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Abstract—Driven by globalization and technological innova-
tion, the financial markets have experienced unprecedented
volatility and uncertainty. Portfolio selection is a fundamental
strategy in finance. During recent decades, the frequent occur-
rence of extreme market events and uncertainties has exposed
significant limitations in the traditional mean-variance model,
emphasizing the critical need for more robust approaches. In re-
sponse to these challenges, this paper introduces a neurodynamic
approach to robust portfolio selection. This approach is capable
of efficiently handling high-dimensional data through massively
parallel processing, providing a resilient solution to the complexi-
ties of modern financial markets. First, the corresponding robust
counterpart model is derived by eliminating uncertainty from
the robust portfolio selection model under the box uncertainty
set. Consequently, the robust portfolio selection problem is
transformed into a solvable quadratic programming problem.
Next, a one-layer neural network model is constructed based on
the Karush-Kuhn-Tucker (KKT) conditions. Subsequently, the
stability and convergence of the proposed neural network are
analyzed. Finally, simulation experiments are conducted using
two global stock market datasets. The proposed neural network
model demonstrates convergence even with large-scale data in the
second dataset, highlighting the effectiveness of the neurodynamic
approach in addressing robust portfolio selection problems.

Index Terms—Robust Portfolio Selection, Box Uncertainty Set,
Neurodynamic Approach, Markowitz Mean-Variance Model.

I. INTRODUCTION

Portfolio selection involves allocating capital across vari-
ous assets to maximize returns while minimizing risk. The
traditional mean-variance optimization framework, introduced
by Markowitz [1], has long been a fundamental approach
to efficient portfolio construction. However, market volatility
and unpredictability frequently impair investors’ ability to
accurately forecast asset returns and risks. The emergence of
robust optimization approaches has revolutionized portfolio
management by addressing the limitations of conventional
methods and incorporating uncertainty into the decision-
making process. Robust optimization has garnered significant
attention in recent years as a modeling framework for manag-
ing uncertainty in mathematical optimization. The foundation
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for robust optimization was established by the seminal work of
Soyster [2], and further advanced by the pivotal contributions
of Ben-Tal and Nemirovski [3], [4], and El Ghaoui and
Lebret [5]. These works not only formalized the mathematical
framework of robust optimization but also inspired numerous
subsequent studies. In particular, robust portfolio selection
has evolved alongside the incorporation of uncertainty [6]–
[8]. Swain and Ojha [9] discussed robust mean-variance and
robust mean-semivariance problems under box uncertainty.
Hosseini-Nodeh et al. [10] examined a distributionally robust
portfolio selection problem with fuzzy stochastic dominance
constraints, assuming an unknown distribution of asset returns.
Compared to traditional shrinkage-based and constrained port-
folios, Petukhina [11] demonstrated that robustified portfolios
have the lowest turnover while maintaining or slightly im-
proving out-of-sample performance. Ai et al. [12] proposed a
differential evolutionary algorithm to optimize asset allocation
and maximize returns subject to risk constraints in portfolio
optimization. As financial markets continue to evolve, it is
evident that robust portfolio selection plays a crucial role
in both theory and practice, offering protection and growth
potential for investors.

Uncertainty sets are a critical component of robust opti-
mization, as their selection directly influences the complexity
of the problem. For instance, the robust counterpart of an
uncertain linear programming problem under box or polyhe-
dral uncertainty sets remains a linear programming problem
[13]. Conversely, the robust counterpart of an uncertain linear
programming problem under ellipsoidal uncertainty sets is a
second-order conic programming model (SOCP) [14]. Under
single-ellipsoidal uncertainty sets, the robust counterpart of
uncertain quadratically constrained quadratic programming
(QCQP) and second-order cone programming (SOCP) prob-
lems are semidefinite programming (SDP) problems [15].
Moreover, the robust counterpart of the QCQP and SOCP
problems under the intersection of polyhedral or ellipsoidal
uncertainty sets is NP-hard [16], indicating significant com-
putational complexity. Given these considerations, this paper
adopts a more practical approach by selecting box uncertainty
sets to simplify the problem. This approach not only reduces
computational complexity, but also simplifies the problem,
making it more straightforward to handle and providing a



feasible solution for practical applications.
Theoretically appealing as it is, robust portfolio selec-

tion poses significant computational challenges. Choosing an
appropriate set of uncertainties to address the optimization
problem requires substantial computational power and a so-
phisticated process. As the number of asset classes in the
portfolio increases, the dimension of the optimization problem
also increases, leading to increased computational costs and
potential scalability issues. Furthermore, accurately estimating
the uncertainty set becomes even more challenging when
historical data is insufficient or market dynamics are rapidly
evolving. Consequently, integrating advanced computational
techniques into the research process is crucial to addressing
these challenges.

