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Abstract
Modern sequence models (e.g., Transformers and
linear RNNs) emerged as dominant backbones
of recent deep learning frameworks, mainly due
to their efficiency, representational power, and/or
ability to capture long-range dependencies. Re-
cently, adopting these sequence models for graph-
structured data has gained popularity as the al-
ternative to Message Passing Neural Networks
(MPNNs). There is, however, a lack of a common
foundation about what constitutes a good graph
sequence model, and a mathematical description
of the benefits and deficiencies in adopting dif-
ferent sequence models for learning on graphs.
To this end, we introduce the Graph Sequence
Model (GSM), a unifying framework for apply-
ing sequence models to graph data. The GSM
framework allows us to understand, evaluate, and
compare the power of different sequence model
backbones in graph tasks. Building on this insight,
we propose GSM++, a fast hybrid model that hi-
erarchically tokenizes the graph using Hierarchi-
cal Affinity Clustering (HAC) and then encodes
these sequences via a hybrid architecture. The
theoretical and experimental findings confirm the
effectiveness of GSM++.

1. Introduction
Message-passing graph neural networks (MPNNs) have
been the leading approach for processing graph data (Kipf
& Welling, 2016; Gilmer et al., 2017a; Chami et al., 2020;
Morris et al., 2020). However, with the increasing popu-
larity of Transformer architectures (Vaswani et al., 2017)
and their success in natural language processing and com-
puter vision, recent research has shifted towards developing
graph Transformers (GTs), which are designed to handle
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the complexities of graph-structured data more effectively.
Graph Transformers have demonstrated compelling results,
particularly by leading in tasks like molecular property pre-
diction (Ying et al., 2021; Hu et al., 2020; Masters et al.,
2023). Their advantage over traditional MPNNs is often at-
tributed to tendency of MPNNs to focus on local structures,
making them less effective at capturing global or long-range
relationships due to issues like over-smoothing (Li et al.,
2018), over-squashing (Alon & Yahav, 2020; Di Giovanni
et al., 2023; Dwivedi et al., 2022a), and restricted expressive
power (Barceló et al., 2020). In contrast, GTs (Rampášek
et al., 2022) can learn and capture the pairwise dependencies
of nodes, and aggregate global information across the graph,
reducing the local structural bias.

Despite the expressive power of traditional Transformer-
based architectures, they face scalability issues in long-
context tasks, mainly due to their quadratic computational
complexity. Various strategies have been proposed to mit-
igate quadratice complexity of Transformers (Tay et al.,
2022), including sparsifying the dense attention matrix (Za-
heer et al., 2020; Beltagy et al., 2020a; Roy et al., 2020;
Kitaev et al., 2020), low-rank approximations of the atten-
tion matrix (Wang et al., 2020), and kernel-based attention
mechanisms (Choromanski et al., 2020b; Kacham et al.,
2024). While these methods enhance computational effi-
ciency, they often come at the expense of reduced expres-
siveness (Mehta et al., 2022). In recent years, attention-free
sequence models have emerged as a promising alternative to
Transformers for sequence modeling. Leveraging paralleliz-
able recurrent neural networks (RNNs) (Peng et al., 2023;
Behrouz et al., 2024; 2025a;b) and long convolutions (Poli
et al., 2023; Karami & Ghodsi, 2024), offer sub-quadratic,
hardware-efficient sequence mixing operators that can cap-
ture long-range dependencies with strong generalization to
sequences of varying lengths.

Given the promising potential of the sub-quadratic sequence
models, there is growing interest in extending them to the
graph domain as an alternative to graph Transformers (Ding
et al., 2023; Behrouz & Hashemi, 2024; Huang et al., 2024).
However, a significant technical challenge arises from the
inherent differences between graphs and other structured
data, such as text, which is naturally causal. Graphs exhibit
a complex topology and lack a natural, linear node ordering.
Attempting to impose a naive tokenization strategy, such as
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sorting nodes into a sequence, undermines the crucial in-
ductive bias of permutation equivariance inherent to graphs.
This misrepresentation of graph structure can lead to poor
generalization performance. Furthermore, there is a lack of
a common foundation about what constitutes a good graph
sequence model, and a mathematical description of the ben-
efits and deficiencies of adopting different sequence models
for learning on graphs.

We propose a unified, flexible framework for graph-based
learning that simplifies constructing and comparing diverse
architectures. This approach enables comprehensive the-
oretical and empirical evaluations on tasks such as graph
connectivity and counting. Our findings reveal that although
permutation equivariance in Transformer-based models is
generally seen as an advantage, it hampers counting per-
formance on graphs. In contrast, SSM/RNN-based models
show unbounded capacity for color counting, emphasizing
the power of recurrence in specific graph learning scenar-
ios.These findings are the first steps toward better under-
standing of the power of graph sequence models beyond
traditional metrics (e.g., WL test) and can help to answer
what types of sequence models are the best, given the type
of the task at hand.

We identify limitations in existing tokenization strategies
and introduce GSM++, novel graph learning method fea-
turing hierarchical tokenization with proven theoretical ad-
vantages. GSM++ pairs this tokenization with a hybrid se-
quence model (a combination of recurrent and Transformer
architectures) to achieve strong performance across diverse
graph tasks. Notably, it is the first graph sequence model
that merges Transformers and SSMs, offering a more flexi-
ble and comprehensive solution than existing models. Our
experiments validate this hybrid approach, enhancing under-
standing of model capabilities and guiding the development
of specialized methods for graph-based learning

Contributions and Roadmap. In §2, we present Graph
Sequence Model (GSM) framework that can help us to sys-
tematically study the power of GSMs in different scenarios.
We then in §3 aim to understand strengths and weaknesses
of different types sequence models for graph tasks. To this
end, in §3.1, we show how recurrent nature of a model can
help it to perform tasks like counting more effectively, while
permutation equivariance of Transformers make them un-
able to count. In §3.2, we analyze sequence models through
the lens of sensitivity: while linear recurrent models (e.g.,
SSMs) have a better inductive bias about the nodes’ distance,
this advantages can cause representational collapse in deep
models. Using these results, we motivate a combination of
transformers and SSMs so the SSM module can enhance the
inductive bias, and the permutation equivariance of Trans-
former can avoid representational collapse in the model. In
§3.3, we evaluate the reasoning capability of graph sequence

models through the lens of connectivity tasks. We show that
Transformers are more effective than recurrent models in
such tasks, but with a small modification of the tokens’ or-
der, recurrent models can become extremely efficient. In
§F.1, we theoretically analyze the effect of tokenization
methods (node or subgraph), and how it can help to improve
the efficiency and solve the fundamental problem of motif
counting in graphs. Given our theoretical observations and
what we have learned from these results, in §4, we present
GSM++ that uses a novel tokenization based on the Hier-
archical Affinity Clustering (HAC) tree. GSM++ further
employs a hybrid sequence model with two layers of SSM
followed by a transformer block. We then present a Mixture
of Tokenization (MoT), allowing the combination of differ-
ent sets of tokenizations that are the best for each node, to
further enhance the effectiveness and efficiency of GSM++.

2. Encoding Graphs to Sequences
Despite a variety of GNNs with diverse modules that are
designed based on sequence models, we find that each part
of these architectures is responsible for encoding a specific
characteristic of the graph. To formalize this, we present
our unified model consisting of three main stages: (1) Tok-
enization, (2) Local Encoding, and (3) Global Encoding.

2.1. Tokenization

Sequence models are inherently designed to process se-
quences of tokens. To adapt them for graph-structured
data, the graph must first be translated into a set of se-
quences (Müller et al., 2024; Behrouz & Hashemi, 2024;
Ding et al., 2023). These approaches can be categorized
into two main groups:

Node/Edge Tokenizers. Node or edge tokenization meth-
ods treat the graph as a sequence of node/edges without
considering how they are connected. Accordingly, these
methods lack inductive bias about the graph structure and
so they require to be augmented with positional or structural
encoding to inject information about the graph structure.
Let G = (V,E), be a graph, V = {v1, . . . , v|V |} is the
set of nodes, and P ∈ Rn×d is the positional/structural en-
coding matrix, whose rows encode the position of nodes.
In this case, we translate the graph as a sequence of
G := Pv1 , Pv2 , . . . , Pv|V | Similarly, for edge tokenization
we can replace {v1, . . . , v|V |} with {e1, . . . , e|E|}. The
main drawback of methods based on node/edge tokeniza-
tion is their computational complexity. That is, treating
the graph as a sequence of nodes (resp. edges) results in
having a sequence with length |V | (resp. |E|), meaning that
for quadratic models (e.g., Transformers) the training time
complexity is at least O

(
|V |2

)
(resp. O

(
|E|2

)
).
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Subgraph Tokenizers. To reduce the computational cost
of node tokenization and incorporate inductive bias, sev-
eral methods propose treating the graph as a sequence or
sequences of subgraphs and then encode these sequences us-
ing a sequence model. Formally, given a graph G = (V,E),
the graph can be represented as a set of sequences of sub-
graphs G := {S(1), . . . , S(T )}, where:

S(i) = G[H
(i)
1 ], . . . , G[H

(i)
ℓ ] and H

(i)
j ⊆ V. (1)

When T < |V |, we refer to this process as patching. A
pioneer approach in this direction is DeepWalk (Perozzi
et al., 2014), which uses random walks to sample from
the graph and tokenize it into a set of sequences. A more
recent method is the k-hop neighborhood tokenization used
by NAGphormer (Chen et al., 2023), where each node’s
hierarchical neighborhood is treated as its representative
sequence. For further discussion and examples of these
methods, see Appendix B. Since using T = |V |, ℓ = 1,
and H

(i)
1 = {vi} for i = {1, . . . , |V |}, reduces subgraph

tokenization to node tokenization, unless stated otherwise,
we will use this formulation moving forward.

Although there is a variety of studies across the aforemen-
tioned categories, a common foundation is still lacking re-
garding what constitutes effective tokenization and what
differentiates them with respect to the task. In Section 3,
we theoretically show that each of node and subgraph tok-
enizations offer their own (dis)advantages. Accordingly, the
choice between node tokenization, subgraph tokenization,
or a combination of both depends on the specific task at
hand (see Section 4.3). We further validate this theoretical
foundation using several experiments in Section 5.1.

2.2. Local Encoding

Following the tokenization step, where the graph is trans-
lated into a set of sequences (representing nodes, edges,
or subgraphs), the main objective of the Local Encoding
step is to capture and learn the graph’s local characteris-
tics by vectorizing these tokens. Formally, given a graph
G = (V,E), let G denote the set of all subgraphs, and
ϕLocal(.) : G → RdLocal represent a GNN encoder. With
the graph tokenized as in Equation 1, we define the local
encoding as ϕLocal (G) := {S̃(1), . . . , S̃(T )}, where:

S̃(i) = ϕLocal

(
G[H

(i)
1 ]

)
, . . . , ϕLocal

(
G[H

(i)
ℓ ]

)
. (2)

While the choice of encoder ϕ(.) is arbitrary, convolutional
MPNNs are typically preferred due to their ability to effec-
tively learn local dependencies around each node. As an
illustrative example, assume that the k-hop neighborhood
tokenization was used in the previous step, then each S̃(i)

represents a sequence describing the hierarchical neighbor-
hood around node vi and ϕLocal

(
G[H

(i)
j ]

)
is the encoding

of j-th hop neighborhood of vi.

2.3. Global Encoding

As discussed, the local encoding stage serves two key roles:
(1) It encodes the local characteristics of the graph, injecting
inductive bias in the model; and (2) it vectorizes the tokens,
preparing them for a sequence encoder in the Global Encod-
ing stage. Here, the main objective is to learn dependencies
across all tokens, enabling the model to capture long-range
relationships. Formally, let S̃(i)s be the sequences of en-
codings obtained from the local encoding stage, for each
i = 1, . . . , T , we have:

y(i) = Ψi

(
AGGi

(
S̃(1), S̃(2), . . . , S̃(T )

))
, (3)

where Ψi(.) are sequence models and AGGi(.) are aggre-
gator functions. In most existing node tokenization-based
methods AGGi(.) = CONCAT(.) (concatenation), while in
most subgraph tokeniztion-based methods AGGi(.) = (.)i
(broadcasting i-th element). However, sequence models
themselves can be used as aggregator functions, as demon-
strated by Behrouz & Hashemi (2024).

