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Abstract
Scientists are often interested in inferring the un-
derlying stochastic dynamics of systems from
population-level snapshot data, where individ-
ual trajectories are unavailable. For example,
in biological studies of immune cell activation,
mRNA concentrations are measured at a sin-
gle time point per cell because the measure-
ment process kills the cells. Existing methods
based on Schrödinger bridge techniques rely on
Kullback–Leibler divergence and assume known,
constant volatility, limiting their applicability in
realistic settings where volatility may be un-
known or varying. In this work, we propose a
new framework that directly matches the joint
distribution of the state (e.g., mRNA levels) and
the time of observation using maximum mean
discrepancy. This approach reduces to a least-
squares formulation in distributional space and
motivates an R2-type goodness-of-fit measure
for model inspection and comparison. We show
in our experiments that the proposed method
outperforms existing Schrödinger bridge–based
baselines in forecasting and is robust to unknown
volatility and missing observations.

1. Introduction
Scientists are often interested in learning stochastic dynam-
ics from population-level snapshots rather than complete
individual trajectories. That is, instead of tracking each in-
dividual’s dynamics over time, they infer the underlying
dynamics by analyzing aggregated observations of the en-
tire population at different points in time. For example,
biologists often consider a population of inactive immune
cells and are interested in understanding how gene expres-

*Equal contribution 1Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology. Cor-
respondence to: Renato Berlinghieri <renb@mit.edu>, Yunyi
Shen <yshen99@mit.edu>.

Accepted at 7th Symposium on Advances in Approximate
Bayesian Inference (AABI 2025).

sion — as measured by mRNA levels — changes when
these cells transform into active cells capable of killing
cancer. This is an important problem, as gaining deeper
insights in this process could potentially aid in develop-
ing methods to prevent or treat cancer. The issue with this
cell data is that measuring mRNA concentration typically
requires killing the cells. As a result, scientists can only
obtain mRNA data for each cell at a single time snapshot,
preventing the tracking of any single cell over multiple time
points.

Recently, Schrödinger bridge (SB) methods (Pavon, Trig-
ila, and Tabak, 2021; De Bortoli, Thornton, Heng,
and Doucet, 2021; Vargas, Thodoroff, Lamacraft, and
Lawrence, 2021; Koshizuka and Sato, 2022; Wang, Jen-
nings, and Gong, 2023) and their multi-marginal exten-
sions (Shen et al., 2025; Zhang, 2024; Guan et al., 2024;
Chen et al., 2024; Lavenant et al., 2021) have shown
promise for reconstructing distributions of trajectories from
these limited snapshot data. However, because SB-based
approaches rely on Kullback–Leibler divergence to mea-
sure agreement between data and a nominal model, they
cannot handle unknown or changing volatility. In many
practical scenarios, volatility is difficult to determine in ad-
vance, which limits the applicability of these methods.

In this work, we provide a new method to learn stochastic
dynamics that relaxes the strong assumption of a known,
constant volatility. We observe that under typical “popu-
lation dynamics” settings (Lavenant et al., 2021) — where
each cell has a latent trajectory evaluated at only a single
time point — the data can be treated as if they were sampled
i.i.d. from the joint distribution of the state (mRNA level)
and the time of evaluation. Consequently, we propose a
method to match this joint distribution directly, which does
not rely on observing all states; notably, our approach also
remains robust even when some states are missing. Fur-
thermore, we show that when maximum mean discrepancy
(MMD, Gretton et al., 2012) with a specific choice of ker-
nel is used as the distance metric for our matching problem,
the estimation reduces to a least-squares formulation in dis-
tributional space. This perspective motivates an R2-type
goodness-of-fit measure that facilitates model inspection
and comparison. Our experiments show that the proposed
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method outperforms existing SB-based baselines, and can
handle both missing observations and unknown volatility.

2. Setup and Background
Data Setup. We consider single-cell mRNA measurements
collected at I time points t1 < t2 < · · · < tI , with
t1 = 0 and possibly uneven spacing. At each ti, we ob-
serve Nti cells, each providing a single mRNA concentra-
tion measurement in Rd, denoted Y ni

ti . Since a cell dies
after the mRNA measurement is taken, each cell appears
only once in the dataset. The total number of observations
is N =

∑I
i=1 Nti , and we write Y all

ti for all measurements
at ti.

Goal. If unmeasured, a cell’s mRNA concentration would
evolve continuously. Our goal is to infer a probabilistic
model for these unobserved trajectories. Let X(i,ni)

t de-
note the latent trajectory of the nith cell observed at ti, with
its observed state being Y ni

ti = X
(i,ni)
t=ti . We assume these

trajectories are independent samples from an underlying la-
tent distribution, which in turn implies that the observations
are independent as well. We seek the best model within a
given family to describe these trajectories.

Consequence of having only one observation per cell.
Since each cell is only observed at a single time point,
our dataset consists of independent but not identically dis-
tributed observations. This is because different cells are
measured at different times, leading to variations in the dis-
tributions of their observed states. However, if we consider
time itself as a random variable sampled from a distribution
over all possible times, h(t), we arrive at a key insight: the
pairs (Y ni

ti , ti) can be viewed as independent and identi-
cally distributed (iid) samples from a joint distribution.

We remark that this formulation aligns with the way bi-
ological experiments are typically conducted. Instead of
sequencing each cell immediately after collection, exper-
imenters often tag each cell with a unique identifier that
encodes the time it was sampled. Then, all cells are se-
quenced together in a single batch, with the time informa-
tion retrieved from the tags. As a result, the dataset effec-
tively consists of iid samples from the joint distribution of
(Y ni

ti , ti).

