
When scaling is static, the model must implicitly encode such selectivity inside the functional maps
themselves—mixing representation (what to compute) with control (how much to pass through).

To address this limitation, we introduce TRANSPONDER, whose core principle is simple: pair each
Transformer component with a contextual, input-aware modulator that explicitly controls its
contribution at inference. Specifically, for a component with output Y = F(X), we attach a
lightweight controller g(X) ∈ [0, 1] and compute Ỹ = F(X)⊙g(X). This decouples representation
from control, turning residual mixing from a static heuristic into a principled, context-sensitive
regulation mechanism.
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We instantiate this principle with TRANSPONDER, designed to be minimally invasive and broadly
compatible:

1. Input-aware modulation. Modulators calculate the scales that multiply functional-path
outputs at use time, yielding context-conditioned scaling factors for each component in
Transformer.

2. Granularity and placement. We systematically study where to modulate (projection- vs.
path-level) and at what resolution (scalar vs. channel-wise), providing a comprehensive
view of practical design.

3. Low overhead, easy integration. TRANSPONDER adds ≤ 1% parameters and integrates
into standard Transformer blocks via a fused Triton kernel for each modulator to accelerate
inference.

Across large-scale language-modeling benchmarks, TRANSPONDER delivers consistent gains on
LLaMA backbones from 60M to 250M parameters, achieving up to 5.8–15.3% relative perplexity
reductions over the LLaMA baselines. Extensive ablations spanning placement, granularity, hidden
size, and component coverage (attention and FFN) show the robustness of the design. Analysis of
learned modulator values uncover depth-, module-, and token-specific patterns that adapt layer-wise
contributions to input semantics, providing direct evidence that residual functional transformations
benefit from adaptive, context-aware scaling.

2 RELATED WORK

2.1 RESIDUAL CONNECTIONS AND THE TRANSFORMER ARCHITECTURE

Residual connections (He et al., 2016) enable very deep models by adding a learned transformation
to an identity shortcut, improving gradient flow, preserving signal, and allowing layers to refine
rather than reconstruct representations. The Transformer (Vaswani et al., 2017) instantiates this
principle with a persistent residual stream that carries token-wise state across layers while each
block applies a functional path—multi-head self-attention (MHA) followed by a position-wise feed-
forward network (FFN). Concretely, each block computes linear projections for queries, keys, and
values and an attention output, then applies two FFN linear maps with nonlinearities; the results are
mixed back into the residual stream through additive shortcuts. Layer normalization (LayerNorm) is
interleaved with these sublayers: the original Post-LN normalizes after each sublayer (Vaswani et al.,
2017), whereas Pre-LN normalizes before sublayers, improving optimization stability for deeper
stacks (Xiong et al., 2020). This decomposition—identity carryover plus functional updates—yields
strong gradient propagation and composability, but it also implicitly fixes the contribution of each
subcomponent to the residual stream at inference, motivating methods that explicitly control (or
scale) block updates relative to the identity path.

2.2 SCALING THE BLOCK: STATIC REPARAMETERIZATIONS AND NORMALIZATION
PLACEMENT

A substantial line of work manipulates the magnitude of each block’s update relative to the resid-
ual stream via static, input-agnostic mechanisms. ReZero (Bachlechner et al., 2021) introduces a
zero-initialized, learnable scalar per block that gates the residual branch, effectively starting from
an identity mapping and allowing depth to emerge during training. DeepNorm/DeepNet (Wang
et al., 2024) analytically rescales residual and sublayer outputs to maintain stability in very deep
Transformers, enabling substantially deeper stacks without divergence. LAuReL (Menghani et al.,
2024) generalizes residual/functional mixing with learned coefficients (e.g., RW/LR/PA variants),
providing a tunable trade-off between identity flow and the functional path. While these approaches
improve training dynamics and depth, their coefficients are typically block-level and input-agnostic
at inference time, leaving the strength of updates fixed for any given input.

