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ABSTRACT

Computational modeling of single-cell gene expression is crucial for understand-
ing cellular processes, but generating realistic expression profiles remains a major
challenge. This difficulty arises from the count nature of gene expression data
and complex latent dependencies among genes. Existing generative models often
impose artificial gene orderings or rely on shallow neural network architectures.
We introduce a scalable latent diffusion model for single-cell gene expression
data, which we refer to as scLDM, that respects the fundamental exchangeability
property of the data. Our VAE uses fixed-size latent variables leveraging a uni-
fied Multi-head Cross-Attention Block (MCAB) architecture, which serves dual
roles: permutation-invariant pooling in the encoder and permutation-equivariant
unpooling in the decoder. We enhance this framework by replacing the Gaussian
prior with a latent diffusion model using Diffusion Transformers and linear in-
terpolants, enabling high-quality generation with multi-conditional classifier-free
guidance. We show its superior performance in a variety of experiments for both
observational and perturbational single-cell data, as well as downstream tasks like
cell-level classification.

1 INTRODUCTION

Single-cell transcriptomics has revolutionized our understanding of cellular heterogeneity and bi-
ological processes at unprecedented resolution (Rozenblatt-Rosen et al., 2017), enabling high-
throughput gene expression profiling across millions of cells (Virshup et al., 2023), and providing
insights into cellular differentiation (Gulati et al., 2020), disease progression (Zeng & Dai, 2019),
responses to drug perturbations (Adduri et al., 2025; Zhang et al., 2025). However, modeling the
complex, high-dimensional gene expression data from single cells presents significant computational
and methodological challenges (Lähnemann et al., 2020; Luecken et al., 2022; Neu et al., 2017).

Deep generative modeling (Tomczak, 2024) offers a powerful framework to formulate expressive
probability distributions. In the context of single-cell data, multiple methods have been proposed.
In particular, Variational Auto-Encoders (VAEs) have been extensively utilized for representation
learning (single-cell Variational Inference; scVI) (Lopez et al., 2018), perturbation modeling (Lot-
follahi et al., 2023b; Palma et al., 2025b), trajectory inference (Gayoso et al., 2024), among oth-
ers (Gayoso et al., 2022). Additionally, Generative Adversarial Networks (GANs) have also been
proposed, both for generating realistic cell populations (scGAN; (Marouf et al., 2020b)) and for in-
ferring cellular trajectories (Reiman et al., 2021). Recently, diffusion-based models have also been
adopted for single-cell gene expression (Luo et al., 2024). An interesting research line was proposed
in (Palma et al., 2025a) that combines scVI with a flow matching model in the latent space (CFGen).

However, two key challenges limit existing methods. First, they often require a fixed ordering of
genes or operate on a restricted subset of highly variable genes (HGVs). This assumption directly
clashes with the biological reality that gene expression profiles are exchangeable sets, where the
order of genes carries no meaning. Second, approaches based on GANs inherit well-known training
instabilities and risks of mode collapse. These limitations make current models inflexible, difficult
to scale, and unable to properly handle the unordered nature of single-cell data.

This paper introduces a novel approach that combines the flexibility of VAEs with the power of la-
tent diffusion models (see Figure 1), specifically designed to handle the exchangeable nature of gene
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expression data. The key insight is that careful architectural choices, particularly in the parameteri-
zation of permutation-invariant and permutation-equivariant components, result in a scalable, deep,
and exchangeable generative model. The contributions of the paper are the following:

• We propose a novel fully transformer-based VAE architecture for exchangeable data that
uses a single set of fixed-size, permutation-invariant latent variables. The model intro-
duces a Multi-head Cross-Attention Block (MCAB) that serves dual purposes: It acts as
a permutation-invariant pooling operator in the encoder, and functions as a permutation-
equivariant unpooling operator in the decoder. This unified approach eliminates the need
for separate architectural components for handling varying set sizes.

• We replace the standard Gaussian prior with a latent diffusion model trained with the flow
matching loss and linear interpolants using the Scalable Interpolant Transformers formu-
lation (SiT) (Ma et al., 2024), and a denoiser parameterized by Diffusion Transformers
(DiT) (Peebles & Xie, 2023). This allows for better modeling of the complex distribution
of cellular states and enables controlled generation through classifier-free guidance.

