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ABSTRACT

Building deep reinforcement learning (RL) agents that find a good policy with
few samples has proven notoriously challenging. To achieve sample efficiency,
recent work has explored updating neural networks with large numbers of gradi-
ent steps for every new sample. While such high update-to-data (UTD) ratios have
shown strong empirical performance, they also introduce instability to the training
process. Previous approaches need to rely on periodic neural network parameter
resets to address this instability, but restarting the training process is infeasible
in many real-world applications and requires tuning the resetting interval. In this
paper, we focus on one of the core difficulties of stable training with limited sam-
ples: the inability of learned value functions to generalize to unobserved on-policy
actions. We mitigate this issue directly by augmenting the off-policy RL training
process with a small amount of data generated from a learned world model. Our
method, Model-Augmented Data for Temporal Difference learning (MAD-TD)
uses small amounts of generated data to stabilize high UTD training and achieve
competitive performance on the most challenging tasks in the DeepMind con-
trol suite. Our experiments further highlight the importance of employing a good
model to generate data, MAD-TD’s ability to combat value overestimation, and
its practical stability gains for continued learning.

1 INTRODUCTION

Instead of solely relying on data gathered by a target policy, off-policy reinforcement learning (RL)
aims to leverage experience gathered by past policies (Sutton & Barto, 2018) to fit a value function
for the target policy. Ideally, training over many iterations should help extract important information
from past data. However, recent work has shown that simply increasing the number of gradient
update steps, the replay ratio or update-to-data (UTD) ratio, can lead to highly unstable learn-
ing (Nikishin et al., 2022; D’Oro et al., 2023; Hussing et al., 2024; Nauman et al., 2024b).

Prior work has stabilized the learning by using double Q minimization to reduce overestimation
(Fujimoto et al., 2018), training ensemble methods to improve value estimation (Chen et al., 2020;
Hiraoka et al., 2022), introducing architectural regularization (Hussing et al., 2024; Nauman et al.,
2024b), or resetting networks periodically throughout the learning process (D’Oro et al., 2023;
Schwarzer et al., 2023; Nauman et al., 2024b). However, while useful, pessimistic underestima-
tion and architectural regularization are insufficient by themselves to combat the problem (Hussing
et al., 2024), and so most methods resort to either network resets or ensembles. Critic ensembles can
be expensive to train, and resetting has several important limitations: in real systems, re-executing a
random policy can be expensive or unsafe, the resetting interval needs to be carefully tuned (Hussing
et al., 2024), and when storing a full reset buffer is infeasible, resetting loses important information.

We narrow in on a key issue contributing to unstable training: wrong value function estimation on
unobserved on-policy actions (Thrun & Schwartz, 1993; Tsitsiklis & Van Roy, 1996). Off-policy
RL uses the values of states sampled under old policies with actions from the target policy to update
the value function. However, these state-action pairs themselves are not in the replay buffer and
hence their value estimate is not directly improved by training. Consequently, a learned function
which achieves low error on seen data is not guaranteed to generalize well to actions that differ from
past actions. This problem is related to overfitting (Li et al., 2023) and contributes to overestimation
(Thrun & Schwartz, 1993; Hasselt, 2010; Fujimoto et al., 2018). However, overfitting assumes that
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train and test set are drawn from the same distribution, while we focus on the distribution shift
between data collection and target policy. Previous work has investigated the difficulty of off-policy
learning due to this shift (Maei et al., 2009; Sutton et al., 2016; Hasselt, 2010; Fujimoto et al., 2018),
yet there are no tractable mitigation strategies that work well in the high UTD regime with deep RL.

To corroborate our hypothesis that generalization to unobserved actions is a major obstacle for train-
ing at high UTDs, we examine the behavior of value functions on on-policy transitions. Our ex-
periments reveal that value functions generalize significantly worse to unobserved on-policy action
transitions than to validation data from the same distribution as the training set. Building on this, we
propose to improve on-policy value estimation by using model-generated on-policy data.

Previous investigations into model-based deep RL have focused on learning values fully in model
roll-outs (Buckman et al., 2018; Janner et al., 2019; Hafner et al., 2020; Ghugare et al., 2023) and
the associated challenges (Zhao et al., 2023; Hansen et al., 2024). In contrast, we show that mixing
a small amount of model-generated on-policy data with real off-policy replay data is sufficient to
achieve stable learning in the high UTD regime. Our method, Model-Augmented Data for Temporal
Difference learning(MAD-TD), mitigates the generalization issues of the value function in the hard-
est tasks of the DeepMind control (DMC) benchmark (Tunyasuvunakool et al., 2020b) and achieves
strong and stable high UTD learning without resetting or redundant ensemble learning.

The main contributions of this work are twofold: First, we empirically show the existence of mis-
generalization from off-policy value estimation to on-policy predictions. We connect this issue to
the challenge of stable learning with high update ratios and highlight how increasing the update
ratio increases Q function overestimation. Second, we provide a new method called MAD-TD that
improves the value function accuracy on unobserved on-policy actions with model-generated data
and stabilizes training at high update ratios. This method proves to have equivalent performance to
or outperform previous strong baselines.

2 MATHEMATICAL BACKGROUND

We consider a standard RL setting, the discounted infinite-horizon MDP (X ,A,P, r, ρ, γ) with state
space X , action space A, a transition kernel P : X×A → M(X ), a reward function r : X×A → R,
starting state distribution ρ ∈ M(X ) and a discount factor γ ∈ [0, 1) (Puterman, 1994; Sutton &
Barto, 2018). For a space Y we use M(Y ) to denote the set of probability measures over the space.
Our goal is to learn a policy π : X → M(A) that maximizes the discounted sum of future rewards

π∗ ∈ argmax
π∈Π

∞∑
t=0

EPπ [γtr(xt, at)|x0 ∼ ρ] , (1)

where actions are sampled according to the policy and new states according to the transition kernel.

2.1 OFF-POLICY VALUE FUNCTION LEARNING

As an intermediate objective, many algorithms attempt to simplify the direct policy optimization
problem by first learning a policy value function Qπ , which is defined via a recursive equation

Qπ(x, a) = r(x, a) + γEx′∼P(·|x,a),a′∼π(·|x′) [Q
π(x′, a′)] . (2)

The policy can then be incrementally improved by picking πk+1(x) ∈ argmaxa∈A Qπk(x, a) at
every time step k. In practice, Qπ and π are often parameterized as neural networks and learned
from data. To increase the sample efficiency of the algorithm, it is common to store all collected
interaction data independent of the collection policy in a replay buffer D = {(xt, at, rt, xt+1)

T
t=0}.

As the Q-value only depends on the policy via the policy evaluation at the next state, it is possible
to estimate Q-values from past interaction data by minimizing the fitted Q-learning objective

L
(
Q̂
∣∣∣D, π

)
=

1

|D|
T∑

t=0

∣∣∣∣Q̂(xt, at)−
[
rt + γQ̂ (xt+1, a

′)
]
sg

∣∣∣∣2 with a′ ∼ π(·|xt+1) . (3)

Here [·]sg denotes the stop gradient operation introduced to avoid the double sampling bias and all
data contained in the replay buffer is colored blue. However, the Q value at the next state xt+1 is
evaluated with an action a′ that is not guaranteed to be in the replay memory, as the target policy
can be different from the policy used to gather the sample. This means that we require the Q value
to generalize to potentially unseen actions. We provide a visualization of this issue in Figure 1.
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Figure 1: A visualization of the core
issue we investigate. Even if a replay
buffer contains good coverage for two
policies (πold and πnew) starting from
ρ = x0, this does not guarantee that
it contains a transition for executing
an action under the new policy on a
state visited under the old. However,
this state-action pair’s value estimate is
used to update the value of state x0 via
Equation 3, without being grounded in
an observed transition.