Model. We model the latent trajectory of the (i, ni) particle
with an SDE driven by a d-dimensional Brownian motion
W

(i,ni)
t , independent across particles:

dX(i,ni)
t = b0(X

(i,ni)
t , t)dt+ g0(X

(i,ni)
t , t)dWt (1)

with Xni
t=0 ∼ π0. We assume that the drift b0(·, ·) :

Rd × [0, tI ] → Rd and initial marginal distribution π0

are unknown. Unlike previous Schrödinger bridge works
assuming known constant volatility (e.g. De Bortoli et al.,

2021; Vargas et al., 2021; Koshizuka & Sato, 2022; Wang
et al., 2023; Shen et al., 2025; Zhang, 2024; Guan et al.,
2024; Chen et al., 2024), we also assume that the volatility
g0 is unknown and can vary with X

(i,ni)
t and t. Allowing

for unknown volatility is important in many scientific appli-
cations because it represents the intrinsic level of noise that
researchers often cannot predict or measure directly in ad-
vance. For example, in single-cell RNA sequencing, gene
expression levels can vary significantly due to a combina-
tion of technical factors (e.g., amplification biases, dropout
events) and biological factors (e.g., stochastic gene tran-
scription). And in such scenarios, precisely quantifying the
overall noise — i.e., the volatility — is very challenging.

Finally, we assume standard SDE regularity conditions.
The first assumption below ensures a strong solution to the
SDE exists; see Pavliotis (2016, Chapter 3, Theorem 3.1).
The second ensures that the process does not exhibit un-
bounded variability.

Assumption 2.1 The drifts and volatility are L and L′-
Lipschitz respectively; i.e., for all t ∈ [0, tI ], ∥b0(x, t) −
b0(y, t)∥ ≤ L∥x−y∥ and |g0(x, t)−g0(y, t)| ≤ L′∥x−y∥,
where ∥ · ∥ denotes the usual L2 norm of a vector. And we
have at most linear growth; i.e., there exist K,K ′ < ∞
and constant c such that ∥b0(y, t)∥ < K∥y∥ + c and
∥g0(y, t)∥ < K ′∥y∥+ c′.

Assumption 2.2 At each time step ti, the distribution of
the Nti particles has bounded second moments. More-
over, the initial distribution π0 also has bounded second
moments.

3. Our method
Our method allows us to learn the optimal model within
a given family to represent the distribution of latent cell
trajectories, even when the volatility is unknown and may
vary over time. In what follows, we describe our optimiza-
tion problem and its solution, outline criteria for assessing
model fit, and finally discuss how the method can be ex-
tended to accommodate missing data.

State distribution at snapshots. At each snapshot time ti
the ground truth dynamic eq. (1) determines a distribution
of states (e.g., mRNA level) specific to that time. Unfortu-
nately, we do not have access to this ground truth distribu-
tion of states. However, we observe Nti independent sam-
ples Y 1

ti , . . . ,Y
Nti
ti from that distribution at time ti. With

these samples, we can approximate the true state distribu-
tion with the empirical measure,

f̂ti(·) =
1

Nti

Nti∑
j=1

δ
Y

(j)
ti

(·), (2)
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where δ
Y

(j)
ti

denotes the Dirac delta measure centered at

Y
(j)
ti . This empirical measure is an approximation of the

true marginal distribution of cell states at time ti.

Treating snapshot time as random. We consider obser-
vations collected at I distinct time points {tI , . . . , tI}. In
our modeling framework, we posit that there exists an un-
derlying time distribution, ĥ(·), which reflects how snap-
shot times are sampled. We assume that this distribution is
the empirical distribution over time — constructed directly
from the data — that may assign different weights to differ-
ent time points, depending on the number of observations
collected. Letting Nti denote the number of cell measure-
ments at time ti, the empirical time distribution is given by

ĥ(·) = 1∑I
i=1 Nti

I∑
i=1

Nti δti(·) =
I∑

i=1

ĥti δti(·), (3)

with weights

ĥti =
Nti∑I
i=1 Nti

.

Joint distribution of state and time. Instead of con-
sidering distributions of Yti separately at each snapshot,
we consider the joint distribution of state-time observation
(Yti , ti). Under a candidate SDE model parameterized by
θ, let fθ,t(·) denote the predicted marginal distribution of
cell states at time t. By pairing this with the empirical time
distribution ĥ, we obtain the predicted joint distribution un-
der the candidate model is

fθ = ĥ · fθ,t. (4)

This construction implies that the time-augmented observa-
tions (Y

(j)
ti , ti) are modeled as independent samples from

fθ. In contrast, the empirical joint distribution, which re-
flects the observed data, is formed by combining the empir-
ical time measure with the state distributions at each time:

f̂ = ĥ · f̂t. (5)

Our Approach: Directly Matching the State–Time Joint
Distributions. Our primary objective is to estimate the pa-
rameters θ of the candidate SDE model by ensuring that the
model-implied joint distribution, fθ, aligns with the empir-
ical joint distribution, f̂ , derived from the data. In other
words, we wish to have the distribution predicted by our
model accurately approximate the true (but unknown) joint
distribution of state and time. To quantify the discrepancy
between fθ and f̂ , we adopt the maximum mean discrep-
ancy (MMD) (Gretton et al., 2012). The MMD measures
the L2 distance between the kernel mean embeddings of
the two distributions in a reproducing kernel Hilbert space
(RKHS).