• The proposed framework, which we refer to as scLDM, supports generation conditioned
on multiple attributes simultaneously through an extended classifier-free guidance mecha-
nism, enabling fine-grained control over generated cell states, as demonstrated on multiple
benchmark datasets. Moreover, we indicate the strengths of our fully transformer-based
auto-encoder in terms of reconstruction metrics and on a downstream prediction task.
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Figure 1: Our deep generative model, scLDM, for single-cell gene expression data. A: A
fully transformer-based architecture for processing gene expressions. The encoder network re-
sults in permutation-invariant latent variables represented as tokens. The decoder network returns
permutation-equivariant counts for given gene IDs. B: At the second stage, a vanilla prior is replaced
by a latent diffusion model. We model latent tokens using Diffusion Transformers (DiT), and train
the resulting LDM using linear interpolants and the flow matching loss. Sampling is carried out by
applying the Scalable Interpolant Transformers (SiT) library (Ma et al., 2024).

2 BACKGROUND

Variational Auto-Encoders Another approach is Variational Auto-Encoders (Kingma & Welling,
2014; Rezende et al., 2014), which offer flexible modeling capabilities. (Kim et al., 2021) proposed
SetVAE with two latent variables for varying set sizes: zI matching xI’s dimensionality (where zi
corresponds to xi, i → I) and constant-size c → Rd1 . They used hierarchical VAE with multiple
zI and c layers and replaced conditional likelihood with Chamfer Distance. While we appreciate
VAE’s flexibility, we find two distinct latents and hierarchical structure unnecessary, arguing that
careful parameterization is crucial for high performance.

Permutation-equivariant/invariant Parameterizations Geometric deep neural networks typically
compose permutation-invariant and/or permutation-equivariant layers with nonlinearity activations
(Bronstein et al., 2021). DeepSets (Zaheer et al., 2017) exemplifies this blueprint by processing
elements consistently regardless of position, then applying symmetric aggregation (averaging or
pooling (Kimura et al., 2024; Ilse et al., 2018; Xie & Tong, 2025)) to ensure permutation invariance.
However, processing elements separately before aggregation with non-learnable pooling is limiting.
Learned attention mechanisms in transformer architectures offer a solution, enabling joint element
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transformation. SetTransformer (Lee et al., 2019) introduces multi-head attention blocks and Pool-
ing by Multi-head Attention for permutation invariance. We propose an alternative parameterization
using a single multi-head attention layer for fixed-size output, followed by transformer blocks.

Latent Diffusion Models Latent Diffusion Models (LDMs) perform diffusion processes in learned
latent spaces rather than directly in high-dimensional data spaces. Stable Diffusion (Rombach et al.,
2022) pioneered this approach for text-to-image synthesis by training diffusion models in the latent
space of a pre-trained VAE, dramatically reducing computational costs while maintaining genera-
tion quality. This paradigm has proven effective across diverse scientific domains: all-atom diffusion
transformers (Joshi et al., 2025) generate molecules and materials with atomic-level precision, sim-
ilarly LaM-SLidE (Sestak et al., 2025) utilizes transformer-based LDM for molecular dynamics
(among others), while La-proteina (Geffner et al., 2025) employs transformer-based partially latent
flow matching for atomistic protein generation. These advances demonstrate the versatility of latent
diffusion approaches for complex, high-dimensional scientific data across multiple modalities. Here,
we extend this framework to single-cell transcriptomics by proposing a transformer-based LDM for
this biological data type.

Generative Models for scRNA-seq In the context of single-cell genomics, numerous generative
models have been developed for (conditional) sampling of gene expression profiles. scVI (Lopez
et al., 2018) represents an early VAE-based generative model, while more recent approaches include
GAN-based and diffusion-based architectures such as scGAN (Marouf et al., 2020a) and scDiffu-
sion (Luo et al., 2024). These models operate in continuous space and therefore transform dis-
crete gene expression data into log-normalized counts. Recently, latent diffusion frameworks have
emerged with models like SCLD (Wang et al., 2023) and CFGen (Palma et al., 2025a), which lever-
age latent diffusion frameworks. Additionally, application-specific generative models have been
developed for perturbational single-cell genomics, including CPA Lotfollahi et al. (2023a), SquiD-
iff (He et al., 2024), CellFlow (Klein et al., 2025), and CellOT (Bunne et al., 2023), which are
tailored to capture the effects of genetic and chemical perturbations on cellular states. Our approach
is similar in vein to CFGen and SCLD, but leverages transformer-based architectures for both our
newly proposed VAE as well as the latent diffusion model.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Let us consider M random variables, x, where each xi → XD, e.g., X = N. A set of indices of
M random variables is denoted as I, namely, I = ω({1, 2, . . . ,M}), where ω(·) is a permutation1.
Further, we denote a specific order of variables in x determined by I as xI . We assume that for
a given I, an object xI is equivalent to an object defined by ω(I), namely, xI = xω(I). An
example of such a setting is gene expression data where {1, 2, . . . ,M} corresponds to gene IDs and
the order of gene IDs does not change the state of a cell. Further, we assume a true conditional
distribution model p(xI |I) that for a given order of indices I allows sampling xI . We access this
true distribution through observed iid data D = {(xIn , In)}

