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Abstract

Polymerase Chain Reaction (PCR) is the foundational technology for detecting
pathogens from their genomic sequences. Rapidly selecting effective primers is
critical in outbreak settings, yet predicting whether a candidate primer pair will
amplify a target sequence depends on a complex mix of sequence–sequence in-
teractions, nonlinear thermodynamics, and cross-genome variability. As a result,
existing tools rely on hand-crafted heuristics and qualitative rules for design. From
these candidates, high-performing primers are typically identified only through
slow, trial-and-error laboratory testing. To overcome this bottleneck, we introduce
the first AI-ready, large-scale, experimentally measured dataset of PCR amplifi-
cation outcomes. The dataset comprises 50,760 unique primer–target reactions
spanning 141 viral detection targets and 360 primer sets, with quantitative labels
of amplification efficiency at unprecedented scale. Leveraging this resource, we
train PRIMERCAST, a predictive model that forecasts amplification success and
efficiency. PRIMERCAST consistently outperforms both widely used heuristic
tools and prior baselines, enabling reliable, data-driven primer evaluation. By
framing primer performance as a predictive modeling challenge and releasing an
AI-ready dataset, we provide a foundation for faster, more reliable diagnostic test
development and open the door for applying machine learning to broader nucleic
acid technologies.

1 Introduction

The rapid development of highly effective diagnostics against an emerging pathogen is critical for
timely public health responses. PCR diagnostics is the gold standard for viral surveillance because it
is simple, fast, sensitive, widely accessible worldwide, and readily designed once a viral genome has
been sequenced. The core of PCR assay development lies in designing two short oligonucleotide
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primers, each approximately 20 DNA base pairs (bp) in length, that anneal to the target sequences
60-200 bp apart and catalyze amplification through appropriate thermal cycling.

Primer design has traditionally been relatively straightforward, relying on a handful of heuristic
rules applied to a single target sequence to select perfectly matching subsequences. By contrast, for
diagnostic assays that inherently aim to capture all circulating variants of a viral species at the time
of development, viral sequence diversity poses a major challenge. Viruses accumulate mutations
rapidly, and sequence divergence across the variants can reach up to 27% [1, 2]. Consequently,
primers that perfectly match all variants are very rare. While conventional approaches use an
artificial representative sequence, this strategy depends heavily on the degree of predefined sequence
divergence, and minor variants are inevitably neglected. A critical unmet need is the ability to evaluate
the PCR activity of each candidate primer against any possible target sequence.

Another important consideration is maximizing assay activity and specificity. The number of pos-
sible perfectly matching primer pairs for a single target often reaches several hundred thousand,
underscoring the immense design space. However, existing tools lack the precision to identify the
most effective candidates [3]. Conventional designs adjust sensitivity and specificity by manually
inspecting mismatches across variants and screening against off-targets (e.g. human transcripts),
followed by slow and labor-intensive laboratory testing. This process is brittle at scale: during the
SARS-CoV-2 pandemic, primer flaws triggered recalls [4] and led to large performance variability [5]
across approved assays, underscoring the urgent need for automated, data-driven primer design [3].

Machine learning offers a principled route to this goal by learning sequence-to-amplification mappings
and optimizing over a combinatorial candidate space. Progress, however, has been constrained by
data: prior studies use small experimental datasets (< 4k reactions) or rely on surrogate labels from
hybridization-energy calculators rather than measured PCR outcomes [6, 7, 8].

Here we introduce, to our knowledge, the first large-scale AI-ready dataset, consisting of more than
50,000 distinct primer–target pairs. These combinations vary widely in the count, position, and type
of mismatches, enabling systematic evaluation of PCR activity for any primer–target pair. Leveraging
a microfluidic PCR platform [9], we obtained high-quality experimental data in quadruplicate. Using
this dataset along with an external dataset of primers, we train PRIMERCAST which outperforms
traditional approaches based on mismatch counting or binding energy in classifying PCR reaction
outcomes. To demonstrate the utility of PRIMERCAST, we applied PRIMERCAST to ten representative
blood-borne viruses. In nine out of ten cases, the AI-designed primers achieved equal or superior
predicted performance than experimentally validated primers with respect to variant coverage, mean
efficiency across variants, and off-target reactivity against other viral species or human genes. To
further validate these results, we performed a wetlab PCR experiment using PRIMERCAST to design
primers for SARS-CoV-2 and compare to those released by the CDCs of several countries. We
find PRIMERCAST designed primers achieves the highest sensitivity and specificity. By reporting
this large experimental dataset, benchmark, and model, we establish a reproducible foundation for
AI-guided diagnostics that can cut time-to-assay in future outbreaks.