In Appendix C, we illustrate that several well-known meth-
ods for learning on graphs are special instances of this
Graph Sequence Model (GSM) framework.

3. Choosing a Sequence Model
One critical question remains – what sequence model should
one use? Following the above mentioned framework, one
can simply replace different sequence encoders in the global
encoding stage and combine them with different tokeniza-
tion methods, resulting in hundreds of potential graph learn-
ing models. However, there is a lack of a common founda-
tion about what constitutes a good model in each of these
stages, and a mathematical description of the benefits and
deficiencies of adopting different sequence models for learn-
ing on graphs. In this section, we theoretically discuss
the (dis)advantages of different sequence models and tok-
enizations in several downstream graph tasks, providing a
guideline for the future research and model developments.

3.1. Counting Tasks on Graphs

In the first part, we focus on counting tasks, where the ob-
jective is to count the number of nodes with each particular
color in a node-colored graph. Such tasks are analogous
to the copying tasks in sequence modeling, which are com-
mon benchmarks to measure the abilities of a sequence
model (Arjovsky et al., 2016; Gu & Dao, 2023; Barbero
et al., 2024), in the sense that counting tasks require con-
sidering all nodes and even missing a single node’s color
can potentially result in incorrect prediction. Hence, let’s
first recall a proposition on the inability of Transformers in
counting tasks:
PROPOSITION 1 (PROPOSITION 6.1 OF BARBERO ET AL.
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(2024)). A Transformer model based on non-causal atten-
tion and without proper positional encodings is immediately
unable to count.

This limitation of non-causal Transformers in counting tasks
raises an important question: Can the inherent causality
of recurrent models resolve this issue, and are they better
suited for such tasks? The next theorem answers this:
THEOREM 1. Let C be the number of colors, and m be the
width of a recurrent model, the recurrent model can count
the number of nodes with each specific color iff m ≥ C.

Takeaway. Contrary to Transformers that relies on posi-
tional encodings, recurrent models’ inherent inductive bias
make them capable of handling such sequential tasks. Ac-
cordingly, when dealing with sequential tasks that are less
dependent on the graph’s topology and permutation equivari-
ance, recurrent models are more powerful than non-causal
Transformers.

3.2. Importance of Node Ordering

As discussed earlier, due to the sequential nature of some
graph tasks, the permutation equivariant property of non-
causal Transformers can undermine their representational
power. Beyond simple counting tasks, several important
and complex graph datasets and tasks—such as neural al-
gorithmic reasoning tasks in sequential algorithms (Xu &
Veličković, 2024) and CLRS dataset (Bentley, 1984; Gavril,
1972)—involve naturally ordered nodes, requiring a causal
encoder to effectively capture their inherent order. On the
other hand, most subgraph tokenizers produce sequences
with an implicit order (e.g., k-hop neighborhoods), which
requires a causal model to capture their hierarchy. Given the
causal nature of most powerful modern sequence models,
in this section, we analyze how node ordering can impact
the performance of the model, and if there is an ordering
mechanism for nodes that can enhance the performance of
causal sequence models.

Sensitivity Analysis. Over-squashing is an undesirable
phenomenon in GNNs that is related to representational
collapse. One way to analyze over-squashing in a model is
to study how sensitive is the final output token to an input
token at position i: i.e., ∂yj

∂xi
, where yj and xi are output and

input of the model at position j and i, respectively. Next,
we bound the sensitivity of SSMs after L layers:
THEOREM 2. For any k > i let A(k, i) = (1 − 1

k )(1 −
1

k−1 ) . . . (1−
1
i )

1
i and L be the number of layers. For any

i < n, the gradient norm of the HiPPO operator for the
output of layer L at time n+ 1 (i.e., y(L)

n+1) with respect to
input at time i (i.e., xi) satisfies:

Blow ≤ ||
∂ y

(L)
n+1

∂ xi
|| ≤ C(L)

up

(
1

n

)L

,

where Blow is:

C(L)
low

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
k1≥i

. . .
∑

kL≥kL−1

A (n− 1, kL)

L−1∏
ℓ=2

A (kℓ − 1, kℓ−1)A (k1 − 1, i)

∣∣∣∣∣∣
∣∣∣∣∣∣ .

COROLLARY 1. In SSMs, the sensitivity of the output with
respect to a previous token, i.e., ∂ yk

∂ xi
, is a decreasing func-

tion of their distance (i.e., d = k − i). Therefore, closer
tokens have higher impact on each others’ encodings.

Notably, this property is a distinctive trait of SSMs and
contrasts with Transformers, which exhibit constant sensi-
tivity (Song et al., 2024). However, the following corollary
to Theorem 2 reveals that SSMs also suffer from represen-
tational collapse as the number of layers grows, a behavior
which was also observed in causal Transformers (Barbero
et al., 2024). Hence, SSMs offer no advantage in this aspect.

COROLLARY 2. Let L be the number of layers in the recur-
rent model. As L → ∞, the output representation depends
only on the first token.

In both causal Transformers and SSMs, the information
about tokens located near the start of the sequence have more
opportunity to be maintained at the end. This might seem
counter-intuitive for recurrent models like SSMs, which are
expected to exhibit a recency bias towards the recent tokens
due to their constant size hidden state. However, note that
this result differs from recency bias in recurrent models as it
concerns the information flow along the sequence dimension
rather than across the model’s depth. Interestingly, together
with their recency bias, this new result indicates a U-shape
effect in SSMs, meaning that information from tokens at
both the beginning and end of a sequence is better preserved,
a phenomenon also observed in causal Transformers (Bar-
bero et al., 2024).

Takeaway. This part yields three key insights: (1) When
nodes are naturally ordered, SSMs posses a stronger in-
ductive bias than Transformers, as they are sensitive to the
tokens’ distance. (2) Both causal Transformers and SSMs
can suffer from representational collapse, limiting their rep-
resentational power. The fact that non-causal Transformer
are permutation equivariant and so does not suffer from rep-
resentational collapse motivates the exploration of hybrid
models that combine SSMs with non-causal Transformers
to take advantage of SSMs’ inductive bias while avoiding
representational collapse (see Section 4.2). (3) When order-
ing nodes (e.g. to model hierarchy or for sequential tasks),
it is advantageous to place relevant nodes close together as
it results in high sensitivity with respect to similar nodes
and less sensitivity with respect to less relevant, dissimilar
ones. To this end, in Section 4.1, we present a tokenization
method that implicitly orders nodes based on similarity.
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3.3. Connectivity Tasks on Graphs

This section addresses the graph connectivity task, which
requires the sequence model to capture a global understand-
ing of the graph. We frame graph connectivity as a binary
classification problem, where the input is a tokenized graph
G = (V,E), and the target output is 1 if G is connected
and 0 otherwise. Using edge tokenization, we represent the
graph as the sequence G := Pe1 , . . . , Pe|E| .

COROLLARY 3 (COROLLARY 3.3 OF SANFORD ET AL.
(2024B)). For any N and ϵ ∈ (0, 1), there exists a trans-
former with depth O(logN) and embedding dimension
O(N ϵ) that determines whether any graph G = (V,E)
with |V |, |E| ≤ N is connected.

Next, we show that alternative architectures cannot solve
graph connectivity with such low-dimensional parameteri-
zation.

THEOREM 3. A multi-layer recurrent model, a Transformer
with kernel-based sub-quadratic attention, or a Trans-
former with locally masked attention units of radius r
that solves graph connectivity on all graphs G = (V,E)
with |V |, |E| ≤ N has either depth L = Ω(N1/8) or
m = Ω̃(N1/4).

As a result, these attempts to improve the quadratic com-
putational bottleneck result in a lack of parameter-efficient
connectivity solutions. All recurrent models, kernel-based
transformers with kernel dimension r = O(N1/8), and all
local transformers with window size r = O(N1/8) require
at least Ω(N1/8) parameters.

When are recurrent models more efficient? The main ben-
efits of recurrent models, including SSMs, is when either
the data comes with a natural ordering, or the encoding
(in Tokenization and Local Encoding stages) has carefully
embeded the graph structure in the order of tokens. To
formalize this, we define a notion of locality for an edge
embedding and show that this induces easy embeddings for
recurrent models but not for transformers.

DEFINITION 1. Let the node locality of an edge embedding
Pe1 , . . . , Pe|E| of a graph G = (V,E) denote the maxi-
mum window size needed to contain all edges that adjoin
each node. That is, we say that G has node locality k if
maxv∈V(argmaxi{ei:v ∈ ei}−argmini{ei:v ∈ ei})≤ k.

Next, we show that graphs with bounded node locality admit
time/parameter-efficient recurrent solutions:

THEOREM 4. There exists a single-pass recurrent model
with hidden state O(k) that determines whether edge em-
bedding with node locality at most k reflects a connected
graph.

Interestingly, no constant-size transformer that solves the
above task exists. We prove this by a reduction to the con-

ditional hardness of solving NC1-complete problems with
constant depth transformers (Merrill & Sabharwal, 2023).
THEOREM 5. Unless NC1 = TC0, any log-precision trans-
former that solves graph connectivity on edge embeddings
with |E| ≤ N , and node locality 12 requires either depth
ω(1) or width Nω(1).

Takeaway. In graph connectivity, as an example of a global
task, Transformers are more powerful than recurrent meth-
ods in general cases. However, with a good choice of tok-
enizer and ordering, recurrent models can become extremely
efficient and powerful. See Appendix E for a detailed discus-
sion and comparison of Transformers with recurrent models.
Following this insight, in Section 4.1, we present a new tok-
enization that can provide us with such desirable ordering.

In Appendix F.3 we focus on motif counting and shortest
path tasks and theoretically discuss what substitute a good
tokenizer. We present both positive and negative negative
results for each type of tokenization, providing evidence that
subgraph tokenizers are useful when extra attention on local
structures is needed. On the other hand, when dealing with
long-range dependencies and global graph tasks, node/edge
tokenizers are more efficient choices.

4. Enhancing Graph to Sequence Models
4.1. Hierarchical Affinity Clustering (HAC)

Tokenization

As discussed in Section 3.2, using a tokenizer that generates
an ordered sequence, where similar nodes are positioned
near each other, can improve the sensitivity of the method,
thereby enhancing its representational power. Furthermore,
as discussed in Section 4, when representing a graph as
a sequence with node locality k (Definition 1), powerful
recurrent models become very efficient for global tasks
like connectivity. Motivated by these results, we present a
hierarchical tokenization based on the Hierarchical Affinity
Clustering (HAC) (Bateni et al., 2017) algorithm and show
that it satisfies the above desirable characteristics.

HAC is a highly scalable and parallelizable cluster-
ing algorithm based on Boruvka’s algorithm (Boruuvka,
1926). Given a graph G = (V,E) and node encodings
Pv1

, . . . , Pv|V | , the algorithm begins by treating each vertex
as a singleton cluster, then at each step removes the cheapest
edge (cost calculated by the similarity of node encodings)
going out of each cluster and join these two clusters to form
a larger cluster. This process continues until a cluster in-
cludes all the nodes. The stages of this algorithm form a
HAC tree, where the root represents the last cluster in the
algorithm (entire graph), its two children are the last two
clusters in one round before the end of the algorithm, and so
forth. Accordingly, leaves are nodes of the graph, being our
initial clusters. See Figure 1 for an example of a HAC tree.
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Figure 1: Overview of GSM++. GSM++ uses: (1) HAC tokenization, (2) hierarchical PE, and (3) a hybrid sequence model.

HAC offers two key advantages for an effective tokeniza-
tion. First, it orders nodes such that adjacent nodes (hav-
ing the same parent node) in the tree are the most similar,
which is aligned with our theoretical analysis. Second, it
provides a hierarchical clustering, allowing for graph en-
coding at different levels of granularity. We propose two
types of tokenization based on Depth-First Search (DFS)
and Breadth-First Search (BFS) traversals of the HAC tree.