N
n=1. We look for a model p(xI |ε, I)

with parameters ε that optimizes the log-likehood function for the empirical distribution with data
D, ϑ(ε;D) =

∑N
n=1 ln p(xIn |ε, In). Moreover, we are interested in finding a single model that for

given indices I generates corresponding xI . Formally, we require the model to be exchangeable,
namely, p(xI |I) = p(xω(I)|ω(I)). For instance, a model generates the same gene expression
profile for given different orders of gene IDs.

To model an exchangeable probabilistic model p(xI |ε, I), we introduce m latent variables (i.e.,
the number of latents is fixed for all subsets I), Z → Rm→D. By using the family of variational
posteriors of the form q(Z|ϖ,xI), the Evidence Lower BOund (ELBO) is the following:

ln p(xI |ε, I) ↑ EZ↑q(Z|ε,xI) [ln p(xI |ϱ,Z, I) + ln p(Z|ς)↓ ln q(Z|ϖ,xI)] , (1)

where ε = {ϱ,ς,ϖ} are the parameters of the model. We propose to model these parameters using
neural networks, namely: ϖ(xI) = NNenc(xI), ϱ(Z, I) = NNdec(Z, I), and ς are weights of
a parameterization of the prior. Since our assumption is that the model must be exchangable, we

1We denote a permutation either as a function ω(·) or, equivalently, as a matrix P.
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propose to parameterize the distributions in a way that: (i) Z is permutation-invariant, namely, we
aim for defining variational posteriors as Gaussian distributions with permutation-invariant neural
networks NNenc, (ii) the conditional likelihood is defined as p(xI |ϱ(Z, I)) =

∏
i↓I p(xi|ϱi(Z, I)),

hence, we must ensure that: Pϱ(Z,ω(I)) = NN(Z,ω(I)).

3.2 SCLDM: A TRANSFORMER-BASED VAE WITH LATENT DIFFUSION

Permutation-invariant/equivariant Cross-Attention Our VAE is parameterized by a novel
transformer-based architecture that leverages multi-head cross-attention block (MCAB), enabling
pooling/unpooling operations to avoid processing tens of thousands of tokens at the same time:

MCABS(X) = F (X,S) +MLP(LNF (F (X,S)) (2)
F (X,S) = Q+AttK (LNQ(Q),K,V)) (3)

Q = LinearS(S), K = LinearK(LNK(X)), V = LinearV (LNV (X)), (4)

where Linear is a linear layer, LN(·) denotes a layer norm, and MLP(·) is a small fully-connected
neural network, e.g., MLP(X) = (Linear ↔ (Linear↗ (silu ↔ Linear))(X).2 S are learnable pseu-
doinputs. MCABS is defined similarly to a block used in Perceiver (Jaegle et al., 2022; 2021).

MCAB is either permutation-invariant or permutation-equivariant. Since it relies on the attention
mechanism, if we permute X but do not permute S, then MCAB is permutation-invariant (see
Property 3 for the proof). However, if we process Z by a permutation-invariant function and we
permute S accordingly to the permuted indices, then MCAB becomes permutation-equivariant (see
Property 4 for the proof). As a result, we use MCAB as a permutation-invariant pooling operator in
the encoder network, and as a permutation-equivariant unpooling operator in the decoder network.