2 Related Work

Primer3 and Primer-BLAST The currently most widely used primer design tool is Primer3 [3].
Primer3 evaluates primers by the weighted sum of thermodynamic and sequence parameters [7, 10].
While this approach is straightforward, the preset parameters is largely arbitrary. Consequently,
selected primers often show a discrepancy from experimental outcomes. For example, the SARS-
CoV-2 primers used by many high-performance tests are scored poorly under the default settings of
Primer3, yet they are employed in many of the top-performing PCR tests [11]. Primer-BLAST is
a representative tool for testing off-target amplification by searching for sequences primers could
potentially bind to [12]. However, the number of mismatches between primers and their targets does
not directly indicate whether PCR will occur, nor its amplification efficiency [8]. Neither Primer3,
Primer-BLAST, or any currently existing tools can quantitatively predict PCR efficiency.

Machine learning for primer design Several machine learning approaches have been proposed
for primer design. Pérez-Romero et al. (2023) developed an evolutionary algorithm-based pipeline
for SARS-CoV-2 primer design [13]. This does not score primer candidates qualitatively and relies
on Primer3 to generate and score primer candidates. Wang et al. (2025) introduced a VAE-based
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model for automated primer design, but the scoring of generated primers was again conducted using
bioinformatics tools only [14]. Finally, Kayama et al. (2021) constructed an experimental PCR
dataset which was relatively small (n = 3,906) and of limited quality, as a large fraction of the true
set consisted of primer–target pairs with more than 10 mismatches, a range irrelevant in actual PCR
experiments [6]. Using this dataset, they reported a classifier that achieved a sensitivity of 70%. In
summary, no models currently exist which can directly predict qPCR amplification from primer and
target sequences. All currently reported models are reliant on conventional in-silico prediction of
primers. To our knowledge, PRIMERCAST is the first quantitatively predictive model to be trained
and validated on a high-quality experimental dataset.

3 Problem Definition

Let Pt denote the set of candidate primer pairs for target sequence t. Each candidate Pi ∈ Pt is
an ordered pair Pi = (pif , p

i
r), where p

(i)
f and p

(i)
r are the forward and reverse primer sequences,

respectively. We train two complementary machine learning models: a classifier and a regressor.
Both models take as input the target sequence t and a primer pair pif and pir, then predicts whether
amplification occurs. The classifier predicts a binary label:

fθ(p
i
f , p

i
r, t) ∈ {0, 1} (1)

where a 1 indicates that the primer pair successfully amplifies the target as measured from PCR
fluorescence above baseline. The regressor fθ predicts the amplification efficiency as a continuous
value:

f
(r)
θ (pf , pr, t) ∈ R≥0 (2)

where 0 corresponds to the baseline signal, and 1 corresponds to the efficiency of the CDC-designed
SARS-CoV-2 primers, although values greater than 1 are possible.

3.1 Primer Evaluation Metrics

We next define four evaluation metrics for each primer pair P i, derived from the outputs of the
classifier and regressor introduced above. These metrics describe variant coverage, amplification
efficiency, and specificity against non-target sequences.

Variant coverage Let T denote the set of n variant sequences reported during a specific time
period. For each t ∈ T , the classifier f (c)

θ (pf , pr, t) outputs 1 if amplification is predicted and 0
otherwise. The variant coverage ui is defined as:

ui =
1

n

∑
t∈T

f
(c)
θ (pf , pr, t) (3)

Mean efficiency Let Si ⊆ T denote the subset of variants predicted positive by the classifier. For
each t ∈ Si, the regressor f (r)

θ (pf , pr, t) outputs a score corresponding to predicted amplification
efficiency. The mean efficiency vi is defined as:

vi =
1

|Si|
∑
t∈Si

f
(r)
θ (pf , pr, t) (4)

Cross-species reactivity Let Tpath denote the set of npath sequences from unwanted pathogens. For
each t ∈ Tpath, the classifier predicts amplification as above. The cross-species reactivity oi is defined
as:

oi =
1

npath

∑
t∈Tpath

[f
(c)
θ (pf , pr, t) + 1] (5)

Host-gene reactivity Let Thost denote the set of nhost human transcript sequences. For each t ∈ Thost,
the classifier predicts amplification as above. The host-gene reactivity hi is defined as:

hi =
1

nhost

∑
t∈Thost

[f
(c)
θ (pf , pr, t) + 1] (6)

3



4 Methods

4.1 AI-Ready PCR Dataset Design

To enable the design of primers that are both sensitive and specific, the dataset must capture intended
primer–target interactions (perfect or near-perfect matches with short amplicons) as well as unintended
interactions (partial matches with variable amplicon lengths). To this end, we constructed a synthetic,
biologically relevant PCR library. A wild-type target sequence was generated as a mosaic of human
viral sequences: over 3 million sequences (41 families, 106 genera, 409 species) were collected
from NCBI Virus [15], representative coding sequences from each species were fragmented, and
280 pentamers were sampled to evenly cover the frequency distribution. These pentamers were
shuffled and concatenated iteratively to obtain a 1.4 kb wild-type target with diverse primer-binding
site features, such as GC content, melting temperature, and secondary structure. From this sequence,
140 variants were created by random mutagenesis, introducing 0–10 mismatches in primer-binding
sites and yielding 141 total targets. In parallel, 360 primer pairs were designed against the wild-type
sequence, with expected amplicon lengths ranging from 50 to 1,400 bp. Combined, this design
produced 50,760 unique primer–target combinations for experimental testing.