2.3 CONTEXT-CONDITIONED GATING METHODS

In convolutional networks, squeeze-and-excitation (SE) (Hu et al., 2019) introduces feature-wise,
input-conditioned scaling by pooling global context and learning channel gates, improving repre-
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Figure 1: Illustration of the TRANSPONDER mechanism. The Figure shows a LLaMA decoder
block, consisting of a self-attention module followed by a feed-forward network (FFN). Layer-
Modulator (red) dynamically rescales the outputs of key linear transformations (e.g. Q, K, V, O)
within both modules, while Path-Modulator (blue) modulates the functional paths directly (e.g. Self-
attention, FFN). Each Modulator can operate in two modes: channel-wise control, where the output
dimension matches the original feature dimension, and scalar-wise control, where a single scalar is
used to regulate the entire function/layer.

sentational efficiency and accuracy. The core idea—context-aware modulation of features—has
influenced architectures beyond convolution. Within Transformers, SDPA-gated mechanisms (Qiu
et al., 2025) attach the gating mechanism to scaled dot-product attention, commonly parameter-
ized at the head or channels. These gates selectively modulate attention behavior and can stabilize
training, but they often incur heavy additional parameters and computation, and primarily target the
attention pathway.

3 TRANSPONDER - CONTEXTUAL MODULATION TRAINING

We formalize the TRANSPONDER by introducing the lightweight, input-conditioned modulators that
scale the functional information flow inside Transformer blocks. The goal is to convert static func-
tional compositions into context-aware modulation while preserving (i) the inductive bias of the base
operator (attention/MLP), (ii) training stability, and (iii) negligible parameter/FLOP overhead. We
show the main architecture of the TRANSPONDER in Figure 1.

3.1 PRELIMINARIES: RESIDUAL FUNCTIONAL COMPOSITION IN TRANSFORMERS

Let Yl−1 ∈ RT×d denote the hidden states entering layer l (sequence length T , width d), and
let Fl denote a parameterized sublayer (self–attention or FFN). The standard residual formulation
composes identity and functional streams additively:

Yl = Yl−1 + Fl

(
Yl−1

)
. (1)

While Eq. equation 1 ensures stable signal and gradient propagation, the contribution of Fl is typ-
ically static at inference time: once trained, the magnitude with which Fl perturbs the skip path
does not depend on the current token, channel, or context. Prior work improves optimization via
block-wise scalars (e.g., ReZero Bachlechner et al. (2021)), depth-aware reparameterizations (e.g.,
DeepNorm Wang et al. (2024)), or by mixing identity and functional streams with learned but input-
agnostic coefficients (e.g., LAuReL Menghani et al. (2024)). Our aim is to endow Eq. equation 1
with contextual modulators applied to, or inside, Fl.
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3.2 DEFINITION: TRANSPONDER SCHEME

A Modulator Gl produces a contextual scaling signal that modulates a sublayer at its point of use.
For a generic operator Fl acting on X,

Y = Fl(X) ⊙ Gl(X), (2)

where ⊙ denotes broadcasted Hadamard multiplication. In a residual block,

Yl = Yl−1 +
[
Fl

(
Yl−1

)
⊙ Gl

(
Yl−1

)]
. (3)

Modulator parameterization. We parameterize the modulator Gl with a compact bottleneck ap-
plied to each input activation X, followed by a bounded nonlinearity:

Gl(X) = σ̃αl

(
Bl ϕ

(
Al X

))
, Al∈Rr×din , Bl∈Rdout×r, (4)

where din is the input width of the summary, dout matches the modulation resolution (one single
scalar or channel-wise. ϕ is a pointwise nonlinearity (e.g., Sigmoid), and σ̃α is a learnable curvature
sigmoid,

σα(x) =
1

1 + exp(−αx)
, α > 0, σ̃α(x) = 2σα(x). (5)

The base gate σα maps to [0, 1] and interpolates between soft scaling (small α) and near-binary
gating (large α). We use the calibrated gate σ̃α ∈ [0, 2] so that σ̃α(0) = 1, preserving the expected
residual magnitude at initialization.

3.3 GRANULARITY: WHERE AND AT WHAT RESOLUTION TO MODULATE?

We distinguish where the Modulator is applied (inter–layer) from how finely it is parameterized
(intra–layer).