Encoder (Variational Posterior) We define the family of variational posteriors as Gaussians,
q(Z|ϖ(xI)) = N (Z|µ(xI),φ(xI)), ϖ(xI)

df
= {µ(xI),φ2(xI)}. We need Z to be of fixed size

and invariant to permutations of xI , we propose the following architecture of the encoder network:

NNenc(xI , I) = (TL ↔ TL↔1 ↔ . . . ↔ T1 ↔MSCABS ↔ Embedding) (xI , I), (5)

where Tl(·) denotes a transformer block, e.g., Tl(X) = ((Id ↘ (MLP ↔ LN2)) ↔ (Id ↘ (AttK ↔

LN1)))(X), and Embedding(·, ·) is an embedding layer. Since inputs xI form a (column) vector
of counts, and I are IDs, we propose to use the following embedding layer:

Embedding(xI , I) = Linear ↔ (repeatD(xI)↭EI), (6)

where repeatD repeats the counts D-times resulting in a matrix M ≃ D, Linear projects the con-
catenated 2D-dimensional space to the D-dimensional space, and E → RM→D is the embedding
matrix. The rationale behind this way of embedding both counts and indices is to mix the informa-
tion and be able to learn the mixing through a projection layer. Additionally, we propose to encode
only expressed genes, and replace non-expressed genes with a PAD token. We provide more details
and an example in Appendix E.1.

The last transformer block duplicates the embedding dimension such that both the means µ and the
variances φ2 of a Gaussian are modeled. Alternatively, we can output means only to have an auto-
encoder architecture, which is typically used in Latent Diffusion Models (Rombach et al., 2022).
Note that all transformer blocks are permutation-equivariant, but our MCABS is permutation-
invariant. As a result, the proposed parameterization NNenc results in permutation-invariant varia-
tional posteriors.

Decoder (Conditional Likelihood) The decoder network parameterizes the conditional likelihood
function p(xI |ϱ(Z, I)) for given latents Z and indices I. The conditional likelihood could be
a Gaussian if x’s are continuous, or Poisson or Negative Binomial for counts. To fulfill the
requirement on modeling exchangeable distributions, we need to ensure the conditional likeli-
hood is exchangeable. In other words, for a given permutation ω, the following holds true:
p(xI |ϱ(Z, I)) = p(xω(I)|ϱ(Z,ω(I))). First, we assume that for given Z, the conditional likelihood
is fully factorized: p(xI |ϱ(Z, I)) =

∏
i↓I p(xi|ϱi(Z, I)). Next, we make the parameterization of

2We use the following notation for function compositions: (f → g)(x) df
= f(g(x)), (f · g)(x) df

= f(x)g(x),
(f ↑ g)(x)

df
= f(x) + g(x), and (f ↭ g)(x)

df
= concatenate(f(x), g(x)).
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p(xI |ϱ(Z, I)) permutation equivariant, because, otherwise, transforming Z would result in incor-
rect parameters for each component p(xi|ϱi(Z, I)). Keeping in mind that Z is permutation-invariant
to permutations of xI , we propose the following decoder network:

NNdec(Z, I) = (MCABEI ↔ TL ↔ . . . ↔ T1)(Z, I), (7)

and then use the outcomes of NNdec(Z, I) to parameterize an appropriate distribution, e.g., the
Negative Binomial (see Appendix E.2 for further details).

In our decoder network, we use MCABEI as our final block that outputs the parameters of the
conditional likelihood. To make sure the model is permutation-equivariant, we define pseudoinputs
in the multi-head cross-attention block selecting embedding vectors specified by I, S = EI , where
E is the embedding used in the encoder network. This way, we ensure permutation-equivariance
since permuting indices is equivalent to permuting embedding vectors, Eω(I) = EI , see Property 4
in Appendix. Eventually, we obtain a family of exchangeable conditional likelihood functions.

Prior (Marginal over Latents) The final component of the proposed VAE is the prior of latent
variables. Formulating permutation-equivariant priors is challenging (Kuzina et al., 2022); fortu-
nately, our latents Z are permutation-invariant and length-invariant. As a result, we can use any
prior distribution we prefer, including standard Gaussian, p(Z) = N (Z|0, I).