Microfluidic PCR experiment. We obtained 141 target sequences through chemical synthesis
from Twist Biosciences and 360 primer pairs from Integrated DNA Technologies. Each PCR reaction
consisted of a target sequence, a primer pair, and a master mix containing polymerase, nucleotides,
and fluorescent EvaGreen dye that binds to amplified DNA. During each reaction cycle, fluorescence
signal was measured to quantify the amount of amplified DNA present. For large-scale data collection,
we used the Biomark X microfluidic PCR platform. Each microfluidic chip accommodates 96 targets
and 96 primer pairs each. Once a run starts, the reagents are automatically combined into 96× 96
microchambers. The instrument then performs up to 40 thermal cycles and records the fluorescence
signals from each chamber using a high-resolution imaging system. We utilized this system to
perform 221,184 individual PCR reactions, testing all 50,760 unique primer–target combinations in
quadruplicate.

Data preprocessing. Raw fluorescence signals were normalized to account for well-to-well varia-
tions in reaction volume, background noise, and spatial biases across the microfluidic chip. Specif-
ically, let Ei denote the raw EvaGreen fluorescence (reporting the amount of amplified DNA) at
cycle i, and Ri denote the raw ROX fluorescence (serving as a passive reference dye that reflects
reaction volume). BE and BR denote background signals for EvaGreen and ROX, respectively. The
first-stage normalized signal at cycle i was computed as:

S
(1)
i =

Ei/BE

Ri/BR
(7)

To correct for position-dependent variability, a second-stage normalization was applied. We set the
first-cycle signal to 0, and scaled values linearly such that the 95th percentile of S(1)

i at the end-point
across all reactions was mapped to 1. The resulting normalized signal S(2)

i therefore ranges between
0 and 1 and is comparable across reactions.

Activity score definition. In qPCR, amplification is typically quantified by the cycle threshold (Ct),
the cycle at which the fluorescence signal crosses a predefined threshold (0.1 in our case). Because
Ct is sensitive to target input amount and low-level contamination, we convert Ct values into a
normalized activity score using two reference measurements per target: (i) a no-target control (NTC)
for each primer pair to capture primer-specific contamination/background, and (ii) amplification of
the same target by a universal primer pair to account for target amount variability. For each target t
and primer pair p, let

Ctt,p be the Ct of p on t,

Ctp,0 be the Ct of p with no target, and
Ctt,u be the Ct of a universal primer on t.

If amplification is not detected within 40 cycles, we set Ct = 40. Because lower Ct indicates stronger
amplification, we define the activity score by linearly mapping Ct0,p 7→0 and Ctt,u 7→1:

Act(t, p) =
Ct0,p − Ctt,p
Ct0,p − Ctt,u

. (8)
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By construction, Act(t, p) = 0 matches the NTC baseline of the primer pair, and Act(t, p) = 1
matches the universal-primer amplification on the same target. We clip Act(t, p) to a lower bound
of 0 for downstream analyses. For robustness, all Ct values are aggregated across four technical
replicates using the average. 235 reactions (0.5%) were excluded because the Ct in the no-target
control was below 36 or if the standard deviation of Cts across replicates exceeded 0.6. Remaining
50,525 data points were used for subsequent analyses.

4.2 Model training

Data splitting. To prevent information leakage across splits, we partitioned the dataset at the level
of primer pairs rather than individual primer–target combinations. Because target sequences were
generated through mutagenesis, primers that appear in multiple splits would inevitably share highly
similar target sites. Thus, all 360 primer pairs were first divided into training, validation, and test sets
in a 70:14:16 ratio, and the corresponding primer–target reactions were assigned accordingly. The
test set shares no forward or reverse primers with the other sets, while only two reverse primers are
shared between the training and validation sets.

Sequence representations. Because forward and reverse primers anneal at variable distances,
the input must accommodate the variable inter-primer region. We compared three representations:
(i) Features-only, a vector of classical primer-design features (Table 3) [7]; (ii) Full-Seq, which
encodes the entire 1.4 kb target sequence together with the primer pair; and (iii) Core-Seq, which
encodes only the primer-binding site sequences, augmented with a small set of scalar features. The
Full-Seq and Core-Seq settings use the same tokenization: nucleotides are one-hot encoded over
{A,C,G, T,mask}, yielding a 5×n tensor per sequence, where the mask channel marks padding and
unbound positions. We form the final sequence input by concatenating the primer tensor and the target
tensor along the channel dimension to obtain a 10× n matrix. In Core-Seq, we additionally append
12 handcrafted features—including amplicon length and melting temperature (Table 3)—motivated
by the facts that (i) initiation at the binding sites is often rate-limiting, and (ii) elongation time is
largely determined by amplicon length rather than detailed internal sequence content. Empirically,
Core-Seq matched or exceeded Full-Seq predictive performance on both classification and regression
tasks while reducing training and inference time by more than an order of magnitude (Tables 4, 5);
we therefore use Core-Seq as the default representation in subsequent experiments.

