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ABSTRACT

Although the self-supervised pre-training of transformer models has resulted in
the revolutionizing of natural language processing (NLP) applications and the
achievement of state-of-the-art results with regard to various benchmarks, this pro-
cess is still vulnerable to small and imperceptible permutations originating from
legitimate inputs. Intuitively, the representations should be similar in the feature
space with subtle input permutations, while large variations occur with different
meanings. This motivates us to investigate the learning of robust textual repre-
sentation in a contrastive manner. However, it is non-trivial to obtain opposing
semantic instances for textual samples. In this study, we propose a disentangled
contrastive learning method that separately optimizes the uniformity and align-
ment of representations without negative sampling. Specifically, we introduce the
concept of momentum representation consistency to align features and leverage
power normalization while conforming the uniformity. Our experimental results
for the NLP benchmarks demonstrate that our approach can obtain better results
compared with the baselines, as well as achieve promising improvements with
invariance tests and adversarial attacks.

1 INTRODUCTION

The self-supervised pre-training of transformer models has revolutionized natural language process-
ing (NLP) applications. Such pre-training with language modeling objectives provides a useful
initial point for parameters that generalize well to new tasks with fine-tuning. However, there is
a significant gap between task performance and model generalizability. Previous approaches have
indicated that neural models suffer from poor robustness when encountering randomly permuted
contexts Ribeiro et al.|(2020) and adversarial examples Jin et al.| (2019).

To address this issue, several studies have attempted to leverage data augmentation or adversarial
training into pre-trained language models (LMs) Wei & Zou| (2019); Jin et al,| (2019); Ng et al.
(2020), which has indicated promising directions for the improvement of robust textual representa-
tion learning. Such methods generally augment textual samples with synonym permutations or back
translation and fine-tune downstream tasks on those augmented datasets. Representations learned
from instance augmentation approaches have demonstrated expressive power and contributed to the
performance improvement of downstream tasks in robust settings. However, the previous augmenta-
tion approaches mainly focus on the supervised setting and neglect large amounts of unlabeled data.
Moreover, it is still not well understood whether a robust representation has been achieved or if the
leveraging of more training samples have contributed to the model robustness.

Specifically, a robust representation should be similar in the feature space with subtle permutations,
while large variations occur with different semantic meanings. This motivates us to investigate ro-
bust textual representation in a contrastive manner. It is intuitive to utilize data augmentation to
generate positive and negative instances for learning robust textual representation via auxiliary con-
trastive objects. However, it is non-trivial to obtain opposite semantic instances for textual samples.
For example, given the sentence, “Obama was born in Honululu,” we are able to retrieve a sentence
such as, “Obama was living in Honululu,” or, “Obama was born in Hawaii.” There is no guarantee
that these randomly retrieved sentences will have negative semantic meanings that contradict the
original sample.
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In this study, we propose a novel disentangled contrastive learning (DCL) method for learning ro-
bust textual representations. Specifically, we disentangle the contrastive object using two subtasks:
feature alignment and feature uniformity |Wang & Isolal (2020). We introduce a unified model ar-
chitecture to optimize these two sub-tasks jointly. As one component of this system, we introduce
momentum representation consistency to align augmented and original representations, which ex-
plicitly shortens the distance between similar semantic features that contribute to feature alignment.
As another component of this system, we leverage power normalization to enforce the unit quadratic
mean for the activations, by which the scattering features within the same batch implicitly contribute
to the feature uniformity. Our DCL approach is a unified, unsupervised, and model-agnostic ap-
proach, and therefore it is orthogonal to existing approaches. We conduct numerous experiments
on NLP benchmarks, which demonstrate the effectiveness of this approach in normal and robust
settings. The contributions of this study can be summarized as follows:

e We investigate robust textual representation learning problems and introduce a disentangled
contrastive learning approach, which is unsupervised and model-agnostic.

e We introduce a unified model architecture to optimize the sub-tasks of feature alignment
and uniformity, as well as providing theoretical intuitions.

e Extensive experimental results related to NLP benchmarks demonstrate the effectiveness of
our method in the robust setting; we performed invariance tests and adversarial attacks, and
verify that our approach can enhance state-of-the-art pre-trained language model methods.

