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Abstract

The cooperative Multi-Agent Reinforcement Learning (MARL) with permutation
invariant agents framework has achieved tremendous empirical successes in real-
world applications. Unfortunately, the theoretical understanding of this MARL
problem is lacking due to the curse of many agents and the limited exploration
of the relational reasoning in existing works. In this paper, we verify that the
transformer implements complex relational reasoning, and we propose and analyze
model-free and model-based offline MARL algorithms with the transformer approx-
imators. We prove that the suboptimality gaps of the model-free and model-based
algorithms are independent of and logarithmic in the number of agents respectively,
which mitigates the curse of many agents. These results are consequences of a
novel generalization error bound of the transformer and a novel analysis of the
Maximum Likelihood Estimate (MLE) of the system dynamics with the trans-
former. Our model-based algorithm is the first provably efficient MARL algorithm
that explicitly exploits the permutation invariance of the agents. Our improved
generalization bound may be of independent interest and is applicable to other
regression problems related to the transformer beyond MARL.

1 Introduction

Cooperative MARL algorithms have achieved tremendous successes across a wide range of real-
world applications including robotics [1, 2], games [3, 4], and finance [5]. In most of these works,
the permutation invariance of the agents is embedded into the problem setup, and the successes of
these works hinge on leveraging this property. However, the theoretical understanding of why the
permutation invariant MARL has been so successful is lacking due to the following two reasons.
First, the size of the state-action space grows exponentially with the number of agents; this is known
as “the curse of many agents” [6, 7]. The exponentially large state-action space prohibits the learning
of value functions and policies due to the curse of dimensionality. Second, although the mean-field
approximation is widely adopted to mitigate the curse of many agents [6, 8], this approximation fails
to capture the complex interplay between the agents. In the mean-field approximation, the influence
of all the other agents on a fixed agent is captured only through the empirical distribution of the local
states and/or local actions [6, 8]. This induces a restricted class of function approximators, which
nullifies the possibly complicated relational structure of the agents, and thus fails to incorporate
the complex interaction between agents. Therefore, designing provably efficient MARL algorithms
that incorporate the efficient relational reasoning and break the curse of many agents remains an
interesting and meaningful question.

In this paper, we regard transformer networks as the representation learning module to incorporate
relational reasoning among the agents. In particular, we focus on the offline MARL problem with
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the transformer approximators in the cooperative setting. In this setting, all the agents learn policies
cooperatively to maximize a common reward function. More specifically, in the offline setting, the
learner only has access to a pre-collected dataset and cannot interact adaptively with the environment.
Moreover, we assume that the underlying Markov Decision Process (MDP) is homogeneous, which
means that the reward and the transition kernel are permutation invariant functions of the state-action
pairs of the agents. Our goal is to learn an optimal policy that is also permutation invariant.

To design provably efficient offline MARL algorithms, we need to overcome three key challenges.
(i) To estimate the action-value function and the system dynamics, the approximator function needs
to implement efficient relational reasoning among the agents. However, the theoretically-grounded
function structure that incorporates the complex relational reasoning needs to be carefully designed.
(ii) To mitigate the curse of many agents, the generalization bound of the transformer should be
independent of the number of agents. Existing results in [9] thus require rethinking and improvements.
(iii) In offline Reinforcement Learning (RL), the mismatch between the sampling and visitation
distributions induced by the optimal policy (i.e., “distribution shift”) greatly restricts the application
of the offline RL algorithm. Existing works adopt the “pessimism” principle to mitigate such a
challenge. However, this requires the quantification of the uncertainty in the value function estimation
and the estimation of the dynamics in the model-free and model-based methods respectively. The
quantification of the estimation error with the transformer function class is a key open question.

We organize our work by addressing the abovementioned three challenges.

First, we theoretically identify the function class that can implement complex relational reasoning. We
demonstrate the relational reasoning ability of the attention mechanism by showing that approximating
the self-attention structure with the permutation invariant fully-connected neural networks (i.e., deep
sets [10]) requires an exponentially large number of hidden nodes in the input dimension of each
channel (Theorem 1). This result necessitates the self-attention structure in the set transformer.

Second, we design offline model-free and model-based RL algorithms with the transformer ap-
proximators. In the former, the transformer is adopted to estimate the action-value function of the
policy. The pessimism is encoded in that we learn the policy according to the minimal estimate
of the action-value function in the set of functions with bounded empirical Bellman error. In the
model-based algorithm, we estimate the system dynamics with the transformer structure. The policy
is learned pessimistically according to the estimate of the system dynamics in the confidence region
that induces the conservative value function.

Finally, we analyze the suboptimality gaps of our proposed algorithms, which indicate that the pro-
posed algorithms mitigate the curse of many agents. For the model-free algorithm, the suboptimality
gap in Theorem 3 is independent of the number of agents, which is a consequence of the fact that the
generalization bound of the transformer (Theorem 2) is independent of the number of channels. For
the model-based algorithm, the bound on the suboptimality gap in Theorem 4 is logarithmic in the
number of agents; this follows from the analysis of the MLE of the system dynamics in Proposition 3.
We emphasize that our model-based algorithm is the first provably efficient MARL algorithm that
exploits the permutation equivariance when estimating the dynamics.