Hurdle formulation. Activity scores are strongly bimodal, reflecting the all-or-nothing nature
of PCR. We therefore adopt a two-stage (hurdle) setup: (i) a classifier f (c)

θ predicts the probability
of amplification, and (ii) a regressor f (r)

θ predicts normalized efficiency for amplified pairs. The
classifier is trained on labels 1{Act(t, p) > 0}; the regressor is trained on pairs with Act(t, p) > 0
using a MSE loss.

Model families and tuning protocol. Because this is, to our knowledge, the first large AI-ready
PCR dataset, we benchmarked inductive biases rather than committing to a single architecture.
We evaluate three families: (a) Tabular baselines on handcrafted features (Table 3); logistic/linear
models [16], tree ensembles [17, 18], MLPs [19], SVMs [20], and k-NNs [16]) [21]; (b) Sequence
encoders on Full-Seq and Core-Seq inputs (CNN [22], LSTM [23], Transformer [24], and state-
space model Lyra [25]); and (c) Late-fusion hybrids that combine a sequence encoder with an
MLP on handcrafted features. All models use the same sequence tokenization and Core/Full-Seq
representations; hyperparameters are selected by exhaustive search on a held-out validation set with
early stopping, and we report test metrics at the best validation checkpoint. Full grids and settings are
provided in Appendix 8. We define PRIMERCAST as the best performing models.

4.3 In-silico validation of PRIMERCAST for primer design for blood-borne viruses

We applied PRIMERCAST to ten representative blood-borne viruses: CCHFV, CHIKV, EBOV, HCV,
LASV, mpox-Ia/Ib, mpox-IIb, WNV, YFV, and ZIKV. For each virus, 98–2000 full-length genome
sequences published since 2022 were downloaded from NCBI Virus (Table 6) [15]. When more than
2,000 variant sequences were available, a random subset of 2,000 was retained.

From each sequence, we extracted all possible 20-nt candidate primers using a 5-nt sliding window for
both forward and reverse directions. Candidate primers with GC content ≥ 60% or self-dimerization
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stability ∆G < −6 kcal/mol were excluded. Remaining primers were mapped to their target genomes
using Bowtie2 [26] to obtain approximate binding sites, and all forward–reverse pairs separated by
75–200 bp were enumerated as candidate primer pairs.

For each candidate primer pair, we first computed the variant coverage u and mean predicted efficiency
v as described in earlier. The top 100 primer pairs for each virus were selected according to the
geometric mean of u and v. These primers were further evaluated for specificity by mapping against
other blood-borne virus genomes and the human transcriptome, from which the off-target rates o and
h were computed. Finally, the optimal primer pairs were identified by maximizing the geometric
mean of u, v, o, and h.

4.4 Experimental validation of PRIMERCAST for SARS-CoV-2 primer generation

We conducted wetlab validation experiments to assess the sensitivity and specificity of PRIMERCAST
candidate primers against standard primers used by the CDCs (Centers for Disease Control) from
the US, China, Hong Kong, Japan, Korea, and Thailand [27, 28, 29, 30, 31, 32]. We conducted
a standard RT-qPCR (reverse transcriptase) experiment evaluating the amplification efficiency of
these primers to viral RNA targets (Supplementary Methods A.2) [33]. We measure for off-target
activity by including human transcript only reactions. From these amplification curves, we derived
quantitative comparisons of on-target and off-target sensitivities of manually designed and optimized
primer sets as well as those of PRIMERCAST.

5 Experiments

5.1 Validation of PCR prediction models

Datasets We evaluated our models on two datasets. (1) We used the held-out test set from our
synthetic dataset comprising 50,525 primer–target reactions spanning a broad space of primer features
and primer–target interaction modes (Sections 4.1 and 4.2). The test set contained 5,854 true pairs and
2,324 false pairs (PRIMERCAST). (2) For external validation, we constructed a benchmark dataset
from Origene PCR primers and targets, supplemented with synthetic variants. This dataset contained
33,860 true pairs and 38,168 false pairs (ORIGENE) [34](Supplementary Materials A.1).

Baselines We compared our models against two conventional baselines used in primer design. The
first baseline uses the number of mismatches between primer and target sequences as a predictor of
PCR outcome [35], where increasing mismatches leads to poorer outcomes. The second baseline
relies on the predicted binding free energy (∆G) of the primer–target duplex, a thermodynamic
criterion used by many primer design tools [7]. Both baselines were evaluated in classification and
regression settings by directly using mismatch counts or binding energies as continuous predictors.

Evaluation Metrics For classification tasks, we report AUROC and AUPRC. [36] For regres-
sion tasks, we report Spearman correlation coefficient (|ρ|) [37] and normalized mean square error
(NMSE) [16].