2 RELATED WORK

Recently, studies have shown that pre-trained models (PTMs) Devlin et al.|(2019a); Liu et al.[(2019)
on the large corpus are beneficial for downstream NLP tasks, such as in GLUE [Wang et al.| (2018),
SQuAD Rajpurkar et al.| (2016b), and SNLI Bowman et al.| (2015). The application scheme of
these systems is to fine-tune the pre-trained model using the limited labeled data of specific target
tasks. Since training distributions often do not cover all of the test distributions, we would like a
supervised classifier or model to perform well on. Therefore, a key challenge in NLP is learning
robust textual representations. Previous studies have explored the use of data augmentation and
adversarial training to improve the robustness of pre-trained language models. |Wei & Zou| (2019)
proposed easy data augmentation techniques for boosting performance on text classification tasks. |[Li
& Qiu| (2020) introduced a novel text adversarial training with token-level perturbation to improve
the robustness of pre-trained language models. However, supervised instance-level augmentation
approaches ignore those unlabeled data and do not guarantee the occurrence of real robustness in
the feature space.

Our work is motivated by contrastive learning (Saunshi et al., [2019} |Oord et al., [2018)), which aims
at maximizing the similarity between the encoded query ¢ and its matched key kT, while distancing
randomly sampled keys {kq , k1 , k5 , ...}. By measuring similarity with a score function s(gq, k), a
form of contrastive loss function is considered as follows:
. exp(s(g, k7))

exp(s(q, k+)) + 2, exp(s(a, k)’

where kT and k™ are positive and negative instances, respectively. The score function s(q, k) is

(D

Lcontrast = -

usually implemented with the cosine similarity qu\rﬁ' q and k are often encoded by a learnable

neural encoder (e.g., BERT (Devlin et all 2019b)). Contrastive learning have increasingly attracted
attention, which is beneficial for unsupervised or self-supervised learning from computer vision (Wu
et al., [2018;|Oord et al., 2018 |Ye et al., [2019; Tian et al., 2019; He et al., 2019} |Chen et al., |2020b)
to natural language processing (Mikolov et al., 2013 [Mnih & Kavukcuoglu, [2013; Devlin et al.,
2019b; [Clark et al.l 2020). |Chi et al. (2020) formulate cross-lingual language model pre-training
as maximizing mutual information between multilingual-multi-granularity texts. |Clark et al.|(2020)
utilized a discriminator to predict whether a token is replaced by a generator given its surrounding
context. [Iter et al.| (2020) proposed to pre-train language models with contrastive sentence objec-
tives to predict the surrounding sentences given an anchor sentence. (Wei et al.| (2020) proposed to
encourage parallel cross-lingual sentences to obtain an identical semantic representation and distin-
guish whether a specific word is contained within these sentences. To the best of our knowledge,
this is the first study to apply contrastive learning to robust textual representation learning.
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3 PRELIMINARIES ON LEARNING ROBUST TEXTUAL REPRESENTATIONS

Definition 1.Robust textual representation indicates that the representation is vulnerable to small
and imperceptible permutations originating from legitimate inputs. Formally, we have the following:

9 (X +2) = g(X), and Sim (f(X +z2), /(X)) > ¢, 2

where z refers to the random or adversarial permutation of the input text and g(.) takes input from
2 and outputs a valid probability distribution for tasks. f(.) is the feature encoder, such as BERT.
We are interested in deriving methods for pre-training representations that provide guarantees for
the movement of inputs such that they are robust to permutations. Therefore, a robust representation
should be similar in the feature space with subtle permutations, while large variations are observed
for different semantic meanings. Such constraints are related to the well-known contrastive learning
Arora et al.|(2019);|Chen et al.|(2020a)) schema as follows:

Remark. Robust representation is closely related to regularizing the feature space with the following

constraints:
m

Leontrast = p (O IF(X) = F(X +2)| = > |F(X) = F(X)]) (3)

1

where m and n are the number of positive and negative instances, respectively, regarding the original
input, X, X + 2 and X" are the positive and negative instances, respectively. Note that we can obtain
X + 2z via off-the-shelf tools such as data augmentation or back-translation. However, it is non-trivial
to obtain negative instances for textual samples. Previous approaches (Chen et al.| (2020a)); |Giorgi
et al.| (2020); Fang & Xie| (2020); [Chi et al.| (2020); [Wei et al.| (2020) regard random sampling of
the remaining instances from the corpus as negative instances; however, there is no guarantee that
those random instances are semantically irrelevant. Recent semantic-based information retrieval
approaches [Xiong et al.|(2020) can obtain numerous similar semantic sentences via an approximate
nearest neighbor |Liu et al.| (2005)), which further indicates that negative sampling for sentences may
result in noise.

In this study, inspired by the approach utilized by [Wang & Isolal(2020), we disentangle the contrast
loss with the two following properties:
o Alignment: two samples forming a positive pair should be mapped to nearby features, and

therefore be (mostly) invariant to unneeded noise factors.

e Uniformity: feature vectors should have an approximately uniform distribution on the unit
hypersphere, thereby preserving as much information of the data as possible.
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The alignment loss can be defined straightforwardly as follows:

Laign (f;a) 2 —  E  [[If(x) = fW)l5], a>0 (5)

(2,Y)~Ppos

Where f(.) is the feature encoder and x,y are positive instance pairs. The uniformity metric refers to
optimizing this metric should converge to a uniform distribution. Note that feature uniformity should
be empirically reasonable with a finite number of points and asymptotically correct. Therefore, the
loss can be defined with the radial basis function (RBF) kernel G; : 8¢ x § — R, [Wang & Isola
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Figure 1: Disentangled contrastive learning for robust textual representations.

(2020). Formally, we have:

Luniform (f7 t) £ 10g E [Gt (U, ’U)]
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where t is a fixed parameter.

4 DISENTANGLED CONTRASTIVE LEARNING

In this section, we present a preliminary study on how to learn robust textual representation via
disentangled contrastive learning, as represented in Figure [T} Because the aforementioned analysis
shows that contrastive learning can be disentangled with feature alignment and uniformity, it is
intuitive to optimize the representation learning method with separated objects, thereby learning
without negative textual instances.

4.1 FEATURE ALIGNMENT WITH MOMENTUM REPRESENTATION CONSISTENCY

There are multiple ways to align a textual representation. We utilize two transformers with a con-
sistent momentum representation to explicitly guarantee feature alignment |Grill et al.| (2020). The
two networks are defined by a set of weights 6 and £. We use the exponential moving average of the
parameters 6 to get £. Formally, we have:

E—T1E+(1—7)0 @)

Given a sentence X and its augmentation X’ (e.g, via data augmentation) from the first original
network, we may obtain output representations ¢ = fo(X) and p £ f5(X'). Note that previous
works [Chen et al.| (2020b); [Grill et al.| (2020)) indicates that an projection p in feature space improve
the performance. We then leverage a projection function g(pg) and ¢5-normalize both g(pg) and g¢
to g(pe) = g/llg(pe)ll2 and G¢ = ge/||ge||2. respectively. We leverage the mean squared loss as
follows:

(9 (g0)  Pe)

. _\9\@),Pe) 8
lg (go)ll; - Ilpell ()

— — 12
Latign £ (|9 (q) — Dell; =2 — 2

Additionally, we make the losses symmetrical £,jisn by feeding X to the augmented network and
X', separately. We optimize Latign + Lalign With respect to 6 only, but not £, via the stop-gradient.
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4.2 FEATURE UNIFORMITY WITH POWER NORMALIZATION