A key insight is that matching the joint distribution in
state–time space can be interpreted as a form of least
squares regression in the kernel embedding space with re-
spect to time. This connection is formalized in the fol-
lowing proposition, which decomposes the MMD between
joint distributions into a weighted average of the MMDs
computed for their conditional distributions:

Proposition 3.1 Let f(x, t) = f(x | t)h(t) and
g(x, t) = g(x | t)h(t) be joint distributions on x ∈ X
and t ∈ T , where T is a discrete set and h(t) is a
probability mass function. Suppose we define the kernel
K
(
(x, t), (x′, t′)

)
= Kx(x,x

′) δ(t − t′), which factor-
izes as a positive definite kernel Kx on the state space and
a delta kernel on the time space. Denote by MMDK the
MMD computed with kernel K. Then, the squared MMD
between f and g can be decomposed as

MMD2
K

(
f(x, t), g(x, t)

)
=
∑
t∈T

h2(t) MMD2
Kx

(
f(· | t), g(· | t)

)
.

This proposition shows that the overall MMD between two
joint distributions can be understood as a time-weighted av-
erage of the MMDs between the corresponding conditional
state distributions. We provide a complete proof of propo-
sition 3.1 in appendix A.

Choosing a delta function as the time kernel is essential for
this result. With this choice, the joint MMD reduces to an
average over discrete time steps. Specifically, the MMD
squared between fθ and f̂ can be expressed as

MMD2
(
fθ, f̂

)
=

I∑
i=1

(
Nti∑I
i=1 Nti

)2

MMD2
(
fθ,ti , f̂ti

)
(6)

Our method in practice. In practice, at each time step we
approximate the MMD squared between fθ and f̂ using
its U-statistic estimator (Lemma 6, (Gretton et al., 2012)).
To do so, we simulate M trajectories from the candidate
model and record the state snapshots at time ti, denoted by
Zm

ti for m = 1, . . . ,M . The U-statistic estimator is then
given by

MMD2
U,U

(
fθ,ti , f̂ti

)
=

1

Nti(Nti − 1)

∑
ni ̸=n′

i

K(Y ni
ti ,Y

n′
i

ti )

− 2

NtiM

∑
ni,m

K(Y ni
ti ,Zm

ti )

+
1

M(M − 1)

∑
m̸=m′

K(Zm
ti ,Z

m′

ti ).

This estimator is both unbiased and consistent (Hall, 2004).
Finally, we estimate our model parameters by minimizing
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the overall loss function:

θ̂ = argmin
θ

I∑
i=1

(
Nti∑I
i=1 Nti

)2

MMD2
U,U

(
fθ,ti , f̂ti

)
.

(7)

In our implementation, we use the radial basis function
(RBF) kernel for the state space, where we determined the
length scale by the median heuristic (Garreau et al., 2017)
applied to pairwise distances in the observed data. Addi-
tionally, we normalize time to the interval [0, 1]. For op-
timization, we compute the gradients with respect to the
parameters using the stochastic adjoint method (Li et al.,
2020). We use the Adam optimizer to perform the parame-
ter updates.

Picking fθ,ti in practice. In practice, we choose the can-
didate marginal distributions fθ,ti based on domain knowl-
edge about the underlying process. In particular, we select
a candidate SDE model that captures the key dynamics of
the system under study. This SDE can either follow a para-
metric form, in which drift and volatility are governed by
functions with finitely many parameters (as in the Lotka–
Volterra experiment; see section 4.1), or a more flexible de-
sign that incorporates neural network architectures for the
drift and/or volatility terms. For example, in the repressila-
tor experiment (section 4.2), we compare a purely paramet-
ric model to a semiparametric approach in which we used a
multilayer perceptron to approximate part of the drift in the
system (see eq. (16) for more details). This neural network
component allows the model to capture complex, nonlin-
ear effects that would be difficult to represent in a strictly
parametric setting.

Handling missing dimensions. In many practical appli-
cations — such as our mRNA sequencing example — it
is common to encounter scenarios where only a subset of
the variables is observed. For instance, while mRNA con-
centrations are routinely measured, corresponding protein
levels (which are also important for modeling the underly-
ing dynamical system) are often unavailable. Our frame-
work is well suited to such settings because it relies on
matching the joint distribution of time and the observed di-
mensions, rather than requiring all dimensions to be mea-
sured. More precisely, since our loss (eq. (7)) is defined
over the observed state variables (together with time), the
model is trained to match the marginal distribution of the
observed variables along with time, without making any
additional assumptions or imputations for the missing di-
mensions. We discuss an experiment in this missing-data
scenarios in section 4 (fig. 7).

3.1. Evaluating model fit with an R2-type metric

In this subsection, we define a new metric that can be used
to assess the model fit of our method.

Least squares for distributional data. The loss function
in eq. (7) defines a least squares scheme in the RKHS as-
sociated with our kernel mean embeddings. In the spe-
cial case where every model predicts a Dirac delta mea-
sure (i.e., a point mass) and we choose the kernel to be
linear, this least squares criterion reduces to the standard
Euclidean least squares. This correspondence motivates the
introduction of an R2 type metric in our setting to quantify
the goodness-of-fit of a fitted model.