Inter–layer granularity.

• Projection–level modulation. Apply a modulator after each linear projection inside a functional
path:

WX︸︷︷︸
projection

7→
(
WX

)
⊙ Gl(X). (6)

This affords precise control (e.g., on Q,K, V and MLP up/down projections) with minimal ad-
ditional computation.

• Path–level modulation. Modulate the entire functional path (e.g., self–attention or FFN):

Yl = Yl−1 + Fl

(
Yl−1

)
⊙ Gl

(
Yl−1

)
. (7)

Intra–layer granularity. Let dout be the dimension of Fl’s output at the modulation site. We
instantiate:

• Layer–wise (scalar) modulation: Gl(X)∈R via Bl∈R1×r. A single scale uniformly modulates
the sublayer; parameter and compute overheads are negligible.

• Channel–wise modulation: Gl(X)∈Rdout via Bl ∈Rdout×r, enabling feature–specific modulat-
ing with two low–rank matrices.

3.4 FUSED PROJECTION FOR PROJECTION–LEVEL TRANSPONDER

For each linear layer, the dominant cost is the matrix product XW⋆. When the summary u⋆(X) is
token-wise, we also need XA⊤

⋆ . Instead of launching two kernels, we concatenate along the output
dimension and perform a single tiled GEMM:[

Z⋆ U⋆

]
= X

[
W⋆

∣∣ A⊤
⋆

]︸ ︷︷ ︸
C⋆∈Rdin×(dout+r)

, Z⋆∈RB×T×dout , U⋆∈RB×T×r. (8)
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Here A⋆∈Rr×din is the rank-r bottleneck, W⋆∈Rdin×dout is the projection, B is batch size, and T is
sequence length. After the fused GEMM, we compute the modulator logits and modulate in-register
per tile:

logits⋆ = U⋆ B
⊤
⋆ , B⋆∈Rdout×r, γ⋆ = σ̃α⋆

(
logits⋆

)
∈

{
RB×T×1, scalar gate,

RB×T×dout , channel-wise gate.
(9)

Finally, we apply broadcasted modulation to the projected activations:

Ẑ⋆ = γ⋆ ⊙ Z⋆. (10)

This fusion amortizes the summary computation into the main GEMM and keeps the modulator
arithmetic on-chip, yielding precise projection-level control at minimal overhead.

4 EXPERIMENTS

4.1 SETUP

We evaluate TRANSPONDER on standard language modeling with LLaMA backbones Touvron et al.
(2023) ranging from ∼ 60M to ∼ 250M parameters, trained on the C4 Raffel et al. (2020) and
OpenWebText Gokaslan & Cohen (2019) corpus. All models are optimized with Adam and a base
learning rate of 3 × 10−3 for Openwebtext dataset and 1 × 10−3 for C4 dataset. All the experi-
ments are trained with bfloat16 for all the activations, weights, and optimization states. The hidden
dimension of the contextual modulator is set to r = 8 in the main comparisons to emphasize gains
from contextual modulation rather than capacity. For fairness, we keep training data, tokenization,
optimizer settings, and learning-rate schedules identical across baselines and TRANSPONDER. We
report the perplexity (the lower the better) as the standard language-modeling metrics and measure
parameter overhead relative to the corresponding backbone. We initialize A,B of the Transponder
with Kaiming uniform He et al. (2015) and zero biases; set α=1 initially. Detailed hyperparameter
settings can be found in Table 7.

4.2 BASELINES

We compare against widely used residual/normalization designs and recent residual-scaling or layer-
wise contextual control methods:

• DeepNorm/DeepNet Wang et al. (2024): rescales the residual branch with depth-
dependent constants and tailored initialization to stabilize training of very deep Transform-
ers.

• LayerNorm Scaling Sun et al. (2025): multiplies each layer’s normalized output by a
depth-aware factor (e.g., ∝ 1/

√
L) to curb variance growth across residual connections.

• LAuREL Menghani et al. (2024): learns a lightweight mixer that blends the skip and trans-
formed paths (LR/PA variants), improving layer-wise signal routing with minimal extra
parameters.