Technical Novelties. In Theorem 2, we leverage a PAC-Bayesian framework to derive a generalization
error bound of the transformer. Compared to [9, Theorem 4.6], the result is a significant improvement
in the dependence on the number of channels N and the depth of neural network L. This result may
be of independent interest for enhancing our theoretical understanding of the attention mechanism and
is applicable to other regression problems related to the transformer. In Proposition 3, we derive the
first estimation uncertainty quantification of the system dynamics with the transformer approximators,
which can be also be used to analyze other RL algorithms with such approximators.

More Related Work. In this paper, we consider the offline RL problem, and the insufficient coverage
lies at the core of this problem. With the global coverage assumption, a number of works have been
proposed from both the model-free [11–15] and model-based [11, 16] perspectives. To weaken the
global coverage assumption, we leverage the “pessimism” principle in the algorithms: the model-
free algorithms impose additional penalty terms on the estimate of the value function [17, 18] or
regard the function that attains the minimum in the confidence region as the estimate of the value
function [19]; the model-based algorithms estimate the system dynamics by incorporating additional
penalty terms [20] or minimizing in the region around MLE [21]. For the MARL setting, the offline
MARL with the mean-field approximation has been studied in [8, 22].
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The analysis of the MARL algorithm with the transformer approximators requires the generalization
bound of the transformer. The transformer is an element of the group equi/invariant functions,
whose benefit in terms of its generalization capabilities has attracted extensive recent attention.
Generalization bounds have been successively improved by analyzing the cardinality of the “effective”
input field and Lipschitz constants of functions [23, 24]. However, these methods result in loose
generalization bounds when applied to deep neural networks [25]. Zhu, An, and Huang [26]
empirically demonstrated the benefits of the invariance in the model by refining the covering number
of the function class, but a unified theoretical understanding is still lacking. The covering number of
the norm-bounded transformer was shown by [9] to be at most logarithmic in the number of channels.
We show that this can be further improved using a PAC-Bayesian framework. In addition, we refer to
the related concurrent work [27] for a Rademacher complexity-based generalization bound of the
transformer that is independent of the length of the sequence for the tasks such as computer vision.

2 Preliminaries

Notation. Let [n] = {1, . . . , n}. The ith entry of the vector x is denoted as xi or [x]i. The ith row
and the ith column of matrix X are denoted as Xi,: and X:,i respectively. The ℓp-norm of the vector
x is ∥x∥p. The ℓp,q-norm of the matrix X ∈ Rm×n is defined as ∥X∥p,q = (

∑n
i=1 ∥X:,i∥qp)1/q , and

the Frobenius norm of X is defined as ∥X∥F = ∥X∥2,2. The total variation distance between two
distributions P and Q on A is defined as TV(P,Q) = supA⊆A |P (A)−Q(A)|. For a set X , we use
∆(X ) to denote the set of distributions on X . For two conditional distributions P,Q : X → ∆(Y),
the d∞ distance between them is defined as d∞(P,Q) = 2 supx∈X TV(P (· |x), Q(· |x)). Given a
metric space (X , ∥ · ∥), for a set A ⊆ X , an ε-cover of A is a finite set C ⊆ X such that for any
a ∈ A, there exists c ∈ C and ∥c − a∥ ≤ ε. The ε-covering number of A is the cardinality of the
smallest ε-cover, which is denoted as N (A, ε, ∥ · ∥).
Attention Mechanism and Transformers. The attention mechanism is a technique that mimics
cognitive attention to process multi-channel inputs [28]. Compared with the Convolutional Neural
Network (CNN), the transformer has been empirically shown to possess outstanding robustness
against occlusions and preserve the global context due to its special relational structure [29]. Assume
we have N query vectors that are in RdQ . These vectors are stacked to form the matrix Q ∈ RN×dQ .
With NV key vectors in the matrix K ∈ RNV ×dQ and NV value vectors in the matrix V ∈ RNV ×dV ,
the attention mechanism maps the queriesQ using the function Att(Q,K, V ) = SM(QK⊤)V , where
SM(·) is the row-wise softmax operator that normalizes each row using the exponential function,
i.e., for x ∈ Rd, [SM(x)]i = exp(xi)/

∑d
j=1 exp(xj) for i ∈ [d]. The product QK⊤ measures the

similarity between the queries and the keys, which is then passed through the activation function
SM(·). Thus, SM(QK⊤)V essentially outputs a weighted sum of V where a value vector has greater
weight if the corresponding query and key are more similar. The self-attention mechanism is defined
as the attention that takes Q = XWQ, K = XWK and V = XWV as inputs, where X ∈ RN×d is
the input of self-attention, and WQ,WK ∈ Rd×dQ and WV ∈ Rd×dV are the parameters. Intuitively,
self-attention weighs the inputs with the correlations among N different channels. This mechanism
demonstrates a special pattern of relational reasoning among the channels of X .