3 INVESTIGATING THE ROOT CAUSE OF UNSTABLE Q LEARNING

Minimizing Equation 3 finds the policy Q function over a replay buffer with sufficient coverage of
all states and actions that this policy visits. However, in most continuous control RL algorithms (Lil-
licrap et al., 2016; Haarnoja et al., 2018; Fujimoto et al., 2018), this update is interleaved with policy
update steps . The data in D then necessarily becomes off-policy as training progresses.

This means that the number of actor and critic optimization steps needs to be balanced with gath-
ering new data. Obtaining new on-policy data is vital to continually improve policy performance
(Ostrovski et al., 2021), but performing more update steps before gathering new data ensures that
the existing data has been used effectively to improve the policy. The replay ratio (Fedus et al.,
2020) or update-to-data (UTD) ratio (Nikishin et al., 2022), which governs the number of gradient
steps per environment step, is therefore a vital hyperparameter.

Naively training with high UTD ratios can lead to collapse in off-policy deep RL (Nikishin et al.,
2022). We conjecture that one of the major causes of the instability of high UTD off-policy learning
are wrong Q values on unobserved actions. This is a well-known problem for off-policy TD learn-
ing (Baird, 1995; Tsitsiklis & Van Roy, 1996; Sutton et al., 2016; Ghosh & Bellemare, 2020). To
differentiate the problem from overfitting to the training distribution, we use the term misgeneral-
ization to highlight the importance of the distribution shift in causing the issue. Our experiments in
Subsection 3.2 show that generalization to on-policy actions is more difficult than generalization to
a validation dataset that follows the training distribution, and that higher UTDs exacerbate the issue.

3.1 ACTION DISTRIBUTION SHIFT CAN CAUSE OFF-POLICY Q VALUE DIVERGENCE

To highlight the role that on-policy actions play in stabilizing Q value learning, we show an analysis
the stability of Q learning with linear features. The core ideas follow Sutton et al. (2016) and are
also explored by Tsitsiklis & Van Roy (1996); Sutton (1988). We assume that the Q function is
parameterized with fixed features and weights as Q(x, a) = ϕ(x, a)⊤θ. Let X and A be the sizes of
the state and action space respectively. Let P ∈ RX·A×X be the matrix of transition probabilities
from state-action pairs to states. A policy can then be expressed as a mapping Π ∈ RX×X·A from
states to the likelihood of taking each action. R ∈ RX·A is the vector of rewards. Dπ ∈ RX·A×X·A

is a matrix where the main diagonal contains the discounted state-action occupancies of Pπ starting
from ρ. If we assume access to a mixed replay buffer D =

⋃{Dπ1 , . . . , Dπn} gathered with
different policies, the Q learning loss for a target policy Π can be written as

L(θ) =

n∑
i=1

[
Dπi

(
Φ⊤θ − [R+ γPΠΦ⊤θ]sg

)2]
. (4)

The stability of learning with this loss can be analyzed using the gradient flow

θ̇ = −2Φ

n∑
i=1

Dπi (I − γPΠ)Φ⊤θ + 2Φ

n∑
i=1

DπiR . (5)

This gradient flow is guaranteed to to be stable around a fixed point θ∗ if the key matrix∑n
i=1 D

πi (I − γPΠ) is positive definite (Sutton, 1988). Details and a proof of the following state-
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Figure 2: Left: the train, validation, and on-policy validation error of the Q function at UTD 1.
Right: the Q values and return curves of TD3 agents across different UTD 1, 8, and 16.

ment are provided in Appendix C. We can decompose the key matrix and see that the positive
definiteness depends on the difference in policy between the replay buffer and the target policy

n∑
i=1

Dπi (I − γPΠ) =

n∑
i=1

Dπi (I − γPΠi)︸ ︷︷ ︸
positive definite

+ γ

n∑
i=1

DπiP (Πi −Π)︸ ︷︷ ︸
no guarantees

. (6)

In general, we can provide no guarantees for the second term outside of the on-policy case (Πi = Π)
where it becomes 0. The stability depends on the difference between the target policy and the data-
collection policies. If the target policy takes actions which are not well covered under the training
policies, the remainder can be non positive definite. This also matches the intuition that learning
fails if we simply do not have sufficient evidence for the Q function of unobserved actions.

When using features, the eigenvalue conditions on the key matrix are only sufficient, not necessary,
as the features can allow for sufficient generalization between observed and unobserved state-action
pairs. In deep RL, the features ϕ are updated alongside with the weights, making it hard to provide
definitive mathematical statements on stability. With good function approximation, we could hope
that the learned value function generalizes correctly to unseen actions. In the next section we inves-
tigate this for a non-trivial task from the DMC suite and highlight that, while the value function does
not diverge irrecoverably, good generalization is not guaranteed either.

3.2 EMPIRICAL Q VALUE ESTIMATION WITH OFF-POLICY DATA

In environments with large state-action space, ensuring coverage is difficult. To investigate whether
learning is stable nonetheless, we train a model-free TD3 agent on the dog walk environment (Tun-
yasuvunakool et al., 2020a). The architecture is presented in Subsection 4.1, and is regularized to
prevent catastrophic divergence (Hussing et al., 2024; Nauman et al., 2024a) and uses clipped dou-
ble Q learning (Fujimoto et al., 2018). This means it uses the most common techniques which are
designed to prevent misgeneralization and overestimation.

While training a TD3 agent (Fujimoto et al., 2018), we save transitions in a validation buffer with
a 5% probability. At regular intervals we compute the critic loss on this validation set. In addition,
we reset our simulator to each validation state and sample an action from the target policy. We then
simulate the ground truth on-policy transition and compute the loss over these. This allows us to test
how well our value function generalizes to target policy state-action pairs (as depicted in Figure 1).

The results are presented in Figure 2 and show a gap both between the train and validation sets, as
well as the validation and the on-policy sets. While we use the on-policy state-actions to update
the Q value, these estimates are not actually consistent with the environment. Furthermore, the Q
value overestimation grows with increasing UTDs. This phenomenon was previously discussed in
the context of over-training on limited data (Hussing et al., 2024) .

The experiments show that the problem outlined in Subsection 3.1 is not merely a mathematical
curiosity, but that Q value generalization to out-of-replay-distribution actions is difficult in practice,
and becomes more difficult with increasing update ratios. Even though full divergence is not ob-
served as new data is continually added to the replay buffer, it takes a long time for the effects of
severe early overestimation to dissipate.
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3.3 PREVIOUS ATTEMPTS TO COMBAT MISGENERALIZATION AND OVERESTIMATION

Prior strategies that deal with misgeneralization can be grouped into three major directions: archi-
tectural regularization to prevent divergence of the value function, pessimism or ensemble learning
to combat overestimation, and networks resets to restart learning. While all of these interventions
help to some degree, they each either do not solve the problem in full or cause additional issues. We
outline highly related work here and provide an additional related work section in Appendix B.

Architectural regularization Architecture changes (Hussing et al., 2024; Nauman et al., 2024a;b;
Lyle et al., 2024) and auxiliary feature learning losses (Schwarzer et al., 2021; Zhao et al., 2023;
Ni et al., 2024; Voelcker et al., 2024) are largely reliable interventions, and have shown to pro-
vide improvements without much drawbacks in prior work. However, as Hussing et al. (2024) and
our experiment presented in Subsection 3.2 highlight, by themselves they can mitigate catastrophic
overestimation and divergence, but do not guarantee proper generalization.