Neurodynamic optimization offers a promising approach
by combining the principles of artificial neural networks and
dynamical systems theory to resolve complex optimization
problems. The parallel processing capability of neural net-
works reduces the computational burden of traditional robust
optimization methods and scales efficiently with robust portfo-
lio selection sizes, making them an optimal choice in volatile
markets. The pioneering work of Hopfield and Tank [17],
[18] established the foundational framework for using neu-
ral networks as content-addressable memory systems, which
was later extended to optimization fields such as nonlinear
programming [19], nonsmooth programming [20], noncon-
vex programming [21], biconvex programming [22], multi-
objective programming [23], and interval-valued optimization
[24]. Xia et al. [25] provided a comprehensive overview of
neurodynamic optimization, summarizing recent advances in
model structure, convergence properties, and solvability range.

The neurodynamic approach excels in portfolio selection.
Liu et al. [26] presented a one-layer recurrent neural net-
work for solving pseudo-convex optimization problems with
linear equality and constraints and discussed applications to
dynamic portfolio selection optimization. Subsequently, Le-
ung and Wang [27] proposed a collaborative neurodynamic
optimization approach for cardinality-constrained portfolio se-
lection. Leung et al. [28] explored portfolio selection based
on neurodynamic optimization, demonstrating its superiority
over three benchmark approaches in terms of risk-adjusted
performance criteria and portfolio returns. Cao et al. [29]
developed a recurrent neural network model to provide a
rigorous theoretical analysis of convergence and optimality
in portfolio optimization. Cao and Li [30] proposed three
novel dynamic neural networks to address nonconvex portfolio
optimization in the presence of transaction costs and quan-
titative constraints. Additionally, the neurodynamic approach
has achieved significant results in robotics, engineering, and
technology [31]–[33].

In 2023, Hu et al. [34] studied robust linear programming
under polyhedral uncertainty sets using a neurodynamic ap-
proach, achieving notable results. The research was not only
innovative in theory but also demonstrated considerable po-
tential for practical applications. Their work furnished us with
a robust theoretical foundation and methodological guidance.

Building upon this foundation, we apply the neurodynamic
approach to address the robust portfolio selection problem.
Furthermore, we have selected box uncertainty sets for analy-
sis. Box uncertainty sets define uncertainty by specifying upper
and lower bounds for variables, which are easier to adjust than
polyhedral uncertainty sets. This flexibility allows quick model
updates based on new information or requirements, reducing
computational complexity.

The contributions of this paper are summarized as follows.

1) Based on the Markowitz Mean-Variance portfolio selec-
tion optimization model, we consider the box uncertainty
set and study the uncertainty in the expected return of
an asset, which provides a new perspective in dealing
with uncertainty.

2) The stability and convergence of the proposed neural
network are analyzed in theory.

3) Compared with existing optimization approaches, the
proposed method does not require high computational
power and is therefore suitable for dealing with real-
world problems with uncertainty.

The remainder of this paper is organized as follows. Section
II introduces preliminaries. Section III presents the main
results. Section IV presents stability analysis. Section V dis-
cusses simulation results. Section VI concludes this paper.

II. PRELIMINARIES

Definition 1. [35] (Set-valued map) Suppose that to each
point x of a set E ⊂ Rn, there corresponds a nonempty set
F (x) ⊂ Rn, then x → F (x) is a set-valued map from E to
Rn. A set-valued map F : E → Rn with nonempty values is
said to be upper semicontinuous at x0 ∈ E if for any open
set V containing F (x0) , there exists a neighborhood U of x0
such that F (U) ⊂ V . If E is closed, F has nonempty closed
values, and it is bounded in a neighborhood of each point
x ∈ E , then F is upper semicontinuous on E if and only if its
graph {(x, y) ∈ E ×Rn : y ∈ F (x)} is closed.

Definition 2. [36] In the following dynamical system:

u̇ = Φ(u), u(0) = u0 ∈ Rn, (1)

where Φ is a function from Rn → Rn, û is said to be an
equilibrium point of the above dynamical system if Φ(û) = 0.

Definition 3. [37] Let u(t) be a solution trajectory of a system
u̇ = F (t, u) , and let Ω∗ denotes the set of equilibrium points
of this equation. The solution trajectory is said to be globally
convergent to the set Ω∗ , if u∗ satisfies

lim
t→∞

dist (u(t),Ω∗) = 0, (2)

where dist (u(t),Ω∗) = infv∈Ω∗ ∥u− v∥. In particular, if the
set Ω∗ has only one point u∗ , then limt→∞ u(t) = u∗ , and
the system u̇ = F (t, u) is said to be globally asymptotically
stable at u∗ if the system is also stable at u∗ in the sense of
Lyapunov.



Definition 4. [38] A variational inequality VI(F,Ω) for F :
Ω ⊂ Rl → Rl is to find u∗ ∈ Ω such that

(u− u∗)
T
F (u∗) ≥ 0, ∀u ∈ Ω. (3)

In the special case where F is affine and Ω is the nonnegative
orthant, this problem reduces to the classical linear comple-
mentarity problem.

