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ABSTRACT

We investigate whether language models (LMs) can be misled by providing them
with factually correct, but unrepresentative/biased examples, in the context of
integer-to-integer piecewise functions. Given the definition of a piecewise func-
tion and several examples of the function’s evaluation, we instruct LMs to apply
the function to a new input. We assess LMs on two variants of this task: one where
the example function evaluations are evenly distributed across both branches of the
function, and one where all of the examples exercise one branch of the input and
the target input exercises the other branch. We observe that model performance
positively scales with model size only when examples are balanced, and that per-
formance inversely scales with size when the examples are misrepresentative.

1 INTRODUCTION

Large language models (LLMs) have recently been widely-deployed to hundreds of millions of
users (OpenAll [2022; Mehdi, 2023). A standard way to interface with these models is by using
prompts, where the user provides a description of the problem to solve, often alongside examples
of similar problems being solved (Brown et al., [2020). This few-shot approach has led to state-
of-the-art performance on a variety of natural language processing benchmarks (Chowdhery et al.,
2022). Moreover, this technique has been shown to scale well with model size: larger models
regularly outperform smaller models when provided with the same task/prompt (Wei et al.| 2022]).
Recent work has provided counterexamples to this trend, discovering “inverse scaling” tasks where
performance is negatively correlated with model size (Perez et al.,|2022a; [Perez & McKenzie, [2022;
McKenzie et al .| [2022; |Perez et al ., [2022b).

In this work, we introduce another such inverse scaling task, which uses the evaluation of piecewise
functions as a mechanism for exploring the interaction between a prompt’s problem description and
the examples provided in it. In particular, we show that when the provided examples for this task
cover a diverse set of problem inputs, model performance scales positively with size. However,
when all of the examples are drawn from a subset of the input space, and the desired problem input
is drawn from outside this set, we observe inverse scaling. While in this domain one can determine
by inspection that the examples are unrepresentative, we use this toy task to highlight a failure case
of language models that may appear in scenarios where the example bias is less obvious.

2 TASK FORMULATION

We assess the OPT (Zhang et al.| [2022) and GPT3 (Brown et al., 2020) language model (LM) fami-
lies on a dataset of piecewise function evaluation problems. Each problem in the dataset references
a randomly generated function f : Z — Z, defined as:

f@) = {9(33) if p(x) 0

h(zx) otherwise

*equal contribution, author order randomized
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* where p(x) = p1(x) A ... A pp(z) is a conjunction of predicates on the input integer « and
two function branches h : Z — 7Z,g : Z — Z are arithmetic functions that either add,
subtract, or multiply x by a constant.

The prompt for each problem in our dataset contains three components: the definition of f in natural
language, several example evaluations of f, and a request to evaluate f on a new input ¢ € Z (the
“target input”). Each problem is formulated as a two-option classification task, where the classes
are [h(q),9(q)] and f(q) is the correct answer. See Appendix [C| for examples of prompts, and
Appendix [B] for more details on our dataset generation procedure.

We evaluate LMs on two variants of this task. In the “balanced” variant, the provided example
function evaluations are evenly distributed across the two branches of f (i.e. for half of the examples,
the predicate conjunction is true, and for the other half it is false). In the “biased” variant of our
task, we deliberately select examples so that all of them exercise the same branch of f, while ¢
exercises the opposite branch. We emphasize that in both variants of this task, the provided function
evaluations are correct, and only differ in the inputs that were chosen. Moreover, we highlight these
example function evaluations are not required information for solving the problem of evaluating the
target input properly, since the function definition itself is included in the prompt.

3 RESULTS

Our key results are summarized in Figure[T] When evaluating LMs on problems with balanced ex-
amples, we observe normal scaling behaviour, with accuracy increasing with model size. However,
on the problems where the provided examples are biased to the branch that is opposite to the target
input, we observe strong inverse scaling behaviour. The largest (175B parameter) models that we
evaluate perform over 15% worse than random guessing. This is surprising, since one might expect
the higher capacity LMs to understand the function definition better than smaller models, and there-
fore rely less on the provided examples, regardless of whether they are biased or not. We ablate
these experiments over different dataset parameters, and provide the results in Appendix
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Figure 1: We observe that accuracy positively scales with model size when using balanced examples,
while accuracy inversely scales with size when using biased examples.