In addition, the self-attention mechanism is permutation invariant in the channels in X . This
implies that for any row-wise permutation function ψ(·), which swaps the rows of the input ma-
trix according to a given permutation of [N ], we have Att(ψ(X)WQ, ψ(X)WK , ψ(X)WV ) =
ψ(Att(XWQ, XWK , XWV )). The permutation equivariance of the self-attention renders it suitable
for inference tasks where the output is equivariant with respect to the ordering of inputs. For example,
in image segmentation, the result should be invariant to the permutation of the objects in the input im-
age [30]. The resultant transformer structure combines the self-attention with multi-layer perceptrons
and composes them to form deep neural networks. It remains permutation equi/invariant with respect
to the order of the channels and has achieved excellent performance in many tasks [31–33].

Offline Cooperative MARL. In this paper, we consider the cooperative MARL problem, where
all agents aim to maximize a common reward function. The corresponding MDP is characterized
by the tuple (S̄0, S̄, Ā, P ∗, r, γ) and the number of agents is N . The state space S̄ = SN is the
Cartesian product of the state spaces of each agent S, and S̄ = [s1, . . . , sN ]⊤ is the state, where
si ∈ RdS is the state of the ith agent. The initial state is S̄0. The action space Ā = AN is the
Cartesian product of the action spaces A of each agent, and Ā = [a1, . . . , aN ]⊤ is the action, where
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(a) ρReLU(
∑N

i=1 ϕReLU(xi)) with ρReLU and
ψReLU as single-hidden layer neural networks.

(b) Self-attention mechanism I⊤NAtt(X,X,X)w.

Figure 1: The blocks with the same color share the same parameters. The left figure shows that
ρReLU(

∑N
i=1 ϕReLU(xi)) first sums the outputs of ϕReLU(xi), and it implements the relational

reasoning only through the single-hidden layer network ρReLU. In contrast, the self-attention block in
the right figure captures the relationship among channels and then sums the outputs of each channel.

ai ∈ RdA is the action of the ith agent. The transition kernel is P ∗ : SN × AN → ∆(SN ), and
γ ∈ (0, 1) is the discount factor. Without loss of generality, we assume that the reward function r
is deterministic and bounded, i.e., r : SN ×AN → [−Rmax, Rmax]. We define the the state-value
function V πP : SN → [−Vmax, Vmax], where Vmax = Rmax/(1− γ), and the action-value function
QπP : SN ×AN → [−Vmax, Vmax] of a policy π and a transition kernel P as

V πP (S̄)=Eπ
[ ∞∑
t=0

γtr(S̄t, Āt)

∣∣∣∣ S̄0= S̄

]
and QπP (S̄, Ā)=Eπ

[ ∞∑
t=0

γtr(S̄t, Āt)

∣∣∣∣ S̄0= S̄, Ā0=Ā

]
,

respectively. Here, the expectation is taken with respect to the Markov process induced by the
policy Āt ∼ π(· | S̄t) and the transition kernel P . The action-value function QπP∗ is the unique fixed
point of the operator (T πf)(S̄, Ā) = r(S̄, Ā) + γES̄′∼P∗(· | S̄,Ā)[f(S̄

′, π)
∣∣ S̄, Ā], where the term

in the expectation is defined as f(S̄, π) = EĀ∼π(· | S̄)[f(S̄, Ā)]. We further define the visitation
measure of the state and action pair induced the policy π and transition kernel P as dπP (S̄, Ā) =
(1− γ)

∑∞
t=0 γ

tdπP,t, where dπP,t is the distribution of the state and the action at step t.

In offline RL, the learner only has access to a pre-collected dataset and cannot interact with the
environment. The dataset D = {(S̄i, Āi, ri, S̄′

i)}ni=1 is collected in an i.i.d. manner, i.e., (S̄i, Āi) is
independently sampled from ν ∈ ∆(S̄ × Ā), and S̄′

i ∼ P ∗(· | S̄i, Āi). This i.i.d. assumption is made
to simplify our theoretical results; see Appendix N.2 for extensions to the non i.i.d. case. Given a
policy class Π, our goal is to find an optimal policy that maximizes the state-value function π∗ =
argmaxπ∈Π V

π
P∗(S̄0). For any π ∈ Π, the suboptimality gap of π is defined as V π

∗

P∗ (S̄0)− V πP∗(S̄0).

3 Provable Efficiency of Transformer on Relational Reasoning

In this section, we provide the theoretical understanding of the outstanding relational reasoning ability
of transformer. These theoretical results serves as a firm base for adopting set transformer to estimate
the value function and system dynamics in RL algorithms in the following sections.

3.1 Relational Reasoning Superiority of Transformer Over MLP

The transformer neural network combines the self-attention mechanism and the fully-connected
neural network, which includes the MultiLayer Perceptrons (MLP) function class as a subset. On the
inverse direction, we show that permutation invariant MLP can not approximate transformer unless
its width is exponential in the input dimension due to the poor relational reasoning ability of MLP.