DFS Traverse of HAC Tree. After performing HAC and
constructing the HAC tree, we perform DFS traverse and
treat each path as a sequence. That is, given a graph G =
(V,E), let r be the root of the tree, a DFS path in the HAC
tree is G = r → ci1 → ci2 → · · · → cid = vi ∈ V ,
where r represents the entire graph and cid represents node
vi ∈ V . This sequence represents a hierarchy of clusters
whose nodes are similar to vi, and encodes the hierarchical
position of vi in the graph. This approach is a subgraph-
based tokenization as discussed in Section 2.1.

BFS Traverse of HAC Tree. In this approach, we perform
a BFS traverse on the HAC tree. Note that the maximum
depth of the tree is log2(|V |) (Bateni et al., 2017). Let
k ≤ log2(|V |), we treat k-th level of BFS traverse as a
path, representing the graph at k-th level of granularity.
When k = 1, the length of the sequence is one and the
only element is the root (entire graph). When k is the depth
of the tree, the sequence is the sequence of all nodes, but
in an order that similar nodes are close to each other. In
this tokenization method, we construct the sequences for
all values of 1 ≤ k ≤ log2(|V |) and encode the graph at
different levels of granularity. We consider a simple average
pooling to obtain the overall encodings.

THEOREM 6. Given a graph with minimum node locality of
k, there exists a node embedding that HAC (BFS) tokeniza-
tion, order nodes in a way that the sequence is k-local.

This theorem, along with Theorem 4, motivates us to use
HAC tokenization with a recurrent model as the global
encoder later in our final architecture design.

Hierarchical Positional Encoding. One of the main ad-
vantages of HAC is its ability to provide us with rich in-
formation about the hierarchy of structures in the graph.
Inspired by recent studies that show the power of hierarchy-
aware positional encodings (Luo et al., 2024), we present
a new PE based on the shortest path of clusters includ-
ing two nodes of interest v, u ∈ V . We define Pv,u =

[d
(1)
u,v d

(2)
u,v . . . d

(log(|V |))
u,v ] as the relative positional encod-

ing of u and v such that d(i)u,v is the length of the shortest
between the clusters that include these nodes at the i-level
of HAC tree. This positional encoding not only considers
the shortest path of u and v (d(log(|V |))

u,v is the length of their
shortest path), but it also encodes their relative position in
different levels of granularity. We experimentally show that
this positional encoding is very effective.

4.2. Hybrid Models

As discussed in Section 3.2, sequential combinations of
recurrent models with transformer layers can results in a
model with higher representational power.

THEOREM 7 (INFORMAL). There exists a hybrid recur-
rent + Transformer model that solves an instance of graph
connectivity more efficient than a 2-layer recurrent model
or transformers.

For a detailed theoretical discussion on the importance of
hybrid models see Appendix E.3. Motivated by these theo-
retical results, we suggest a 2-layer hybrid block, where the
first layer is Mamba (Gu & Dao, 2023) and the second layer
is a Transformer block (Vaswani et al., 2017). We further
experimentally show the significance of this hybrid design.
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Table 1: Graph tasks that require local information†. The first and
second best results of each type are highlighted. The best overall result
for each task is marked *.

Model Node Degree Cycle Check Triangle Counting

1K 100K 1K 100K Erdos-Renyi Regular
Accuracy ↑ Accuracy ↑ RMSE ↓

Reference Baselines

GCN 9.3 9.5 80.3 80.2 0.841 2.18
GatedGCN 29.8 11.6 86.2 83.4 0.476 0.772
MPNN 98.9 99.1 99.1* 99.9* 0.417* 0.551
GIN 36.4 35.9 98.2 81.8 0.659 0.449*

Transformers

Node 29.9 30.1 30.8 31.2 0.713 1.19
HAC (DFS) 31.0 31.0 58.9 61.3 0.698 1.00
k-hop 97.6 98.9 91.6 94.3 0.521 0.95
HAC (BFS) 98.1 98.6 91.9 92.5 0.574 0.97

Mamba

Node 30.4 30.9 31.2 33.8 0.719 1.33
HAC (DFS) 32.6 33.6 33.7 34.2 0.726 1.08
k-hop 98.5 98.7 90.5 93.8 0.601 0.88
HAC (BFS) 98.1 99.0 93.7 93.5 0.528 0.92

Hybrid (Mamba + Transformer)

Node 31.0 31.6 31.5 31.7 0.706 1.27
HAC (DFS) 32.9 33.7 33.9 33.6 0.717 1.11
k-hop 99.0* 99.2* 90.8 91.1 0.598 0.84
HAC (BFS) 98.6 98.5 93.9 94.0 0.509 0.90

Table 2: Graph tasks that require global information†. The
first and second best results of each type are highlighted.
The best overall result for each task is marked *.

Model Connectivity Color Counting Shortest Path

1K 100K 1K 100K 1K 10K
Accuracy ↑ Accuracy ↑ RMSE ↓

Reference Baselines

GCN 63.3 70.8 52.7 55.9 2.38 2.11
GatedGCN 74.9 77.5 55.0 56.6 1.98 1.93
MPNN 71.8 76.1 53.9 57.7 1.96 1.93
GIN 71.9 74.6 52.4 55.1 2.03 1.98

Transformers

Node 85.7 86.2 73.1 77.4 1.19 1.06*

w/o PE 9.4 6.8 35.8 28.9 4.12 5.33
HAC (DFS) 87.0 88.1 83.7 85.3 1.14 1.09
k-hop 69.9 70.2 79.9 80.3 2.10 2.15
HAC (BFS) 74.1 76.7 74.5 77.8 2.31 2.28

Mamba

Node 82.8 84.7 80.1 82.5 1.27 1.13
w/o PE 9.2 7.5 78.9 81.3 4.09 5.22
HAC (DFS) 83.6 85.2 85.2 85.4 1.12 1.15
k-hop 70.9 71.0 82.6 83.5 2.03 2.11
HAC (BFS) 76.3 77.4 83.7 84.1 2.24 2.18

Hybrid (Mamba + Transformer)

Node 88.1 88.6 82.9 83.0 1.24 1.13
w/o PE 8.9 8.1 83.2 84.8 4.65 4.89
HAC (DFS) 90.7* 91.4* 85.8* 86.2* 1.11* 1.93
k-hop 70.8 73.3 83.7 84.6 1.99 2.04
HAC (BFS) 78.0 79.5 83.1 83.7 2.16 2.13

4.3. Mixture of Tokenization (MoT)

Since each type of tokenization has its own (dis)advantages
(see Appendix F.1 for theoretical results), we suggest using
a Mixture of Tokenization (MoT) technique, where we al-
low each node to use a tokenization that best describes its
position based on the task. For example, one node might
be better to be represented by itself (along with a positional
encoding) since its neighborhood is extremely noisy. At the
same time, another node might be better to be represented
by its neighbors as there is a strong homophily in that area
of the graph. Let T be the list of different tokenizers, we use
a discrete router that chooses top-2 tokenizations from T for
each node. We then concatenate the encodings of these tok-
enizers to obtain the final encoding for the global encoding
step. See Appendix A.4 for additional information.

5. Experiments
Research Questions. In our experiments, we aim to em-
pirically validate the key claims of this paper and compare
the performance of our final model, GSM++, with state-
of-the-art methods. Specifically, we aim to answer: (1) Is
there a tokenizer that consistently outperforms other types
of tokenization methods? (See Table 1 and Table 2) (2) Is
there a Global Encoder (e.g., a sequence model) that consis-

tently outperforms other models? (See Figure 2) (3) What
is the performance of GSM++ compared to existing state-
of-the-art methods on benchmark datasets? (See Table 3,
and Table 5, 6) (4) How does each component of GSM++
contribute to its performance? (See Table 4)

Graph Tasks. We conduct experiments on: (1) Local
tasks: node degree, cycle check, and triangle counting,
and (2) Global Tasks: connectivity, color counting, and
shortest path. These tasks are known for evaluating the
ability of models in learning from graphs (Sanford et al.,
2024a; Fatemi et al., 2023). For the benchmark tasks on the
comparison of GSM++ with baselines, we use node clas-
sification and graph classification (Dwivedi et al., 2022a;
2023; Platonov et al., 2023; Rampášek & Wolf, 2021). See
Appendix I for the details of tasks and datasets.

Baselines. We use state-of-the-art GTs, recurrent-based,
and MPNNs as our baselines. We also perform ablation
studies by replacing various sequence models with each
other. The full list of the sequence models, and the details
of baselines are in Appendix I.

5.1. On the Effect of Tokenization and Global Encoder

Local Tasks. The results are reported in Table 1. Interest-
ingly, MPNNs have outstanding performance due to their
ability to capture local structures. Comparing node-based
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Table 3: GNN benchmark datasets (Dwivedi et al., 2023). The first, second, and
third best results are highlighted.

Model MNIST CIFAR10 PATTERN MalNet-Tiny
Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑

GCN 0.9071±0.0021 0.5571±0.0038 0.7189±0.0033 0.8100±0.0000

GraphSAGE 0.9731±0.0009 0.6577±0.0030 0.5049±0.0001 0.8730±0.0002

GAT 0.9554±0.0021 0.6422±0.0046 0.7827±0.0019 0.8509±0.0025

SPN 0.8331±0.0446 0.3722±0.0827 0.8657±0.0014 0.6407±0.0581

GIN 0.9649±0.0025 0.5526±0.0152 0.8539±0.0013 0.8898±0.0055

Gated-GCN 0.9734±0.0014 0.6731±0.0031 0.8557±0.0008 0.9223±0.0065

CRaWl 0.9794±0.050 0.6901±0.0259 - -

NAGphormer - - 0.8644±0.0003 -
GPS 0.9811±0.0011 0.7226±0.0031 0.8664±0.0011 0.9298±0.0047

GPS (BigBird) 0.9817±0.0001 0.7048±0.0010 0.8600±0.0014 0.9234±0.0034

Exphormer 0.9855±0.0003 0.7469±0.0013 0.8670±0.0003 0.9402±0.0020

NodeFormer - - 0.8639±0.0021 -
DIFFormer - - 0.8701±0.0018 -
GRIT 0.9810±0.0011 0.7646±0.0088 0.8719±0.0008 -
GRED 0.9838±0.0002 0.7685±0.0019 0.8675±0.0002 -
GMN 0.9783±0.0020 0.7444±0.0009 0.8649±0.0019 0.9352±0.0036

GSM++ (BFS) 0.9848±0.0012 0.7659±0.0024 0.8738±0.0014 0.9417±0.0020

GSM++ (DFS) 0.9829±0.0014 0.7692±0.0031 0.8731±0.0008 0.9389±0.0024

GSM++ (MoT) 0.9884±0.0015 0.7781±0.0028 0.8793±0.0015 0.9437±0.0058

Table 4: Ablation studies. The first and second best
results for each model are highlighted.

Model COCO-SP PascalVOC-SP PATTERN
F1 score ↑ F1 score ↑ Accuracy ↑

GPS Framework

Base 0.3774 0.3689 0.8664
+Hybrid 0.3789 0.3691 0.8665
+HAC 0.3780 0.3699 0.8667
+MoT 0.3791 0.3703 0.8677

NAGphormer Framework

Base 0.3458 0.4006 0.8644
+Hybrid 0.3461 0.4046 0.8650
+HAC 0.3507 0.4032 0.8653
+MoT 0.3591 0.4105 0.8657

GSM++

Base 0.3789 0.4128 0.8738
-PE 0.3780 0.4073 0.8511
-Hybrid 0.3767 0.4058 0.8500
-HAC 0.3591 0.3996 0.8617

tokenizer (i.e., Node and HAC (DFS)) with subgraph-based
tokenizer (i.e., k-hop and HAC), subgraph-based tokenizers
perform significantly better in these tasks, mainly due to
their local inductive bias about the structure of the graph.
Models using node-based tokenizers lack implicit inductive
bias and rely on the global positional encodings.