4 CONCLUSION

In this work we introduced piecewise function evaluation as a mechanism for assessing how lan-
guage models of different sizes behave when provided with correct, but unrepresentative examples.
We showed that when provided with a biased set of function evaluations, LLMs are prone to base
their prediction on the few-shot examples rather than the definition of the function. Additionally,
we showed that this failure mode gets more severe as the model gets larger. We are interested in
future work that discovers additional domains where LLMs can be misled by factually correct, but
misrepresentative examples.
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A RELATED WORK

Language Models: Language models (LMs) have significantly advanced the state-of-the-art in
many natural language processing tasks. When deep learning architectures such as transformers
(Vaswani et al.| 2017) are trained with self-supervised objectives (such as next-token or masked
token prediction) on large datasets of text extracted from the Internet (Gao et all [2021; Merity
et al.| [2016)), the resulting models are able to develop powerful internal representations for natural
language (Devlin et al.| 2018} Liu et al.,|2019; |Raffel et al.} 2019). These pre-trained LMs can either
be directly applied or fine-tuned to solve a diverse set of tasks (Wang et al., 2018} [2019; |Srivastava
et al., [2022).

Scaling and Inverse Scaling: Strong scaling properties have been established for language models:
that is, as the size of language model architectures and the datasets that they are trained on increase,
so too does their performance on many tasks (Brown et al.|[2020; Rae et al., [2021};|Chowdhery et al.,
2022). Many of these large language models (LLMs) exhibit emergent abilities (Wei et al., |[2022),
demonstrating a sharp increase in performance on many tasks that smaller models struggle with.
Notably, recent work (Perez et al.,[2022b), including submissions to the Inverse Scaling Competition
(Perez et al., [2022a; [Perez & McKenzie, [2022; McKenzie et al., 2022)), has found counterexamples
to this scaling trend, identifying tasks where larger model perform progressively worse (“inverse
scaling tasks”).

Zero-shot and Few-shot Prompting: An important characteristic of many language models is that
they can be applied to novel domains without fine-tuning, instead only requiring a description of the
problem in the form of a prompt (Radford et al.,2019). Relevant to our work, LLM performance
on these downstream problems can often be significantly improved by providing the models with
examples of solved similar tasks in the prompt (i.e. few-shot examples) (Brown et al., | 2020).

B TASK CONSTRUCTION DETAILS

B.1 GENERATING PIECEWISE FUNCTIONS

Each problem that we provide to LMs is centered on a randomly generated function f : Z — Z that
follows the structure:

@) = {g(x) if p(x) 2)

h(zx) otherwise

In this expression:

e p(x) = p1(x) A ... A pp(x) is a conjunction of predicates on the input integer x (functions
pi : Z — {True, False}). Each predicate is sampled uniformly at random from the options:
- “ziseven”
- “xis odd”
- “z is prime”
— “x is not prime”
— “xis less than K for some K € {2,3,...,100} sampled uniformly at random.
- “x is greater than K for some K € {2,3,...,100} sampled uniformly at random.
— “x is a multiple of K for some K € {2, 3,4, 5} sampled uniformly at random.
e The two function branches h : Z — Z,qg : 7Z — Z are arithmetic functions sampled
uniformly at random from the options:
- ¢(z) =z + K for some K € {2,3,...,100} sampled uniformly at random.
- ¢(x) =z — K for some K € {2,3,...,100} sampled uniformly at random.
- ¢(x) = z % K for some K € {2,3,4,5} sampled uniformly at random.
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When generating candidate piecewise functions, if we are unable to find examples z &
{2,3,...,100} that exercise both branches of the function, we discard the function and generate
another. For example, if we randomly generate the predicate conjunction “z is even and « is odd”,
then no inputs can satisfy this conjunction, causing us to discard the function.

B.2 EXAMPLE AND PROMPT GENERATION

The key hyperparameters used when generating each problem in our dataset are:

* the number of predicates used in the conjunction.
¢ the number of example function evaluations provided.

* the distribution of the provided examples (balanced or biased).

When generating balanced examples, we iteratively pick input values that alternate the branch of the
function they exercise (we randomly pick which function branch the first example should follow).
To select the target input g, we first randomly pick which branch of the function g should follow, and
then iterate over the numbers {2, 3, ..., 100} in a random order until we find a satisfying value. This
process ensures that across the problems in our dataset, the number of target inputs that exercise
each branch of the piecewise function is approximately equal.