Definition 5. [39] A function ψ : Rm → Ω ⊂ Rm is said
to be Lipschitz continuous with constant L on a set Ω if, for
each pair of points u, v ∈ Ω

∥ψ(u)− ψ(v)∥ ≤ L∥u− v∥ (4)

where ∥ · ∥ denotes the l2 norm of Rm. ψ is said to be
locally Lipschitz continuous on Ω if each point of Ω has a
neighborhood D0 ⊂ Ω such that the above inequality holds
for each pair of points u, v ∈ D0.

Lemma 1. [40] (Chain Rule) If V (x) : Rn → R is regular
and x(t) : [0,+∞) → Rn is absolutely continuous on
any compact interval of [0,+∞), then x(t) and V (x(t)) :
[0,+∞) → R are differentiable, and

V̇ (x (t)) = ⟨ξ, ẋ (t)⟩ ∀ξ ∈ ∂V (x (t)) (5)

for a.e. t ∈ [0,+∞) .

Lemma 2. [41] If the Hessian matrix of f , ∇2f(x) is positive
definite, then the gradient of f is strictly monotone.

Lemma 3. [41] If a mapping G is continuously differentiable
on an open convex set C including Ω , then G is monotone
(strictly monotone and strongly monotone) on Ω if and only
if its Jacobian matrix ∇G(x) is positive semidefinite (positive
definite and uniformly positive definite) for all x ∈ Ω .

Lemma 4. [42] For any u ∈ Rn and v ≥ 0, the following
inequality holds:

(u− v+)T(u+ − v) ≥ 0, (6)

where (u)+ = [(u1)
+, . . . , (un)

+]T, (ui)
+ = max{ui, 0} ,

and i = 1, . . . , n.

Lemma 5. [43] (LaSalle invariant set theorem) Consider
the system of the form u̇ = F (t, u), with F continuous and
let V (u) be a scalar function with continuous first partial
derivatives. Assume that:
(1) for some l > 0, the region Ωl defined by V (u) < l is

bounded,
(2) V̇ (u) ≤ 0 for all u ∈ Ωl.
Let R be the set of all points within Ωl where V̇ (u) = 0, and
L be the largest invariant set in L. Then every solution u(t)
originating in Ωl tends to L as t→ ∞.

III. MAIN RESULTS

In this paper, we assume that uncertainty exists only in the
expected returns and there is no uncertainty in the covariance.
Let µi be the expected value of the return of the i th asset and
σij be the covariance of the return between the i th and j th

asset. Consider an asset i with a return over a period of time
t as rit(t = 1, 2, .., T ).

Under the premise that short is not allowed, the robust
mean-variance portfolio problem is defined as:

min
1

2
xTΣ̂x

s.t. µ̃x ≥ τ

eTx = 1

x ≥ 0

µ̃ ∈ U ,

(7)

where x ∈ Rn, Σ̂ is the variance matrix, τ is a given level
of expected portfolio return, e denotes a vector where each
element is one, µ̃ ∈ Rn is the coefficient of uncertainty
belonging to the uncertainty set U and

Σ̂ =


σ11 σ12 . . . σ1n
σ21 σ22 . . . σ2n

...
...

. . .
...

σn1 σn2 . . . σnn

 .
Suppose that µ0 is a nominal value vector of uncertain

parameters. Then the box uncertainty set is

U = {µ̃ : |µ̃i − µ0
i | ≤ δi, i = 1, 2, . . . , n.}, (8)

where δi is the perturbation of the uncertain parameters. In all
the discussion that follows, this paper analyzes the problem
based on the box uncertainty set U .

In problem (7), the uncertain parameters exist in the follow-
ing inequality constraints:

µ̃x ≥ τ. (9)

We can write the above equation (9) in equivalent component
form:

n∑
i=1

µ̃ixi ≥ τ, i = 1, 2, ..., n. (10)

Applying the idea of robust optimization to the above equa-
tion (10) and eliminating the uncertain parameters from the
equation, first we have

min
µ̃i∈U

n∑
i=1

µ̃ixi ≥ τ, i = 1, 2, ..., n. (11)

At this point, problem (7) turns out to be:

min
1

2

n∑
i=1

n∑
j=1

σijxixj

s.t. min
µ̃i∈U

n∑
i=1

µ̃ixi ≥ τ

n∑
i=1

xi = 1, i = 1, 2, ..., n

xi ≥ 0

µ̃i ∈ U .

(12)



As stated in [44], the aforementioned problem can be
transformed into a bi-level optimization problem. The lower-
level problem involving inequalities with uncertain terms can
be reformulated using Karush-Kuhn-Tucker (KKT) conditions.
This results in a bilevel optimization problem that can be
transformed into a single-level optimization problem to be
solved. The specific proof can be found in Theorem 3.1 of
[44]. Therefore, according to [44], the robust counterpart of
Problem (7) can be obtained as

min
1

2
xTΣ̂x

s.t. τ − (µ0 − δ)x ≤ 0

eTx− 1 = 0

x ≥ 0.