The “center” of a collection of distributions. In standard
regression, we define the coefficient of determination, R2,
as one minus the ratio of the residual sum of squares (er-
ror) to the total sum of squares (total variability). We mea-
sure the total variability with respect to the sample mean,
which serves as the “center” of the data because it mini-
mizes the sum of squared deviations. When we work with
distributions, the barycenter of the collection of distribu-
tions provides an analogous notion of center. In the context
of kernel mean embeddings and MMD, Cohen et al. (2020)
showed that the barycenter of a set of distributions corre-
sponds to their mixture. More precisely, let {f̂t1 , . . . , f̂tI}
denote the empirical distributions observed at discrete time
points t1, . . . , tI . If we weight these distributions by the
relative frequency of observations, where the weight at time

ti is given by wti =
(

Nti∑I
i=1 Nti

)2
, then the barycenter fbary

is defined as

fbary = argmin
f

I∑
i=1

wti MMD2(f, f̂ti)

=
1∑I

i=1 Nti

I∑
i=1

Nti∑
nti

=1

δ
Y

nti
ti

(·).

(8)

In this expression, the second equality shows that the
barycenter is exactly the mixture (or the time-average) of
the empirical distributions.

The coefficient of determination for distributional data.
Following the analogy with classical regression, we can
then define an R2 metric in the RKHS as follows.

Definition 3.1 (RKHS-based R2 Metric) Let f̂ti , fθ,ti ,
fbary, and wti defined as above. The goodness-of-fit met-
ric R2 in the RKHS is then defined by

R2 = 1−

∑I
i=1 wti MMD2

(
fθ,ti , f̂ti

)
∑I

i=1 wti MMD2
(
fbary, f̂ti

) . (9)

In definition 3.1, the numerator represents the weighted ag-
gregate discrepancy (in terms of MMD squared) between
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Figure 1. Experimental results for the Lotka-Volterra system. Our method performs better than the two baselines at the forecasting task.
Note that the forecast points (red) overlap with the training points at time 0 (blue).

the model-predicted marginal distributions fθ,ti and the
empirical marginals f̂ti across time. And the denomina-
tor quantifies the total variability of the empirical distribu-
tions with respect to the barycenter fbary. Thus, the met-
ric R2 measures the proportion of the total variability that
is explained by the model, similar to the traditional R2 in
regression. Besides being seen as classic R2, we provide
an alternative view of this metric in analogy to mutual in-
formation in appendix B. Finally, observe that since the
MMD2 is non-negative, the ratio in eq. (9) is bounded be-
low by 0. Consequently, R2 is upper bounded by 1. When
the barycenter is within the model family, R2 is also lower
bound by 0 for a fitted model within the family that mini-
mizes MMD. However, similar to regression models with-
out an intercept, the R2 value may be less than 0, indicating
the model did not provide better fit than the barycenter.

4. Experiments
In this section, we first discuss how we evaluate if a method
has been successful in our experiments. We next introduce
the two baselines we consider, and then present the two
simulated experiments, one for a Lotka-Volterra predator-
prey system, and one for a repressilator system.

Metric of success. We consider two tasks in evaluating
each method for fitting a model: (1) one-step-ahead fore-
casting performance and (2) underlying vector field recon-
struction. For the forecasting task, since each model starts
from the initial time point and propagates particles forward
in time, we retain a validation time point to evaluate fore-
cast accuracy. In particular, we assess the forecast accu-
racy by (i) computing the MMD between observation at
the validation time point and forecast obtained by simulat-
ing particles forward from the initial time point using the
learnt drift and volatility, and (ii) assessing visually how
close the forecasted particles match the ground truth. We
include results for the forecast task in the main text. For the
vector field reconstruction task, instead, when the ground

truth drift function is available, we evaluate how well the
learned vector field matches the ground truth both visually
and by computing the mean squared error (MSE) between
the learnt field and the ground truth on a grid spanning the
range of the observed data. We present these vector field
reconstruction results in appendix C.

Baselines. We compare against two baselines: (1) a
Schrödinger bridge with reference fitting (Shen et al.,
2025; Zhang, 2024; Guan et al., 2024), that we denote by
SBIRR-ref, and (2) a multimarginal Schrödinger bridge
with shared forward drift across all consecutive pairs of
snapshots, denoted by SB-forward (Shen et al., 2024).
We discuss these baselines in details in appendix C.1.

4.1. Lotka-Volterra system

We simulated data from a two-dimensional Lotka–Volterra
predator–prey system, where each coordinate’s volatility
scales proportionally with its own state variable. Specif-
ically, we set the volatility for the prey population X to
be σX , and for the predator population Y to be σY , with
σ being the same constant across both dimensions. We
consider 10 time points, each with 200 samples. A para-
metric Lotka-Volterra model was fitted to the data. See
appendix C.2 for additional details. We present the fore-
casting results in fig. 1. Our method demonstrates superior
forecasting accuracy both visually and in terms of MMD
compared to the baselines. In particular, visually we see
how the baselines exhibit higher noise levels in their fore-
cast. We include MMD metrics in table 1. In the same ta-
ble, we also include MSE results for the vector field recon-
struction task, and in fig. 3 we provide a visualization for
the learnt vector fields with the various methods. We fur-
ther discuss results for this experiment in appendix C.2.3.

4.2. Repressilator

The repressilator system consists of a network of three
genes that inhibit each other in a cyclic manner: each gene
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Figure 2. Results for repressilator. Upper: use of parametric repressilator model. Lower: use a semi-parametric model with an MLP-
based activation function (see appendix C.3.2 for details). Our method better forecasts the last time point (red) compared to the baselines
for both parametric and semiparametric models.

produces a protein that represses the next gene’s expres-
sion, with the last one repressing the first, forming a feed-
back loop. The dynamics of the repressilator system can be
modeled either by using only mRNA concentration levels
(eq. (15)) or with both mRNA and protein levels (eq. (17)).
In practice, we only measure mRNA concentrations. In this
section, below we discuss an experiment where we gener-
ate data from an mRNA-only repressilator system and try
to learn the underlying dynamics. In appendix C.4, we
also discuss an example where we generate data from an
mRNA-protein repressilator system and learn the dynam-
ics having access only to the mRNA concentration levels.