To ensure that feature vectors should have an approximately uniform distribution, we can directly
optimize the Eq. [6| However, different from computer vision, in the original loss of BRET Devlin
et al|(2019a)), we have already utilized the next sentence prediction loss. Such a contrastive object
has explicitly made the sentence representation f(.) scattered in the feature space; thus, the model
may quickly collapse without learning. Inspired by |Santurkar et al.|(2018), we argue that batch nor-
malization can identify the common-mode between examples of a mini-batch and removes it using
the other representations in the mini-batch as implicit negative examples. We can, therefore, view
batch normalization as a novel method of implementing feature uniformity on embedded represen-
tations. Because vanilla batch normalization will lead to significant performance degradation when
naively used in NLP, we leverage an enhanced power normalization [Shen et al.|(2020) to guarantee
feature uniformity. Specifically, we leverage the unit quadratic mean rather than the mean/variance
of running statistics with an approximate backpropagation method to compute the corresponding
gradient. Formally, we have the following:

— xX®
® —
X0 = Pp(=1)
YO =yoX® 453 )

() = () w0 (- (50)')

Note that we compute the gradient of the loss regarding the quadratic mean of the batch. In other
words, we utilize the running statistics to conduct backpropagation, thus, resulting in bounded gra-
dients, which is necessary for convergence in NLP (see proofs in|Shen et al.|(2020)).

4.3 IMPLEMENTATION DETAILS

We leverage synonyms from WordNet categories to conduct data augmentation for computation ef-
ficiency. We combine all the momentum representation consistency and power normalization results
in a unified architecture with the mask language model object. We leverage the same architecture
of the BERT-base Devlin et al.| (2019a). We first pre-train the model in a large-scale corpus unsu-
pervisedly (e.g., the same corpus and training steps with BERT) and then fine-tune the model using
task datasets.

5 EXPERIMENT

We evaluated our method using NLP benchmarks, including tasks of text classification, natural lan-
guage inference, machine reading comprehension, and the GLUE series of language understanding
tasks. We conduct experiments on the normal test set as well as robust settings (e.g., invariance tests
and adversarial attacks). The code and datasets are available atlanonymous.

5.1 DATASETS AND SETTING

We conducted experiments on three benchmarks: GLUE (Wang et al., 2019), SQuAD(Rajpurkar
et al.,[2016a)), and SNLI Bowman et al.|(2015)).

GLUE Wang et al.[{(2019)) is an NLP benchmark aimed at evaluating the performance of downstream
tasks of the pre-trained models. Notably, we leverage nine tasks in GLUE, including CoLA, RTE,
MRPC, STS, SST, QNLI, QQP, and MNLI-m/mm. We follow the same setup as the original BERT
for single sentence and sentence pair classification tasks. We leverage a multi-layer perception with
a softmax layer to obtain the predictions.

SQuAD is a reading comprehension dataset constructed from Wikipedia articles. We report results
on SQuAD 1.1. Here also, we follow the same setup as the original BERT model and predict an
answer span—the start and end indices of the correct answer in the correct context.

SNLI is a collection of 570k human-written English sentence pairs that have been manually labeled
for balanced classification with entailment, contradiction, and neutral labels, thereby supporting the
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task of natural language inference (NLI). We add a linear transformation and a softmax layer to
predict the correct label of NLI.

To evaluate the robustness of our approach, we also conduct invariance testing with CheckLis
Ribeiro et al.[(2020) and adversarial attacksﬂ To generate label-preserving perturbations, we used
WordNet categories (e.g., synonyms and antonyms). We selected context-appropriate synonyms as
permutation candidates. To generate adversarial samples, we leverage a probability-weighted word
saliency (PWWS) Ren et al.|(2019) method based on synonym replacement. We manually evaluate
the quality of the generated instances. We also conduct experiments that apply data augmentation
and adversarial training to the BERT model.