In this paper, we advocate to use a Latent Diffusion Model (LDM) (Rombach et al., 2022), namely,
for a pre-trained VAE, we fit a diffusion-based model in the latent space to replace a simpler prior like
N (Z|0, I). Using LDMs not only results in a better match with the aggregated posterior (Tomczak &
Welling, 2018; Tomczak, 2024), but allows the application of controlled sampling using techniques
such as classifier-free guidance (Ho & Salimans, 2022). In particular, we focus on linear interpolants
and the flow matching (FM) loss Lipman et al. (2022); Tong et al. (2023), and the following version
of the classifier-free guidance for FM:

ṽt,ϑ(Z, y) = vt,ϑ(Z; Null) + ↼ [vt,ϑ(Z; y)↓ vt,ϑ(Z; Null)] , (8)

where vt,ϑ(Z; ·) is a parameterized vector field, and ↼ is the guidance strenght for attributes y →

{0, 1}J , where any combination of attributes is possible (we refer to it as joint conditioning); the
Null attribute corresponds to no conditioning. In CFGen (Palma et al., 2025a), a different classifier-
free guidance was used, namely, ṽt,ϑ(Z, y) = vt,ϑ(Z; Null)+

∑J
j=1 ↼j [vt,ϑ(Z; yj)↓ vt,ϑ(Z; Null)],

that assumes additive conditioning s.t.
∑

j yj = 1.

We parameterize the vector field (score) model using Diffusion Transformer (DiT) blocks (Peebles
& Xie, 2023). The network is a composition of DiT and perfectly fits our modeling scenario since
latents Z are tokens.

3.3 TRAINING & SAMPLING

Training We train our model (scLDM) using the two-stage approach: (1) A VAE is trained to learn a
permutation-invariant latent space by reconstructing subsets of variables; and (2) An LDM is trained
to generate new samples from this latent space which can be controlled by classifier-free guidance
(Ho & Salimans, 2022) with multiple conditions (Palma et al., 2025a).

Stage 1: VAE We train our VAE with a standard Gaussian prior by optimizing the ELBO in equa-
tion 1. However, to encourage better reconstruction capabilities, we introduce ↽-weighting of the
KL-term like in (Higgins et al., 2017). In the most extreme case, we set ↽ to 0 and the encoder
returns means only, µ(xI).

Stage 2: LDM In the second stage, we freeze the VAE and replace the standard Gaussian prior with
a score-based (diffusion) model parameterized by a DiT network trained with linear interpolants
and the flow matching loss. Additionally, to encourage controlled sampling, for each element of
a mini-batch, we sample from the Bernoulli distribution with probability ⇀ to determine whether
conditioning is used or not.

Sampling In our model, sampling x’s determined by the indices I is defined by the following gener-
ative process: (i) Z ⇐ p(Z), (ii) xI ⇐ p(xI |ϱ(Z, I)). We can also sample conditionally by applying
the classifier-free guided sampling technique, following the vector field defined in equation 33.

5
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4 EXPERIMENTS

Settings We provide more details on the experiments in the Appendix, namely, the datasets in
Appendix F, the baselines in Appendix G, the hyperparams of our scLDM in Appendix H, the
evaluation pipeline with metrics in Appendix I, and additional results in Appendix K. In the fol-
lowing experiments, we present superior capabilities of our scLDM: (i) the powerful reconstructive
performance of the fully transformer-based VAE, (ii) the unconditional and conditional generative
performance on observational and perturbational datasets, (iii) the usefulness of the embeddings
provided by our auto-encoder on classification downstream tasks.

4.1 (UN)CONDITIONAL CELL GENERATION ON OBSERVATIONAL DATA

Details For the first experiment, we used single-cell RNA-sequencing data from the benchmark
datasets used in (Palma et al., 2025a). Here, we are interested in evaluating the reconstructive and
generative capabilities of our scLDM. For generations, we train our scLDM to synthesize gene
expression profiles conditioned on a single attribute. At inference time, we query the model with
specific labels to generate new synthetic cells that match the desired cellular identity. In the case
of unconditional generation, we sample from the vector field without conditioning on the cell type
label (i.e., y = Null). We compare our approach to scVI (Lopez et al., 2018) and the current SOTA
generative model CFGen (Palma et al., 2025a).

Table 1: Model performance comparison on cell
reconstruction task.

Dataset Model RE ⇒ PCC ⇑ MSE ⇒

Dentate Gyrus
scVI 5193.2± 0.1 0.058± 0.000 0.378± 0.000
CFGen 5468.8±N/A 0.076±N/A 0.253±N/A
scLDM 5232.9± 43.1 0.103± 0.005 0.249± 0.002

Tabula Muris
scVI 5588.2± 1.7 0.221± 0.000 0.132± 0.000
CFGen 5547.6±N/A 0.136±N/A 0.127±N/A
scLDM 4569.6± 105.1 0.391± 0.021 0.092± 0.004

HLCA
scVI 5659.2± 0.5 0.125± 0.000 0.238± 0.000
CFGen 5428.7±N/A 0.146±N/A 0.117±N/A
scLDM 4102.1± 41.1 0.421± 0.013 0.069± 0.001