Pessimism and ensembles To combat overestimation directly, the most prominent approach in
continuous action spaces is Clipped Double Q Learning (Fujimoto et al., 2018). Here, a Q value
estimate is obtained from two independent estimates Q̂1 and Q̂2. If the error of the two critic
estimators is assumed to be independent noise on the true critic estimate then using the minimum
over both estimates is guaranteed to underestimate the true critic value in expectation. However, in
complex settings this assumption on the the error of the critic estimates may not hold.

Ensembles (Lan et al., 2020; Chen et al., 2020; Hiraoka et al., 2022; Farebrother et al., 2023) or
online tuning of the rate of pessimism (Moskovitz et al., 2021) have been proposed to obtain tighter
lower bounds on the Q value. However, these strategies can be expensive as redundant models or
hyperparameter tuning are needed. As a simpler strategy, recent works have also employed clipping
to obtain an upper bound of the Q function to prevent divergence (Fujimoto et al., 2024).

Resetting Finally, network resets been shown to mitigate training problems (Nikishin et al., 2022;
D’Oro et al., 2023; Schwarzer et al., 2023; Nauman et al., 2024b) in high UTD regimes. However,
in cases where the agent fails to explore any useful parts of the state space within the reset interval,
restarting the learning process will not improve performance (Hussing et al., 2024). This makes
tuning the resetting interval both important and potentially difficult and no tuning recipes have been
presented. Resetting is also a potentially hazardous strategy in real-world applications, where re-
executing a random policy might be costly or infeasible due to safety constraints. Finally, it heavily
relies on the assumption that all past interaction data can be kept in the replay buffer.

Data generation Lu et al. (2024) attempts to combat failures of high UTD learning by supple-
menting a replay buffer with data generated from a trained diffusion model. This idea is inspired by
the hypothesis that failure to learn in high-UTD settings is caused by a lack of data (Nikishin et al.,
2022). The method, SynthER, improves learning accuracy on simple tasks in the DMC benchmark.
However, we demonstrate that simply adding more data is insufficient to combat misgeneralization
by comparing SynthER to MAD-TD in Appendix B and Subsection E.4.

All of these strategies are somewhat able to alleviate the problem of out-of-distribution value esti-
mation, yet none of them directly address the issue at the root. In the next chapter, we present an
alternate approach that aims to directly regularize the action value estimates under the target policy.

4 MITIGATION VIA MODEL-GENERATED SYNTHETIC DATA

As value functions misgeneralize due to lack of sufficient on-policy data, we propose to obtain
synthetic data from a learned model instead. However, model-based RL can also cause problems
such as compounding world model errors and optimistic exploitation of errors in the learned model.
By using both real and model-generated data, we can trade-off these issues: on-policy data improves
the value function and limits the impact of off-policy distribution shifts, while using only a limited
number of model-generated samples prevents model errors from deteriorating the value estimates.

Our approach builds on the TD3 algorithm (Fujimoto et al., 2018) and uses an update ratio of 8 by
default. Our critic is updated with both model-based and real data following the DYNA framework
(Sutton, 1990). More precisely, we replace a small fraction α of samples {x, a, r, x′} in each batch
with samples from a learned model p̂ starting from the same state {x, π(x), r̂, x̂′} with r̂, x̂′ ∼
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p̂(·|x, π(x)). In our experiments, α is set to merely 5%. We found that this small amount provides
competitive performance across a wide range of values (compare Subsection E.3). We term this
approach Model-Augmented Data for Temporal Difference learning (MAD-TD).

Model vs Q function generalization We expect that a learned models will yield better general-
ization than the Q function for two reasons. First, the policy is updated each step to find an action
that maximizes the value function. This means we are effectively conducting an adversarial search
for overestimated values. The model’s reward and state estimation error on the other hand are inde-
pendent of this process. We test the adversarial robustness of our model-augmented value functions
in Subsection 5.3. Second, our experiment shows that value functions primarily diverge at the be-
ginning of training. In these cases, coverage is low and on-policy state-action pairs are often not
available. Obtaining a slightly wrong, yet converging value estimate can then be more useful than a
diverging one. Even as more data is gathered, new policies might not revisit old states with a high
likelihood. Therefore even as training continues we expect the model data to provide some benefit.

4.1 DESIGN CHOICES AND TRAINING SETUP

Our model is based on the successful TD-MPC2 model (Hansen et al., 2024) combined with the
deterministic actor-critic algorithm TD3 (Fujimoto et al., 2018). We aim to reduce the complexity
of TD-MPC2 to the minimal necessary components to achieve strong learning in the DM Control
suite, and thus forgo added exploration noise, SAC, ensembled critics, and longer model rollout for
training or policy search. We outline several design choices here and refer to Section D for more
detail. We additionally ablate our version of the model against TD-MPC2 in Subsection E.5.

Encoder: Like TD-MPC2, we parameterize the state with a learned encoder ϕ : X → Z with a
SimNorm nonlinearity (Lavoie et al., 2023). This transformation groups a latent vector into groups
of k entries and applies a softmax transformation over each group. This bounds the norm of the
features, which has been shown aid with stable training (Hussing et al., 2024; Nauman et al., 2024a).

Critic representation and loss: We use the HL-Gauss transformation to represent the Q function
(Farebrother et al., 2024). The critic loss is the cross-entropy between the estimated Q function’s
categorical representation and the bootstrapped TD estimate. To stabilize learning, we initialize the
critic network towards predicting 0 for all states.

Model loss: The world model predicts the next state latent representation and the observed reward
from a given encoded state ϕ(x) and action a. The loss has three terms: the cross-entropy loss over
the SimNorm representation of the encoded next state, the MSE between the reward predictions, and
the cross-entropy between the next state critic estimate and the predicted state’s critic estimate. This
final term replaces the MuZero loss in TD-MPC2 with a simplified variant based on the IterVAML
loss (Farahmand, 2018). We provide the exact mathematical equations for the loss in Appendix D.

Training: We train the architecture by interleaving one environment step with one round of updates
with a varying number of gradient steps governed by the UTD parameter. For each update step, a
new mini-batch is sampled independently from a replay buffer of previously collected experience.
We found that varying the number of update steps only for the critic and actor while keeping the
update ratio for the model and encoder updates at 1 leads to significantly more stable learning.

Run-time policy improvement with MPC: Following the approach outlined by Hansen et al.
(2022), the learned model can also be used at planning time to obtain a better policy. Using the model
for MPC at planning time exploits the same benefit of models as the critic learning improvement:
we obtain a model-corrected estimate of the value function and choose our policy accordingly. As
we only train our model for one step, we also conduct the MPC rollout for one step into the future.

5 EXPERIMENTAL EVALUATION

We conduct all of our experiments on the DeepMind Control suite (Tunyasuvunakool et al., 2020b).
Following Nauman et al. (2024b)’s recommendations we focus our main comparisons and ablations
on the two hardest settings, the humanoid and dog environments (which we will refer to as the
hard suite). In Subsection E.8 we furthermore show results for the metaworld benchmark (Yu et al.,
2019). Implementation details can be found in Appendix D. Unless stated otherwise we evaluate
MAD-TD with a UTD of 8 and use the same hyperparameters across all tasks.
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Figure 3: Return curves for the dog tasks with differing UTD values. The return increases or remains
stable when training with MAD-TD. Without model data, the performance decreases under high
UTD. MPC is turned off in these runs to cleanly evaluate the impact of model data on critic learning.