Zaheer et al. [10, Theorem 2] showed that all permutation invariant functions take the form
ρ(
∑N
i=1 ϕ(xi)) with X = [x1, . . . , xN ]⊤ ∈ RN×d as the input. Since the single-hidden layer ReLU

neural network is an universal approximator for continuous functions [34], we set ϕ : RN×d → RW2

and ρ : RW2 → R to be single-hidden layer neural networks with ReLU activation functions as shown
in Figure 1(a), whereW2 is the dimension of the intermediate outputs. The widths of the hidden layers
in ϕReLU and ρReLU are W1 and W3 respectively. For the formal definition of ϕReLU and ρReLU,
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please refer to Appendix A. Then the function class with ρReLU and ϕReLU as width-constrained
ReLU networks is defined as

N (W ) =

{
f : RN×d → R

∣∣∣∣ f(X) = ρReLU

( N∑
i=1

ϕReLU(xi)

)
with max

i∈[3]
Wi ≤W

}
.

We would like to use functions in N (W ) to approximate the self-attention function class

F =
{
f : RN×d → R

∣∣ f(X) = I⊤NAtt(X,X,X)w for some w ∈ [0, 1]d
}
.

Figure 1(a) shows that ρReLU(
∑N
i=1 ϕReLU(xi)) first processes each channel with ϕReLU, and

the relationship between channels is only reasoned with ρReLU. The captured relationship in
ρReLU(

∑N
i=1 ϕReLU(xi)) cannot be too complex due to the simple structure of ρReLU. In con-

trast, the self-attention structure shown in Figure 1(b) first captures the relationship between channels
with the self-attention structure and then weighs the results to derive the final output. Consequently, it
is difficult to approximate the self-attention structure with ρReLU(

∑N
i=1 ϕReLU(xi)) due to its poor

relational reasoning ability. This observation is formally quantified in the following theorem.
Theorem 1. Let W ∗(ξ, d,F) be the smallest width of the neural network such that

∀ f ∈ F , ∃ g ∈ N (W ) s.t. sup
X∈[0,1]N×d

∣∣f(X)− g(X)
∣∣ ≤ ξ.

With sufficient number of channels N , it holds that W ∗(ξ, d,F) = Ω(exp (cd)ξ−1/4) for some c > 0.

Theorem 1 shows that the fully-connected neural network cannot approximate the relational reasoning
process in the self-attention mechanism unless the width is exponential in the input dimension. This
exponential lower bound of the width of the fully-connected neural network implies that the relational
reasoning process embedded within the self-attention structure is complicated, and it further motivates
us to explicitly incorporate the self-attention structure in the neural networks in order to reason the
complex relationship among the channels.

3.2 Channel Number-independent Generalization Error Bound

Figure 2: Structure of the transformer func-
tion class, where the row-wise feedforward
function is specified as fully-connected net-
works.

In this section, we derive the generalization error
bound of transformer. We take X ∈ RN×d as the
input of the neural network. In the ith layer, as shown
in Figure 3.2, we combine the self-attention mech-
anism Att(XW

(i)
QK , X,XW

(i)
V ) with the row-wise

FeedForward (rFF) single-hidden layer neural net-
work rFF(X, a(i), b(i)) with width m. We combine
W

(i)
Q and W (i)

K to W (i)
QK for ease of calculation, and

b(i) and a(i) are the parameters of the first and second
layer of rFF. The output of each layer is normalized
by the row-wise normalization function Πnorm(·),
which projects each row of the input into the unit
ℓp-ball (for some p ≥ 1). For the last layer, we derive
the scalar estimate of the action-value function by averaging the outputs of all the channels, and the
“clipping” function ΠV (x) is applied to normalize the output to [−V, V ]. We note that such structures
are also known as set transformers in [33]. For the formal definition of the transformer, please refer
to Appendix B.

We consider a transformer with bounded parameters. For a pair of conjugate numbers p, q ∈ R, i.e.,
1/p+ 1/q = 1 and p, q ≥ 1, the transformer function class with bounded parameters is defined as

Ftf(B) =
{
gtf(X;W 1:L

QK ,W
1:L
V , a1:L, b1:L, w)

∣∣∣ ∣∣a(i)kj ∣∣ < Ba,
∥∥b(i)kj ∥∥q < Bb,∥∥W (i)⊤

QK

∥∥
p,q

< BQK ,
∥∥W (i)⊤

V

∥∥
p,q

< BV , ∥w∥q < Bw for i ∈ [L], j ∈ [m], k ∈ [d]
}
,

where B = [Ba, Bb, BQK , BV , Bw] are the parameters of the function class, and W 1:L
QK ,W

1:L
V , a1:L

and b1:L are the stacked parameters in each layer. We only consider the non-trivial case where
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Ba, Bb, BQK , BV , Bw are larger than one, otherwise the norms of the outputs decrease exponentially
with growing depth. For ease of notation, we denote Ftf(B) as Ftf when the parameters are clear.