Results and discussion Our proposed scLDM
model demonstrates substantial improvements
over existing approaches across all evaluated
datasets and metrics, see Table 1. scLDM con-
sistently achieves the lowest reconstruction er-
ror values, with particularly notable improve-
ments on Tabula Muris (4569.6 vs. 5547.6 for
CFGen) and HLCA (4102.1 vs. 5428.7 for
CFGen) datasets. The Pearson correlation co-
efficients show dramatic improvements, with
scLDM achieving 0.391 on Tabula Muris com-
pared to 0.221 for scVI and 0.136 for CFGen—nearly doubling the correlation with ground truth.
Similarly, MSE is consistently reduced, with scLDM achieving 0.069 on HLCA compared to 0.117
for CFGen and 0.238 for scVI. These results suggest that our fully transformer-based VAE is able
to more effectively capture the complex structure of single-cell gene expression data compared to
traditional VAE-based methods (scVI, CFGen). The consistent improvements across diverse tissue
types (brain, entire organism, and lung) indicate the generalizability of our approach, namely, a
parameterization of the VAE using the proposed transformer-based architectures.

Table 2: Model performance comparison on
(un)conditional cell generation benchmarks on
highly variable genes.

Setting Model W2 ⇒ MMD2 RBF ⇒ FD ⇒

Dentate Gyrus

Uncond
scDiffusion 17.443± 0.028 0.258± 0.002 256.630± 0.357
CFGen 12.617± 0.034 0.022 ± 0.001 28.105 ± 0.332
scLDM 10.817 ± 0.065 0.023 ± 0.000 28.403± 0.099

Cond
scDiffusion 17.321± 0.041 0.689± 0.000 261.217± 1.856
CFGen 11.608± 0.066 0.075 ± 0.000 41.425± 1.612
scLDM 10.615 ± 0.028 0.102± 0.003 34.388 ± 1.014

Tabula Muris

Uncond
scDiffusion 14.143± 0.007 0.144± 0.001 158.977± 1.070
CFGen 11.658± 0.127 0.008± 0.000 36.373± 1.165
scLDM 10.295 ± 0.110 0.004 ± 0.000 13.130 ± 0.318

Cond
scDiffusion 14.143± 0.007 0.144± 0.001 158.977± 1.070
CFGen 8.921± 0.034 0.026± 0.000 21.517± 0.596
scLDM 7.717 ± 0.030 0.016 ± 0.000 11.008 ± 0.716

HLCA

Uncond
scDiffusion 15.886± 0.038 0.163± 0.001 210.853± 1.165
CFGen 12.433± 0.045 0.007 ± 0.000 24.639± 0.738
scLDM 10.419 ± 0.079 0.007 ± 0.000 18.024 ± 0.372

Cond
scDiffusion 15.886± 0.038 0.163± 0.001 210.853± 1.165
CFGen 9.757± 0.078 0.090± 0.006 33.900± 5.116
scLDM 8.445 ± 0.045 0.074 ± 0.002 20.974 ± 1.504

Table 2 presents the generation benchmarks,
where scLDM demonstrates superior perfor-
mance across both unconditional and condi-
tional generation sampling. In the uncondi-
tional setting, our model achieves the lowest
Wasserstein-2 distance across all datasets, with
improvements ranging from 14% on Dentate
Gyrus to 12% on Tabula Muris. While CF-
Gen shows competitive performance on MMD2

RBF, our approach matches or outperforms it,
achieving identical scores on HLCA and su-
perior results on Tabula Muris. In terms of
the Fréchet Distance (FD), scLDM still shows
superior performance, with particularly strik-
ing improvements on Tabula Muris, where it
achieves a nearly three-fold reduction com-
pared to the second-best baseline. For condi-
tional generation, scLDM maintains its perfor-
mance edge with consistent improvements in W2, MMD2 RBF, and FD scores across all datasets.
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We report further generation results on all genes in Appendix. In Figure 2 we report qualitative
evaluations of generation results for the HLCA datasets for all three models. Our model shows
qualitatively a better coverage of the cell state variation on UMAP coordinates, showcasing how
it is able to recapitulate high resolution cell states in highly heterogenous tissues like the human
lung.These results demonstrate that our latent diffusion approach not only generates more realistic
single-cell expression profiles but also maintains superior performance when conditioning on cell
state information, a crucial capability for practical applications in single-cell genomics.