Note that even though we refer to training MAD-TD without using model data for the critic as
“model-free”, the algorithm still benefits from the model through feature learning which has proven
to be a strong regularization technique in high UTD settings (Schwarzer et al., 2023). All main result
curves are aggregated across 10 seeds per task. We plot mean and bootstrapped confidence intervals
for the mean at the 95% certainty interval. For aggregated plots, we use the library provided by
Agarwal et al. (2021). Additional comparisons on more environments are presented in Appendix E.

5.1 IMPACT OF USING MODEL-GENERATED DATA
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Figure 4: Mean loss values with and without
generated data (see Figure 2) for UTD 1.

We first repeat the experiment presented in Subsec-
tion 3.2 and show the results in Figure 4. Using
model-based data closes the gap between on-policy
and validation loss. We also observe that the ini-
tial Q overestimation disappears, which is consistent
across all hard environments (see Subsection E.1).
This provides evidence that we are indeed able to
overcome the unseen action challenge.

Performance with and without model data at
varying UTD ratios: In Figure 3 we present the
impact of using model-based data across different
UTD ratios. Humanoid results are found in Subsection E.2. As is directly evident, across the dog
tasks, we observe stagnating or deteriorating performance when increasing the update ratio, consis-
tent with reports in prior work. However, when using a small fixed amount of model generated data,
this trend is reversed across all tested environments, with performance improving or at least remain-

600 750 900

BRO (AR=1, 1 mil)
MAD-TD (AR=1, 1 mil)
TD-MPC2 (AR=2, 1 mil)

BRO (AR=2, 1 mil)
MAD-TD (AR=2, 1 mil)
TD-MPC2 (AR=2, 2 mil)

BRO (AR=2, 2 mil)
MAD-TD (AR=2, 2 mil)

Median

450 600 750 900

IQM

500 600 700 800

Mean

Scores

1Figure 5: Performance comparison on the hard tasks for MAD-TD, BRO, and TD-MPC, with vary-
ing number of steps and action repeat settings. MAD-TD is on par with all baselines, has higher
mean and IQM when trained for 2 million time steps and action repeat 2, and strongly outperforms
TD-MPC2 and BRO at 1 million time steps with action repeat 2.
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1Figure 6: Resetting evaluation of MAD-TD and BRO. Lighter color denotes performance with reset,
and darker without. While MAD-TD’s performance only increases slightly when adding resetting,
BRO is unable to achieve strong performance in and setting without resetting.

ing consistent. We find that with model-based data, training is stable across a range of UTDs, even
beyond those tested in recent high UTD work (Nauman et al., 2024b). We also note that we observe
only limited benefits from increasing the UTD ratio when properly mitigating misgeneralization,
except for the highly challenging dog run task.

Comparison with baselines: As our method combines model-free and model-based updates, we
compare our method against both TD-MPC2 (Hansen et al., 2024), a strong model-based baseline,
and BroNet (Nauman et al., 2024b), a recent algorithm proposed for high UTD learning. Since
Nauman et al. (2024b) and Hansen et al. (2024) trained with differing numbers of action repeats,
and we found that the performance does not cleanly translate between these regimes, we present our
method both with an action repeat value of 1 and 2. Some hyperparameters are adapted to the AR=1
setting (compare Table 2). The results are presented in aggregate in Figure 5, with per environment
curves show in Subsection E.6 for hard tasks and Subsection E.7 for a wider range of DMC tasks..
We find that our method performs on par or above previous methods, and strikingly it is able to
achieve higher returns faster than both TD-MPC2 and BRO.

5.2 PERFORMANCE AND STABILITY IMPACT OF RESETTING

Resetting comparison: To investigate whether our technique benefits from more stable training,
we set up a comparison in which we test the effects of resetting on our method. Figure 6 presents
aggregate results comparing our approach and BRO, both with and without resetting. Across all
tasks we find that resetting barely improves MAD-TDs performance with the tested hyperparam-
eters and update steps. Benefits can only be observed on some seeds and can most likely be
attributed to restarting the exploration process (Hussing et al., 2024). However, the BRO algo-
rithm is not able to achieve reliable performance without resets. Overall, these results highlight
that our model substantially improves the problems related to incorrect generalization of the value
function, and that these are likely a major cause of the failure of high UTD learning in the DMC
tasks. Conjectured problems like the primacy bias effect (Nikishin et al., 2022) need to be carefully
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Figure 7: Mean average re-
gret (↓) on the hard suite.
Lower regret corresponds to
faster, more stable training.
MAD-TD beats BRO.

investigated as we do not find evidence that a primacy bias impacts
MAD-TD’s performance in the DMC environments. Our work of
course does not preclude the existence of phenomena such as loss of
stability in different environments, architectures, or training setups.
More discussion on this can be found in Appendix B.

Continued training: To highlight the pitfalls of resets, we em-
ploy a common RL theory metric the per timestep average regret
Reg(T ) = 1

T

∑T−1
t=0 (R∗ −Rt) where Rt denotes the cumulative

return in episode t and R∗ the optimal return. We use the maximum
return any of the algorithms achieved R̂∗ as a lower bound on the
optimal return R∗. Regret quantifies how much better the algorithm
could have performed throughout training. In other words, in situa-
tions where continued learning is crucial, such as many safety crit-
ical applications, regret might be a better measure of performance.
It captures not only how good the final policy is, but also how well
the algorithm adapts over time, and minimizes mistakes. We present
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Figure 8: Return curves for the dog tasks when using on-policy, random and no model-generated
data. When generating model-based data with random actions, performance of MAD-TD drops
close to the model-free baseline, highlighting the importance of on-policy actions.

a comparison of MAD-TD and the resetting-based BRO in Figure 7 using an action repeat of 1.
The results show, even though both algorithms are close in their final return, their training behavior
differs vastly. MAD-TD has lower regret showcasing its strength in continued deployment.

5.3 FURTHER EXPERIMENTS AND ABLATIONS

To further test our approach, we present two additional experiments on the hard suite: changing the
action selection for the model data generation, and reducing the model performance. In addition, we
investigate the impact of using model based data on the smoothness of the learned value function.

Off-policy action selection in the model: To verify that the improvement in performance is due to
the off-policy correction provided by the model, we repeat the hard suite experiments with a UTD of
8 and 5% model data, but we chose actions randomly from a uniform distribution across the action
space. The results are presented in Figure 8. They highlight that random state-action pairs do not
provide the necessary correction and the performance deteriorates to that of the model-free baseline.

250 500 750

100%
95%
75%
50%
25%
5%
0%

Mean

Scores

1Figure 9: Aggregate statistics for
differing values of α (amount of
model data used) at UTD 8. The
model’s performance degrades to-
wards the extremes on either side.

Varying amounts of model data We ablate the amount of
model data used in MAD-TD. We report aggregate results
in Figure 9 and per environment results in Figure 14. The ma-
jority of gain is obtained when balancing real and model data.
Larger amounts of model data only provide limited benefits
in some humanoid runs. When using high amounts of model
data, we observe deteriorating performance, which implies that
the agent learns to exploit the model instead of solving the real
task. This is consistent with a similar observation about model
exploration in prior work (Zhao et al., 2023).