Consider the regression problem where we aim to predict the value of the response variable y ∈ R
from the observation matrix X ∈ RN×d, where (X, y) ∼ ν, and |y| ≤ V . We derive our estimate
f : RN×d → R from i.i.d. observations Dreg = {(Xi, yi)}ni=1 generated from ν. The risk of using
f ∈ Ftf(B) as a regressor on sample (X, y) is defined as (f(X) − y)2. Then the excess risk of
functions in the transformer function class Ftf can be bounded as in the following proposition.
Proposition 1. Let B̄ = BVBQKBaBbBw. For all f ∈ Ftf , with probability at least 1− δ, we have∣∣∣Eν[(f(X)− y

)2]− 1

n

n∑
i=1

(
f(Xi)− yi

)2∣∣∣
≤ 1

2
Eν
[(
f(X)− y

)2]
+O

(
V 2

n

[
mL2d2 log

mdLB̄n

V
+ log

1

δ

])
.

Proposition 1 is a corollary of Theorem 2. We state it here since the generalization error bound of
transformer may be interesting for other regression problems. We compare our generalization error
bound in Proposition 1 with [9, Theorem 4.6]. For the dependence on the number of agents N , the
result in [9, Theorem 4.6] shows that the logarithm of the covering number of the transformer function
class is logarithmic in N . Combined with the use of the Dudley integral [35], [9, Theorem 4.6]
implies that the generalization error bound is logarithmic in N . In contrast, our result is independent
of N . This superiority is attributed to our use of the PAC-Bayesian framework, in which we measure
the distance between functions using the KL divergence of the distributions on the function parameter
space. For the transformer structure, the size of the parameter space is independent of the number of
agents N , which helps us to remove the dependence on N .

Concerning the dependence on the depth L of the neural network, [9, Theorem 4.6] shows that
the logarithm of the covering number of the transformer function class scales exponentially in L.
In contrast, Proposition 1 shows that the generalization bound is polynomial in L. We note that
Proposition 1 does not contradict the exponential dependence shown in [36, 37], since we implement
the layer normalization to restrict the range of the output. As a byproduct, Proposition 1 shows that
the invariant of the layer normalization adopted in our paper can greatly reduce the dependence of the
generalization error on the depth of the neural network L. We note that our results can be generalized
to the multi-head attention structure, and the extensions are provided in Appendix N.

4 Offline Multi-Agent Reinforcement Learning with Set Transformers

In this section, we apply the results in Section 3 to MARL. We implement efficient relational
reasoning via the set transformer to obtain improved suboptimality bounds of the MARL problem. In
particular, we consider the homogeneous MDP, where the transition kernel and the reward function
are invariant to permutations of the agents, i.e., for any row-wise permutation function ψ(·), we have

P ∗(S̄′ | S̄, Ā) = P ∗(ψ(S̄′)
∣∣ψ(S̄), ψ(Ā)) and r(S̄, Ā) = r

(
ψ(S̄), ψ(Ā)

)
for all S̄, S̄′ ∈ SN and Ā ∈ AN . A key property of the homogeneous MDP is that there exists a
permutation invariant optimal policy, and the corresponding state-value function and the action-value
function are also permutation invariant [22].
Proposition 2. For the cooperative homogeneous MDP, there exists an optimal policy that is
permutation invariant. Also, for any permutation invariant policy π, the corresponding value function
V πP∗ and action-value function QπP∗ are permutation invariant.

Thus, we restrict our attention to the class of permutation invariant policies Π, where π(Ā | S̄) =
π(ψ(Ā) |ψ(S̄)) for all Ā ∈ Ā, S̄ ∈ S̄, π ∈ Π and all permutations ψ. For example, if
π(Ā | S̄) =

∏N
i=1 µ(ai | si) for some µ, then π is permutation invariant. An optimal policy is

any π∗ ∈ argmaxπ∈Π V
π
P∗(S̄0).

4.1 Pessimistic Model-Free Offline Reinforcement Learning

In this subsection, we present a model-free algorithm, in which we adopt the transformer to estimate
the action-value function. We also learn a policy based on such an estimate.
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4.1.1 Algorithm

We modify the single-agent offline RL algorithm in [19] to be applicable to the multi-agent case
with the transformer approximators, but the analysis is rather different from that in [19]. Given the
dataset D = {(S̄i, Āi, ri, S̄′

i)}ni=1, we define the mismatch between two functions f and f̃ on D
for a fixed policy π as L(f, f̃ , π;D) = 1

n

∑
(S̄,Ā,r̄,S̄′)∈D(f(S̄, Ā)− r̄ − γf̃(S̄′, π))2. We adopt the

transformer function class Ftf(B) in Section 3.2 to estimate the action-value function and regard
X = [S̄, Ā] ∈ RN×d as the input of the neural network. The dimension d = dS + dA and each agent
corresponds to a channel in X . The Bellman error of a function f with respect to the policy π is
defined as E(f, π;D) = L(f, f, π;D)− inf f̃∈Ftf

L(f̃ , f, π;D).