• SDPA-Gate Qiu et al. (2025): applies a per-head sigmoid gate to the scaled dot-product
attention output to modulate contribution and mitigate attention-sink effects.

To match SDPA-Gate’s mechanism more broadly, we also implement an ALL-Gate variant that
applies the same gating scheme to all linear sublayers, including the MLP projections, providing a
stronger control baseline.

4.3 MODULATOR VARIANTS VALIDATION

We instantiate five different variants of the contextual modulator in the framework of the
TRANSPONDER to probe where and at what resolution modulation helps most:

• Modulator-path-scalar: a single scalar Modulator modulates the entire functional path
(attention output or MLP output) per block.

5
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Table 1: Validation perplexity (PPL, lower is better) of different variants of contextual modulators
on Openwebtext. “Param ↑” denotes the relative parameter increase vs. LLaMA baseline. The best
performance is highlighted in bold.

60M 130M 250M

Model PPL Param ↑ PPL Param ↑ PPL Param ↑
Modulator-path-scalar 62.91 <1% 18.29 <1% 1088 <1%
Modulator-path-channel 23.25 <1% 18.91 <1% 16.14 <1%
Modulator-layer-scalar 23.15 <1% 17.76 <1% 15.21 <1%
Modulator-layer-channel 23.08 1% 17.56 1% 15.17 1%
Modulator-layer-channel-scalar 22.50 1% 17.45 1% 14.93 1%

• Modulator-path-channel: a channel-wise Modulator modulates the entire functional path
(attention output or MLP output) output channels.

• Modulator-layer-scalar: a single scalar Modulator per linear projection.
• Modulator-layer-channel: a channel-wise Modulator per linear projection.
• Modulator-layer-channel-scalar (TRANSPONDER): a channel-wise Modulator per linear

projection and a single scalar output Modulator per linear projection.

Table 1 shows two consistent trends across model scales. (i) The functional-path modulator does not
aid training and can even destabilize optimization, whereas the layer-wise modulator consistently
improves both training dynamics and final performance. (ii) With a layer-wise modulator in place,
both channel-wise and scalar modulators further benefit TRANSPONDER: the scalar provides coarse,
global control, while the channel-wise variant offers finer-grained adjustments. Using both together
yields an additional, robust gain with only a modest ∼1% parameter overhead.

Given its consistently best validation perplexity under comparable budgets and its favorable integra-
tion cost, we adopt Modulator–layer–channel–scalar as the default TRANSPONDER configuration
for all subsequent comparisons against baseline methods.

4.4 MAIN RESULTS FOR LANGUAGE MODELING.

Table 2 compares validation perplexity (PPL; lower is better) across three LLaMA model scales.
From the results, TRANSPONDER attains the best PPL wherever reported with only ∼!1% parameter
overhead. Compared to the LLaMA baseline, TRANSPONDER reduces PPL on OpenWebText by
15.3% at 60M (26.56→22.50), 9.4% at 130M (19.27→17.45), and 13.6% at 250M (17.28→14.93);
on C4 the reductions are 5.8% at 60M (30.31→28.55), 17.4% at 130M (26.73→22.09), and 14.6%
at 250M (21.92→18.72). These gains persist through 250M under larger token budgets, indicating
strong large-scale behavior.

Capacity-heavy gates (SDPA-Gate, ALL-Gate) improve PPL but require 15–80% extra parame-
ters. In contrast, TRANSPONDER matches or exceeds these improvements with only 1% overhead.
Among minimal/zero-overhead baselines, LayerNorm Scaling is competitive yet still trails.

Several baselines that attempt to learn the mixing between the residual path and functional blocks
exhibit instability at some scales (e.g., DeepNet and LAuReL-LR explode on C4-130M, 143.65 and
106.94 PPL; LAuReL-PA diverges on C4-130M with 1355 PPL and collapses on OpenWebText-
250M to 257 PPL), whereas TRANSPONDER delivers consistent improvements across all reported
settings.