Another interesting finding is that there is very little difference
in performance going from 5% to 75% of model data. We
suspect that the amount of model data that is effective greatly
depends on how difficult it is to learn the world model. This is
supported by the fact that the environments where 75% leads
to worse performance are the most difficult dog run and trot
environments.

Perturbation robustness of the model-corrected value function:

To motivate our method, we conjectured that one of the problems of training in actor-critic learning
is that the actor is conducting a quasi adversarial search for overestimated values on the learned
critic.1 To provide additional insight into the benefits of our approach, we used the iterated projected
gradient method Madry et al. (2018) to estimate the smoothness of the learned value functions across
training on the humanoid environments at a UTD of 1 with and without model data.

1Quasi because the actor is not constrained to find an action close to the replay buffer sample.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0

Environment steps ×106

0.0

2.5

5.0

7.5

10.0

M
S
E

humanoid run

0.0 0.5 1.0 1.5 2.0

Environment steps ×106

0.0

37.5

75.0

112.5

150.0
humanoid walk

0.0 0.5 1.0 1.5 2.0

Environment steps ×106

0

25

50

75

100
humanoid stand

MAD-TD (model-based) Model-free

1

Figure 10: Magnitude of the difference between Q(x, π(x)) and Q(x, ã), where ã is an adversarial
perturbation of π(x). We see larger perturbation for the runs without model correction data.

Results are presented in Figure 10. Across the humanoid tasks we find that not using any model
data leads to value functions with higher oscillations, either across the whole training run in hu-
manoid run, or in the middle of training like in stand and walk.
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Figure 11: Return when reducing
the model size of the latent model
in MAD-TD. Performance drops
with smaller hidden layer size.

Smaller model networks: To study the effect of the model-
ing error on our method, we ablate the size of the latent model
by reducing the network size across the hard suite. The results
are presented in Figure 11. We see that reducing the network
size has an immediate and monotonic impact on the perfor-
mance of our approach, suggesting that the model learning
accuracy and prediction capacity is vital for our approach to
function well. Even with small models of 64 hidden units, we
still see some benefits from training with the model predicted
data. Only when reducing the models hidden units to very
small numbers the model prediction performance does not suf-
fice to provide improvements over the model-free baseline.

6 CONCLUSION

Our experiments allow us to conclude that wrong generalization of the value functions to unseen,
on-policy actions is indeed a major challenge that prevents stable off-policy RL, both in theory
and in practice. Model-Augmented Data for Temporal Difference learning (MAD-TD) is able to
leverage the learning abilities of latent self-prediction models to provide small, yet crucial amounts
of on-policy transitions which help stabilize learning across the hardest DeepMind Control suite
tasks. With a relatively simple model architecture and learning algorithm, this method proves to be
on par with, or even outperform other strong approaches, and does not rely on mechanisms such as
value function ensembles or resetting which were previously conjectured to be necessary for stable
learning in high UTD regimes. However, we highlight limitations of the approach in Appendix A.

Our work opens up exciting avenues for future work. The issue of poor generalization in off-policy
learning can likely be tackled with other approaches such as diffusion models (Lu et al., 2024) or
better pretrained foundation models, and our presented experiments provide an important baseline
for such work. Furthermore, while we have purposefully kept our approach as simple as possible
to validate our hypothesis, many ideas from the model-based RL community such as uncertainty
quantification (Chua et al., 2018; Talvitie et al., 2024), multi-step corrections (Buckman et al., 2018;
Hafner et al., 2020), or policy gradient estimation (Amos et al., 2021) can be combined with our
approach. Our insight that surprisingly little data is necessary to achieve strong correction can likely
be leveraged in these other approaches as well to trade-off model errors and value function errors
more carefully. Finally, while we chose the data to roll out in our models at random, our insights
can likely be combined with ideas from the area of DYNA search control (Pan et al., 2019; 2020) to
select datapoints on which the correction has the most impact.
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Huazhe Xu. Drm: Mastering visual reinforcement learning through dormant ratio minimization.
In International Conference on Learning Representations, 2024.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 2020.

Yi Zhao, Wenshuai Zhao, Rinu Boney, Juho Kannala, and Joni Pajarinen. Simplified temporal
consistency reinforcement learning. In International Conference on Machine Learning, 2023.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A LIMITATIONS

The core limitation of our methodology relies in the assumption that a sufficiently strong environ-
ment model can indeed be learned online. While a proof of feasibility exists for many interesting RL
benchmarks in the forms of the Dreamer (Hafner et al., 2021) and TD-MPC2 (Hansen et al., 2024)
lines of work among many others, for a completely novel environment a practitioner will still have
to test if current model learning schemes are sufficient to achieve strong control policies.

Furthermore, we can only generate data from the states visited under a past policy. There is still a
difference between the state distribution of the replay buffer, and the target policy stationary distri-
bution. While this difference does not seem to lead to catastrophic failures in the DMC benchmarks,
the distribution shift might be more problematic in other environments.

Finally, we observe an interesting failure cases of our idea: in some simple environments we sur-
prisingly observe worse performance with our network architectures compared to the BRO baseline.
This issue is likely due to the fact that the TD-MPC2 architecture is tuned for learning in complex
high-dimensional problems, which leaves it potentially over-parameterized on simple tasks.

While our work shows that reduced learning capacity due to plasticity does not seem to be the major
contributor to learning problems in benchmarks like DMC, that does not exclude the possibility
that related issues appear nonetheless after accounting for the off-policy value estimation problem.
We did not test increasing the reset ratio even further as other prior work has done, as we already
observed no benefits from increasing the replay ratio from 8 to 16 in most of our experiments and
performed on par or beyond previous baselines. Issues in reinforcement learning are often entangled
in a complex way, e.g. a failure in exploration can lead to stagnant data in the replay buffer which
prevents a critic from further improving its estimates, leading to worse exploration and so on.

B EXTENDED RELATED WORK

Beyond mitigating value function overestimation and unstable learning (see Subsection 3.3), other
works have approached the difficulty of off-policy learning and high update ratios from other per-
spectives. Here, we survey further related papers which do not provide direct background for this
work, but are nonethless relevant as either alternative approaches or possible enhancements.

Other ways of incorporating off-policy data Having access to more diverse data has been shown
to be beneficial for reinforcement learning, when this data is carefully used to mitigate the problems
resulting from off-policy training. Ball et al. (2023) show that a large offline replay buffer can
be used to improve training by sampling online training batches both from online data and offline
data, and labelling the offline transitions with a reward of 0. Agarwal et al. (2022) and Tirumala
et al. (2024) also highlight that previously collected replay buffers can be used to improve training
performance on agents. In this work, we focus on the online setting where we do not have access to
a replay buffer of previously collected transitions. These ideas however can easily be combined by
e.g. training a model from an available larger offline data buffer.

SynthER Another related approach to obtain additional data is the diffusion-based method pro-
posed by (Lu et al., 2024). In this work, the replay buffer data is augmented with additional samples
obtained from a diffusion model that is trained on the replay buffer. The underlying hypothesis of
SynthER is that the failure of high-UTD learning stems mostly from a lack of diverse data in the
replay buffer. They demonstrate on the easier DM Control tasks that simply adding data from a
generative model can be beneficial to learning. This is opposed to our hypothesis, which claims
that high-UTD learning is difficult specifically due to the lack of off-policy action corrections. As
SynthER does not provide results on the hard DMC tasks, we reran the original code to compare our
claims The results and a discussion can be found in Subsection E.4.