Results We found that the Lyra+MLP model had best performance both in classification and regres-
sion. These models make up PRIMERCAST. PRIMERCAST consistently outperformed conventional
baselines in both classifying amplifying reactions and predicting PCR efficiency (Table 1). On the
synthetic dataset (PRIMERCAST), our classifier achieved an AUROC of 0.930, compared with 0.807
for mismatch count and 0.855 for free energy-based predictions. AUPRC also showed a similar
trend (0.965 vs. 0.538–0.579). On the external dataset (ORIGENE), our classifier likewise surpassed
both baselines (AUROC 0.950 vs. 0.743–0.809; AUPRC 0.910 vs. 0.610–0.680), demonstrating its
generalizability. Regression could only be evaluated on PRIMERCAST since external datasets do
not provide quantitative activity scores. Our regressor achieved a markedly higher correlation (|ρ| =
0.842) and lower error (NMSE 0.396) than baselines (|ρ| = 0.533–0.565; NMSE 5.64–24.6).

5.2 Benchmarking PRIMERCAST against existing primers for blood-borne viruses

Datasets We evaluated PRIMERCAST on ten representative blood-borne viruses: CCHFV, CHIKV,
EBOV, HCV, LASV, mpox-Ia/Ib, mpox-IIb, WNV, YFV, and ZIKV. For each virus, we collected
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Table 1: Performance of baselines and PRIMERCAST on the PRIMERCAST and ORIGENE datasets

Classifier Regressor
PRIMERCAST ORIGENE PRIMERCAST

AUROC AUPRC AUROC AUPRC |ρ| NMSE
Mismatch count 0.807 0.579 0.743 0.610 0.533 5.64
Free energy 0.855 0.538 0.809 0.680 0.565 24.6
PRIMERCAST 0.930 0.965 0.950 0.910 0.842 0.396

full-length sequences published since 2022 from NCBI Virus at a maximum of 2000 variants (Table
6) [15].

Baselines We benchmark PRIMERCAST against primers produced by convention: (i) derive con-
sensus sequences from circulating genomes; (ii) generate and score candidates with Primer3; (iii)
screen off-targets with Primer-BLAST; and (iv) select a small panel via laboratory screening. The
comparison set comprises primers currently in use that were designed with this conventional workflow.

Evaluation Metrics Performance was assessed using the four metrics defined in Section 3: variant
coverage (u), mean predicted amplification efficiency across variants (v), cross-species reactivity
(o), and human-gene reactivity (h). Coverage was the fraction of variants classified positive. Mean
efficiency was the average regressor score across reactive variants. Cross-species and human-gene
reactivity were the fractions of non-target pathogen sequences and human transcripts, respectively,
predicted to be reactive.

Results In nine out of ten cases, the AI-designed primers achieved equal or superior performance
across all evaluation metrics, including variant coverage, mean amplification efficiency, and off-target
reactivity against non-target viruses and human transcripts (Table 2). For mpox-Ia/Ib and mpox-IIb,
the top-ranked AI designs exactly matched the primers selected manually, indicating concordance
between computational and experimental approaches. For highly diverse viruses such as LASV,
manual designs performed poorly, likely because consensus sequences, while representing an average
of variants, differ substantially from any actual sequence.

Table 2: Performance of AI-designed (PRIMERCAST) and manually designed primers

Coverage (%) Mean efficiency Cross reactivity (%) Host reactivity (%)
PRIMERCAST Manual PRIMERCAST Manual PRIMERCAST Manual PRIMERCAST Manual

CCHFV 100 100 1.07 0.63 0.00 0.00 0.00 0.00
CHIK 98.6 96.0 1.09 1.03 0.00 0.14 0.00 0.06
EBOV 97.0 97.0 1.11 1.10 0.00 0.00 0.00 0.01
HCV 98.9 98.4 1.00 1.04 0.00 0.00 0.00 0.05
LASV 91.9 90.0 0.98 0.94 0.00 0.02 0.00 0.00
mpox-Ia/Ib 94.2 94.2 1.04 1.04 0.00 0.00 0.01 0.01
mpox-IIb 97.2 97.2 1.07 1.07 0.02 0.02 0.06 0.06
WNV 99.0 98.6 1.08 1.05 0.00 0.02 0.00 0.01
YFV 96.8 93.3 1.09 0.42 0.00 4.57 0.00 0.45
ZIKA 93.9 92.4 1.09 1.04 0.00 0.00 0.00 0.03

5.3 Experimental validation of PRIMERCAST performance against current SARS-CoV-2
primer sets

qPCR setup To assess sensitivity and specificity, PRIMERCAST primer and published primers by
various CDCs were subject to RT-qPCR experiment in the presence of SARS-CoV-2 and human lung
total RNAs, respectively.

Evaluation Metrics We evaluated the activity of a primer via cycle threshold (Ct), the cycle at
which the fluorescence signal crosses a predefined threshold. It is inversely proportional to the
sensitivity. If amplification is not detected, we set Ct as 41.
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Results We observed that PRIMERCAST primers (designated P1-P7) were broadly comparable or
exceeded the performance of existing CDC primers. In terms of off-target detection against human
transcripts, all but one primer had Ct higher than 40, indicating no detectable off-target amplification.
In terms of on-target detection against SARS-CoV-2 RNA, three primer sets had Ct values matching
or lower than that of the most sensitive currently used CDC primer set, validating a strong agreement
between in-silico predictions and experimental performance.