Under comparable budgets, TRANSPONDER achieves state-of-the-art PPL with minimal overhead,
strong large-scale behavior, and improved robustness, establishing it as our default configuration for
subsequent comparisons.

4.5 STABILITY WITH POST-LAYERNORM

Beyond the Pre-LN setting, we evaluate TRANSPONDER under the more delicate Post-LN regime.
As shown in Table 3, vanilla LLaMA with Post-LN is unstable at scale: PPL explodes at 250M

6
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Table 2: Validation perplexity (PPL, lower is better) on C4 and Openwebtext. “Param ↑” denotes
the relative parameter increase vs. LLaMA.

60M 130M 250M

Training tokens 1.2B 2.2B 3.9B

Dataset Model PPL Param ↑ PPL Param ↑ PPL Param ↑

Openwebtext

LLaMA (baseline) 26.56 - 19.27 - 17.28 -
DeepNet 23.78 <1% 18.74 <1% 16.53 <1%
LAuReL-LR 23.81 <1% 18.19 <1% 16.75 <1%
LAuReL-PA 23.37 <1% 18.22 <1% 257 <1%
LayerNorm Scaling 23.31 0% 18.28 0% 16.16 0%
SDPA-Gate 23.19 15% 18.03 22% 15.44 23%
ALL-Gate 22.96 44% 17.91 65% 14.97 80%
TRANSPONDER 22.50 1% 17.45 1% 14.93 1%

C4

LLaMA (baseline) 30.31 - 26.73 - 21.92 -
DeepNet 30.18 <1% 143.65 <1% 21.72 <1%
LAuReL-LR 30.05 <1% 106.94 <1% 39.14 <1%
LAuReL-PA 29.50 <1% 1355 <1% 20.88 <1%
LayerNorm Scaling 29.77 0% 25.76 0% 20.35 0%
SDPA-Gate 29.53 15% 23.18 22% 18.95 23%
ALL-Gate 28.98 44% 22.92 65% 18.82 80%
TRANSPONDER 28.55 1% 22.09 1% 18.72 1%

Table 4: Validation perplexity (PPL, lower is better) on Openwebtext comparing non-contextual and
contextual variants.

60M 130M 250M

Original LLaMA 26.56 19.27 17.28
TRANSPONDER w/o contextual control 23.40 19.29 16.29
TRANSPONDER w/o learnable sigmoid 23.56 17.70 14.93
TRANSPONDER 22.50 17.45 14.93

(1409.79), and even at 130M performance degrades to 26.95 in comparison to the Pre-LN LLaMA.
In contrast, TRANSPONDER stabilizes training and improves accuracy in both cases, yielding a
4.6% PPL reduction at 130M (26.95→25.71) and preventing divergence at 250M, where it achieves
20.28 PPL instead of catastrophic failure. While Post-LN remains slightly behind strong Pre-LN
baselines at a similar scale, these results indicate that TRANSPONDER substantially enlarges the
viable training regime for Post-LN models with only ∼ 1% overhead, mitigating the well-known
optimization fragility of Post-LN Transformers.

4.6 ABLATIONS AND SENSITIVITY TESTS

Table 3: Validation perplexity of LLaMA 130M and
250M on C4 with Post-Layer Norm.

130M 250M

LLaMA w. Post-LN 26.95 1409.79
TRANSPONDER w. Post-LN 25.71 20.28

Contextual vs. Non-Contextual. To as-
sess the contribution of contextual modu-
lation, we compare TRANSPONDER with
and without contextual signals. In the non-
contextual variant, for each layer l, we re-
place the contextual pathway with learn-
able parameters—a layer-wise scalar β(l)

1

and a channel-wise vector β(l)
2 —and set

Gl = σ̃αl

(
β
(l)
1 · β(l)

2

)
,

where β
(l)
1 applies uniform scaling and β

(l)
2 provides per-channel modulation.

7
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Table 5: Ablation study on modulators on differ-
ent functional modules for the TRANSPONDER
on C4 dataset. The reported metric is Perplex-
ity. The best performance is highlighted in bold.