In the online off-policy regime, Fujimoto et al. (2024) recently proposed TD7, which incorporates
similar architectural choices to MAD-TD. They use a self-predictive encoder to learn good state
representations, but concatenate them with the state and action representation provided by the envi-
ronment to limit loss of information. This design choice proved to be beneficial but would require
learning a observation-space next-state prediction, which is difficult in practice, especially in high
dimensional environments. To address the policy distribution shift, TD7 does not update the actor
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at every timestep but instead collects several full trajectories with a fixed policy and then conducts
update steps afterwards. However, this interval still needs to be balanced as a hyperparameter. TD7
was not evaluated on DMC, which is why we do not present a comparison.

Model-based reinforcement learning As surveying model-based reinforcement learning is a
rather sizeable tasks, we refer readers to the survey by (Moerland et al., 2023) for reference.
Decision-aware latent models such as the one Hansen et al. (2024) and we use have been stud-
ied specifically in several different variants. Silver et al. (2017) proposes a latent model that is
trained with TD learning, which provides the basis for the Schrittwieser et al. (2020) algorithm.
The addition of a latent self-prediction loss was first proposed by Li et al. (2023) to stabilize learn-
ing problems with the TD learning loss. This interplay was further studied by Ni et al. (2024) and
Voelcker et al. (2024) in recent works.

From a theoretical angle, decision-aware losses similar to those used in MuZero where first studied
by Farahmand et al. (2017) and Farahmand (2018). Grimm et al. (2020) and Grimm et al. (2021)
further study the loss landscape and minimizers of such losses, while Kastner et al. (2023) studied
the extension of the loss to distributional settings.

While previous works have called the stability of the VAML loss into question (Lovatto et al., 2020;
Voelcker et al., 2022), we find that it is stable and performant when combined with the HL-Gauss
representation Farebrother et al. (2024) and an auxiliary BYOL style loss Grill et al. (2020); Li et al.
(2023). Compared to MuZero it is also significantly easier to implement.

A more thorough overview on the topic of decision-aware learning can be found by Wei et al. (2024).

Offline reinforcement learning In the context of batch reinforcement learning or offline RL
(Lange et al., 2012; Fujimoto et al., 2019), the action distribution shift is a known phenomenon.
The main counter to the problem however does not rely on closing the generalization gap, but on ex-
plicit pessimistic regularization Jin et al. (2021). Such pessimistic regularization has been shown to
be highly detrimental in online RL, as it removes the capability for the agent to explore its environ-
ment efficiently (D’Oro et al., 2023; Hussing et al., 2024). In offline RL, authors have explored the
capability of models to provide some improvements to generalization (Yu et al., 2020). However, in
online RL the community has mostly relied on the hope that additional optimistic exploration based
on the value function will close the generalization gap without explicit interventions. We show that
this is not the case.

Loss of plasticity A phenomenon that was originally reported in continual learning is that ten-
dency for neural network based agents to lose their ability to learn over time. This phenomenon
has also been investigated in the realms of RL (Igl et al., 2021), as RL can effectively be thought
of as a type of continual learning problem. Sometimes the phenomenon is referred to as plasticity
loss (Lyle et al., 2021; Abbas et al., 2023). As highlighted before, we do not find strong evidence
for the primacy bias or loss of plasticity during our experiments on the DMC suite.

However, that does not imply that the phenomenon does not exist. In fact, we believe that resolving
stability issues such as those presented in our paper will help us to better isolate other nuanced issues
such as plasticity loss more clearly. Previous studies have identified and combated plasticity loss
using feature rank maximization (Kumar et al., 2021), regularization (Lyle et al., 2023), additional
neural network copies (Nikishin et al., 2024), minimizing dormant neurons (Sokar et al., 2023; Xu
et al., 2024), various neural network architecture changes (Lee et al., 2023), slow and fast network
updates (Lee et al., 2024) or weight clipping (Elsayed et al., 2024).

It is unclear how many improvements obtained by these changes can be explained by divergence
effects (Hussing et al., 2024) or stability issues such as those established in our work as there seems
to be a non-zero overlap in techniques that combat either. Nauman et al. (2024a) have argued that
many RL training problems can be difficult to disentangle from the plasticity loss phenomenon.
An interesting direction of future work is to test for plasticity loss with well regularized off-policy
value function learning, for instance by combining our method with separate solutions established
for plasticity loss such as those from Lyle et al. (2024).

It is also not unlikely that the training dynamics of the state-based dense-reward tasks on the DMC
suite are more benign than those found in Atari games. Many works on plasticity loss have stud-
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ied sparse image-based control tasks with pure Q learning approaches, such as DQN on the Atari
benchmark (Sokar et al., 2023; Lee et al., 2024). The problem may be more prevalent when replay
buffers cannot be maintained in full and the RL setting becomes a true continual learning problem.

Other stability perspectives Our work studies the stability of losses during training. We highlight
that forgoing resetting decreases regret as the executed policies are more stable in the sense that they
are not reset at regular intervals. We also highlight that model-generated data can somewhat improve
the stability of policies against adversarial attacks. However, there are other notions of stability that
should be considered relevant and that are orthogonal to our work. Here we will give a non extensive
overview into the different directions that exist as a starting point for the reader. For instance from
a theoretical perspective, stability can be formulated as differential privacy (Vietri et al., 2020) or
algorithmic replicability to obtain identical policies (Eaton et al., 2023). From a theoretical as well
as practical perspective, issues such as robustness to adversarsial attacks (Nilim & Ghaoui, 2005;
Iyengar, 2005; Wiesemann et al., 2013; Pinto et al., 2017). Finally, from an empirical perspective
robustness to hyperparameters (Ceron et al., 2024; Patterson et al., 2024) and attempts at variance
reduction to get more reliable solutions (Anschel et al., 2017; Kuang et al., 2023) can be considered
notions of stability.

C MATHEMATICAL DERIVATIONS

While the proof by Sutton (1988) which we use as a basis discusses the stationary distribution of the
Markov chain Pπ , we define our loss in terms of a discounted state-action occupancy. We therefore
briefly prove an auxiliary result to extend the analysis to the case of discounted state occupancy
probabilites. Note that when we talk about positive-definiteness, we use a definition which applies
to potentially non-symmetric matrices, and merely requires that u⊤Xu 0 for all vectors u.
Proposition 1. Let P be a stochastic matrix. Define the discounted state occupancy distribution µ
of P for some starting state distribution ρ and some discount factor γ ∈ [0, 1) as

µ⊤ = (1− γ)

∞∑
n=0

γnρ⊤Pn.

Let D be a diagonal matrix whose entries correspond to the discounted state occupancy distribution.
Then the matrix D(I − γP ) is positive definite.

Proof. First, note that
(1− γ)ρ⊤ + γµ⊤P = µ⊤

by the definition of µ and the properties of the infinite sum. Therefore,

µ⊤P =
1

γ
(µ− (1− γ)ρ) .

Sutton (1988) asserts that a matrix A is positive definite iff A+A⊤ is positive definite. Furthermore,
if the diagonal entries of a symmetric matrix are positive and its off-diagonal entries are negative,
then it suffices to show that the row and column sums of matrix are positive.

For
D(I − γP ) + (I − γP⊤)D⊤

the off-diagonal terms are clearly non positive as D is diagonal. On the main diagonal, we have
2(µi − γp(i|i)µi) which is positive as p(µi|µi) ≤ 1. It now suffices to show that the row and
column sums of D(I − γP ) are positive. For the row sum, we can make use of the fact that P is a
stochastic matrix, so

D(I − γP )1 = D(1− γ1) ≥ 1 .