Global Tasks. The results are reported in Table 2. In
global tasks, node tokenizers outperforms subgraph tok-
enizers. The main intuition behind this result is that these
tasks require global knowledge about the graph structure
and looking at subgraphs can results in missing information
about far nodes (or missing long-range dependencies). The
only exception is color counting, which is a parallelizable
task, meaning that the model can counts by aggregating
information obtained from different subgraph tokens.

Takeaways. Considering both tables, we conclude that
while none of Mamba or Transformer performs the best
across all tasks, the hybrid model improves the perfor-
mance in most cases, indicating the significance of hybrid
approaches to take advantage of both worlds. Note that we
fix the number of parameters for all models. These results
are also aligned with our theoretical discussions.

5.2. Is There a Superior Model among Simple GSMs?

To answer this question, we perform an extensive evaluation
with all the combinations of 9 different sequence models
and 6 types of tokenizers over 7 datasets of Citeseer, Cora,
Computer, CIFAR10, Photo, PATTERN, and Peptides-Func
from Dwivedi et al. (2022b; 2023); Chen et al. (2023). Due
to the large number of cases (9× 6 = 54 models with 54×

Figure 2: Normalized score of different combination of tokeniza-
tion and global encoder (sequence models).

7 = 378 experimental results), we visualize the rank of
the model (higher is better), instead of reporting them in
a table. The normalized results are reported in Figure 2.
These results indicate that there is no model that significantly
outperforms others in most cases, validating our theoretical
results that each of the sequence models as well as the types
of tokenization has their own advantages and disadvantages.
Accordingly, we need to understand the spacial traits of
these models and use them properly based on the dataset
and the task. Following our results, we conjecture that the
no free lunch theorem applies for the Graph2Sequence.

5.3. The Effect of Proposed Enhancements on GSMs

We perform two types of ablation studies: (1) We start with
two commonly used frameworks of GraphGPS (Rampášek
et al., 2022) and NAGphormer (Chen et al., 2023) that use
node-based and subgraph-based tokenization, respectively.
We then (i) replace their transformer with a hybrid model,
(ii) use HAC instead of their tokenization, and (iii) use
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Table 5: Heterophilic datasets (Platonov et al., 2023). The first,
second, and third results are highlighted.

Model Roman-empire Amazon-ratings Minesweeper
Accuracy ↑ Accuracy ↑ ROC AUC ↑

GCN 0.7369±0.0074 0.4870±0.0063 0.8975±0.0052

GraphSAGE 0.8574±0.0067 0.5363±0.0039 0.9351±0.0057

GAT 0.7973±0.0039 0.5270±0.0062 0.9391±0.0035

OrderedGNN 0.7768±0.0039 0.4729±0.0065 0.8058±0.0108

tGNN 0.7995±0.0075 0.4821±0.0053 0.9193±0.0077

Gated-GCN 0.7446±0.0054 0.4300±0.0032 0.8754±0.0122

NAGphormer 0.7434±0.0077 0.5126±0.0072 0.8419±0.0066

GPS 0.8200±0.0061 0.5310±0.0042 0.9063±0.0067

Exphormer 0.8903±0.0037 0.5351±0.0046 0.9074±0.0053

NodeFormer 0.6449±0.0073 0.4386±0.0035 0.8671±0.0088

DIFFormer 0.7910±0.0032 0.4784±0.0065 0.9089±0.0058

GOAT 0.7159±0.0125 0.4461±0.0050 0.8109±0.0102

GMN 0.8219±0.0012 0.5327±0.0030 0.8992±0.0063

GSM++ (BFS) 0.9003±0.0087 0.5381±0.0035 0.9109±0.0098

GSM++ (DFS) 0.9124±0.0023 0.5361±0.0029 0.9145±0.0036

GSM++ (MoT) 0.9177±0.0040 0.5390±0.0104 0.9149±0.0111

Table 6: Long-Range Datasets (Dwivedi et al., 2022b). The first,
second, and third results are highlighted.

Model COCO-SP PascalVOC-SP Peptides-Func
F1 score ↑ F1 score ↑ AP ↑

GCN 0.0841±0.0010 0.1268±0.0060 0.5930±0.0023

GIN 0.1339±0.0044 0.1265±0.0076 0.5498±0.0079

Gated-GCN 0.2641±0.0045 0.2873±0.0219 0.5864±0.0077

GAT 0.1296±0.0028 0.1753±0.0329 0.5308±0.0019

MixHop - 0.2506±0.0133 0.6843±0.0049

DIGL - 0.2921±0.0038 0.6830±0.0026

SPN - 0.2056±0.0338 0.6926±0.0247

SAN+LapPE 0.2592±0.0158 0.3230±0.0039 0.6384±0.0121

NAGphormer 0.3458±0.0070 0.4006±0.0061 -
Graph ViT - - 0.6855±0.0049

GPS 0.3774±0.0150 0.3689±0.0131 0.6575±0.0049

Exphormer 0.3430±0.0108 0.3975±0.0037 0.6527±0.0043

NodeFormer 0.3275±0.0241 0.4015±0.0082 -
DIFFormer 0.3620±0.0012 0.3988±0.0045 -
GRIT - - 0.6988±0.0082

GRED - - 0.7085±0.0027

GMN 0.3618±0.0053 0.4169±0.0103 0.6860±0.0012

GSM++ (BFS) 0.3789±0.0160 0.4128±0.0027 0.6991±0.0008

GSM++ (DFS) 0.3769±0.0027 0.4174±0.0031 0.7019±0.0084

GSM++ (MoT) 0.3801±0.0122 0.4193±0.0075 0.7092±0.0076

MoT; (2) We remove components of GSM++, one at a
time, to see the effect of (i) hierarchical positional encoding,
(ii) hybrid sequence encoder, and (iii) HAC tokenization.
The results are reported in Table 4. All the components
of GSM++ have an impact on its superior performance,
where most contribution comes from HAC tokenization,
followed by hybrid sequence encoder, and hierarchical PE.
Also, we can conclude that using hybrid sequence models,
HAC tokenization, and Mixture of Tokens, all have positive
impact on the performance of other models, showing that the
presented enhancement techniques are effective in practice.
Supporting our theoretical results (Theorems 4 and 6), HAC
has a higher impact on recurrent models than Transformers.

5.4. Performance of GSM++ on Benchmark Tasks

We also followed the literature and compare the perfor-
mance of GSM++ with state-of-the-art methods in node and
graph classification tasks on commonly used benchmark
datasets (Dwivedi et al., 2022b; 2023; Platonov et al., 2023).
The results are reported in Tables 3, 5, and 6. These results
show that GSM++ achieves a good performance and out-
performs baselines in 8/10 cases. We attribute this superior
performance of GSM++ to: (1) its ability to capture hierar-
chical structure of the graph and having proper sensitivity
with respect to important nodes through proper ordering,
which is the result of HAC tokenization and hierarchical PE;
and (2) using a hybrid sequence model.

5.5. Which GSM Is More Effective In Practice?

To answer this question, we perform an extensive evaluation
with all the combinations of 9 different sequence models

and 6 types of tokenizers over 7 datasets of Citeseer, Cora,
Computer, CIFAR10, Photo, PATTERN, and Peptides-Func
from Dwivedi et al. (2022b; 2023); Chen et al. (2023). Due
to the number of cases (9×6 = 54 models with 54×7 = 378
experiments), we visualize the rank of the model (higher is
better), instead of reporting them in a table. The normalized
results are reported in Figure 2. These results indicate that
there is no model that significantly outperforms others in
most cases, validating our theoretical results that each of the
sequence models as well as the types of tokenization has
their own advantages and disadvantages. Accordingly, we
need to understand the spacial traits of these models and use
them properly based on the dataset and the task. Following
our results, we conjecture that the no free lunch theorem
applies for the Graph2Sequence problem.

6. Conclusion
We aim to understand Graph Sequence Models, a family of
graph learning models that translate the graph into a (set)
of sequence(s), vectorize it, and then employ powerful se-
quence models to learn dependencies of nodes. We provide
extensive theoretical results to show the importance of or-
dering, when it is needed, and to show that there is no single
sequence model or tokenization method that works strictly
better for all graph algorithmic problems. Motivated by
our theoretical results, we present GSM++ model with new
hierarchical graph tokenization method based on HAC, a
new mixture of token (MoT) approach to take advantage of
different tokenization, and a hybrid sequence model based
on Mamba and self-attention. Our experimental evaluations
support the theoretical results and the design of GSM++.
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Impact Statement
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Bresson, X. and Laurent, T. Residual gated graph convnets.
arXiv preprint arXiv:1711.07553, 2017.

Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., and Mur-
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Figure 3: Overview of Graph Sequence Model (GSM). GSM Consists of three stages: (1) Tokenization, (2) Local Encoding, and (3)
Global Encoding. We provide a foundation for strengths and weaknesses of different tokenizations and sequence models. Finally, we
present three methods to enhance the power of GSMs.

A. Backgrounds
A.1. Graph Transformers

The Transformer architecture (Vaswani et al., 2017), consists of a sequential chain of layers, each layer being composed of
two primary sub-layers: a multi-head attention mechanism and a fully-connected feed-forward network. These layers are
arranged alternately to form the backbone of the model. Let G be a graph with node feature matrix X ∈ Rn×d.

In each layer ℓ > 0 of a graph Transformers, given node feature matrix X(ℓ) ∈ Rn×d, a single attention head computes the
following:

Attn(X(ℓ)) := Softmax

(
QK⊤
√
dk

)
V, (4)

where the Softmax() is applied row-wise, dk denotes the feature dimension of the query (Q) and key (K) matrices, with
X(0) := X . The matrices Q,K, and V are the result of projecting X(ℓ) linearly,

Q := X(ℓ)WQ, K := X(ℓ)WK , and V := X(ℓ)WV ,

using three matrices WQ,WK ∈ Rd×dK , and WV ∈ Rd×d, where optional bias terms omitted for clarity. This attention
mechanism forms the foundation of the Transformer architecture (also referred to as non-causal Transformers or Softmax
Transformers throughout this work while causal Transformers refers to use of causal masking in attention). The extension to
multi-head attention, where multiple attention heads operate in parallel, is standard and straightforward. Equation 4 fails
to take into account the graph topology, leading to the development of various Positional Encoding (PE) and Structural
Encoding (SE) methods aimed at integrating essential structural information into Graph Transformers (GTs). Notably,
several approaches have adopted the top-k Laplacian eigenpairs as node PEs, despite the substantial computational demands
involved in resolving the sign ambiguity of Laplacian eigenvectors. Likewise, SE methods face considerable computational
challenges in determining the distances between all node pairs or in the sampling of graph substructures. Moreover, the
standard attention mechanism in Equation 4 generates a dense attention matrix, leading to quadratic complexity with respect
to the number of nodes. Recent innovations in Graph Transformers (GTs) have introduced scalable models by linearizing
the attention matrix and eliminating the need for PE/SE. However, these models have not been extensively analyzed for their
practical expressiveness and might underperform compared to the state-of-the-art Graph Neural Networks (GNNs).

A.2. Recurrent Models

Recurrent Neural Networks (RNNs) are particularly adept at handling sequential data thanks to their inherent capability to
maintain an internal memory state. This allows RNNs to preserve contextual information from previous inputs within a
sequence, making them ideal for tasks such as language modeling, time-series prediction, and speech recognition.

Specifically, at each discrete time step t, the standard RNN processes a vector xt ∈ RD along with the previous step’s
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hidden state ht−1 ∈ RN to produce an output vector ot ∈ RO and update the hidden state to ht ∈ RN . The hidden state
serves as the network’s memory, retaining information about the past inputs it has encountered. This dynamic memory
capability allows RNNs to process sequences of varying lengths. Formally, the updates can be described as follows:

ht = σ(Whxxt +Whhht−1 + bh),

ot = Wohht + bo, (5)

where Whx ∈ RN×D is the weight matrix responsible for processing model inputs into hidden states, Whh ∈ RN×N

represents the recurrent connections between hidden states, and Woh ∈ RO×N is used to generate outputs derived from
hidden states. The biases bh ∈ RN and bo ∈ RO, along with the hyperbolic tangent activation function tanh, introduce
non-linearity to the model. In essence, RNNs are nonlinear recurrent models that effectively capture temporal patterns by
harnessing the historical knowledge stored in hidden states.