For a fixed policy π, we construct the confidence region of the action-value function of π by
selecting the functions in Ftf with the ε-controlled Bellman error. We regard the function attaining
the minimum in the confidence region as the estimate of the action-value function of the policy;
this reflects the terminology “pessimism”. Then the optimal policy is learned by maximizing the
action-value function estimate. The algorithm can be written formally as

π̂ = argmax
π∈Π

min
f∈F(π,ε)

f(S̄0, π), where F(π, ε) =
{
f ∈ Ftf(B)

∣∣ E(f, π;D) ≤ ε
}
. (1)

The motivation for the pessimism originates from the distribution shift, where the induced distribution
of the learned policy is different from the sampling distribution ν. Such an issue is severe when
there is no guarantee that the sampling distribution ν supports the visitation distribution dπ

∗

P∗ induced
by the optimal policy π∗. In fact, the algorithm in Eqn. (1) does not require the global coverage
of the sampling distribution ν, where the global coverage means that dπP∗(S̄, Ā)/ν(S̄, Ā) is upper
bounded by some constant for all (S̄, Ā) ∈ S̄ × Ā and all π ∈ Π. Instead, it only requires partial
coverage, and the mismatch between the distribution induced by the optimal policy dπ

∗

P∗ and the
sampling distribution ν is captured by

CFtf
= max
f∈Ftf

Edπ∗
P∗

[(
f(S̄, Ā)− T π∗

f(S̄, Ā)
)2]/Eν[(f(S̄, Ā)− T π∗

f(S̄, Ā)
)2]

. (2)

We note that CFtf
≤ max(S̄,Ā)∈S̄×Ā d

π∗

P∗(S̄, Ā)/ν(S̄, Ā), so the suboptimality bound involving CFtf

in Theorem 3 is tighter than the bound requiring global convergence [38]. Similar coefficients also
appear in many existing works such as [19] and [39].

4.1.2 Bound on the Suboptimality Gap

Before stating the suboptimality bound, We require two assumptions on Ftf and the sampling
distribution ν. We first state the standard regularity assumption of the transformer function class.
Assumption 1. For any π ∈ Π, we have inff∈Ftf

supµ∈dΠ Eµ[(f(S̄, Ā)− T πf(S̄, Ā))2] ≤ εF and
supf∈Ftf

inf f̃∈Ftf
Eν [(f̃(S̄, Ā)− T πf(S̄, Ā))2] ≤ εF,F , where dΠ = {µ | ∃π ∈ Π s.t. µ = dπP∗}

is the set of distributions of the state and the action pair induced by any policy π ∈ Π.

This assumption, including the realizability and the completeness, states that for any policy π ∈ Π
there is a function in the transformer function class Ftf such that the Bellman error is controlled by
εF , and the transformer function class is approximately closed under the Bellman operator T π for
any π ∈ Π. In addition, we require that the mismatch between the sampling distribution and the
visitation distribution of the optimal policy is bounded.
Assumption 2. For the sampling distribution ν, the coefficient CFtf

defined in Eqn. (2) is finite.

We note that similar assumptions also appear in many existing works [19, 39].

In the analysis of the algorithm in Eqn. (1), we first derive a generalization error bound of the estimate
of the Bellman error using the PAC-Bayesian framework [40, 41].

Theorem 2. Let B̄ = BVBQKBaBbBw. For all f, f̃ ∈ Ftf(B) and all policies π ∈ Π, with
probability at least 1− δ, we have∣∣∣Eν[(f(S̄, Ā)− T π f̃(S̄, Ā)

)2]− L(f, f̃ , π;D) + L(T π f̃ , f̃ , π;D)
∣∣∣

≤ 1

2
Eν
[(
f(S̄, Ā)−T π f̃(S̄, Ā)

)2]
+O

(
V 2
max

n

[
mL2d2 log

mdLB̄n

Vmax
+ log

N (Π, 1/n, d∞)

δ

])
.

7



For ease of notation, we define e(Ftf ,Π, δ, n) to be n times the second term of the generalization
error bound. We note that the generalization error bound in Theorem 2 is independent of the number
of agents, which will help us to remove the dependence on the number of agents in the suboptimality
of the learned policy. The suboptimality gap of the learned policy π̂ can be upper bounded as the
following.
Theorem 3. If Assumptions 1 and 2 hold, and we take ε = 3εF/2 + 2e(Ftf ,Π, δ, n)/n, then with
probability at least 1 − δ, the suboptimality gap of the policy derived in the algorithm shown in
Eqn. (1) is upper bounded as

V π
∗

P∗ (S̄0)−V π̂P∗(S̄0)≤O

(√
CFtf

ε̃

1− γ
+
Vmax

√
CFtf

(1− γ)
√
n

√
mL2d2 log

mdLB̄n

Vmax
+log

2N (Π, 1/n, d∞)

δ

)
,

where d = dS + dA, ε̃ = εF + εF,F , and B̄ is defined in Proposition 2.