We utilize PyTorch [Paszke et al.[ (2019) to implement our model. We use Adam optimizer with a
cosine decay learning rate schedule. We set the initial learning rate as le-5. We use a batch size
of 32 over eight Nvidia 1080Ti GPUs. With this setup, training takes approximately one month.
We leverage the grid search to find optimal hyper-parameters in the development set. We ran each
experiment five times and calculated the average performance.

5.2 RESULTS AND ANALYSIS

Table 1: Summary of results on GLUE.

MNLI GLUE
Model COLA SST-2. MRPC QQP v\ QNLI RTE | “/C.
BERT 56.8 92.3 89.7 89.6 84.6/85.2 915 69.3 82.3
NORMAL BERT+DA 58.6 93.2 86.5 86.7 84.2/84.4 91.1 68.9 81.7
DCL 60.9 93.0 89.7 90.0 84.7/84.6 91.7 69.7 83.0
BERT 46.4 91.8 88.1 84.9 81.6/82.2 89.2 67.1 78.9
RoBUST BERT+DA | 53.8 92.9 85.6 85.5 83.1/83.4 90.7 66.3 80.1
DCL 48.4 92.4 86.0 85.5 82.5/82.77 89.7 68.8 79.5
Main Results

From Table [1] and 2} we can observe the fol-

lowing: 1) Vanilla BERT achieves poor per- Table 2: Summary of results on SQuAD 1.1.

formance in the robust set on both GLUE and Model ‘ F1 EM
SQUAD, which indicates that the previous fine- BERT 885 808
tuning approach cannot obtain a robust textual NORMAL BERT+DA | 882 804
representation. This will lead to performance DCL 88.4 81.0
decay with permutations. 2) With data augmen-

tation, BERT can obtain improved performance BERT 86.7 77.8
in the robust set; however, a slight performance RoBUsT ~ BERT+DA | 87.8 79.9

decay is observed in the original test set. We DCL 86.8 78.1
argue that data augmentation can obtain better

performance by fitting to task-specific data distribution; there is no guarantee that more data will
result in robust textual representations. 3) Our DCL approach achieves improved performance in
both the original test set and robust set compared with vanilla BERT. Note that our DCL is an
unsupervised approach, and we leverage the same training instances with BERT. The performance
improvements indicate that our approach can obtain more robust textual representations that enhance
the performance of the system.

Adversarial Attack Results

From Table [3| we can observe the following: 1) Vanilla BERT achieves a poor performance with
adversarial attacks; BERT with adversarial training can obtain a good performance. However, we
notice that there exists a performance decay for adversarial training in the original test set. Note that
adversarial training methods would lead to standard performance degradation Wen et al.[{(2019), i.e.,
the degradation of natural examples. 2) Our DCL approach achieves improved performance in the

"nttps://github.com/marcotcr/checklist.git
https://github.com/thunlp/OpenAttack
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Table 3: Summary of results on CoLA and SNLI.

Model | CoLA | SNLI

BERT 56.8 91.0

NORMAL BERT+Adv | 55.0 91.1
DCL 59.0 91.0

BERT 47.7 90.1

ADVERSARIAL BERT+Adv | 55.1 91.1
DCL 48.9 90.5

test set with and without an adversarial attack, which further demonstrates that our approach can
obtain robust textual representations that are stable for different types of permutations.

Quantitative Analysis of Textual Representation

As we hypothesize that power normalization
can implicitly contribute to feature uniformity,
we conduct further experiments to analyze the
effects of normalization |Abe & Josh. Specif- e
ically, we random sample instances and lever- Z= random
age the cosine similarity of the original input
projection vectors and the augmented projec- " ’7‘ 0.9824 0.9842
tion vectors. We calculate the average cosine
similarity between positive instances (in blue)
and random instances (in red) with different
strategies, including without normalization (No
Norm), batch normalization (BN), and power
normalization (DCL).