In our theoretical results, however, we refer to a recurrent model that has a general recurrent formula to make the use of the
theoretical results to a broader context. That is, we define a recurrent model as:

ht = f(ht−1, xt), (6)
ot = g(ht, xt), (7)

where f and g are arbitrary functions. As an illustrative example, in Equation 5, we have:

f(ht−1, xt) = σ(Whxxt +Whhht−1 + bh), (8)
g(ht, xt) = Wohht + bo. (9)

A.3. Hierarchical Affinity Clustering (HAC) Algorithm

Hierarchical Affinity Clustering (HAC) (Bateni et al., 2017) is a powerful algorithm used to group data points based on their
similarity or affinity, often represented by a distance measure such as Euclidean distance or cosine similarity. HAC organizes
data in a hierarchical structure, either through an agglomerative (bottom-up) process, where each data point starts as its
own cluster and the closest clusters are progressively merged, or a divisive (top-down) process, which begins with all data
points in a single cluster that is repeatedly split. The result of the clustering process can be visualized using a dendrogram,
showcasing the nested relationships between clusters at different levels of similarity.

Finding the affinity clustering of a given graph G is closely tied to the task of identifying its Minimum Spanning Tree (MST).
In fact, the information encoded in the MST of G is enough to determine its affinity clustering. Consequently, once the MST
is computed, the affinity clustering or single linkage can be obtained in a single step.
THEOREM 8. (Bateni et al., 2017) Let G = (V,E) denote an arbitrary graph, and let G′ = (V,E′) denote the minimum
spanning tree of G. Running the affinity clustering algorithm on G produces the same clustering of V as running the
algorithm on G′.

A.4. Mixture of Expert

In this paper, inspired by the idea of Mixture of Expert (MoE), we present Mixture of Tokenization (MoT). In Section F.1
we show that there is not a single type of tokenization that works best in all the cases. We further experimentally observe
the same in Section 5.2. To this end, we suggest using a Mixture of Tokenization (MoT) technique, where we allow each
node to use a tokenization that best describe its position based on the task. For example, one node might be better to be
represented by itself (along with a positional encoding) since its neighborhood is extremely noisy. At the same time, another
node might be better to be represented by its neighbors as there is a strong homophily in that area of the graph. Let T be
the list of different tokenizers, we use a discrete router that choose top-2 tokenizations from T for each node. We then
concatenate the encodings of these tokenizers to obtain the final encoding for the global encoding step. That is, given T and
X as the input, we use a linear router with learnable weight Wr such that:

S = σ (XWr) , (10)

I = Top-2
(
S⊤) , (11)

P = one-hot (I) , (12)

where σ(.) is non-linearity, Top-2(.) returns the index of two rows with largest values, and one-hot(.) returns the one-hot
encoding of the indices. These weights are learned in an end-to-end manner along with the other parameters in the model.
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B. Related Work
Graph Neural Networks and Graph Transformers. utilize different approaches for processing graph data. GNNs
typically employ a message-passing mechanism that collects and synthesizes information from adjacent nodes into up-
dated node representations (Kipf & Welling, 2016; Xu et al., 2019; Velickovic et al., 2017). Despite their utility, these
models exhibit limitations in expressiveness, equivalent to that of the 1-WL test, a traditional algorithm for testing graph
isomorphism (Morris et al., 2019; Xu et al., 2019; Loukas, 2019). They also encounter challenges like over-smoothing and
over-squashing, and struggle with capturing long-range dependencies (Alon & Yahav, 2021; Dwivedi et al., 2022a). In
contrast, Graph Transformers make use of an attention mechanism (Dwivedi & Bresson, 2020; Kim et al., 2022; Kreuzer
et al., 2021) that enables attention to all nodes within a graph. Since utilizing full attention can obscure graph topology
and render nodes non-distinguishable, numerous studies have concentrated on creating effective node encodings such as
Laplacian positional encodings (Dwivedi et al., 2023; 2021; Maskey et al., 2022; Huang et al., 2023; Wang et al., 2022),
shortest path distance/random walk distance (Ying et al., 2021; Li et al., 2020; Perozzi et al., 2014), among others. Addition-
ally, some approaches merge Message Passing Neural Networks (MPNNs) with full attention capabilities (Rampášek et al.,
2022; Chen et al., 2022). However, this full attention model scales quadratically with the size of the graph. To mitigate this
complexity, certain studies have applied general linear attention techniques to Graph Transformers (Choromanski et al.,
2020a; Rampášek et al., 2022), along with other specific strategies intended to optimize performance (Perozzi et al., 2024;
Sanford et al., 2024b; Wu et al., 2022). Also, several studies suggest the use of hierarchical pooling such as the work of
Ying et al. (2018), Zhang et al. (2019). These works are different from our tokenization as our tokenization is based on HAC
algorithm.

Sequence Models for Graphs. Efforts to integrate State Space Models (SSMs) into graph processing have led to innovative
approaches in graph Transformers, shifting from traditional attention mechanisms to SSM applications. Initially, these
methods tokenize graphs, which then allows for the application of any SSM-inspired model to process the data. In one
approach for tokenization (Wang et al., 2024), the nodes are ordered into sequences according to their degrees, and
Mamba (Gu & Dao, 2023)is then applied. Due to the common occurrence of nodes with identical degrees, it becomes
necessary to randomly permute these sequences during training, which results in a model that lacks permutation equivariance
with respect to the reordering of node indices. Another variant (Behrouz & Hashemi, 2024), constructs sequences by
extracting neighborhoods up to M hops from a root node, treating each hop as a distinct token, and applying Mamba to
model the root node’s representation. This method, however, is computationally intensive as it requires pre-processing
each neighborhood token with a Graph Neural Network (GNN) before applying Mamba. Additionally, the final layer of
this model also applies Mamba to nodes arranged by their degree, preserving the issue of non-permutation equivariance.
Graph State Space Convolution (GSSC) (Huang et al., 2024), leverage global permutation-equivariant set aggregation and
factorizable graph kernels that rely on relative node distances as the convolution kernels. Recent advancements have been
made in extending SSM-based models to accommodate temporal graphs, introducing two variants known as DyG-Mamba
one (Ding et al., 2024; Li et al., 2024), each integrating the Mamba model with GNN encoders. Using our framework, future
research can incorporate more complex sequence models (Behrouz et al., 2024; 2025b; Karami & Mirrokni, 2025; Peng
et al., 2023) to capture long-range dependencies.

C. Special Instances of GSMs
Table 7 illustrates that several well-known methods for learning on graphs are special instances of the Graph Sequence
Model (GSM) framework, highlighting its universality. GSM consists of three stages: (1) Tokenization, (2) Local Encoding,
and (3) Global Encoding. In this section, we demonstrate how GSM can handle each of these models based on these
three stages. We categorize the existing architectures into four general families: Traditional Methods, Graph Transformers,
Non-MPNN GNNs, and Recurrent-based Models. For each representative model within these families, we show how it can
be formalized within the GSM pipeline.
REMARK 1 (TRADITIONAL METHODS). DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover & Leskovec, 2016) can
be formulated as GSMs.
REMARK 2 (GRAPH TRANSFORMERS). Most popular GTs, including GraphGPS (Rampášek et al., 2022), Ex-
phormer (Shirzad et al., 2023), GOAT (Kong et al., 2023), NAGphormer (Chen et al., 2023), SubGraphormer (Bar-Shalom
et al., 2023), GPS++ (Masters et al., 2023), Nodeformer (Wu et al., 2022), TokenGT (Kim et al., 2022), Graphormer (Ying
et al., 2021), , Coarformer (Kuang et al., 2021), and SAN (Kreuzer et al., 2021), can be formulated as GSMs.
REMARK 3 (NON-MPNN GNNS). Several popular non-MPNN methods for learning on graphs, including
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Table 7: How are different models special instances of GSM framework

Method Tokenization Local Encoding Global Encoding

DeepWalk (2014) Random Walk IDENTITY(.) SkipGram

Node2Vec (2016) 2nd Order IDENTITY(.) SkipGramRandom Walk

GraphTransformer (2020) Node IDENTITY(.) Transformer

GraphGPS (2022) Node IDENTITY(.) Transformer

NodeFormer (2022) Node GUMBEL-SOFTMAX(.) Transformer

Graph-ViT (2023) METIS Clustering GCN(.) ViT(Patching)

Exphormer (2023) Node IDENTITY(.) Sparse Transformer

CRaWl (2023) Random Walk 1D Convolutions MLP(.)

NAGphormer (2023) k-hop neighborhoods GCN(.) Transformer

SP-MPNNs (2022) k-hop neighborhoods IDENTITY(.) GIN(.)

GRED (2023) k-hop neighborhood MLP(.) RNN(.)

S4G (2024) k-hop neighborhood IDENTITY(.) S4(.)

Graph Mamba (2024) Union of Random Walks GATED-GCN(.) Bi-Mamba(.)(With varying length)
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CRaWl (Tönshoff et al., 2023), Graph-MLPMixer, and Graph-ViT (He et al., 2023) can be formulated as GSMs.
REMARK 4 (RECURRENT-BASED MODELS). Recent graph learning methods based on modern recurrent models,
including Graph Mamba (Behrouz & Hashemi, 2024), GRED (Ding et al., 2023), and S4G (Song et al., 2024) can be
formulated as GSMs.

D. Proofs of Theoretical Results
Note that the proof of other theorems are in Appendix E and Appendix F.

D.1. Color Counting

THEOREM 9. Let C be the number of colors, and m be the width of a recurrent model, the recurrent model can count the
number of nodes with each specific color iff m ≥ C.

Proof. We consider a linear recurrent models (the same process can be done by any non-linear recurrent models):

ht = Aht−1 +Bxt (13)
yt = Cht. (14)

We let xt (input features) be the one-hot encoding of colors that can say what is the color of this input. Using B = I and
A = I and h0 = 0, and if mC, then i-th channel in ht is responsible to count i-th color. For input x with color ci, its input

feature is


0
...
1
...
0

, where only the i-th channel is 1 and others are 0, and so we have:

ht = Iht−1 + I


0
...
1
...
0

 , (15)

which means htj = ht−1j for j ̸= i and hti = ht−1i + 1. This shows recurren models with m ≥ C can count.

D.2. Representational Collapse in State Space Models

THEOREM 10. For any k > i let A(k, i) = (1− 1
k )(1−

1
k−1 ) . . . (1−

1
i )

1
i and L be the number of layers. For any i < n,

the gradient norm of the HiPPO operator for the output of layer L at time n+ 1 (i.e., y(L)
n+1) with respect to input at time i

(i.e., xi) satisfies:

C(L)
low

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
k1≥i

. . .
∑

kL≥kL−1

A (n− 1, kL)

L−1∏
ℓ=2

A (kℓ − 1, kℓ−1)A (k1 − 1, i)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ ||

∂ y
(L)
n+1

∂ xi
|| ≤ C(L)

up

(
1

n

)L

Proof. We use the recurrent formulation of state space models:

ht = Aht−1 +Bxt (16)
yt = Cht. (17)

Based on this formulation, if we take the gradient ||∂ y
(1)
n+1

∂ xi
|| we have:

∂ y
(1)
n+1

∂ xi
=

(
I − A

n

)(
I − A

n− 1

)(
I − A

n− 2

)
...

(
I − A

i+ 1

)
B

i
. (18)
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Next, we need to see how using more layers affect this gradient. Let L be the layer of interest, similar to the above, since the
output of the (L− 1)-th layer is the input of L-th layer, then we have:

∂ y
(L)
n+1

∂ y
(L−1)
i

=

(
I − A

n

)(
I − A

n− 1

)(
I − A

n− 2

)
...