In this experiment, we fit a stochastic (mRNA-only) repres-
silator system, where — as for the Lotka-Volterra experi-
ment — each coordinate’s volatility scales proportionally
with its own state variable. We consider 10 time points
with 200 samples per time point. We performed two ex-
periments: one using a parametric model from the same
family as the data generating process and another using a
semiparametric model with a multilayer perceptron model-
ing production rate of mRNA of each gene as a function of
all mRNA levels. See appendix C.3 for more details.

We present the visual results for the forecast task in fig. 2.
As in the Lotka-Volterra experiment, our method demon-
strates superior forecasting performance for both repressi-
lator experiments. In particular, the one-step-ahead fore-
cast particles with our method have a very similar shape
compared to the ground truth validation points. The dif-

ference is particularly clear when the using the semipara-
metric model (bottom row), and is confirmed by the MMD
metrics (see table 2 and table 3). We include MSE results,
as well as a visualization of the reconstructed vector field,
in table 2 and fig. 4 (for the parametric model), and table 3
and fig. 6 (for the semiparametric model). We further dis-
cuss these results in appendix C.3.3.

5. Discussion
In this work, we introduced a new method for learning
SDEs from population-level snapshot data. Our approach
is based on matching the state-space distributions using a
least squares scheme in a distributional space, which al-
lows us to infer the underlying dynamics of the system ef-
fectively. The proposed method handles challenging as-
pects such as unknown and non-constant volatility, and
it is robust to missing or unobserved dimensions. Over-
all, our experiments indicate that the proposed framework
outperforms existing methods in various scenarios. One
of the key remaining challenges is related to the identifi-
ability of the underlying model parameters. In practice,
even if one had access to the complete time series of the
marginal distributions, uniquely determining the drift and
volatility functions of the SDE remains problematic. This
issue arises because the evolution of the marginal distribu-
tions can be generated by multiple different combinations
of drift and volatility. We discuss these identifiability issues
in more detail in Appendix D.
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Appendix

A. Proofs
Proof. [Proof of proposition 3.1] We start with the definition of the MMD squared between the joint distributions:

MMD2
K(f(x, t), g(x, t)) = E(x,t)∼f,(x′,t′)∼f [K((x, t), (x′, t′))]

− 2E(x,t)∼f,(x′,t′)∼g [K((x, t), (x′, t′))]

+ E(x,t)∼g,(x′,t′)∼g [K((x, t), (x′, t′))]

(10)

Then we can rewrite the first term in right-hand side as follows:

E(x,t)∼f,(x′,t′)∼f [K((x, t), (x′, t′))] = E(x,t)∼f, (x′,t′)∼f [Kx(x,x
′) δ(t− t′)]

= Et∼h(t), t′∼h(t′)

[
δ(t− t′)E x∼f(x|t)

x′∼f(x|t′)
[Kx(x,x

′)]

]

=
∑

t,t′∈T

[
δ(t− t′)E x∼f(x|t)

x′∼f(x|t′)
[Kx(x,x

′)]

]
h(t)h(t′)

=
∑
t∈T

Ex,x′∼f(x|t)[Kx(x,x
′)]h2(t)

(11)

where the first equality uses the factorized form of the kernel, the second equality is by the the law of iterated expectation
conditioning on the time components.

Similarly the second term:

−2E(x,t)∼f,(x′,t′)∼g [K((x, t), (x′, t′))] = E(x,t)∼f, (x′,t′)∼g[Kx(x,x
′) δ(t− t′)]

= Et∼h(t), t′∼h(t′)

[
δ(t− t′) (−2E x∼f(x|t)

x′∼g(x|t′)
[Kx(x,x

′)])

]

=
∑

t,t′∈T

[
δ(t− t′) (−2E x∼f(x|t)

x′∼g(x|t′)
[Kx(x,x

′)])

]
h(t)h(t′)

=
∑
t∈T

−2Ex∼f(x|t)
x′∼g(x|t)

[Kx(x,x
′)]h2(t)

(12)

The third term

E(x,t)∼g,(x′,t′)∼f [K((x, t), (x′, t′))] = E(x,t)∼g, (x′,t′)∼g[Kx(x,x
′) δ(t− t′)]

= Et∼h(t), t′∼h(t′)

[
δ(t− t′)E x∼g(x|t)

x′∼g(x|t′)
[Kx(x,x

′)]

]

=
∑

t,t′∈T

[
δ(t− t′)E x∼g(x|t)

x′∼g(x|t′)
[Kx(x,x

′)]

]
h(t)h(t′)

=
∑
t∈T

Ex,x′∼g(x|t)[Kx(x,x
′)]h2(t)

(13)

Collect terms, we have

MMD2
K(f(x, t), g(x, t))

=
∑
t∈T

h2(t)

[
Ex,x′∼f(x|t)[Kx(x,x

′)]− 2Ex∼f(x|t)
x′∼g(x|t)

[Kx(x,x
′)] + Ex,x′∼g(x|t)[Kx(x,x

′)]

]
=
∑
t∈T

h2(t)MMD2(f(· | t), g(· | t))
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□

In our application, we used empirical distribution for time.