(13)

The Lagrangian function of problem (13) is defined as:

L(x, y, z) =
1

2
xTΣ̂x+yT[τ−(µ0−δ)x]−zT(eTx−1), (14)

where y and z are Lagrange multipliers.
Based on the above derivation, we can obtain the KKT

condition for problem (13):

∇xL = Σ̂x+ [−µ0 + δ]Ty − ez = 0

τ − (µ0 − δ)x ≤ 0

eTx− 1 = 0

yT
[
τ − (µ0 − δ)x

]
= 0

y ≥ 0

x ≥ 0

. (15)

Let w = (x, y, z)T and

F (w) =

Σ̂x+ [−µ0 + δ]Ty − ez
−(τ − (µ0 − δ)x)

eTx− 1

 , (16)

then w∗ = (x∗, y∗, z∗)T is a KKT point if w∗ is also a solution
of the following variational inequality problem:

(w − w∗)TF (w∗) ≥ 0,∀w ≥ 0. (17)

This can be equivalently written as

(x− x∗)T[Σ̂x∗ + (−µ0 + δ)Ty∗ − ez∗] ≥ 0,∀x ≥ 0

(y − y∗)T[−(τ − (µ0 − δ)x∗)] ≥ 0,∀y ≥ 0

τ − (µ0 − δ)x∗ ≤ 0

eTx∗ − 1 = 0

y∗T[τ − (µ0 − δ)x∗] = 0
(18)

By the well-known projection theorem [45], the KKT con-
ditions can be rewritten as the following projection equations:

[x− (Σ̂x+ (−µ0 + δ)Ty − ez)]+ − x = 0

[y + (τ − (µ0 − δ)x)]+ − y = 0

(eTx− 1) = 0

. (19)

That is, w∗ = (x∗, y∗, z∗) is a KKT point if and only if
w∗ = (x∗, y∗, z∗) satisfies equation (19).

The following recurrent neural network is proposed in this
paper for solving (7):

d

dt

 x
y
z

 = λ

 −x+ [x− (Σ̂x+ (−µ0 + δ)Ty − ez)]+
−y + [y + (τ − (µ0 − δ)x)]+

−(eTx− 1)

 ,

(20)
where [y]

+
= max {y, 0}.

IV. STABILITY ANALYSIS

In this section, we analyze the global convergence of the
proposed neural network (20). First, we give a definition for
use in later discussions.

Definition 6. w∗ = (x∗, y∗, z∗) is said to be an equilibrium
point of the neural network (20) if there exist y∗ and z∗ such
that 

0 = −x∗ + [x∗ − (Σ̂x∗ + (−µ0 + δ)Ty∗ − ez∗)]+

0 = −y∗ + [y∗ + (τ − (µ0 − δ)x∗)]+

0 = eTx∗ − 1

Theorem 1. The proposed neural network of (20) with the ini-
tial point w0 = (x0, y0, z0) is stable in the Lyapunov sense and
globally convergent to the equilibrium point w∗ = (x∗, y∗, z∗).

Proof. Without loss of generality, we assume λ = 1. We first
show that for any initial point w0 = (x0, y0, z0) with x0 ≥ 0
and y0 ≥ 0, the neural network (14) has a unique continuous
solution w(t) = (x(t), y(t), z(t)) and x(t) ≥ 0 and y(t) ≥ 0.

We know that [x−(Σ̂x+(−µ0+δ)Ty−ez)]+ and [y+(τ−
(µ0−δ)x)]+ are locally Lipschitz continuous. According to the
local existence and uniqueness theorem of ordinary differential
equations(ODEs) [46], it follows that there exists a unique
continuous solution w(t) of (20) for (t0, T ). We can get that
w(t) is bounded and extend the local existence for the solution
of (20) to the global existence.

According to the (20), we have the equivalent form of (20)
as follows:

dx

dt
+ x(t) = [x− (Σ̂x+ (−µ0 + δ)Ty − ez)]+

dy

dt
+ y(t) = [y + (τ − (µ0 − δ)x)]+

dz

dt
+ z(t) = (eTx− 1) + z

. (21)

Then

∫ t

t0

(
dx

dt
+ x(t))esds =

∫ t

t0

es[x− (Σ̂x+ (−µ0 + δ)Ty

− ez)]+ds∫ t

t0

(
dy

dt
+ y(t))esds =

∫ t

t0

es[y + (τ − (µ0 − δ)x)]+ds∫ t

t0

(
dz

dt
+ z(t))esds =

∫ t

t0

es((eTx− 1) + z)ds

(22)



On the left-hand term of (22), we get

∫ t

t0

(
dx

dt
+ x(t))esds =

∫ t

t0

es
d[esx(s)]

ds
= etx(t)− et0x(t0)∫ t

t0

(
dy

dt
+ y(t))esds =

∫ t

t0

es
d[esy(s)]

ds
= ety(t)− et0y(t0)∫ t

t0

(
dz

dt
+ z(t))esds =

∫ t

t0

es
d[esz(s)]

ds
= etz(t)− et0z(t0)