We consider two different approaches to generating biased examples and target values: an “easy”
mode and a “hard” mode. When generating biased examples in easy mode, the examples and target
inputs satisfy predicates in an “all-or-nothing” fashion. Specifically, prompts in easy mode fall into
two cases:

* In the first case, every example evaluation satisfies every predicate, while the target input
fails every predicate (for example, if the function condition is that a number must be greater
than 11 and be even, all of the examples will be even numbers larger than 11, while the
target input is an odd number less than or equal to 11). This causes every example input to
satisfy the g(«) branch of the piecewise function, while the target input exercises the h(x)
branch.

* The second category of prompts in easy mode is the converse of the first case, where every
example fails every predicate in the piecewise function condition, while the target input
satisfies every predicate.

We balance these two cases in our dataset, so that the target values exercise the h(x) and g(x)
branches of piecewise functions are exercised with equal frequency. See Appendix [C.2]for an ex-
ample of a prompt with biased examples generated with easy mode.

When generating biased examples and target values using hard mode, we use more subtle biases.
This mode relies on the fact that the condition p of each piecewise function is a conjunction of
predicates, and therefore the entire conjunction evaluates to false if any single predicate evaluates to
false. The prompts in the hard version of our dataset rely on this fact and, like the easy mode, fall
into one of two categories:

* In the first case, all of the example inputs satisfy every predicate, while the example input
satisfies every predicate except for one. Since all but one of the predicates evaluate to true
for the target input, this construction makes it easier for the model to misclassify the target
input as satisfying the predicate conjunction and following the h(x) branch that all of the
provided examples exercise.

» Like with easy mode, the second category of prompts is converse of the first case, where
all example inputs have all but one predicate evaluating to true (putting the examples in
the function’s h(x) case), and the target inputs satisfy all predicates (putting it in the g(z)
case).

See Appendix [C.3] for an example of a prompt with biased examples generated with hard mode.
Furthermore, see Figure [2|for an ablation over the performance of easy and hard datasets.
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B.3 DATASET GENERATION

The final dataset that we use to produce Figure 1] is created by sweeping over hyperparameters,
generating 15 problems for every configuration, and pooling all of these problems together. We
specifically sweep over predicate conjunction sizes in {2,3} and the number of examples per prompt
in {2,4}. We also sweep over three different variations of our prompt format (see examples of each
version in Appendix [B.4). When generating the biased example results, we also sweep over easy
mode and hard mode.

Lastly, we also sweep over formulating our problems as 0-shot and 2-shot. In our task, the number
of shots is distinct from the number of example evaluations provided per function, and instead refers
to the number of solved function evaluation problems that we provide in the prompt. For example,
a 2-shot formulation of our task means that we first provide the model with two separate questions
and answers involving piecewise functions (each of which contains their own function definition,
evaluation examples, target input, and answer), before providing a third question involving a third
piecewise function that we ask the model to solve. Notably, the function evaluation examples in our
few shot prompts are always balanced, regardless of whether the examples in the true problem are
balanced or biased. The motivation behind this choice is that if we used few-shot examples that were
biased in the same way as our real problem, the model could simply learn the pattern in the biases
(e.g. the model could observe that all of the examples exercise one branch of the function while the
target input exercises the other, and simply mimic that pattern without understanding why an input
corresponds to a branch of the function).

We ablate the effects of the hyperparameters we sweep over in Appendix

B.4 PROMPT VARIATIONS

We use three different variations of our prompt wording - an example of each is given below:

Example Prompt Variant 1

“Let’s define the piecewise function f(x) as follows: if x is a multiple of 3 and x is not prime
and x is even, then f(x) = x - 42. Otherwise, f(x) = x * 5. For example: f(30) =-12, f(100) =
500, £(12) = -30, f(85) = 425. What is f(63)? Answer: f(63) ="

Example Prompt Variant 2

“Setup: Consider the following piecewise function, f(x). For an input value x, if x is a
multiple of 3 and x is not prime and x is even, then we define f(x) = x - 42. Otherwise,
we define f(x) = x * 5. For example: f(30) = -12, f(100) = 500, f(12) = -30, f(85) = 425.
Question: What is f(63)? Answer: f(63) ="

Example Prompt Variant 3

“Let’s create a piecewise function, f(x), that maps integers to integers. If an integer x satisfies
the conditions that x is a multiple of 3 and x is not prime and X is even, then our function
maps f(x) = x - 42. Otherwise, our function maps f(x) = x * 5. For example: f(30) = -12,
f(100) = 500, f(12) = -30, f(85) = 425. Question: What is f(63)? Answer: f(63) ="