B. Alternative view of R2

An alternative way to view this metric is through the lens of comparing joint distributions to the product of their marginals.
In information theory, mutual information quantifies the dependence between two random variables by measuring the di-
vergence (typically via the Kullback–Leibler divergence) between the joint distribution and the product of the marginal
distributions. Analogously, by reapplying proposition 3.1, we can interpret our R2 metric as comparing the joint distribu-
tion of state and time as predicted by the model with the distribution obtained by taking the product of the marginal (state
and time) distributions. In this view, the denominator in eq. (9) (which uses the barycenter) reflects the total variation or
“spread” in the observed data. And the numerator captures the remaining error when the model-predicted joint distribution
is compared to the empirical joint distribution. Thus, a higher R2 indicates that the model captures more of the depen-
dence structure between state and time—just as in regression a higher R2 means the model explains a larger fraction of the
variability in the data. This analogy to mutual information provides an intuitive understanding of how our metric not only
assesses goodness-of-fit but also the degree to which the model captures the temporal structure of the data.

C. Further experimental details
C.1. Baselines

We compare against two baselines: (1) a Schrödinger bridge with reference fitting (Shen et al., 2025; Zhang, 2024; Guan
et al., 2024), that we denote by SBIRR-ref, and (2) a multimarginal Schrödinger bridge with shared forward drift across
all consecutive pairs of snapshots, denoted by SB-forward (Shen et al., 2024). SBIRR-ref iteratively imputes unseen
trajectories using Schrödinger bridges and fits a model based on the imputed trajectories (the reference refinement step). In
practice, we use the implementation from Shen et al. (2025) and use their best reference to evaluate vector field prediction
and to propagate particles from the initial time step beyond the observed horizon for the forecasting task. Notably, this task
differs from the main task in Shen et al. (2025), which focused on interpolation between time snapshots. Their approach
employs the Schrödinger bridge solution rather than a fitted reference, making it unsuitable for forecasting. Zhang (2024)
and Guan et al. (2024)’s method are based on the same reference fitting idea and have similar algorithms to Shen et al.
(2025). However, these methods are focused on linear models1, whereas Shen et al. (2025) allows for a general model
family. For SB-forward, the authors — instead of allowing a flexible forward drift between consecutive time snapshots
— constrain the forward drift to be drawn from a shared model family across all time steps. We use their best-fitted forward
model to predict the vector field and generate forecasts. Both baselines cannot handle unknown or non-constant volatility
due to their reliance on a Kullback–Leibler divergence-based formulation. In the experiments that follow, we set the fixed
volatility values to 0.1, as done in Vargas et al. (2021); Wang et al. (2021); Shen et al. (2025).

C.2. Lotka-Volterra

C.2.1. EXPERIMENT SETUP

In this experiment, we study the stochastic Lotka-Volterra model, which describes predator-prey interactions over time.
The population dynamics are governed by the following system of SDEs:

dX = αX − βXY + σXdWx,

dY = γXY − δY + σY dWy,
(14)

where [dWx, dWy] denotes a two-dimensional Brownian motion. We define the true parameter values as α = 1.0, β = 0.4,
γ = 0.4, δ = 0.1, and σ = 0.02. The initial population sizes are sampled from uniform distributions, with X0 ∼ U(5, 5.1)
and Y0 ∼ U(4, 4.1). To simulate the system, we numerically integrate the SDEs over 10 discrete time points, using a step
size of 1, with the Euler-Maruyama scheme( implemented via the torchsde Python package).

1Zhang (2024) also included an L1 regularization to obtain sparse solutions.
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Figure 3. Experimental results for the Lotka-Volterra system. Top row: forecast prediction task. A method is successful if the forecast
predicted points (in red) match the red points in the ground truth figure. Middle row: ground truth vector field (left) and reconstructed
vector fields with the three methods. Bottom row: Difference between reconstructed vector fields and ground truth. For each point of
interest on the grid, we represent the difference between the two vectors with an arrow and color it according to the magnitude of the
difference (colorbar to the right).

C.2.2. MODEL FAMILY CHOICE

For this experiment, we have access to the data-generating process, as described in eq. (14). Therefore, we select the model
family to be the set of SDEs that satisfy this system of equations, eq. (14). The learning process involves optimizing the
parameters using gradient descent, with a learning rate of 0.05 over 300 epochs, by observing R2 metric dynamics.

C.2.3. ADDITIONAL RESULTS DISCUSSION

In this section we further discuss results for the Lotka-Volterra experiment. In particular, we analyze the MMD and MSE
metrics from table 1, and the visualization of the reconstructed fields from fig. 3.

In the first row of table 1 we show the MMD results for the forecast task. The MMD is computed using a Radial Basis
Function (RBF) kernel with length scale 1. In each cell, the first number represent the MMD averaged across 10 different
seeds, and the second number (in parenthesis) is the standard deviation over the same 10 seeds. We color in green the
cell corresponding to the method with lowest MMD. We also highlight in green any other methods whose one-standard
deviation confidence interval overlaps the mean of the best method. From the first row, we can see how our method is (by
far) the best method at the forecasting task. In the second row we compare the MSEs for the vector reconstruction task.
Also for this task we observe that our method is — from an MMD perspective — much better than the baselines. If we
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Figure 4. Experimental results for the repressilator system using parametric model as model family.Top row: forecast prediction task. A
method is successful if the forecast predicted points (in red) match the red points in the ground truth figure. Middle row: ground truth
vector field (left) and reconstructed vector fields with the three methods. Bottom row: Difference between reconstructed vector fields
and ground truth. For each point of interest on the grid, we represent the difference between the two vectors with an arrow and color it
according to the magnitude of the difference (colorbar to the right).

look at the middle row of fig. 3, we see that from a visual perspective the reconstructed vector fields are very similar to the
ground truth for all the three methods. Also from the bottom row of the same figure, we can see that the difference between
the reconstructed fields and ground truth for our method and SBIRR-ref is very similar, whereas for SB-forward it is
a bit worse.