(23)
Then

x(t) = e−(t−t0)x(t0)

+ e−t

∫ t

t0

es[x− (Σ̂x+ (−µ0 + δ)Ty − ez)]+ds

y(t) = e−(t−t0)y(t0)

+ e−t

∫ t

t0

es[y + (τ − (µ0 − δ)x)]+ds

z(t) = e−(t−t0)z(t0)

+ e−t

∫ t

t0

es((eTx− 1) + z)ds

(24)

Since x(t0) ≥ 0 and [x− (Σ̂x+(−µ0 + δ)Ty− ez)]+ ≥ 0,
we have x(t) ≥ 0. Similarly, from y(t0) ≥ 0 and [y + (τ −
(µ0 − δ)x)]+, we have y(t) ≥ 0.

Then, the following Lyapunov function is defined:

V (w) = −G(w)TH(w)− 1

2
∥H(w)∥22 +

1

2
∥w − w∗∥22, (25)

where

G(w) =

Σ̂x+ (−µ0 + δ)Ty − ez
−(τ − (µ0 − δ)x)

−(eTx− 1)

 (26)

and

H(w) =

[x− (Σ̂x+ (−µ0 + δ)Ty − ez)]+ − x
[y + (τ − (µ0 − δ)x)]+ − y

−(eTx− 1)

 . (27)

We can get that

dV (w)

dw
= G(w)− (∇G(w)− I)H(w) + (w − w∗), (28)

where ∇G(w) denotes the Jacobian matrix of G and

∇G(w) =

 Σ̂T −µ0 + δ −eT
(µ0 − δ)T 0 0

e 0 0

 . (29)

According to the Chain Rule, we can obtain that

dV (w)

dt
=
dV (w)

dw

dw

dt
=[G(w)− (∇G(w)− I)H(w) + (w − w∗)]TH(w)

=[G(w) + (w − w∗)]TH(w)−H(w)T∇G(w)H(w)

+∥H(w)∥22
(30)

From [47], we have

[G(w) + (w − w∗)]T(−G(w)−H(w)) ≥ 0 (31)

and
G(w)TH(w) ≤ −∥H(w)∥22. (32)

Then, we have

[G(w) + (w − w∗)]TH(w) ≤ −G(w)T(w − w∗)− ∥H(w)∥22
(33)

and
−G(w)TH(w)− ∥H(w)∥22 ≥ 0. (34)

Therefore, we get

dV (w)

dt
=
dV (w)

dw

dw

dt
≤−G(w)T(w − w∗)− ∥H(w)∥22
−H(w)T∇G(w)H(w) + ∥H(w)∥22
=−G(w)T(w − w∗)−H(w)T∇G(w)H(w)

(35)

and
V (w) ≥ 1

2
∥w − w∗∥22. (36)

Since ∇G(w) ⪰ 0, we have

H(w)T∇G(w)H(w) ≥ 0 (37)

and
G(w)T(w − w∗) ≥ 0. (38)

Then
dV (w)

dt
≤ −G(w)T(w − w∗)−H(w)T∇G(w)H(w) ≤ 0.

(39)
From (36) and (39), we can get that V (w) ≥ 0 and

dV (w)

dt
≤ 0.

It can be shown that the proposed neural network (20) is stable
in the Lyapunov sense. Next we will show that the proposed
neural network (20) is globally convergent to the equilibrium
point w∗ = (x∗, y∗, z∗).

Then, for any initial point w0 ∈ Rn×Rm×Rl, the solution
trajectory {w(t)} is bounded. We next prove that dV (w)

dt = 0
if and only if dw

dt = 0. From dw
dt = 0 and Chain Rule, we can

get that
dV (w)

dt
=
dV (w)

dw

dw

dt
= 0. (40)

Let L is a largest invariant set and ŵ = (x̂, ŷ, ẑ) ∈ L.
According to the invariant set theorem invariant set theorem,
it follows that

dV (ŵ)

dt
= 0 (41)

and

G(ŵ)T(ŵ − w∗) +H(ŵ)T∇G(ŵ)H(ŵ) = 0 (42)

where

∇G(ŵ) =

 Σ̂T −µ0 + δ −eT
(µ0 − δ)T 0 0

e 0 0

 ⪰ 0. (43)



Since

(x∗ − x̂)T(Σ̂x̂+ (−µ0 + δ)Tŷ − eẑ) ≥ 0 (44)

and

(x̂− x∗)T(Σ̂x∗ + (−µ0 + δ)Ty∗ − ez∗)) ≥ 0, (45)

we have

(x̂− x∗)T[Σ̂x∗ + (−µ0 + δ)Ty∗ − ez∗−
(Σ̂x∗ + (−µ0 + δ)Ty∗ − ez∗)] ≥ 0.