(a) scLDM - conditional (b) CFGen - conditional (c) scdiffusion - conditional

(d) ACTA2 (e) COL1A1 (f) CFD

Figure 2: Conditional generation for the HLCA dataset for: (a) scLDM, (b) CFGen and (c) scdif-
fusion. Expression levels for 3 marker genes: (d) ACTA2, (e) COL1A1 and (f) CFD, markers of
“alveolar type 2 fibroblast cell”, corresponding to cell populations in the insets.

4.2 CONDITIONAL CELL GENERATION ON PERTURBATIONAL DATA

Details In the second experiment, we train our model for conditional gene expression generation
based on multiple attributes: a cell context (cell lines and cell types) and a perturbation type (gene
knockouts and cytokines). The VAE baseline is trained without attribute conditioning, focusing
solely on the reconstruction objective, while the flow matching component incorporates multi-
attribute conditioning. By training across diverse contexts, the model learns to capture joint structure
spanning different axes of variation. At inference time, the flow matching model is queried with spe-
cific combinations of cell type and perturbation to generate new gene expression profiles.

Table 3: Model performance comparison on con-
ditional cell generation on Parse1M and Replogle.

Dataset Model W2 ⇒ MMD2 RBF ⇒ FD ⇒

Parse 1M
scVI 35.508± 0.014 1.372± 0.002 1233.109± 2.762
CPA 13.534± 0.010 1.117± 0.020 181.324± 0.302
scLDM 12.455 ± 0.001 0.027 ± 0.000 18.145 ± 0.068

Replogle
scVI 19.827± 0.037 0.659± 0.003 381.211± 4.146
CPA 11.618± 0.023 0.554± 0.002 129.853± 0.647
scLDM 11.288 ± 0.011 0.200 ± 0.001 53.555 ± 0.210

We leverage two datasets: (1) Parse 1M,
containing perturbational single-cell RNA-
sequencing data from human peripheral blood
mononuclear cells (PBMCs) generated by
Parse Biosciences (par) with 1,267,690 single
cells across 18 annotated cell types, each sub-
jected to one of 90 cytokine perturbations or
a control condition, and to test generalization
capabilities, we hold out 27 cytokine perturba-
tions in CD4 Naive cells; and (2) Replogle, a
benchmark genetic perturbation dataset (Nadig et al., 2025) consisting of 2,024 gene knockouts
across four cell lines after filtering perturbations with low on-target efficacy, where we follow the
dataset split from Adduri et al. (2025), holding out 624 genetic perturbations in HepG2 cells to
evaluate generalization to unseen cell context–perturbation pairs. For both datasets, we restricted
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analysis to the top 2,000 highly variable genes (HVGs) following Adduri et al. (2025). We compare
our model against established generative baselines: CPA (Lotfollahi et al., 2023a) and scVI (Lopez
et al., 2018).

Results and Discussion The results presented in Table 3 demonstrate that our proposed approach
significantly outperforms the baselines in both the Parse 1M dataset (cytokine perturbation) and the
Replogle dataset (gene knockouts). Our model scLDM is substantially better across all metrics,
improving up to ⇐90% for MMD2 RBF and FD for the Parse 1M dataset and ⇐60% for MMD2

RBF and FD for the Replogle dataset. This showcases how our model is superior in covering the full
cellular variation in perturbation response in unseen combinations of cell contexts and perturbations.

In Figure 3, we report a qualitative evaluation of our model generative performances for the Parse 1M
dataset for unseen combinations of CD4-Naive cells with various cytokine perturbations such as IL-9
and LT-alpha1-beta2. Furthermore, we show the same for Replogle dataset for unseen combinations
of HepG2 cells with PPP6c and ZDHHC7 gene edits.

(a) all cells (b) CD4 Naive + IL-9 (c) CD4 Naive + LT-alpha1-beta2 (d) all cells (e) hepg2 + PPP6C (f) hepg2 + ZDHHC7

Pa
rs

e 
1M

Re
pl

og
le

Figure 3: Conditional generation across multiple attributes: cell type and perturbation. (a) Generated
vs. true cells across all cell types in the Parse 1M dataset show close alignment. (b–c) For CD4 Naive
cells, conditioning on cytokine perturbations (IL-9, LT-alpha1-beta2) produces perturbation-specific
shifts consistent with the true test distributions. (d) Generated vs. true cells across all cell types in the
Replogle dataset. (e–f) For HepG2 cells, conditioning on genetic perturbations (PPP6C, ZDHHC7)
yields realistic perturbation-dependent distributions that closely follow the experimental data.