Figure 1: Wetlab validation of PRIMERCAST primer sets and comparison with the published primers.
The x-axis and y-axis represent the on-target and off-target activities, respectively. Scatter points
indicates the average over triplicates, and the error bars represent standard deviation.

6 Conclusion

PCR is a cornerstone technology for detecting and harnessing nucleic acids, with central roles
in infectious disease testing. In outbreak response, the speed of setting up PCR tests and their
performances directly translate into saved lives and reduced economic loss. However, the lack of
rationally designed, large-scale PCR datasets has hindered the development of effective machine
learning approaches. Here, we generated a high-quality dataset of 50,525 primer–target reactions
through large-scale microfluidic PCR. Leveraging this dataset, we trained both classification and
regression models to predict PCR outcomes, which consistently outperformed conventional heuristic
methods. Building on these models, we developed PRIMERCAST, an AI-based model for primer
design. In contrast to traditional approaches that rely on indirect proxies, PRIMERCAST directly
and quantitatively evaluates PCR activity, exhaustively screens candidate primers across variants
and potential off-targets, and identifies globally optimal designs. Applied to blood-borne viruses,
PRIMERCAST produced primers with sensitivity and specificity equal to or exceeding those of primers
that are experimentally validated and currently used in clinical diagnostics. In addition, we validate
the performance predicted in-silico via wetlab experiments, showing strong prediction generalization
to real-life performance. PRIMERCAST reduces the time scale of primer design from weeks to hours.
The dataset reported here will provide a broadly useful resource for developing machine learning
applications in diverse nucleic acid technologies, such as quantification, multiplexed testing, and
viral genomics.
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A Technical Appendices and Supplementary Material

Table 3: Feature definitions and methods for numerical features.

Feature Description / Calculation method
Forward primer length Length of the forward primer.
Forward primer melting tem-
perature

Calculated melting temperature of the forward primer.

Forward primer GC content Fraction of GC content in forward primer.
Forward primer indels Number of gaps in forward primer/target alignment.
Forward primer mismatches Number of mismatches in the forward primer/target alignment.
Reverse primer length Length of the reverse primer.
Reverse primer melting tem-
perature

Calculated melting temperature of the reverse primer.

Reverse primer GC content Fraction of GC content in reverse primer.
Reverse primer indels Number of gaps in reverse primer/target alignment.
Reverse primer mismatches Number of mismatches in the reverse primer/target alignment.
Product length Length of predicted amplicon.
Product melting temperature Calculated melting temperature of the amplicon.

Table 4: Classification Model Test Set Performance Statistics

Architecture Input Accuracy Precision Recall F1 Score AUC
L2 Regularization 0.797 0.787 0.797 0.783 0.854
L1 Regularization 0.806 0.798 0.806 0.797 0.860

Elastic Net (L1+L2) 0.806 0.798 0.806 0.797 0.860
RF 0.788 0.782 0.788 0.784 0.845
GB 0.809 0.801 0.809 0.801 0.865

MLP 0.819 0.816 0.819 0.817 0.878
SVM 0.806 0.797 0.806 0.795 0.860
KNN

Features

0.794 0.793 0.794 0.794 0.843
CNN 0.626 0.803 0.633 0.708 0.671

Transformer 0.717 0.717 0.910 0.834 0.600
LSTM 0.727 0.725 0.917 0.854 0.612
Lyra

Full Seq.
(1.4 kb)

0.841 0.898 0.878 0.887 0.904
CNN 0.793 0.882 0.821 0.850 0.847

Transformer 0.830 0.853 0.923 0.886 0.890
LSTM 0.853 0.910 0.882 0.896 0.921
Lyra

Core Seq.
(56 bp)

0.849 0.877 0.918 0.897 0.915

Lyra + MLP Core Seq.
& Features 0.860 0.900 0.905 0.903 0.930
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Table 5: Regression Model Test Set Performance Statistics

Architecture Input Performance Time (s)
R2 MAE RMSE Training Inference

Linear

Features

0.327 0.231 0.285
Ridge 0.328 0.232 0.285

RF 0.349 0.222 0.280
SVR 0.357 0.211 0.278
MLP 0.375 0.214 0.274
GBR 0.393 0.217 0.270
CNN

Full seq.
(1.4 kb)

0.500 0.180 0.245 4.246 0.424
Transformer 0.050 0.289 0.338 38.296 3.227

LSTM 0.022 0.290 0.343 6.291 0.624
Lyra 0.633 0.157 0.210 22.875 1.823
CNN

Core seq.
(56 bp)

0.499 0.180 0.246 1.412 0.127
Transformer 0.360 0.218 0.278 2.461 0.225

LSTM 0.594 0.157 0.221 1.023 0.128
Lyra 0.618 0.161 0.214 3.244 0.229

Lyra & MLP 0.679 0.141 0.197 3.449 0.274

Table 6: Number of variants used for each virus in the evaluation.