(
I − A

i+ 1

)
B

i
, (19)

and so usign chain rule, we have:

∂ y
(L)
n+1

∂ xi
=

∑
k1≥i

· · ·
∑

kL≥kL−1

∂ y
(L)
n+1

∂ y
(L−1)
kL

L−1∏
ℓ=2

∂ y
(ℓ)
kℓ

∂ y
(ℓ−1)
kℓ−1

∂ y
(1)
k1

∂ xi
(20)

Now, since we are using HIPPO (Gu et al., 2020), we can see that all I − A
j for j = n, . . . , i+ 1 are diagonizable and as

discussed by Gu et al. (2020) we have:

∣∣∣∣∣∣∣∣(I − A

n

)(
I − A

n− 1

)
. . .

(
I − A

i+ 1

)
B

i

∣∣∣∣∣∣∣∣ ∈ Θ

(1− 1

k
) . . . (1− 1

i
)
1

i︸ ︷︷ ︸
A(k,i)

 , (21)

which means there are Clow and Cup such that:

Clow ×A(k, i) ≤
∣∣∣∣∣∣∣∣(I − A

n

)(
I − A

n− 1

)
. . .

(
I − A

i+ 1

)
B

i

∣∣∣∣∣∣∣∣ ≤ Cup ×A(k, i). (22)

Note that, it is simple to see:

A(k, i) = (1− 1

k
) . . . (1− 1

i
)
1

i
≤ 1

n
. (23)

Using Equation 20 and the above bounds, we can conclude that:

C(L)
low

∣∣∣∣∣∣
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∑
k1≥i

. . .
∑

kL≥kL−1

A (n− 1, kL)
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1
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, (24)

which completes the proof.

Similar to Barbero et al. (2024), who provide this upper bound for Softmax attention, next, we derive the upper-bound for
linear attentions:

PROPOSITION 2. Given an input sequence x1, . . . ,xn, let L be the number of layers, y(L)
i be the i-th output in layer L,

then the sensitivity of of any linear attention satisfies:

||∂yn

∂xi
|| ≤ C(L)

∑
k1≥i

· · ·
∑

kL≥kL−1

α
(L−1)
n,kL

L−1∏
ℓ=2

α
(ℓ−1)
kℓ,kℓ−1

α
(0)
k1,i

, (25)

where αℓ
i,j =

σ
(
f
(
q
(ℓ)
i ,k

(ℓ)
j ,pi,j

))
∑

t σ
(
f
(
q
(ℓ)
i ,k

(ℓ)
t ,pi,t

)) are weights of the attention.

This indicates that the discussions about representational collapse for full attention is also valid for linear transformers.

E. Comparisons between Transformers and Recurrent Models
The trade-offs in computational cost and model capability between standard transformers and alternative architectures have
been well studied theoretically and empirically. For instance, the capabilities of state space and sub-quadratic models fall
short of transformers in copying context (Jelassi et al., 2024), multistep reasoning (Sanford et al., 2024b), and nearest
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neighbor search (Alman & Song, 2023). Despite this, state space models learn certain tasks, such as the compositions of
permutations, in a more depth-efficient manner than transformers (Merrill et al., 2024).

Because this paper designs graph sequence model architectures that employ state space models and other alternatives, it is
useful to understand the trade-offs between these architectures and transformers at fundamental graph algorithmic tasks. In
this section, we provide explicit the trade-offs between transformers and alternative models—including state space models
(e.g. Mamba, Gu & Dao, 2023), linear attention (e.g. PolySketchFormer, Kacham et al., 2024), and sparse attention (e.g.
Longformer, Beltagy et al., 2020b). We discuss two particular particular architectural separations for graph connectivity
tasks that illuminate broader trade-offs in architectural capability.

1. Section E.1 discusses the existence of more parameter-efficient transformers that solve graph connectivity than
sub-quadratic architectures and state space models.

2. Section E.2 contrasts these results by showing that for a certain category and presentation of graphs, recurrent models
are more efficient in terms of both parameter count and computational time.

3. Section E.3 motivates hybrid models by suggesting instances of graph connectivity that are easily solved mixtures of
RNN and transformer layers.

Taken together, these sections show that there is no one sequential modeling architecture that is strictly better for all graph
algorithmic problems (or even all connectivity instances). Rather, the properties of the sequential representation of the
graph matter a great deal to the comparative successes of neural architectures. If the graph structure is captured primarily
by the ordering of nodes, then state space models are likely to more easily parse that structure than softmax attentions. In
contrast, transformers may offer advantages for graph algorithms that benefit from parallel computation applied to inputs
with complex structure. Hybrid models are best for inputs with both properties.

Throughout this section, we frame graph connectivity as a sequential modeling task with an edge tokenization. An undirected
graph G = (V,E) is provided as input G := Pe1 , . . . , Pe|E| , and the target output is 1 if G is connected and 0 if not. The
theoretical results that follow are largely consequences of existing analyses about sequential reasoning tasks, such as k-hop
induction heads (Sanford et al., 2024b) and the composition of permutations from the S5 group (Merrill et al., 2024).

E.1. Transformers Admit More Efficient Connectivity Solutions

The capabilities of standard softmax attention to efficiently compute graph connectivity for arbitrary graphs in edge
tokenization were previously established. We provide these results as follows.

COROLLARY 4 (COROLLARY 3.3 OF (SANFORD ET AL., 2024B)). For any N and ϵ ∈ (0, 1), there exists a transformer
with depth O(logN) and embedding dimension O(N ϵ) that determines whether any graph G = (V,E) with |V |, |E| ≤ N
is connected.

Transformers can thus solve graph connectivity with only O(N ϵ) parameters. Moreover, the depth of this construction is
asymptotically optimal among small-width transformers; see Corollary 3.5 of the same paper for more details.

On the other hand, alternative architectures cannot solve graph connectivity with such low-dimensional parameterization.

COROLLARY 5. Neural architectures of the following topologies that solve graph connectivity on all graphs G = (V,E)
with |V |, |E| ≤ N satisfies the following:

1. A multi-layer recurrent neural networks (RNN)1 have either depth L = Ω(N1/8) or hidden state m = Ω̃(N1/4).

2. Transformers with kernel-based sub-quadratic attention have either depth L = Ω(N1/8) or mr = Ω̃(N1/4) for
embedding dimension m and kernel dimension r.

3. Transformers with locally masked attention units of radius r and sparse long-range connections have either depth
L = Ω(N1/8) or mr = Ω̃(N1/4) for embedding dimension m.

1See Section 5 of (Sanford et al., 2024b) for precise theoretical definitions of all models herein. We assume that all parameters and
intermediate products use O(logN)-bit precision numbers.
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As a result, these attempts to improve the quadratic computational bottleneck result in a lack of parameter-efficient
connectivity solutions. All RNNs, kernel-based transformers with kernel dimension r = O(N1/8), and all local transformers
with window size r = O(N1/8) require at least Ω(N1/8) parameters. In contrast, since ϵ can take any constant positive
value, transformers can be much smaller in parameter count for large N .

Proof. The proof of Corollary 5 derives from Corollaries 5.2-5.4 of (Sanford et al., 2024b) and rely on embedding a well
known communication task—the pointer chasing problem of (Nisan & Wigderson, 1993)—as graph connectivity instances.

In brief, the input to a pointer chasing task is a (b, k)-layered graph G = (V1 ∪ · · · ∪ Vk+1, E1 ∪ · · · ∪ Ek) with disjoint
vertex layers V1, . . . , Vk+1 with |Vj | = b and edge layers E1, . . . , Ek where Ej is a perfect matching between Vj and Vj+1.
Fix some Uk+1 ⊂ Vk+1 and some v1 ∈ V1. The goal of the task is to determine whether the unique vertex vk+1 ∈ Vk+1

connected to v1 is in Uk+1.

Let k = O(N1/8) and b = O(N7/8). Consider an embedding of the pointer-chasing task into any graph embedding of
the form Pe1 , . . . , Pe|E| where ebj+1, . . . , eb(j+1) encode all edges in Ek−j . By Proposition E.3 and Corollaries 5.2-5.4 of
(Sanford et al., 2024b), the pointer chasing task can only be solved on these embeddings by RNNs, kernel-based transformers,
and locally masked transformers that satisfy the parameter scalings of Corollary 5.

It remains to show that pointer chasing instances G can be converted into connectivity instances G′ = (V,E′) with
|V |, |E′| = O(N) using a single round of computation without communication between inputs. We construct G′ by adding
O(b) edges between v1 and each vertex in Vk+1 \ Uk+1 and between adjacent pairs of vertices in Uk+1. The ensures the
bound on |E′| and can be done by performing element-wise computation on blank input tokens, since we consider v1 and
V ′
k+1 fixed. Note that G′ is connected if and only G satisfies vk+1 ∈ Uk+1. Hence, solutions to graph connectivity imploy

solutions to pointer chasing.

E.2. RNNs Admit More Efficient Connectivity Solutions on “Localized” Graphs

In contrast, the benefits of RNNs and state space models are pronounced on graph connectivity instances presented as token
sequences that embed graph structure carefully in their ordering. (In some cases, graphs of this form may be produced by
the HAC tokenization method of Section 4.1.) We define a notion of locality for an edge embedding and show that this
induces easy embeddings for RNNs but not for transformers.

DEFINITION 2. Let the node locality of an edge embedding Pe1 , . . . , Pe|E| of a graph G = (V,E) denote the maximum
window size needed to contain all edges that adjoin each node. That is, we say that G has node locality k if

max
v∈V

(
argmax

i
{ei : v ∈ ei} − argmin

i
{ei : v ∈ ei}

)
≤ k.

We show that graphs with bounded node locality admit time- and parameter-efficient RNN solutions.

THEOREM 11. There exists a single-pass RNN with hidden state O(k) that determines whether edge embedding with node
locality at most k reflects a connected graph.

Proof. We first define the desired hidden state of the RNN, hi for any i ∈ [|E|]. It will naturally follow that an RNN that
simulates a “last-in first-out” queue that stores k edges can compute these hidden states with a multi-layer perceptron with
poly(k) parameters.

For each i ∈ [|E|], denote ei = {v1i , v2i }, and let Gk
i denote the subgraph of G containing edges ei−k, . . . , ei and vertices

v1i−k, v
2
i−1k+1, . . . , v

1
i , v

2
i . Let Gk

<i denote the subgraph with edges e1, . . . , ei−k−1. We let

hi = (Gk
i , ai, b

i
i−k, . . . , b

i
i),

where

• ai ∈ {0, 1} denotes whether all edges in Gk
<i are connected to some edge in Gk

i ; and

• bii′ ∈ [k] denotes the index of the connected component that edge ei belongs to with respect to Gi
<i ∪ Gi

i; that is
bii′ = bii′′ , then there exists a path connecting ei′ and ei′′ among the edges e1, . . . , ei.
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We argue inductively that each hi−1 can be constructed from hi. At initialization, we set a1 = 1 and b11 = 1.

• Gk
i can be trivially constructed from Gk

i−1 and ei by “forgetting” ei−k−1.

• Let ai = 0 if and only if (1) ai−1 = 0 or (2) bi−1
i−k−1 is unique among bi−1. For (1), if some edge in Gk

<i−1 is not
connected to Gk

i−1, locality demands that it is also not connected to Gk
i . For (2), since ei−k−1 is not connected to any

of ei−k, . . . , ei−1 via Gk
<i−1 ∪Gk

i−1 and it cannot share an edge with ei, it is thus disconnected to Gk
i .

• If ei adjoins any of ei−k, . . . , ei−1, we update the bii′ ’s to reflect the new clusters.

By induction, we determine that h|E| can be constructed as desired. We conclude by noting that G is connected if a|E| = 1
and b1|E|−k = · · · = b1|E|.

In the case when k = O(1), there exists a constant-size RNN that solves graph connectivity on such graph instances.

In contrast, no constant-size transformer that solves the task exists. We prove this by a reduction to the conditional hardness
of solving NC1-complete problems with constant depth transformers (see e.g. Merrill & Sabharwal, 2023).

THEOREM 12. Unless NC1 = TC0, any log-precision transformer that solves graph connectivity on edge embeddings for
graphs G = (V,E) with |E| ≤ N with node locality 12 requires either depth ω(1) or width Nω(1).

Proof. This proof is a consequence of Corollary 1.1 of (Merrill & Sabharwal, 2023), which establishes that all log-precision
constant-depth transformers can be simulated by circuits in TC0.