(46)

Due to ∇G(w) ⪰ 0 and G(ŵ)T(ŵ − w∗) ≥ 0, we have

(G(w)−G(w∗))T(ŵ − w∗) = 0 (47)

and
H(ŵ)T∇G(ŵ)H(ŵ) = 0. (48)

Since

H(ŵ)T∇G(ŵ)H(ŵ)

=[(x̂− (Σ̂Tx̂+ (−µ0 + δ)Tŷ − eẑ))+ − x̂]Σ̂T

×[(x̂− (Σ̂Tx̂+ (−µ0 + δ)Tŷ − eẑ))+ − x̂] = 0,

(49)

we have

(x̂− (Σ̂Tx̂+ (−µ0 + δ)Tŷ − eẑ))+ − x̂ = 0. (50)

Thus, we get
dx

dt
= 0. (51)

Since (G(w)−G(ŵ))T(w − w∗) = 0, we get

(x̂− x∗)T∇(Σ̂Txs)(x̂− x∗) = 0, (52)

where xs = x̂+ s(x∗ − x̂). It follows that x̂ = x∗. Thus, we
can get dy

dt = 0 and dz
dt = 0. Therefore, dV (w)

dt = 0 if and only
if dw

dt = 0.
As a result, the proposed neural network (20) is globally

convergent to the equilibrium point w∗.

Theorem 2. The proposed neural network of (20) with the
initial point w0 = (x0, y0, z0) can converge to a solution
within a finite time.

Proof. According to Theorem 1, we know the proposed
neural network (20) is globally convergent to the equilibrium
point w∗ = (x∗, y∗, z∗).

Using the Lyapunov function V (w) defined in Theorem 1,
we have
dV (w)

dt
≤ −λG(w)T(w − w∗)− λH(w)T∇G(w)H(w) ≤ 0.

(53)
Then, for any point w0 satisfying{

G(w)T(w − w∗) = 0

H(w)T∇G(w)H(w) ≥ 0
(54)

w0 must be an equilibrium point of (20). In terms of
the given condition, the initial point w0 is not an equi-
librium point of (20). Then G(w0)

T(w0 − w∗) > 0 or
H(w0)

T∇G(w0)H(w0) > 0. Without loss of generality, we

assume that G(w0)
T(w0−w∗) > 0. Since w(t) is continuous,

G(w(t))T(w(t)− w∗) is also continuous.
Therefore, there exists τ > 0 and γ > 0 such that

G(w(t))T(w(t)− w∗) ≥ γ on [t0, τ ]. Note that

V (w) ≥ 1

2
∥w − w∗∥2.

Then, for all t ≥ τ , we have

∥w(t)− w∗∥22

≤2V (w(t)) ≤ 2V (w(t0))− 2λ

∫ t

t0

(w(s)− w∗)TG(w(s))ds

≤2V (w(t0))− 2λ

∫ τ

t0

G(w(τ))T(w(τ)− w∗)dτ

≤2V (w(t0))− 2λγ(τ − t0).
(55)

It can be seen that when λ = 2V (w(t0))/2λγ(τ − t0)

∥w(t)− w∗∥22 ≤ 2V (w(t0))− 2V (w(t0)) = 0, ∀t ≥ τ.
(56)

Thus, w(t) reaches w∗ for all t ≥ τ .

V. SIMULATION RESULTS

In this section, we demonstrate the effectiveness of the
proposed approach by using some stock market data to solve
the robust portfolio problem.

Example 1: Dow Jones Industrial Average (DJI), is one
of the oldest and well-known stock market indices in the
United States. It consists of 30 major U.S. companies that
are influential and representative of their respective industries.
The following example considers five DJI stocks, namely
American Express Company (AXP), General Electric (GE),
McDonald’s Co. (McD), Merck & Co. Inc. (MRK), and AT&T
Inc. (AT&T). The analysis is based on data from the year 2006.
The mean return and variance matrix data for the five stocks
are derived from [48].

We consider the following robust portfolio selection opti-
mization problem:

min
1

2
xTΣ̂x

s.t. µ̃ix ≥ τ, i = 1, . . . , 5

eTx = 1

x ≥ 0

µ̃i ∈ Ui.

Since the five stocks have different average returns and risks,
we design five box uncertainty sets corresponding to different
stocks:

U1 = {µ̃1 : |µ̃1 − µ0
1| ≤ δ1},

U2 = {µ̃2 : |µ̃2 − µ0
2| ≤ δ2},

U3 = {µ̃3 : |µ̃3 − µ0
3| ≤ δ3},

U4 = {µ̃4 : |µ̃4 − µ0
4| ≤ δ4},

U5 = {µ̃5 : |µ̃5 − µ0
5| ≤ δ5}.



where the perturbation of the uncertain parameter δ ∈ R5 is

δ =
[
0.0002 0.0001 0.0004 0.0005 0.0008

]T
.

By introducing the box uncertainty sets, we can eliminate
the above uncertain parameters, and according to the above
derivation, the corresponding robust counterpart is obtained:

min
1

2
xTΣ̂x

s.t. τ − (µ0
i − δi)x ≤ 0, i = 1, . . . , 5

eTx− 1 = 0

x ≥ 0.