Virus Number of variants (n)
CCHFV 119
CHIKV 1514
EBOVZ 135
HCV 868
LASV 98
mpox-Ia/Ib 551
mpox-IIb 2000
WNV 800
YFV 811
ZIKV 196

A.1 Origene Benchmark Dataset

To assess external generalizability of our models, we constructed a benchmark dataset from Origene
qPCR primers for human genes. Origene is a commercial provider whose primers are extensively
experimentally validated, with most products cited more than three times in literature. Each primer
pair targets a human gene.

In addition, we incorporated findings from Huang et al. (2024) [8], who systematically tested 111
primer–target combinations under varying numbers, types, and positions of mismatches across two
master mixes. Their study demonstrated that three or more mismatches at the 3′ end of the primer
drastically reduce PCR efficiency, while up to eight mismatches at the 5′ end remain largely tolerable
(maintaining >80% of the efficiency of a perfect match). We used these experimentally established
rules to generate artificial positive and negative examples.

The resulting benchmark dataset comprised 33,860 true pairs and 38,168 false pairs:

• True set (n = 33,860):
1. Origene primer pairs with their intended targets (n = 16,930).
2. The same targets with up to eight random mutations introduced at the 5′ end of the

primer-binding sites (n = 16,930).

• False set (n = 38,168):
1. Origene primer pairs paired with off-target human genes, excluding homologous

mappings (n = 6,893).
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2. Origene primer pairs paired with viral genomic sequences (n = 14,345).
3. Intended targets with 3–5 random mutations introduced at the 3′ end of the primer-

binding sites (n = 16,930).

This benchmark therefore combines experimentally validated commercial primers with biologically
motivated synthetic perturbations, providing a rigorous and diverse test bed for evaluating model
generalizability beyond our synthetic PCR dataset.

A.2 Wetlab Validation Protocol

To quantitatively assess the performance of PRIMERCAST primers against CDC-standard primers,
we performed RT-qPCR experiments.

One-step RT-qPCR was performed using the Power SYBRTM Green master mix (Applied Biosystems,
Waltham, MA, USA). SARS-CoV-2 RNA (Twist Biosciences, South San Francisco, CA, USA) were
added at a concentration of 103 copies into each on-target reaction. Human lung total transcripts
(ThermoFisher, Waltham, MA, USA) were added at a concentration of 106 copies to each off-target
reaction.

One-step RT-qPCR was set up as follows according to manufacturer protocol [38].

• 10.0 µL 2× Power SYBRTM Green RT-PCR Mix
• 0.16 µL 125× RT Enzyme Mix
• 0.4 µL Forward primer (10 uM)
• 0.4 µL Reverse primer (10 uM)
• RNA template
• Nuclease-free water to 20.0 µL

Reactions were set up on ice, mixed gently, and briefly centrifuged before loading into a 96-well
optical qPCR plate. Each sample was run in technical triplicate.

Thermal cycling was performed on a QuantStudio 6 instrument (Applied Biosystems, Waltham, MA,
USA) with the following parameters. An annealing temperature of 55 °C was chosen to maximize
compatibility across all primer sets.

1. Reverse transcription: 48 °C for 30 min
2. Initial denaturation: 95 °C for 10 min
3. 40 cycles of:

• Denaturation: 95 °C for 15 s
• Annealing/extension: 55 °C for 1 min (fluorescence acquisition)

4. Melt curve analysis: 60–95 °C, increments of 0.3 °C with continuous fluorescence monitor-
ing

Primer sequences are as follows, derived from sources [27, 28, 29, 30, 31, 32].
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Table 7: Existing standard SARS-CoV-2 primers and PRIMERCAST primers

Source Forward (5’ to 3’) Reverse (5’ to 3’)
US CDC N1 GACCCCAAAATCAGCGAAAT TCTGGTTACTGCCAGTTGAATCTG
US CDC N2 TTACAAACATTGGCCGCAAA GCGCGACATTCCGAAGAA

University of Hong Kong TAATCAGACAAGGAACTGATTA CGAAGGTGTGACTTCCATG
China CDC GGGGAACTTCTCCTGCTAGAAT CAGACATTTTGCTCTCAAGCTG

Japan National Institute of Infectious Diseases AAATTTTGGGGACCAGGAAC TGGCAGCTGTGTAGGTCAAC
Thailand NIH CGTTTGGTGGACCCTCAGAT CCCCACTGCGTTCTCCATT