Modules LLaMA60M LLaMA130M

Baseline 30.31 26.07

self-attention 29.04 23.21
mlp 29.43 23.36
only last 29.88 23.97
only first 29.91 24.11
only qk 30.01 24.03
w/o up and gate 29.12 22.93
all 28.55 22.09

Table 6: Ablation study on the hidden dimen-
sion r of both the channel-wise and scalar-
wise modulators for the TRANSPONDER on C4
dataset. The reported metric is Perplexity. The
best performance is highlighted in bold.

Hidden Size LLaMA60M LLaMA130M

Baseline 30.31 26.07

2 28.91 23.01
4 28.65 22.64
8 28.55 22.09
16 28.41 22.12
32 28.73 22.07

As shown in Table 4, the non-contextual variant already improves over the LLaMA baseline at
certain scales, confirming the utility of the proposed modulator design. However, adding contextual
control consistently delivers much larger gains across all model sizes, establishing it as the key driver
of performance. This result directly supports our initial motivation: each component benefits from
input-aware, contextual control rather than relying solely on static modulation.

Sigmoid and Learnable Sigmoid. A key innovation of TRANSPONDER is the introduction of
a learnable sigmoid. This learnable non-linear modulation mechanism allows each modulator to
dynamically adjust its sensitivity to the input, either amplifying or attenuating modulation strength as
needed. As shown in Table 4, incorporating the learnable sigmoid consistently improves (except for
250M that is comparable)perplexity across model sizes, validating our design intuition that adaptive
nonlinearity provides a crucial layer of flexibility for effective modulation.

Hidden dimensions. We further examine the effect of the hidden dimension r in the contextual
modulator. Table 6 shows that even with an extremely compact setting (r = 2), TRANSPONDER
already delivers large gains over the LLaMA baseline. Scaling up the hidden size from 8 to 32
provides marginal yet consistent improvements. These findings suggest that the modulator does
not require a large intermediate capacity to capture input-dependent scaling, underscoring the effi-
ciency of our design: lightweight modulators suffice to model contextual dependencies while adding
negligible parameter overhead.

Contribution of functional components. We next investigate which functional modules benefit
most from modulation by selectively applying the contextual modulators to individual subcompo-
nents (Table 5). Applying modulators to either the self-attention or MLP block alone yields clear im-
provements, while restricting modulation to partial components (e.g., only first, only last, only qk)
provides only limited gains.

We further evaluate the effect of removing the up- and gate-projections. In the original LLaMA
design, the gate projection serves as a channel-wise modulator to the up-projection, though imple-
mented as a full-rank matrix. Interestingly, excluding these projections leads to strong performance,
second only to the full “all” configuration. This suggests that the gate-projections already play a key
role in channel-wise contextual modulation.

Overall, the best results are consistently achieved when all components are modulated jointly (“all”),
yielding the lowest PPL on both LLaMA-60M and LLaMA-130M. This confirms that full-path
functional modulation is necessary to provide comprehensive control over residual transformations,
enabling robust and consistent improvements across scales.

5 CONTEXTUAL MODULATOR VALUES ANALYSIS

The results in Section 4 suggest that, beyond static architectural scaling (e.g., fixed layer-
normalization schemes), context-/input-sensitive modulation is a powerful way to improve opti-
mization and expressivity in deep language models. TRANSPONDER learns, for each token and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Token-wise modulator values across layers and modules in a LLaMA-130M model trained
with TRANSPONDER. We report the values of the scalar modulator as the representative. Each
subplot corresponds to a specific linear projection of the decoder layer. The plotted curves represent
different tokens from the input sequence.

sub-layer (self-attention and FFN), both a layer scalar and channel-wise modulation. The question
is whether these modulators truly encode context rather than acting as static rescalers.

Figure 2 (layer-scalar, per module) shows clear depth- and module-specific structure with token-
dependent variation. The traces for different tokens diverge at many layers, indicating context
sensitivity. We observe systematic trends across modules: o proj and down proj steadily
strengthen with depth, consistent with greater late-layer amplification; v proj exhibits a pro-
nounced surge in upper layers; up proj follows a U-shaped pattern (early attenuation, late am-
plification); gate proj remains in a tighter band with a mid-depth peak; and q proj/k proj
show early suppression followed by recovery.