Consider the task of composing permutations from the symmetric group of cardinality 5, S5. That is, given σ1, . . . , σn ∈ S5,
compute σn ◦ · · · ◦ σ1. This task is NC1-complete and is widely believed to not belong to TC0.

If we show that this S5 composition task can be solved by evaluating the connectivity of O(1) graphs with node locality 12,
then we can prove that graph connectivity on these instances is hard for constant-depth transformers. We first consider the
subtask of determining whether (σn ◦ · · · ◦ σ1)(s) = t for some s, t ∈ [5].

Given a sequence of permutations σ1, . . . , σn and some s, t, we define a graph G = (V,E) with V = [6n+ 3] and edges
e1, . . . , e6n+3 ∈ E as follows:

• We establish a path from node ι to node 6n + (σn ◦ · · · ◦ σ1)(ι) for each ι ∈ [5]. For every i ∈ [n] and ι ∈ [5], let
e6(i−1)+ι = {6(i− 1) + ι, 6i+ σi(ι)}.

• We create a path from s to t. Let e6 = {s, 6}, e6i = {6i, 6(i+ 1)} for i ∈ [n− 1], and e6n = {6n, t}.

• Let e6n+1, e6n+2, e6n+3 connect the four nodes 6(i− 1) + ι where ι ̸= t.

Thus, the graph is connected iff (σn ◦ · · · ◦ σ1)(s) ̸= t. Observe that each node appears exclusively in edges within a
window of size 12. Thus, this is an instance of graph connectivity with node locality 12.

Suppose there existed a constant-depth transformer with polynomial width that solves connectivity with constant node
locality. Then, we could solve the S5 composition task in constant depth by constructing graphs for all 25 (s, t) pairs and
evaluating the connectivity of each.

E.3. Motivating Hybrid RNN-Transformer Models with Connectivity Instances

In the preceding sections, we demonstrated that different instances of the graph connectivity task highlight the parametric
advantages of both softmax transformers and recurrent neural networks. Transformers perform best in worst-case instances,
where their logarithmic-depth dependence is more favorable than the polynomial size lower bound for RNNs. In contrast,
RNNs are superior for graphs whose input edge encodings reflect a highly local structure.

A natural follow-up question asks whether there are any intermediate instances where the hybrid RNN-transformer models
of Section 4.2 perform better than each component in isolation. In this section, we provide examples of those instances by
considering a hybridization of worst case graphs and graphs with node locality and show that those instances are best suited
for hybrid models. We first introduce this family of graphs by construction.
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DEFINITION 3. For some n, k, and n′, we define a k-local (n, n′)-factored graph as any graph G = (V,E) with |E| = n2 ·n′

and an edge embedding Pe1 , . . . , Pe|E| satisfying the following conditions.

1. There exists a “kernel graph” G∗ = (V∗, E∗) with |V∗| = n and “super-edge graphs”

Gv1,v2 = ({v1, v2} ∪ Vv1,v2
, Ev1,v2

)

for each “super-node” pair (v1, v2) ∈ V 2
∗ with |Ev1,v2 | = n′.

2. Each super-edge graph Gv1,v2
has the property that (a) if (v1, v2) ∈ E∗, then Gv1,v2 is connected; and (b) if

(v1, v2) ̸∈ E∗, then Gv1,v2
has two connected components, one containing v1 and one with v2.

3. Each super-edge graph Gv1,v2 has an n′-token edge encoding PEv1,v2
that satisfies node locality k.

4. G = (V,E) has nodes and edges satisfying

V = V∗∪̇

 ⋃̇
v1,v2∈V 2

∗

Vv1,v2

 and E =
⋃̇

v1,v2∈V 2
∗

Ev1,v2 .

For any ordering (v11 , v
1
2), . . . , (v

n2

1 , vn
2

2 ) over super-node pairs V 2
∗ , the edge encoding of G is

PE
v1
1,v1

2

, . . . , PE
vn2
1 ,vn2

2

.

Note that G is connected if and only if G∗ is connected. However, the kernel graph G∗ is not immediately apparent from the
input edge encoding, since identifying whether any (v1, v2) ∈ E∗ requires determining the connectivity of Gv1,v2 . This
property motivates a two phase approach for a hybrid architecture:

• An RNN determines the connectivity of each Gv1,v2 subgraph using the model of Theorem 11.

• A transformer determines the connectivity of G∗.

The capabilities of this approach is summaried by the following corollary of Theorem 11 and Corollary 4.

COROLLARY 6. There exists a hybrid RNN-transformer model that solves graph connectivity on k-local (n, n′)-factored
graphs that uses a single RNN layer of hidden dimension O(k) and O(log(n)) transformer layers of embedding dimension
O(nϵ).

Let N = n2n′ denote the total number of edges such a graph. Critically, this has no dependence on the parameter n′,
excepting the fact that the model will require bit-precision Ω(logN). In the setting where n is small (but still non-negligible),
we can demonstrate a substantial parameter count gap comparison to the best known constructions of both transformers and
RNNs.

For example, let k = O(1) and n = Θ(exp(
√
logN)).

• Because these diameter of the graph may be as large as O(n · n′) = O(N/ exp(
√
logN)), a standard transformer is

only known to solve the task using O(logN) layers and O(N ϵ) width.

• Even if an RNN can successfully determine G∗ in a single pass, the task of determining whether whether G∗ is
connected requires either depth Ω(n1/8) = Ω(exp(

√
logN/8)) or width Ω̃(n1/4) = Ω(exp(

√
logN/4)).

• In contrast, a hybrid RNN-transformer model can solve the task with depth O(log n) = O(
√
logN) and width

O(exp(ϵ
√
logN)).

While the definition of k-local (n, n′)-factored graphs is somewhat contrived, they represent a formalization of graphs
whose edge embeddings are “nearly local,” but which require some analysis of global structure. Graphs with such properties
are likely to be produced by clustering-based sequencing approaches, such as Hierarchical Affinity Clustering.
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F. Advantages and Disadvantages of Local Encoding
F.1. Choosing the Right Tokenizer: Node, Edge, or Subgraph

While so far we have compared different sequence models for use in Global Encoding stage, one critical question remains:
What type of tokenization is the best? In this section, we show that there is no universally best tokenization, and depending
on the task, the best tokenizer is different. First, we start with the task of finding the length of the shortest path, and show
that GSMs are more parameter efficient when using a subgraph tokenizer. This is an important task in graph learning, as
awareness of the shortest path can enhance the power of the model (Abboud et al., 2022).

THEOREM 13. There exists a GSM with a subgraph tokenizer and a 1-layer Transformer as its global encoder with width
m = O (log dG) and precision p = O (log dG) that performs the above shortest path task for all input graphs of G = (V,E)
with diameter up to dG. Using a node tokenizer, the Transformer must have at least width m = O (log |V |) and precision
p = O (log |V |).

Next, we focus on motif counting (e.g., triangles), which is a well established graph task.

THEOREM 14. For any fixed subgraph H of diameter at most k, there exists a k-hop local encoding ϕLocal and a single-
layer Transformer f of constant width such that f ◦ ϕLocal counts the number of occurrences of H in any input graph
G.

We discuss theoretical trade-offs of the k-hop local embedding introduced in Section 2.2. Concretely, we show that k-hop
local embeddings offer simple solutions to subgraph counting problems that are more parameter-efficient than known
transformer constructions. In contrast, these embeddings offer no asymptotic benefits on hard instances of graph connectivity.
Like the preceding section, the results herein are largely applications of prior theoretical results on transformer capabilities
and limitations.

F.2. Local Encodings Efficiently Count Subgraphs

Computing the number of small subgraphs—especially triangles or other cliques—is a well established graph algorithmic
task. Triangle counting was included as a fundamental graph reasoning problem in the GraphQA benchmark of Fatemi
et al. (2023), and the ability to solve triangle counting with transformers with edge embeddings was investigated by Sanford
et al. (2024a). While those results successfully converted existing parallel algorithms into transformer constructions, each
construction had a substantial polynomial dependency on the size of the input graph. In contrast, pairing local encodings
with transformers enables easy counting of not only triangle counting but also any bounded-diameter subgraph counting
task.

THEOREM 15. For any fixed subgraph H of diameter at most k, there exists a k-hop local encoding ϕLocal and a single-layer
transformer f of constant width such that f ◦ ϕLocal counts the number of occurrences of H in any input graph G.

Proof. We set the local encoding such that ϕLocal(G)i includes a normalized count the number of H subgraphs in the k-hop
subgraph including node i:

sHi =
1

ZH

∑
V ′={v1,...,v|H|}∈G[H

(i)
k ]

i∈V ′

1{subgraph of G[H
(i)
k ] with vertices V ′ is isomorphic to H},

where |H| is the number of nodes in H and ZH is a normalization term set to ensure double-counting does not occur. (For
example, if H is the triangular graph, let ZH = 3 to reflect the fact that a triangular subgraph {i1, i2, i3} will be counted
thrice, in sHi1 , s

H
i2
, sHi3 .)

It remains to provide a transformer that computes
∑|V |

i=1 s
H
i . This can be implemented by augmenting a single-layer masked

attention unit that solves counting to compute sums by including the sHi terms in the value embeddings. (See e.g. the
counting construction in Proposition 5.3 of Yehudai et al. (2024).)

In contrast, all known transformer constructions without k-hop encodings of even triangle counting tasks have unfavorable
width or depth scalings on the size of the graph. These constructions are generated by simulating algorithms in the Massively
Parallel Computation (MPC) model of Karloff et al. (2010) with transformers via Theorem 8 of Sanford et al. (2024a). We
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provide the architectural scalings of the resulting transformers for several MPC algorithms below. In the following regimes,
there exist a transformer that solves triangle counting for constant ϵ > 0:

• Depth O(1) and embedding dimension O(|E|1/2+ϵ) in the edge encoding setting (Suri & Vassilvitskii, 2011);

• Depth O(|V |) and embedding dimension O(|V |1+ϵ) in the node encoding setting (Chu & Cheng, 2011).

• Depth O(log log |E|), embedding dimension O(|E|ϵ), and O(|V | · |E|) extra blank tokens in the edge encoding setting
(Biswas et al., 2022).

All of these have much more dramatic model size scalings as a function of |E| and |V | than the local encoding construction
in Theorem 15. While it is unknown whether these represent the optimal solutions to subgraph counting with edge and node
encodings, the fact that these are the state-of-the-art theoretical results indicates that local encoding substantially aids with
tasks that involve aggregating local structural information.

F.3. Local Encodings Offer No Improvement for Worst-Case Connectivity

In contrast, the limitations of local encodings are apparent in the analysis of worst-case graph connectivity. We show that
k-hop local encodings offer no asymptotic improvements in graph connectivity parameter complexity over the construction
of Corollary 4. We generalize Corollary 3.5 of Sanford et al. (2024b)—which establishes that sub-logarithmic-depth
polynomial-width transformers cannot solve graph connectivity if the well-known “one-cycle versus two-cycle” conjecture
(see, e.g., Ghaffari et al., 2019) holds.

COROLLARY 7. Suppose any MPC algorithm with polynomial global memory and sub-linear local memory that distin-
guishes a cycle graph of size n from two cycle graphs of size n

2 in the edge encoding uses Ω(log n) rounds of computation.
Then, any transformer with a k-hop local encoding (for k = O(N1−ϵ) for some ϵ ∈ (0, 1)) that solves graph connectivity
on all graphs of size |V |, |E| ≤ N requires either depth depth L = Ω(logN) or width m = Ω(N

1−ϵ

k ).

This implies that using O(kN) input tokens to represent a graph offers no representational benefits a standard edge encoding,
since the same logarithmic dependence persists. For large choices of k, the quadratic attention bottleneck causes the
computational burden to scale with Θ(k2N2 logN) rather than Θ(N2 logN).

Proof. The proof adapts the corresponding proof of Corollary 3.5 by Sanford et al. (2024b).

For n = N
k , we let G = (V,E) be some instance of the one-cycle vs two-cycle identification task. We assume for simplicity

that this is the directed variant of the task, where the cycles are directed. That is, we represent its input as a fixed ordering of
edges e1, . . . , e|E|. Each vertex has degree exactly two.