Korea Institute for Basic Science CAATGCTGCAATCGTGCTAC GTTGCGACTACGTGATGAGG
PrimerCast_1 GCATTACGTTTGGTGGACCC TGAACCAAGACGCAGTATTA
PrimerCast_2 AATGCACCCCGCATTACGTT TGGACTGCTATTGGTGTTAA
PrimerCast_3 TCCTCATCACGTAGTCGCAA TTACCAGACATTTTGCTCTC
PrimerCast_4 CGCAACAGTTCAAGAAATTC AAGCTGGTTCAATCTGTCAA
PrimerCast_5 CCAAGGTTTACCCAATAATA GTTAATTGGAACGCCTTGTC
PrimerCast_6 AGACCTTAAATTCCCTCGAG AGTTCCTAGGTAGTAGAAAT
PrimerCast_7 AGACGGCATCATATGGGTTG TTGGCAATGTTGTTCCTTGA
PrimerCast_8 CAAATTTCAAAGATCAAGTC TAGGCTCTGTTGGTGGGAAT

RNaseP (control) AGATTTGGACCTGCGAGCG GAGCGGCTGTCTCCACAAGT

A.3 Compute Resources

Models were trained using a single NVIDIA Tesla T4 card. The model was implemented and
computed on a 4 core, Xeon E5-2673 virtual machine with 26 GB of RAM and a NVIDIA Tesla T4
card.

Training times and inference times for the regression model are presented in Table 5. Similar training
and inference times were observed in the classification models, which share much of the architecture
with the regression models. The total compute time needed to run the training scripts averaged around
4-6 hours.

A.4 Model Training and Optimal Model Parameters

For numerical features, input features were normalized with the scikit-learn StandardScaler func-
tion [21], and training was performed until convergence or 1000 epochs, whichever came first.

All neural models were implemented in Pytorch, and trained for 50 epochs using the AdamW
optimizer [39] with a learning rate of 10−3 with binary cross entropy (BCE) loss with a batch size of
64 [19], [40].

For both scalar feature and sequence encoders classifiers, model optimization was performed by
hyperparameter search and performance was validated with 5-fold cross-validation. Unless otherwise
noted, all reported results correspond to the best-performing architecture as selected based on
validation set performance.

Optimal parameters for the LSTM classifier were determined to be a unidirectional 1-layer, 25 hidden
unit model at learning rate of 10−3 and a weight decay of 0.01.

For both numerical and sequence regressors, hyperparameters were optimized via grid search.
Training was performed using the AdamW optimizer with mean squared error (MSE) loss [39], [19].
For neural models, we performed limited hyperparameter sweeps over learning rate ({10−4, 10−3})
and weight decay ({0, 0.01}). Batch size was fixed at 64 across all experiments. Unless otherwise
noted, reported results correspond to the best-performing configuration selected on the validation set.

Optimal parameters for the Lyra+MLP hybrid regressor were determined to be a 128-dimension MLP,
64-deminsional Lyra, and 32 dimensional combining layer at a learning rate of 10−3 and weight
decay of 0.01.
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Table 8: Model hyperparameters used in training.

Model Type Model Hyperparameter Values
L1/L2/L1+L2

Logistic Regression
Regularization

Strength logarithmic in [10−5, 105]

L1 + L2
Logistic Regression L1/L2 Mix Ratio linear in [0, 1]

Random Forest,
Gradient Boosting Estimators logarithmic in [101, 103]

Gradient Boosting Learning Rate logarithmic in [10−4, 10−1]
Hidden Layer Size [(50), (100), (50, 100)]Multi-Layer

Perceptron Regularization
Strength logarithmic in [10−5, 1]

Support Vector
Machine

Regularization
Strength logarithmic in [10−3, 103]

Nearest Neighbors linear in [1, 20]

Scalar Feature

k-Nearest Neighbors Weighting Uniform, Distance
Heads linear in [2, 32]
Layers linear in [2, 16]Transformer

Internal Dimensions linear in [2, 16]
Hidden Layer Size linear in [1, 50]

Layers [1, 5, 10]LSTM
Bidirectionality True, False

Sequence Encoder

Lyra Model Dimension logarithmic in [8, 128]
Lyra Model Dimension logarithmic in [8, 128]Hybrid Lyra + MLP MLP Model Dimension logarithmic in [8, 128]

A.5 Societal Impacts

Due to the highly specialized nature of the dataset and of the models, the use case of these models
would be utilized in designing more specific and sensitive primers for use in diagnostic applications.
We envision using this model would greatly speed the detection of emerging pathogens by providing
a reliable and accurate test for such a pathogen. This would be useful for designing better primers for
other routine molecular biology tasks, such as cloning, sequencing, etc. In this capacity, the model
would be providing a service to speed up both diagnostic and experimental work, helping further
scientific progress. However, it is possible that certain parties would not have access to the resources
needed to run this model. To address this inequity, we plan to both release the source code and dataset
for this model as well as hosting a web interface for public use.

A.6 Model Limitations

The process of PCR has many factors that influence the efficiency beyond the base pairing interaction
between primer and target. Buffer composition, polymerase activity, etc. can all affect the efficacy of
the reactions. While the search space for reaction conditions is too large to be efficiently explored
via wetlab experiments, the usage of multiple different master mix kits showed good correlation in
primer performance despite significant differences in composition. This indicates sequence matching
between primer and target plays a much more significant role in the sensitivity of the reaction
compared to master mix differences.
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