LV
Metric MMD-SDE SBIRR-ref SB-forward
Forecast 0.012 (0.0067) 0.14 (0.023) 0.71 (0.49)
Drift 0.00071 (0.000027) 0.079 (0.0080) 0.59 (0.13)

Table 1. Evaluation metric for Lotka-Volterra (mean (sd)). Drift was evaluated using MSE on a grid, while the forecast was evaluated
using MMD with RBF kernel and length scale 1.

C.3. Repressilator

C.3.1. EXPERIMENT SETUP

The repressilator is a synthetic genetic circuit designed to function as a biological oscillator, producing sustained periodic
fluctuations in the concentrations of its components. It consists of a network of three genes arranged in a cyclic inhibitory
loop: each gene encodes a protein that suppresses the expression of the next, with the last gene repressing the first,
completing the feedback cycle.
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The system’s dynamics can be described by the following stochastic differential equations (SDEs):

dX1 =
β

1 + (X3/k)n
− γX1 + σX1dW1,

dX2 =
β

1 + (X1/k)n
− γX2 + σX2dW2, (15)

dX3 =
β

1 + (X2/k)n
− γX3 + σX3dW3,

where [dW1, dW2, dW3] represents a three-dimensional Brownian motion. The inhibitory structure of the system is evident
from the drift terms, which describe how each gene’s expression is repressed by another in the cycle. For our simulations,
we set the parameters to β = 10, n = 3, k = 1, γ = 1, and σ = 0.02. The initial conditions are sampled from uniform
distributions: X1, X2 ∼ U(1, 1.1) and X3 ∼ U(2, 2.1). We simulate the SDEs over 10 discrete time points, with 200
samples collected at each step.

C.3.2. MODEL FAMILY CHOICE

Parametric model. For this experiment, we have access to the data-generating process, as described in eq. (15). Therefore,
we pick as a model family the set of SDEs that satisfy this system of equations, eq. (15). The learning process involves
optimizing the parameters using gradient descent, with a learning rate of 0.05 over 500 epochs, as determined by R2 metric
dynamics.

Semiparametric model. We assume we know the functional form up until that

dXt = Mfθ(Xt)−LXt +Gdiag(Xt)dWt (16)

where M is a diagonal matrix of (positive) maximum production rate, L is a diagonal matrix of (positive) degradation
rate, G is a diagonal matrix of (positive) volatility all unknown (parameterized by their logarithm). We parameterize the
so-called activation function fθ : R3

+ → [0, 1]3, encoding regulation among genes, using an MLP with three hidden layers
of [32, 64, 32] hidden neurons each, and one final sigmoid function layer.

C.3.3. FURTHER EXPERIMENTAL RESULTS

Parametric model. In this section we further discuss results for the repressilator experiment with parametric model family.
In particular, we analyze the MMD and MSE metrics from table 2, and the visualization of the reconstructed fields from
fig. 4.

Repressilator (parametric)
Metric MMD-SDE SBIRR-ref SB-forward
Forecast 0.016 (0.016) 0.47 (0.34) 0.42 (0.16)
Drift 0.027 (0.063) 1.71 (0.20) 12.9 (0.21)

Table 2. Evaluation metric for repressilator when using the parametric model (mean(sd)). Drift was evaluated using MSE on a grid,
while the forecast was evaluated using MMD with RBF kernel and length scale 1.

In the first row of table 2, we see that for the forecasting task, our method achieves a much lower MMD compared to
the two baselines. This quantitatively supports the visual intuition from fig. 2 in the main text, where our approach more
accurately captures the underlying distribution of the data. In the second row, we observe that the MSE for the vector
field reconstruction task is significantly lower for our method, indicating superior performance in recovering the true
dynamics. This is further corroborated by the visualizations in fig. 4: in the middle row, our reconstructed vector field
closely resembles the ground truth, whereas SBIRR-ref exhibits small but notable deviations, and SB-forward fails
both in magnitude and direction. The bottom row further reinforces this conclusion, showing that the magnitude of the
differences between the reconstructed and true vector fields is substantially larger for the two baselines compared to our
method (for which is very close to 0 everywhere on the grid).

Semiparametric model. In this section we further discuss results for the repressilator experiment with the semiparametric
model family. In particular, we analyze the MMD and MSE metrics from table 3, and the visualization of the reconstructed
fields from fig. 6.
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Figure 5. Results for repressilator with semiparametric model. Our method better forecasts the last time point (red) compared to the
baselines.

In the first row of table 3, we see that also for this forecasting task, our method achieves a substantially lower MMD
compared to the two baselines. This aligns with the visual evidence from fig. 2 in the main text (bottom row), where our
method’s predicted points (in red) more closely match the ground truth. In the second row of table 3, we see that for this
model choice our method and SBIRR-ref achieve similar results, whereas SB-forward exhibits much higher MSE.
Figure 6 confirms this intuition: our reconstructed vector field and the one for SBIRR-ref are quite similar and not too
different from the ground truth, whereas SB-forward performs particularly poorly, failing to recover both the direction
and magnitude of the vector field.

Repressilator (semiparametric)
Metric MMD-SDE SBIRR-ref SB-forward
Forecast 0.077 (0.031) 0.29 (0.11) 1.15 (0.33)
Drift 6.25 (0.37) 7.85 (1.85) 12.00 (0.74)

Table 3. Evaluation metric for Repressilator using MLP activation function (mean(sd)). Drift was evaluated using MSE on a grid, while
forecast was evaluated using MMD with RBF kernel and length scale 1.