33 0.7920 0.7904
/ > ~

Average Cosine Similarity
N\

From Figure [2] we observe that with no nor-
malization in p or g, the feature space is aligned
for both positive and negative instances, which
shows that there exists a feature collapse for
textual representation learning. Considering
DCL training (i.e., with power normalization),
we notice that the textual representations are
relatively more similar between the positive in-
stances (0.9842) than random (negative) ones Figure 2: Cosine similarity of the original input
(0.7904); thus, we can obtain different vectors. projection vectors with the augmented input pro-
jection vectors.

NN
NN
MM
N

\

No Norm B

Next, we give an intuitive explanation of pre-
venting feature collapse for textual representa-
tion learning. Given an input instance without
negative examples, the model may always output the projection vector z with [0,1, 0,0, ...]. Thus,
the model can achieve a perfect prediction through learning a simple identity function, which, in
other words, collapse in the feature space. With normalization, the output vector z cannot obtain
such singular values. Since the outputs will be redistributed regarding the learned mean and standard
deviation, we can implicitly learn robust textual representations.

Qualitative Analysis of Textual Representation

We randomly selected instances to visualize a sentence with T-SNE Maaten & Hinton| (2008) to
better understand the behaviors of textual representations. The different color refers to the differ-
ent sentence pairs for both random permutation and adversarial attack settings. From Figure [3}
it may be observed that our approach can obtain a relatively similar semantic representation with
permutations in both invariant tests and adversarial attack settings. Note that we explicitly align
the projection of the textual representation with a random permutation, thereby encouraging similar
semantic instances to have relatively similar representations.
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(a) BERT(Random) (b) DCL(Random) (c) BERT(Adv) (d) DCL(Adv)

Figure 3: T-SNE visualizations of sentence embeddings.

5.3 DISCUSSION

Robust Representation with Contrastive Learning

Conventional approaches usually try to leverage instance-level augmentation aimed at achieving
good performance on a robust set. However, there is no guarantee that robust textual representa-
tions will be obtained. Intuitively, directly aligning the representation of input tokens with slight
permutations may contribute to robust representations. However, without any negative constraints,
the model will easily collapse with a sub-optimal solution. In this study, we observe that power
normalization identifies this common-mode between examples. In other words, it can remove those
trivial samples by using the other representations in the batch as implicit negative instances. We can,
therefore, view normalization as an implicitly contrastive learning method.

Limitations

This work is not without limitations. We only consider the synonym replacement as a data aug-
mentation strategy due to the efficiency of processing a huge amount of data. Other strong data
augmentation methods can also be leveraged. Another issue is representation alignment, as there
are lots of augmentations. We cannot enumerate all positive pairs for alignments; thus, there is still
some room for designing more efficient feature aligning algorithms. Moreover, as we utilize the
square root loss, which is absolutely a Euclidean distance. Recent approaches Meng et al.[ (2019;
2020) indicates that Euclidean space may be sub-optimal for textual representations. Lastly, with
power normalization, the network outputs are no longer learning a pure function of the correspond-
ing inputs. Thus, it may be interesting to develop methods avoiding the use of power normalization
during training. Moreover, it may be promising to investigate alternative methods, such as weight
standardization with group normalization for textual representation learning.

6 CONCLUSIONS AND FUTURE WORK

We investigated robust textual representation learning and proposed a disentangled contrastive learn-
ing approach. We introduced feature alignment with a momentum representation consistency and
feature uniformity with power normalization. We empirically observed that our approach could
obtain an improved performance compared with baselines in NLP benchmarks and achieve a ro-
bust performance with invariant tests and adversarial attacks. We also performed quantitative and
qualitative analyses for learned textual representations, which indicated that our approach mitigates
model collapse and can learn robust textual representations. This may provide a basis for future
works concerning robust representation learning. Our approach is model-agnostic; therefore, it can
be applied to any pre-trained language models.

Further research on robust textual representation learning may be conducted to investigate such
topics as: 1) exploiting multi-task learning for robust representations; 2) investigating the essence
of model robustness and proposing more efficient approaches to learn robust representations; and
3) incorporating more complex views (e.g., higher-order or skip n-grams, syntactic and semantic
parses, etc.) and designing appropriate self-supervised tasks.
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