'when evaluating OPT-175B and GPT3-davinci, we only use 50 examples per configuration - this still yields
a dataset of several thousand examples in total
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PROBLEM EXAMPLES

colour the examples below using the following legend:

Predicates

Examples

Function branch when p(z) = True (all predicates satisfied)

Function branch when p(x) = False (at least one predicate unsatisfied)

C.1 BALANCED EXAMPLES

We

“Let’s define the piecewise function f(x) as follows: if X is even and x is greater than 49 and

x is less than 89, then | f(x) = x + 37 |. Otherwise, | f(x) = x - 60 |.

Forexample:‘f(82)=119 £f(91) =31, £(68)= 105 f(21)=-39‘.

What is ?

Answer: f(80) ="

g i >

see that this example has a conjunction containing three predicates, and provides four example

function evaluations before asking the model to evaluate the function on the target input 80. Note
that the provided examples are equally balanced between both branches of the function.

C.2 BIASED EXAMPLES - EASY MODE

“Let’s define the piecewise function f(x) as follows: if x is less than 20 and x is not prime

and X is even, then | f(x) = x * 3 |. Otherwise, | f(X) =x - 19 |.

For example: \ £(97) = 78, f(41) = 22 \

What is ?

Answer: f(12) =~

In this problem which generates biased examples using easy mode, we see that each of the example
evaluation inputs fail every predicate, while the target input satisfies every predicate.

C.3 BIASED EXAMPLES - HARD MODE

Let’s define the piecewise function f(x) as follows: if x is a multiple of 5 and x is greater than

47, then . Otherwise, .

For example: ‘ £(80) = 22, £(70) = 12 ‘

What is ?

Answer: f(48) =

In this problem which generates biased examples using hard mode, we see that each of the example
evaluation inputs satisfies every predicate while the target input does not satisfy exactly 1 predicate.
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D ABLATIONS

In this section, we reproduce the experiments ran to produce Figure[I] ablating over different task
hyperparameters. For a given hyperparameter that we ablate over, we sweep over the remaining
hyperparameters described in Appendix [B]

D.1 EASY vs. HARD MODE

Below we see the accuracy curves for the easy and hard versions of our dataset (as defined in Ap-
pendix[B.2). We note that although inverse scaling occurs for both datasets, all models obtain worse
performance and the slope is steeper for the hard version of the dataset.

0,50 = e e e e e e e e e e e

0.45 4

0.40 4

Accuracy

0.35 4

0.30 4
e OPT (Easy)
e OPT (Hard)
-------- Random Guessing

0.25 T T T T T T T T T
125M 350M 13B 2.7B 6.7B 13B 308 668 1758

Model Size (Number of Parameters)

Figure 2: Classification Accuracy Scaling Plot for Easy and Hard versions of the dataset.
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D.2 NUMBER OF EXAMPLE FUNCTION EVALUATIONS

Below we measure accuracy when ablating over datasets containing different numbers of biased
few-shot examples, including using no examples at all. We observe that when no example function
evaluations are provided, all but the largest models possess accuracies slightly above that of random
guessing. As shown in Figure [T} we observe much stronger inverse scaling when biased examples
are provided.

050 L e ———— T ____.
0.45 4
>
U
T 0.404
3
g
0.35 4
0.30 OPT (No Examples)
i OPT (2 Examples)
= OPT (4 Examples)
———————— Random Guessing
0.25 T

T T T . . T T T
125M 350M 1.3B 2.78 6.7B 13B 308 668 1758
Model Size (Number of Parameters)

Figure 3: Classification Accuracy Scaling Plot for a Different Number of Few-Shot Function Eval-
uations
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D.3 SizZE OF PREDICATE CONJUNCTION

Below we measure accuracy curves when ablating over datasets whose problems have differently
sized predicate conjunctions.

T R e
0.45 4
3 0.40
m
—
3
g
0.35 4
0.30 4
= OPT (Num Predicates = 2)
e OPT (Num Predicates = 3)
———————— Random Guessing
0.25 T

T T T . . T T T
125M 350M 1.3B 2.78 6.7B 13B 308 668 1758
Model Size (Number of Parameters)

Figure 4: Classification Accuracy Scaling Plot for a Different Number of Predicates
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