Then we propose the following neural network:

d

dt

 x
y
z

 = λ

 −x+ [x− (Σ̂x+ (−µ0 + δ)Ty − ez)]+
−y + [y + (τ − (µ0 − δ)x)]+

−(eTx− 1)

 ,

where the mean return µ0 ∈ R5 is

µ0 =
[
0.0007 0.0004 0.0013 0.0014 0.0017

]T
.

and the variance matrix Σ̂ is

Σ̂ = 10−3 ×


0.0970 0.0361 0.0376 0.0283 0.0341
0.0361 0.0619 0.0257 0.0230 0.0229
0.0376 0.0257 0.1264 0.0321 0.0254
0.0283 0.0230 0.0321 0.1413 0.0436
0.0341 0.0229 0.0254 0.0436 0.1138

 .
At the same time, we set the value of the expected total

return τ = 0.0009 and the neural network parameter λ =
1000.

Fig. 1 shows that the outputs of the neural net-
work are convergent to a unique optimal solution x∗ =
(0, 0, 0.3648, 0.2520, 0.3832)T from any initial point x0. It
implies the selection of stocks 3 (McD), 4 (MRK), and 5
(AT&T) for the optimal investment of a robust portfolio
selection problem.

Example 2: In this example, we use the same model as in
Example 1 along with the mean return and variance matrices.
Then, we set different values for other parameters to further
validate the effectiveness of the proposed method.

The perturbation of the uncertain parameter δ is

δ =
[
0.0001 0.0003 0.0003 0.0003 0.0006

]T
.

We design five box uncertainty sets corresponding to dif-
ferent stocks:

U1 = {µ̃1 : |µ̃1 − 0.0007| ≤ 0.0001},
U2 = {µ̃2 : |µ̃2 − 0.0004| ≤ 0.0003},
U3 = {µ̃3 : |µ̃3 − 0.0013| ≤ 0.0003},
U4 = {µ̃4 : |µ̃4 − 0.0014| ≤ 0.0003},
U5 = {µ̃5 : |µ̃5 − 0.0017| ≤ 0.0006}.

At the same time, we set the value of the expected total
return τ = 0.0009 and the parameter of the neural network
λ = 1000.

(a) Transient behavior of x1

(b) Transient behavior of x2

(c) Transient behavior of x3

(d) Transient behavior of x4

(e) Transient behavior of x5

Fig. 1: Transient behaviors of the state variables of neural
network (20) in Example 1.

Fig. 2 shows that the outputs of the neural net-
work are convergent to a unique optimal solution x∗ =
(0, 0, 0, 0.4192, 0.5808)T from any initial point x0. It implies
the selection of 4 (MRK), and 5 (AT&T) for the optimal
investment of a robust portfolio selection problem.

Example 3: As in Example 2, we are also changing the
upper and lower bounds of the box uncertainty set here.

The perturbation of the uncertain parameter δ is

δ =
[
0.0003 0.0001 0.0004 0.0005 0.0006

]T
.

We design five box uncertainty sets corresponding to dif-
ferent stocks:

U1 = {µ̃1 : |µ̃1 − 0.0007| ≤ 0.0003},
U2 = {µ̃2 : |µ̃2 − 0.0004| ≤ 0.0001},
U3 = {µ̃3 : |µ̃3 − 0.0013| ≤ 0.0004},
U4 = {µ̃4 : |µ̃4 − 0.0014| ≤ 0.0005},
U5 = {µ̃5 : |µ̃5 − 0.0017| ≤ 0.0006}.

At the same time, we set the value of the expected total
return τ = 0.0009 and the parameter of the neural network
λ = 1000.



(a) Transient behavior of x1

(b) Transient behavior of x2

(c) Transient behavior of x3

(d) Transient behavior of x4

(e) Transient behavior of x5

Fig. 2: Transient behaviors of the state variables of neural
network (20) in Example 2.

Fig. 3 shows that the outputs of the neural network are
convergent to a unique optimal solution x∗ = (0, 0, 0, 0, 1)T

from any initial point x0. It implies the selection of 5 (AT&T)
for optimal investment of robust portfolio selection problem.

For these three examples, three different asset weight allo-
cations were obtained based on three different box uncertainty
sets, resulting in different risk values. See Table I for details.

TABLE I: Risk Values for Different Asset Allocations

Example Number Asset Weight Configuration Risk Value ( 1
2
xTΣ̂x)

1 [0, 0, 0.3648, 0.2520, 0.3832] 0.00000697
2 [0, 0, 0, 0.4192, 0.5808] 0.00004582
3 [0, 0, 0, 0, 1] 0.00001288

The results demonstrate that a diversified asset allocation
(Example 1) outperforms concentrated investment strategies
(Examples 2 and 3) with respect to risk control, exhibiting
a markedly lower value-at-risk (VaR). This phenomenon can
be attributed to the fact that diversification serves to mitigate
the sensitivity of the portfolio to the volatility of a single
asset. Conversely, a concentrated investment strategy may offer
the potential for higher expected returns in certain market
conditions. However, this approach involves an increased

(a) Transient behavior of x1

(b) Transient behavior of x2

(c) Transient behavior of x3

(d) Transient behavior of x4

(e) Transient behavior of x5

Fig. 3: Transient behaviors of the state variables of neural
network (20) in Example 3.

risk exposure in uncertain or extreme market environments.
The experimental results demonstrate that the neurodynamic
approach exhibits rapid convergence and efficiency in the
resolution of optimization problems.