Figure 3 further confirms the effectiveness of the channel-wise modulation. Early layers are rel-
atively flat, but mid–late layers develop structured ridges over both tokens and channels, with in-
creasing contrast across depth. In particular, we observe a similar trend at some specific layers.
For instance, at the 5th layer, one token exhibits very large modulator values across all channels,
whereas in the 11th layer, one channel displays very large modulation values across the tokens.

Taken together, the two views indicate that TRANSPONDER learns structured, context-aware gains
that evolve with depth and specialize by module and channel—precisely the behavior we would
expect if the modulators were encoding useful contextual signals rather than acting as fixed, global
scalars.

6 CONCLUSION

In this article, we proposed TRANSPONDER, a simple but effective way to modulate the sub-
layers in Transformers context-aware. By pairing key projections and paths with compact modu-
lators that produce scalar- and channel-wise gates, TRANSPONDER explicitly controls each com-
ponent’s contribution at inference, separating representation from control. The design is minimally
invasive—≤ 1% parameter overhead—and broadly compatible with standard decoder blocks. Em-
pirically, TRANSPONDER consistently improves language modeling quality across LLaMA back-
bones (60M–250M) on OpenWebText and C4. Under comparable budgets, it surpasses stronger,
capacity-heavy gating schemes while remaining far lighter, and it outperforms static depth-aware
scaling methods. Ablations map a practical design space. We find (i) layer-wise placement is prefer-
able to coarse functional-path-only control; (ii) combining channel-wise modulator with a single
scalar modulator per layer yields the best accuracy-cost trade-off; (iii) modulating all the layers is
crucial. Modulator value analyses further show structured, token- and depth-dependent behaviors,
providing direct evidence that adaptive scaling learns semantically meaningful control. The limita-
tion of this work can be found in Appendix A.
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Figure 3: Channel-wise modulator values on down proj across layers and tokens in a LLaMA-130M
model trained with TRANSPONDER. The X and Y are the channel index and the token index, while
the Z-axis are the channel-wise modulator values.

Table 7: Hyperparameters of LLaMA-60M, LLaMA-130M, and LLaMA-250M on OpenWeb-
Text and C4.

Hyper-parameter LLaMA-60M LLaMA-130M LLaMA-250M
Embedding Dimension 512 768 1024
Feed-forward Dimension 1376 2048 2560
Global Batch Size 512 512 512
Sequence Length 256 256 256
Training Steps 10000 20000 40000
Learning Rate 3e-3 3e-3 (1e-3 for C4) 3e-3 (1e-3 for C4)
Warmup Steps 1000 2000 4000
Learning rate Decay Method noam noam noam
Optimizer Adam Adam Adam
Layer Number 8 12 24
Head Number 8 12 16
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A LIMITATION

Our study is compute-limited: we did not scale beyond ∼1B parameters or train for insufficient
tokens because of the limits of the computational resources. In this regime, several zero-shot classi-
fication benchmarks yield Matthews correlation coefficient (MCC) scores near 0, which we attribute
to undertraining rather than an inherent limitation of the current investigation of TRANSPONDER.
Future work should evaluate TRANSPONDER at larger scales and with substantially longer train-
ing runs (more steps and tokens), and reassess zero-shot (and few-shot) generalization under those
settings.

B CLAIM OF THE LLM USAGE

We used LLM-based tools to improve the language and flow; the principles, core logic, and innova-
tions are entirely the authors’.

C REPORDUCTION STATEMENT

All experiments were conducted using the Hugging Face pretraining framework with data paral-
lelism over 8× NVIDIA A100 (40 GB) GPUs. For DeepNorm and LayerNorm scaling, we report
the results from Sun et al. (2025), as we adopt identical hyperparameter settings. To ensure re-
producibility, we include our code and step-by-step instructions in the supplementary materials.
Because LAuReL has not released its source code, we reimplemented the method based on our
understanding of the paper. Detailed training hyperparameters are provided in Table 7.
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