We embed G in an instance of one-cycle vs two-cycle identification G′ = (V ′, E′) of size N by adding “phantom edges.” We
replace each vertex v ∈ V with a linear subgraph of length k containing vertices v1, . . . , vk ∈ V ′ and edges (vi, vi+1) ∈ E′.
If (u, v) ∈ E, then we add the edge (uk, v1) ∈ E′. Thus, if G′ has a cycle of length N if and only if G has a cycle of length
N .

Because all edges of the form (vi, vi+1) exist for all instances G′, we can create an edge encoding of G′ from an edge
encoding of G using a single layer of attention with N − N

k blank tokens, a positional encoding, and a constant embedding
dimension. Likewise, we can compute the k-hop local encoding of G′ using an additional attention layer with with Nk−N
blank tokens.

Since the existing hardness results for constructing transformers that solve the one-cycle versus two-cycle problem of size n
pertain to all transformers of depth o(log n), width O(n1−ϵ), and number of blank tokens poly(n), the corollary follows as
written for the case when k = O(N1−ϵ).

G. Overview of GSM++
The overview of the GSM and GSM++ is illustrated in Figure 3 and Figure 1.
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H. Time Complexity of GSM++
In this section, we analyze the time complexity of GSM++ and compare it with state-of-the-art efficient models. We let n be
the number of tokens, din be the dimension of the feature vectors (or PE), dssm be the first dimension of the SSM layers’
output (or the input dimension of the transformer layer), C be the number of channels. and B, be the batch size. Given
the fact that the input of the transformer block has the dimension of dssm, the complexity of the training for transformer
block is O

(
d2ssm

)
. The input of the SSM blocks has the dimension of the n× din and so given the fact that Mamba has a

linear-time training (Gu & Dao, 2023), the training time for SSM layers is O
(
n× d2in

)
. Therefore, the training time cost of

GSM++ is O
(
d2in × n+ d2ssm

)
, which is linear with respect to the graph size n. For the BFS traverse, GSM++ (BFS), we

have n = |V | and so the time complexity is O
(
d2in × |V |+ d2ssm

)
. In the case of DFS traverse, n is the number of tokens,

which is at most log (|V |). Therefore, for GSM++ (DFS) the time complexity is O
(
d2in × log (|V |) |V |+ d2ssm|V |

)
, which

is sub-quadratic. In practice, log (|V |) ≪ 11 and so one can argue GSM++ (DFS) also has a linear time complexity. Finally,
note that for the MoT, we concatenate the outputs of two different tokenization and so it requires a projection from 2× din
to din, which requires O

(
2d2in

)
additional parameters. In practice, din ≈ 100 and so this results in about 10,000 additional

parameters, which is negligible.

I. Experimental Setup

Benchmark Tasks. The nature of the task can be understood to involve assigning a unique color to each class and
subsequently counting the number of nodes within each class, effectively treating the count of nodes as the number of nodes
with a specific assigned color. For example, in cases where two distinct colors are present, one might determine that there
are 2000 red nodes and 1000 blue nodes. The objective of the task then becomes to provide a graph as input and generate
an output in the form of a vector, where each entry corresponds to the number of nodes belonging to a particular class.
This output vector enumerates the count of nodes for each class, reflecting the distribution of nodes across the different
classes. We evaluate the empirical performance of our approach across a diverse set of graph datasets, focusing on both
graph-level and node-level prediction tasks. Specifically, we conduct experiments on image-based graph datasets, including
PascalVOC-SP, which exemplifies long-range dependencies with moderate complexity (21 classes), and COCO-SP, which
presents more challenging long-range dependencies with 81 classes. Additionally, we include synthetic SBM datasets
(PATTERN) and heterophilic graph datasets (Roman-Empire, Minesweeper), which vary in difficulty, with 18 and 2 classes
respectively.

Color-connectivty task. Four Color-Connectivity datasets partitioned the nodes of a graph into two groups: one half of the
nodes was randomly assigned a color, such as red, while the remaining nodes were assigned blue. In this setup, the red
nodes either form a single connected component or two disjoint components. The goal of the binary classification task is to
distinguish between these two scenarios. The node colorings were produced by initiating two independent random walks,
starting from two randomly selected nodes, to assign the red color.

GSMs Variants. As the sequence encoder in the global encoding stage, we use: (1) xLSTM (Beck et al., 2024), (2)
TTT (Sun et al., 2024), (3) Mamba (Gu & Dao, 2023), (4) Mamba2 (Dao & Gu, 2024), (5) PolySketchFormer (Kacham
et al., 2024), (6) Transformers (Vaswani et al., 2017), (7) GLA (Yang et al., 2024), and (8) Sparse attention (Beltagy et al.,
2020a).

As the tokenization, we use: (1) Node (Rampášek et al., 2022), (2) Edge + Node, (3) Edge, (4) k-hop Neighborhood (Chen
et al., 2023), (5) Simple random walk (Kuang et al., 2021), (6) Multiple Random Walks (Behrouz & Hashemi, 2024), (7)
HAC (this study), and (8) METIS (Karypis & Kumar, 1998)

Since the focus of our study is mostly on global encoding and tokenization, we use the same local encoding (GatedGCN) for
all the cases to ensure a fair comparison.

Baselines. We compare our GSM++ with (1) MPNNs, e.g., MPNN (Gilmer et al., 2017b), GCN (Kipf & Welling, 2016),
GIN (Xu et al., 2019), GAT (Veličković et al., 2018), GraphSAGE (Hamilton et al., 2017), OrderedGNN (Song et al., 2023),
tGNN (Hua et al., 2022), and Gated-GCN (Bresson & Laurent, 2017), (2) Random walk based method CRaWl (Tönshoff
et al., 2023), (3) state-of-the-art GTs, e.g., SAN (Kreuzer et al., 2021), NAGphormer (Chen et al., 2023), Graph ViT (He
et al., 2023), two variants of GPS (Rampášek et al., 2022), GOAT (Kong et al., 2023), GRIT (Ma et al., 2023), and
Exphormer (Shirzad et al., 2023), and (4) recurrent-based models: e.g., Graph Mamba (GMN) (Behrouz & Hashemi, 2024)
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Table 8: Dataset Statistics.

Dataset #Graphs Average #Nodes Average #Edges #Class Setup Metric
Input Level Task

Long-range Graph Benchmark (Dwivedi et al., 2022b)

COCO-SP 123,286 476.9 2693.7 81 Node Classification F1 score
PascalVOC-SP 11,355 479.4 2710.5 21 Node Classification F1 score
Peptides-Func 15,535 150.9 307.3 10 Graph Classification Average Precision
Peptides-Struct 15,535 150.9 307.3 11 (regression) Graph Regression Mean Absolute Error

GNN Benchmark (Dwivedi et al., 2023)

Pattern 14,000 118.9 3,039.3 2 Node Classification Accuracy
MNIST 70,000 70.6 564.5 10 Graph Classification Accuracy
CIFAR10 60,000 117.6 941.1 10 Graph Classification Accuracy
MalNet-Tiny 5,000 1,410.3 2,859.9 5 Graph Classification Accuracy

Heterophilic Benchmark (Platonov et al., 2023)

Roman-empire 1 22,662 32,927 18 Node Classification Accuracy
Amazon-ratings 1 24,492 93,050 5 Node Classification Accuracy
Minesweeper 1 10,000 39,402 2 Node Classification ROC AUC
Tolokers 1 11,758 519,000 2 Node Classification ROC AUC

Very Large Dataset (Hu et al., 2020)

arXiv-ogbn 1 169,343 1,166,243 40 Node Classification Accuracy
products-ogbn 1 2,449,029 61,859,140 47 Node Classification Accuracy

Color-connectivty task (Rampášek & Wolf, 2021)

C-C 16x16 grid 15,000 256 480 2 Node Classification Accuracy
C-C 32x32 grid 15,000 1,024 1,984 2 Node Classification Accuracy
C-C Euroroad 15,000 1,174 1,417 2 Node Classification Accuracy
C-C Minnesota 6,000 2,642 3,304 2 Node Classification Accuracy

and GRED (Ding et al., 2023).

I.1. Details of Datasets

The statistics of all the datasets are in Table 8. For additional details about the datasets, we refer to the Long-range graph
benchmark (Dwivedi et al., 2022b), GNN Benchmark (Dwivedi et al., 2023), Heterophilic Benchmark (Platonov et al.,
2023), Open Graph Benchmark (Hu et al., 2020) and Color-connectivity task (Rampášek & Wolf, 2021). When dealing with
products-ogbn, we use local attentions instead of a softmax attention (Deng et al., 2024) to enhance the scalability.

I.2. Efficiency for Large Datasets

In this section, we compare the training time, memory usage, and performance of the variants of GSM++ with other efficient
graph sequence models on large graphs. The results are reported in Table 9. With respect to scalability, all variants of
GSM++ can scale to these large graphs. With respect to the performance, GSM++ variants achieve all first three places
(except the second place on products-ogbn dataset), which shows the effectiveness of this architecture design.

These results further shows the effectiveness and efficiency of MoT approach. Since this method uses a router, it is more
memory efficient than GSM++ with BFS traverse, and it’s training time is competitive with GSM++ with DFS traverse.
Notably, these efficiency results are achieved byb GSM++ with MoT while it ouperforms all the baselines in both datasets.
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Table 9: Efficiency evaluation on large graphs. The first, second, and third results for each metric are highlighted. OOM: Out of memory.

Model GatedGCN NAGphormer GPS Exphormer GOAT GRIT GMN GSM++

BFS DFS MoT

arXiv-ogbn

Performance 0.7141 0.7013 OOM 0.7228 0.7196 OOM 0.7248 0.7297 0.7261 0.7301
Memory Usage (GB) 11.87 6.81 OOM 37.01 13.12 OOM 5.63 24.8 4.7 14.9
Training Time/Epoch (s) 1.94 5.96 OOM 2.15 8.69 OOM 1.78 2.33 1.95 4.16

products-ogbn

Performance - 0.7329 OOM OOM 0.8200 OOM OOM 0.8071 0.8080 0.8213
Memory Usage (GB) 11.13 10.04 OOM OOM 12.06 OOM OOM 38.14 9.15 11.96
Training Time/Epoch (s) 1.92 12.08 OOM OOM 29.50 OOM OOM 6.97 12.19 11.87

I.3. Efficiency of HAC Tokenization

Figure 4: The effect of number of nodes
on the preprocessing time for the con-
struction of positional encodings.

In this section, we evaluate the efficiency of the HAC tokenization and compare
its computing time with other commonly used positional encodings (PEs) in the
literature (Rampášek et al., 2022; Behrouz & Hashemi, 2024; Ma et al., 2023).
Please note that the construction of positional encoding is a one-time cost, which
can be done as a preprocessing before training, and so cannot significantly affect
the total training time. We compare the computing time of HAC (Bateni et al.,
2017) with random-walk-based PE (Behrouz & Hashemi, 2024), Laplacian-based
PE (Rampášek et al., 2022), and Relative Random Walk PE (Ma et al., 2023).
The results are reported in Figure 4. HAC’s computing time is competitive with
other PEs’s and scales more smoothly with the number of nodes. That is, the
main efficiency gain of HAC is when we are dealing with large graphs. Furthermore, note that in practice, HAC is highly
parallelizable and can scale to graphs with billions of nodes and trillion of edges in less than one hour (Bateni et al., 2017).

I.4. Comparison with Concurrent Studies

We further compare our model with NeuralWalk (Chen et al., 2025) and GRASS (Liao & Poczos, 2025). Since the
contribution of these two works are orthogonal to ours and so can also be used to further enhance GSM++, we use these
techniques and report the results in Table 10.

Table 10: The results of concurrent models.

Model Peptides-func PascalVOC-SP COCO-SP MNIST PATTERN

GRASS 67.37 56.70 47.52 98.93 89.17
NeuralWalker 70.96 49.12 43.98 98.76 86.97
GSM++ 71.82 49.33 48.25 98.99 90.08
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