Example 4: This example is based on the HDAX ((Deutsche
Borse) dataset, which is obtained from the work of [27]. The
data set is constructed based on the 49 adjusted weekly closing
prices of stocks from January 3, 2000, to December 29, 2017.

We randomly selected 20 stocks to demonstrate the effec-
tiveness of the neural network. In addition, we derived the
weekly returns and variance of the 20 stocks.

The mean return µ0 ∈ R20 is a vector and

µ0 = [0.1546 −0.0037 −0.0294 0.0656 0.0855
0.0605 −0.2256 0.1973 0.0293 −0.0250
0.0023 0.0667 −0.0110 0.0026 0.0661
0.0428 0.0222 0.0254 0.0406 −0.0256]T

Similarly, we can obtain the variance matrix Σ̂ ∈ R20×20 .

We consider the following robust portfolio selection opti-



mization problem:

min
1

2
xTΣ̂x

s.t. µ̃ix ≥ τ, i = 1, . . . , 20

eTx = 1

x ≥ 0

µ̃i ∈ Ui.

Since the 20 stocks have different average returns and risks,
we present 20 box uncertainty sets with respect to different
stocks:

U1 = {µ̃1 : |µ̃1 − µ0
1| ≤ δ1},

U2 = {µ̃2 : |µ̃2 − µ0
2| ≤ δ2},

· · · · · ·
U20 = {µ̃20 : |µ̃20 − µ0

20| ≤ δ20},
where the perturbation of the uncertain parameter δ ∈ R20 is
a vector and

δ = [0.1346 0.0017 0.0094 0.0456 0.0655
0.0405 0.2056 0.1773 0.0093 0.0050
0.0003 0.0467 0.0010 0.0006 0.0461
0.0228 0.0022 0.0054 0.0206 0.0056]T

By introducing the box uncertainty sets, we can eliminate
the above uncertain parameters, and according to the above
derivation, the corresponding robust counterpart is obtained:

min
1

2
xTΣ̂x

s.t. τ − (µ0
i − δi)x ≤ 0, i = 1, . . . , 20

eTx− 1 = 0

x ≥ 0.

Then we propose the following neural network:

d

dt

 x
y
z

 = λ

 −x+ [x− (Σ̂x+ (−µ0 + δ)Ty − ez)]+
−y + [y + (τ − (µ0 − δ)x)]+

−(eTx− 1)


where [y]

+
= max {y, 0}. At the same time, we set the value

of the expected total return τ = 0.002 and the parameter of
the neural network λ = 0.1.

Fig. 4 shows that the outputs of the neural
network are convergent to a unique optimal solution
x∗ =

[
3.166× 10−46, 3.52× 10−46, 0.005946, 3.55× 10−46,

2.458× 10−46, 3.791× 10−47, 1.082× 10−46, 2.125× 10−46,
3.721× 10−46, 3.75× 10−46, 0.6884, 3.772× 10−46, 0.1305,
0.1469, 6.643× 10−45, 1.099× 10−29, 9.356× 10−45,
3.559× 10−46, 6.407× 10−42, 0.02816 ] ,

from any initial point x0. At the same time, the objective
function can be calculated as 1

2x
TΣ̂x = 0.0229. The solution

shows the selection of the 3rd, 11th, 13th, 14th, and 20th
stocks with weights [0.005946, 0.6884, 0.1305, 0.1469,
0.02816].

The simulation results show that the proposed neural net-
work can adapt to market volatility and find effective portfo-
lios. It also provides reliable investment decisions on global
stock markets. The results demonstrate the effectiveness of the
proposed neural network.

Fig. 4: Transient behaviors of the state variables of neural
network (20) in Example 4.

VI. CONCLUSION

In this paper, we propose a neural network for solving
robust portfolio selection optimization problems under the box
uncertainty set. By eliminating the uncertainties, we obtain the
robust counterpart model, and the set of equilibrium points
of the proposed neural network is equivalent to the set of
KKT optimal points of the robust counterpart model. Each
equilibrium point of the proposed neural network is stable in
the Lyapunov sense, and the state of the proposed neural net-
work converges to an equilibrium point from any initial point.
Simulation results demonstrate the global convergence and
effectiveness of the proposed neural network. Further research
is to design new neural networks to solve robust portfolio
selection optimization problems based on different uncertainty
sets and apply them to solve more practical problems.
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