Theorem 3 shows that the upper bound of the suboptimality gap does not scale with the number
of agents N , which demonstrates that the proposed model-free algorithm breaks the curse of many
agents. We note that the model-free offline/batch MARL with homogeneous agents has been studied
in [8] and [22], and the suboptimality upper bounds in [8, Theorem 1] and [22, Theorem 4.1] are also
independent of N . However, these works adopt the mean-field approximation of the original MDP, in
which the influence of all the other agents on a specific agent is only coarsely considered through the
distribution of the state. The approximation error between the action-value function of the mean-field
MDP and that of the original MDP is not analyzed therein. Thus, the independence of N in their
works comes with the cost of the poor relational reasoning ability and the unspecified approximation
error. In contrast, we analyze the suboptimality gap of the learned policy in the original MDP, and
the interaction among agents is captured by the transformer network.

4.2 Pessimistic Model-based Offline Reinforcement Learning

In this subsection, we present the model-based algorithm, where we adopt the transformer to estimate
the system dynamics and learn the policy based on such an estimate.

4.2.1 Neural Nonlinear Regulator

In this section, we consider the Neural Nonlinear Regulator (NNR), in which we use the trans-
former to estimate the system dynamics. The ground truth transition P ∗(S̄′ | S̄, Ā) is defined
as S̄′ = F ∗(S̄, Ā) + ε̄, where F ∗ is a nonlinear function, ε̄ = [ε1, . . . , εN ]⊤is the noise, and
εi ∼ N (0, σ2Id×d) for i ∈ [N ] are independent random vectors. We note that the function F ∗

and the transition kernel P ∗ are equivalent, and we denote the transition kernel corresponding to
the function F as PF . Since the transition kernel P ∗(S̄′ | S̄, Ā) is permutation invariant, F ∗ should
be permutation equivariant, i.e., F ∗(ψ(S̄), ψ(Ā)) = ψ(F ∗(S̄, Ā)) for all row-wise permutation
functions ψ(·).

We take X = [S̄, Ā] ∈ RN×d as the input of the network and adopt a similar network structure as the
transformer specified in Section 3.2. However, to predict the next state instead of the action-value
function with the transformer, we remove the average aggregation module in the final layer of the
structure in Section 3.2. Please refer to Appendix B for the formal definition. The permutation equiv-
ariance of the proposed transformer structure can be easily proved with the permutation equivariance
of the self-attention mechanism. We consider the transformer function class with bounded parameters,
which is defined as

Mtf(B
′) =

{
Ftf(X;W 1:L

QK ,W
1:L
V , a1:L, b1:L)

∣∣∣ ∣∣a(i)kj ∣∣ < Ba,
∥∥b(i)kj ∥∥2 < Bb,∥∥W (i)⊤

QK

∥∥
F
< BQK ,

∥∥W (i)⊤
V

∥∥
F
< BV for i ∈ [L], j ∈ [m], k ∈ [d]

}
,

whereB′ = [Ba, Bb, BQK , BV ] is the vector of parameters of the function class. We denote Mtf(B
′)

as Mtf when the parameters are clear from the context.

4.2.2 Algorithm

Given the offline dataset D = {(S̄i, Āi, ri, S̄′
i)}ni=1, we first derive the MLE of the system dynamics.

Next, we learn the optimal policy according to the confidence region of the dynamics that are
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constructed around the MLE. The term “pessimism” is reflected in the procedure that we choose the
system dynamics that induce the smallest value function, i.e.,

F̂MLE = argmin
F∈Mtf

1

n

n∑
i=1

∥∥S̄′
i − F (S̄i, Āi)

∥∥2
F

and π̂ = argmax
π∈Π

min
F∈MMLE(ζ)

V πPF
(S̄0), (3)

where MMLE(ζ) = {F ∈ Mtf(B
′) | 1/n ·

∑n
i=1 TV(PF (· | S̄i, Āi), P̂MLE(· | S̄i, Āi))2 ≤ ζ} is the

confidence region, which has a closed-form expression in terms of the difference between F and
F̂MLE as stated in in Appendix C. The transition kernel induced by F̂MLE is denoted as P̂MLE. The
parameter ζ is used to measure the tolerance of estimation error of the system dynamics, and it is set
according to the parameters of Mtf(B

′) such that F ∗ belongs to MMLE(ζ) with high probability.

Similar to the model-free algorithm, the model-based algorithm specified in Eqn. (3) does not require
global coverage. Instead, the mismatch between the distribution induced by the optimal policy dπ

∗

P∗

and the sampling distribution ν is captured by the constant

CMtf
= max
F∈Mtf

Edπ∗
P∗

[
TV
(
PF (· | S̄, Ā), P ∗(· | S̄, Ā)

)2]/Eν[TV(PF (· | S̄, Ā), P ∗(· | S̄, Ā)
)2]

. (4)

We note that CMtf
≤ max(S̄,Ā)∈S̄×Ā d

π∗

P∗(S̄, Ā)/ν(S̄, Ā), so the suboptimality bound involving
CPFtf

in Theorem 4 is tighter than the bound requiring global convergence. Similar coefficients also
appear in many existing works such as [42] and [20].