C.4. Repressilator with missing protein

In this experiment, we focus on the situation where we generate data following the more complete biochemical model in-
cluding both mRNA and protein eq. (17) and then fit this parametric (mRNA-protein) repressilator model (appendix C.4.2)
using only mRNA concentration data. The experimental settings are the same as for the mRNA-only experiment in the
main text. We show the results for our method on the forecasting task in fig. 7. Our method accurately forecasts the con-
centrations even when protein concentration is not observed. For the two baselines, since they cannot account for missing
data, we fit a model that takes into account only the mRNA levels. In fig. 7 we can see that the forecasts for the baselines
are much worse than for our method. The key difference here is that in our method we do not observe protein levels but the
method is aware that protein levels are also driving the underlying dynamics. Whereas for the baselines there is no way of
encoding this information in the methods without observing the protein levels. The visual difference is also confirmed by
the metric results in table 4.

C.4.1. EXPERIMENT SETUP

In appendix C.3 we introduced the repressilator system as a system of SDEs governing changes in mRNA concentration.
A more complete model for this system takes also into account protein levels. Indeed, each gene produces a protein that
represses the next gene’s expression, with the last one repressing the first. So proteins play a big role in the repressilator
feedback loop. And this is why scientists often consider a more complex version of this system, that evolves according to
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Figure 6. Experimental results for the repressilator system using semiparametric model as model family. Top row: forecast prediction
task. A method is successful if the forecast predicted points (in red) match the red points in the ground truth figure. Middle row: ground
truth vector field (left) and reconstructed vector fields with the three methods. Bottom row: Difference between reconstructed vector
fields and ground truth. For each point of interest on the grid, we represent the difference between the two vectors with an arrow and
color it according to the magnitude of the difference (colorbar to the right).

the following SDEs:

dX1 = α+
β

1 + (Y3/k)n
− γX1 + σX1dW1

dX2 = α+
β

1 + (Y1/k)n
− γX2 + σX2dW2

dX3 = α+
β

1 + (Y2/k)n
− γX3 + σX2dW3

dY1 = βpX1 − γpY1 + σY1dW4

dY2 = βpX2 − γpY2 + σY2dW5

dY3 = βpX3 − γpY3 + σY3dW6

(17)

where [dW1, dW2, dW3, dW4, dW5, dW6] is a 6D Brownian motion. X1, X2, X3 represents the mRNA levels while
Y1, Y2, Y3 are the corresponding proteins. As explained above, the actual system regulation is now mediated by proteins
rather than mRNA themselves.

To obtain data, we fix the following parameters: α = 10−5, β = 10, n = 3, k = 1, γ = 1, βp = 1, γp = 1, σ = 0.02. We
start the dynamics with initial distribution X1, X2 ∼ U(1, 1.1) and X3 ∼ U(2, 2.1), while Yi ∼ U(0, 0.1). We simulate
the SDEs for 10 instants of time. At each time step, we take 200 samples and only took Xi as observations.

C.4.2. MODEL FAMILY CHOICE

Our method. For this experiment, we have access to the data-generating process, as described in eq. (17). Therefore, we
select our model family to be the set of SDEs that satisfy this system of equations, eq. (17). The learning process involves
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Figure 7. Forecasts for the repressilator experiment when protein concentration was not observed.

optimizing the parameters using gradient descent, with a learning rate of 0.05 over 500 epochs, as determined by R2 metric
dynamics.

Baselines. Since the two baseline methods that we consider cannot handle missing data we cannot use them to fit eq. (17).
Instead, we fit a simpler mRNA-only model as described in eq. (15).

Repressilator (with missing protein)
Metric MMD-SDE SBIRR-ref SB-forward
Forecast 0.51 (0.17) 1.26 (0.06) 1.22 (0.09)

Table 4. Evaluation metric for Repressilator forecasting with missing protein observations. Forecast was evaluated using MMD with
RBF kernel and length scale 1.

D. Identifiability Analysis
In this appendix, we provide further details on the identifiability problem from the the main text discussion.

Why drift and volatility are not identified in general. Even with complete access to the marginal distributions πt over
time, the pair (b0, g0) is not uniquely determined by the Fokker–Planck equation

∂πt

∂t
= ∇ ·

[
−b0 πt +

1

2
g0 g

⊤
0 ∇πt

]

For example, suppose (b0, g0) satisfies the equation for a given πt. Then, for any vector field h that satisfies the continuity
condition ∇ · (hπt) = 0, the modified drift b′0 = b0 + h with the same volatility g0 also satisfies the Fokker–Planck
equation. This observation indicates that an infinite family of drift functions can generate the same evolution of the
marginal distribution if no further constraints are imposed. Furthermore, let A be any orthogonal matrix (i.e., AA⊤ = I).
Then, the pair (b0, g0 A) also satisfies the Fokker–Planck equation. These examples illustrate the inherent non-uniqueness
(or non-identifiability) of the drift and volatility functions based solely on the evolution of the marginal distributions.

In practice, to achieve identifiability, one must restrict the candidate function classes for b0 and g0. For instance, assuming
that b0 is a gradient field (i.e., b0 = ∇Φ for some potential Φ and that g0 is constant is known to yield identifiability under
suitable conditions (Lavenant et al., 2021; Guan et al., 2024). A complete characterization of identifiability in more general
settings is beyond the scope of this work and constitutes an important direction for future research.
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