For the column sum, we make use of the fact that 1D = µ. Then

µ(I − γP ) = µ− γ
1

γ
(µ− (1− γ)ρ) = (1− γ)ρ ≥ 1 .

As ρ is a probability vector the final inequality holds for all γ ∈ [0, 1).
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All conditions presented by Sutton (1988) hold, and therefore we have D(I−γP ) is positive definite.

To derive the gradient flow stability conditions in Subsection 3.1, we first restate the loss function

L(θ) =

n∑
i=1

[
Dπi

(
Φ⊤θ − [R+ γPπΦ⊤θ]sg

)
)2
]
. (7)

The stability of learning with this loss can be analyzed using the gradient flow (Sutton et al., 2016).
To derive the gradient flow, we compute the gradient of the loss function with regard to the parame-
ters θ. As the loss has a relatively simple quadratic form and the derivative is a linear transformation,
it decomposes nicely as

∇θL(θ) = 2Φ

n∑
i=1

Dπi
(
Φ⊤θ −R− γPΠΦ⊤θ

)
(8)

= 2Φ

n∑
i=1

Dπi
(
(I − γPΠ)Φ⊤θ −R

)
(9)

= 2Φ

n∑
i=1

Dπi (I − γPπ) Φ⊤θ − 2Φ

n∑
i=1

DπiR . (10)

Using the equation for the gradient flow θ̇ = −η
2∇θL(θ) with learning rate η

2 , we obtain

θ̇ = −ηΦ

n∑
i=1

Dπi (I − γPπ) Φ⊤θ + ηΦ

n∑
i=1

DπiR , (11)

This gradient flow is guaranteed to be stables (meaning it will not diverge around the stationary point
θ∗) if the key matrix

∑n
i=1 D

πi (I − γPΠ) is positive definite (Sutton, 1988).

We can decompose our key matrix into the on-policy key matrix and a remainder easily
n∑

i=1

Dπi (I − γPΠ) (12)

=

n∑
i=1

Dπi (I − γPΠ+ γPΠi − γPΠi) (13)

=

n∑
i=1

Dπi (I − γPΠi) + γ
∑
i=1

DπiP (Πi −Π) . (14)

The first group of summands are all positive definite, following Proposition 1. As the sum of positive
definite matrices is positive definite, the claim stands.

However, the second group has no such guarantees. This highlights the role that the target policy
action selection plays in the stability of Q learning.

D IMPLEMENTATION

Our experiments are implemented in the jax library to allow for easy parallelization of multiple ex-
periments across seeds. All networks follow the standard architecture from Hansen et al. (2024) with
two changes: instead of using an ensemble of critics, we opt for a single double critic pair. We also
do not use a stochastic policy, instead simply using a deterministic network with a tanh activation as
used in Lillicrap et al. (2016); Fujimoto et al. (2018). Full hyperparameters are presented in Table 2
and the architecture can be found in Table 1. We use mish activation functions (Misra, 2020) and
the adam optimizer to train our models (Kingma & Ba, 2015).
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Encoder Φ Dense Layer Mish in size=|X |, out size=512
Dense Layer Simnorm(8) out size=512
Dense Layer Mish in size=512 + |A|, out size=512

Latent Model F Dense Layer Mish out size=512
Dense Layer Simnorm(8) out size=512
Dense Layer Mish in size=512 + |A|, out size=512

Q head Q̂ Dense Layer Mish out size=512
Dense Layer – out size=1
Dense Layer Mish in size=512, out size=512

Actor π̂ Dense Layer Mish out size=512
Dense Layer tanh out size=|A|

Table 1: Network architecture for MAD-TD.

Parameter
Initial steps (Random policy) 5000
Batch size 512
RL learning rate 0.0003
Model learning rate 0.0003
Encoder learning rate 0.0001
Soft update τ 0.995
Discount factor γ 0.99
Model forward prediction steps 1 (4 for AR=1)
Gradient clipping 10.0
HL-Gauss vmin −150 ·AR

Parameter
HL-Gauss vmax 150 ·AR
HL-Gauss num bins 151
Model data proportion 0.95
Reset interval (where applicable) 200000
Model & encoder update ratio 1
Actor & critic update ratio varying
MPC number of samples 512
MPC iterations 6
MPC top k 64
MPC temperature 0.5

Table 2: Hyperparameters. We adapted three parameters to the action repeat = 1 setting, as the
magnitude of the reward changes.

Loss functions: As we use the HL-Gauss representation (Farebrother et al., 2024) for the critic,
the loss is the cross-entropy between the estimated Q function’s categorical representation Qrep and
the bootstrapped TD estimate,

LQ =

m∑
i=1

TD(Q̂rep)i log Q̂repi
,

where the indices i denote the positions of the categorical vector representation used by HL-Gauss.
This is the same loss that is used for the two-hot encoding in Hansen et al. (2024), the only difference
is the target encoding function. For more details, see Farebrother et al. (2024).

We use a latent encoder ϕ : X × A → Z that maps into the simnorm space, the space of
n k-dimensional simplicies (Lavoie et al., 2023). Writing p̂ for the learned world model and
r̂, x̂′ ∼ p̂(|x, a) for reward and next latent-state samples, the loss for our model and encoder is

Lmodel(x, a, r, x
′) = Lrew(x, a, r) + Lforward(x, a, x

′) + LQ(x, a, r, x
′) (15)

Lrew(x, a, r) = (r − r̂)
2 (16)

Lforward = −
n·k∑
i=1

ϕ(x′)i log x̂
′
i , (17)

where the index i is again element-wise across the simplex representation used for the latent state.
Note that we propagate the critic learning gradients into the encoder only for the real data and not
the model generated one to prevent instability.

Baseline results We took available results from Nauman et al. (2024b) and Hansen et al. (2024)
for all plots where possible, and used the official implementation of BRO to rerun the experiments
without resetting and with differing action repeats. Other hyperparameters were left as-is.
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E FURTHER RESULTS

E.1 Q VALUE OVERESTIMATION
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Figure 12: Return curves and Q values with differing UTD values.

We plot the return curves and corresponding Q estimates for different UTD values and with and
without model-generated data on the hard suite. The results are presented in Figure 12. As we
see, across all tasks the model free variant strongly overestimates the Q values, especially in the
beginning.
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E.2 HUMANOID RESULTS
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Figure 13: Return curves for the humanoid tasks when using on-policy (blue), random (green) and
no model-generated data (orange). The observed performance impacts are comparable to the dog
case.

For several experiments, we only showed the dog results from the main suite to avoid cluttering
the main body of the paper. The corresponding humanoid results are presented in Figure 12 and
Figure 13, corresponding to Figure 3 and Figure 8 respectively. As the plots highlight, the main
insights transfer across the hard tasks.

E.3 DIFFERENT QUANTITIES OF MODEL DATA

We evaluate using more model data to update our value functions and provide the additional results
in Figure 14. Aggregated scores were presented in Figure 9.
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Figure 14: Return curves on the hard suite. We see that using substantially more data than 5% does
not improve performance in a statistically significant way.
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E.4 SYNTHER COMPARISON

We present a comparison of our method and SynthER on the hard DMC tasks. Results can be found
in Figure 15.