4.2.3 Analysis of the Maximum Likelihood Estimate

Every F ∈ MMLE(ζ) is near to the MLE in the total variation sense and thus well approximates the
ground truth system dynamics. Therefore, to derive an upper bound of the suboptimality gap of the
learned policy, we first analyze the convergence rate of the MLE P̂MLE to P ∗.

Proposition 3. Let B̃ = BVBQKBaBb. For the maximum likelihood estimate P̂MLE in Eqn. (3),
the following inequality holds with probability at least 1− δ,

Eν
[
TV
(
P ∗(· | S̄, Ā), P̂MLE(· | S̄, Ā)

)2] ≤ O

(
1

n
mL2d2 log

(
NLmdB̃n

)
+

1

n
log

1

δ

)
.

We define e′(Mtf , n) to be n times the total variation bound. Proposition 3 shows that the total
variation estimation error is polynomial in the depth of the neural network L. However, different
from the model-free RL results in Section 4.1, the estimation error of MLE P̂MLE is logarithmic in
the number of agents N . We note that this logarithm dependency on N comes from the fact that
TV(P ∗(· | S̄, Ā), P̂MLE(· | S̄, Ā)) measures the distance between two transition kernels that involves
the states of N agents, different from the scalar estimate of the value function in Section 4.1. To prove
the result, we adopt a PAC-Bayesian framework to analyze the convergence rate of MLE, which is
inspired by the analysis of density estimation [43]; more details are presented in Appendix J.

4.2.4 Bound on the Suboptimality Gap

To analyze the error of the learned model, we make the following realizability assumption.
Assumption 3. The nominal system dynamics belongs to the function class Mtf , i.e., F ∗ ∈ Mtf(B

′).

In addition, we require that the mismatch between the sampling distribution and the visitation
distribution of the optimal policy is bounded.
Assumption 4. For the sampling distribution ν, the coefficient CMtf

defined in (4) is finite.

We note that these two assumptions are also made in many existing works, e.g., [20, 21].
Theorem 4. If Assumptions 3 and 4 hold, and we take ζ = c1e

′(Mtf , n)/n for some constant c1 > 0,
then with probability at least 1− δ, the suboptimality gap of the policy learned in the algorithm in
Eqn. (3) is upper bounded as

V π
∗

P∗ (S̄0)− V π̂P∗(S̄0) ≤ O

(
Vmax

(1− γ)2

√
CMtf

(
1

n
mL2d2 log

(
NLmdB̃n

)
+

1

n
log

1

δ

))
,

where d = dS + dA, and B̃ is defined in Proposition 3.
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Figure 3: Average rewards of model-free RL algorithms with their standard deviations for N = 3, 30.
Theorem 4 presents an upper bound on the suboptimality gap of the offline model-based RL with
the transformer approximators. The suboptimality gap depends on the number of agents only as
O(

√
logN), which shows that the proposed model-based MARL algorithm mitigates the curse of

many agents. This weak dependence on N originates from measuring the distance between two
system dynamics of N agents in the learning of the dynamics. To the best of our knowledge, there is
no prior work on analyzing the model-based algorithm for the homogeneous MARL, even from the
mean-field approximation perspective. The proof of Theorem 4 leverages novel analysis of the MLE
in Proposition 3. For more details, please refer to Appendix H.

5 Experimental Results
We evaluate the performance of the algorithms on the Multiple Particle Environment (MPE) [44,
45]. We focus on the cooperative navigation task, where N agents move cooperatively to cover
L landmarks in an environment. Given the positions of the N agents xi ∈ R2 (for i ∈ [N ])
and the positions of the L landmarks yj ∈ R2 (for j ∈ [L]), the agents receive reward r =

−
∑L
j=1 mini∈[N ] ∥yj − xi∥2. This reward encourages the agents to move closer to the landmarks.

We set the number of agents as N = 3, 6, 15, 30 and the number of landmarks as L = N . Here,
we only present the result for N = 3, 30. Please refer to Appendix O for more numerical results.
To collect an offline dataset, we learn a policy in the online setting. Then the offline dataset is
collected from the induced stationary distribution of such a policy. We use MLP, deep sets, Graph
Convolutional Network (GCN) [46], and set transformer to estimate the value function. We note that
the deep sets, GCN, and set transformer are permutation invariant functions. For the implementation
details, please refer to Appendix O.

Figure 3 shows that the performances of the MLP and deep sets are worse than that of the set
transformer. This is due to the poor relational reasoning abilities of MLP and deep sets, which
corroborates Theorem 1. Figure 3 indicates that when the number of agents N increases, the
superiority of the algorithm with set transformer becomes more pronounced, which is strongly
aligned with our theoretical result in Theorem 3.

6 Concluding remarks
In view of the tremendous empirical successes of cooperative MARL with permutation invariant
agents, it is imperative to develop a firm theoretical understanding of this MARL problem because
it will inspire the design of even more efficient algorithms. In this work, we design and analyze
algorithms that break the curse of many agents and, at the same time, implement efficient relational
reasoning. Our algorithms and analyses serve as a first step towards developing provably efficient
MARL algorithms with permutation invariant approximators. We leave the extension of our results
of the transformer to general permutation invariant approximators as future works.
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