As is evident from the lack of strong performance of SynthER, merely increasing the amount of
generated data is insufficient to combat the failure of learning at high UTD. We find that the Q values
of the SynthER agents quickly diverge on all tasks in which it is unable to learn. This strengthens
our hypothesis that for hard tasks, off-policy action correction is vital to achieve strong results.
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Figure 15: Performance curves for MAD-TD and SynthER on the hard DMC tasks. SynthER fails
to achieve nontrivial results on most tasks, only outperforming a random policy on the humanoid
walk and stand tasks.
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E.5 TD-MPC2 ABLATION

As described in the main paper, we simplify the base model of TD-MPC2 to improve the compu-
tational efficiency of the algorithm. This is necessary to conduct high UTD experiments. Here, we
present a direct comparison of the original TD-MPC2 model, and our adapted version (Figure 16).
We compare MAD-TD without any model generated data, at UTD 1, which corresponds to the stan-
dard setting of TD-MPC2. As pointed out in the main paper, all of our changes to the base model
boil down to setting different hyperparameters, such as the rollout length, to achieve faster learning.

We find that this does not significantly change the overall results achieved by the base model, and
we are therefore confident to attribute performance gains to our presented method.
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Figure 16: Performance variation of the base MAD-TD model compared to TD-MPC2. Our changes
only very few times lead to lower performance which is acceptable given the large reduction in
computational cost.
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E.6 MAD-TD, BRO, TD-MPC2 PER ENV ON THE HARD SUITE

We present the return curves for MAD-TD and the baselines per environment on the hard suite.
Figure 17 shows the results with action repeat 2 and Figure 18 with action repeat 1. Perhaps sur-
prisingly, the results of the algorithms are not fully consistent across this regime. Partially, this
can be explained by the fact that our method and TD-MPC2 were first developed in the regime of
action repeat 2, while BRO was only evaluated in the action repeat 1 setting. This suggests that
the performance of each method depends in a non-trivial fashion on hyperparameter tuning. Yet,
across both action repeat setting MAD-TD outperforms BRO without resetting consistently and
only under-performs any previous algorithm on the dog trot task in the action repeat 1 setting.
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Figure 17: Return curves with action repeat set to 2.
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Figure 18: Return curves with action repeat set to 1.

We conjecture that the remaining gap in performance seems to be most likely attributable to explo-
ration and optimism. While we focus on learning accurate value functions, Bro contains several
components which are specifically designed to improve exploration. Investigating the tension be-
tween exploration and accurate value function fitting is an important direction for future work.

Bro and TD-MPC2 are explicitly evaluated without their exploration bonuses in separate evaluation
rollouts. We however do not conduct such as separate evaluation as we do not add any additional ex-
ploration noise to our training. When plotting training performance, the gap between MAD-TD and
Bro further closes, suggesting an important trade-off between test time and training performance.
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E.7 RESULTS ACROSS FURTHER DMC ENVIRONMENTS

We conducted more experiments on all DMC environments which were shown to benefit from the
interventions in prior work (D’Oro et al., 2023; Nauman et al., 2024b).
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Figure 19: Return curves evaluating the impact of model-based data for critic learning and MPC.
Overall, MPC and model-based critic learning both stabilize the learning process, as conjectured.
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Figure 20: Return curves for the impact of resetting on MAD-TD with and without MPC. Without
MPC, resetting can still improve the performance, but with MPC, we see no significant benefits
from resetting across environments except pendulum. The hopper results highlight the importance
(and danger) of the reset interval, as seemingly the reset algorithm is not able to recover “in time”
to improve performance.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0

×106

0

250

500

750

1000

E
pi
so
de

re
w
ar
d

dog run

0.0 0.5 1.0 1.5 2.0

×106

0

250

500

750

1000
dog walk

0.0 0.5 1.0 1.5 2.0

×106

0

250

500

750

1000
dog stand

0.0 0.5 1.0 1.5 2.0

×106

0

250

500

750

1000

E
pi
so
de

re
w
ar
d

dog trot

0.0 0.5 1.0 1.5 2.0

×106

0

250

500

750

1000
humanoid run

0.0 0.5 1.0 1.5 2.0

×106

0

250

500

750

1000
humanoid walk

0.0 0.5 1.0 1.5 2.0

×106

0

250

500

750

1000

E
pi
so
de

re
w
ar
d

humanoid stand

0.0 0.5 1.0 1.5 2.0

×106

0

250

500

750

1000
hopper hop

0.0 0.5 1.0 1.5 2.0

×106

0

250

500

750

1000
acrobot swingup

0.0 0.5 1.0 1.5 2.0

×106

0

250

500

750

1000

E
pi
so
de

re
w
ar
d

cheetah run

0.0 0.5 1.0 1.5 2.0

×106

0

250

500

750

1000
walker run

0.0 0.5 1.0 1.5 2.0

×106

0

250

500

750

1000
quadruped run

0.0 0.5 1.0 1.5 2.0

×106

0

250

500

750

1000

E
pi
so
de

re
w
ar
d

finger turn hard

0.0 0.5 1.0 1.5 2.0

×106

0

250

500

750

1000
pendulum swingup

0.0 0.5 1.0 1.5 2.0

×106

0

250

500

750

1000
quadruped walk

0.0 0.5 1.0 1.5 2.0

Environment steps ×106

0

250

500

750

1000

E
pi
so
de

re
w
ar
d

reacher hard

0.0 0.5 1.0 1.5 2.0

Environment steps ×106

0

250

500

750

1000
fish swim

0.0 0.5 1.0 1.5 2.0

Environment steps ×106

0

250

500

750

1000
hopper stand

MAD-TD TD-MPC2 ((AR=2!))

1

Figure 21: Comparison of MAD-TD and TD-MPC2 across more environments of the DMC suite.
We observe gains compared to TD-MPC2 in the hard tasks, especially in terms of early learning per-
formance, while TD-MPC2 has advantages on the pendulum swingup and acrobot swingup tasks.
These seem to be exploration and stability issues for which the longer model rollouts of TD-MPC2
seem to help.
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E.8 METAWORLD

To broaden the basis of comparison, we compare our method to BRO and TD-MPC2 on 9 selected
environments from the metaworld suite. Results can be found in Figure 22.

Overall, we observe that our method performs strongly on tasks in which the agent has access to
a dense reward, such as lever-pull and button press. MAD-TD demonstrates the ability to quickly
and stably bootstrap reward when available. When exploration is a challenge, learning can take
longer with MAD-TD. Strong exploration for high-UTD algorithms is not the focus of MAD-TD
and remains an open problem (Hussing et al., 2024). This is consistent with our core hypothesis:
high UTD learning benefits in cases where fitting a correct value function is challenging. In tasks
such as pick-place-wall the core challenge is exploration, as the agent receives no reward signal
for the majority of early training. We therefore cannot expect high UTD learning to improve the
performance in these tasks.

As pointed out, BRO and to a lesser extent TD-MPC2 have the benefit of exploring with optimism
bonuses and ensembled value functions. We removed these from our method to cleanly study the
impact of model generated data. However, improvements to exploration are mostly orthogonal to
our proposed method and can be freely combined in future work.

Finally, as also shown by Nauman et al. (2024b), there is a curious failure case of TD3 compared
to SAC in the case of environments with sparse rewards. In the absence of the entropy penalty
form the SAC loss function, the tanh policy of TD3 tends to saturate, which can stymie exploration
completely. This is, to the best of our knowledge, not discussed in the literature, and should be
investigated in future work.
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Figure 22: Performance comparison on Metaworld between MAD-TD, BRO, and TD-MPC2.
MAD-TD performs strongly on tasks which provide sufficient reward information to bootstrap the
value function quickly, while learning more slowly on sparse reward tasks. This is consistent with
the core goal of our algorithm, to stabilize and improve value function learning.
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