In Appendix 14, we also report reconstruction results between the VAE component of scLDM and
scVI for both datasets, showing how our improved transformer-based VAE significantly outperforms
MLP-based scVI on the reconstruction task. Finally, we also tested how the additive conditioning
for the classifier-free guidance proposed in Palma et al. (2025a) performs compared to the standard
classifier-free guidance approach (Ho & Salimans, 2022). In Supplementary Table 14 we report that
the standard approach is superior to the additive approach in multi-attribute conditional settings for
perturbational single-cell data.

4.3 SCLDM-VAE EMBEDDING EVALUATIONS ON CLASSIFICATION TASKS

Table 4: COVID-19 model performance compar-
ison (averaged across all donors). Since all stan-
dard errors are below 0.003 (see Appendix K.4),
they are ommitted in this table.

Model F1 Score Recall Precision

TranscriptFormer 0.814 0.829 0.801
UCE 0.775 0.781 0.771
scGPT 0.779 0.793 0.766
Geneformer 0.768 0.781 0.757
AIDO.Cell 0.717 0.729 0.708
scVI 0.675 0.680 0.680

scLDM (20M) 0.811 0.827 0.797
scLDM (70M) 0.815 0.830 0.801
scLDM (270M) 0.820 0.836 0.806

Details For the third experiment, we leveraged
two datasets: the first dataset is a human lung
single-cell RNA-sequencing data from healthy
donors and patients affected by COVID-19 (Wu
et al., 2024), the second dataset consists of 6
tissues from the Tabula Sapiens 2.0 (Consor-
tium & Quake, 2025). The goal of this ex-
periment is to verify the quality of embeddings
provided by the auto-encoder on a downstream
task (here: classification). We compare our ap-
proach to embeddings provided by Transcript-
Former (Pearce et al., 2025), scVI (Lopez et al.,
2018), AIDO.Cell (Ho et al., 2024), Gene-
former (Theodoris et al., 2023), scGPT (Cui
et al., 2024), UCE (Rosen et al., 2023). We used
Human Census data (CellxGene)3 to train three
versions of scLDM-VAE, namely, with about
20M parameters, 70M parameters, and 270M

3https://cellxgene.cziscience.com/
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parameters. For our scLDM-VAE and benchmark models, both datasets represent out-of-distribution
data that were unseen during training.

To evaluate the quality of the learned representations, we process each of the four COVID-19 donors
through the models to generate cell embeddings. For scLDM variants, we use the mean of the latent
distribution, µ(x), which is flattened to a 4096-dimensional vector. To ensure fair comparison across
models with different embedding dimensions, we apply principal component analysis (PCA) to all
embeddings, retaining the top 128 principal components. For each donor independently, we train
an unregularized logistic regression classifier to distinguish infected from uninfected cells using
5-fold cross-validation. The final metrics are computed as equally weighted averages across the
four donors, with uncertainties propagated using standard error addition in quadrature: φcombined =
1
n

√∑n
i=1 φ

2
i , where n = 4 donors.

For the Tabula Sapiens 2.0 dataset, we evaluated cell type classification across 6 tissues: blood,
spleen, lymph node, small intestine, thymus, and liver. Following the same protocol as the COVID-
19 analysis, we stratified samples by tissue instead of donor and filtered out cell types with fewer
than 100 cells to ensure robust classification. We employed multinomial logistic regression for
the multi-class cell type prediction task. Final metrics are averaged over tissues with propagated
uncertianites (see Appendix K.4).

Table 5: Tabula Sapiens 2.0 model performance
comparison (averaged across all tissues). Since
all standard errors are below 0.003 (see Appendix
K.4), they are ommitted in this table.

Model F1 Score Recall Precision

scGPT 0.8 0.802 0.806
scVI 0.799 0.794 0.814
TranscriptFormer 0.799 0.8 0.802
UCE 0.796 0.797 0.801
Geneformer 0.777 0.776 0.786
AIDO.Cell 0.724 0.715 0.748

scLDM (20M) 0.804 0.805 0.812
scLDM (70M) 0.802 0.802 0.810
scLDM (270M) 0.802 0.803 0.811

Results and discussion As shown in Table 4,
our 270M and 70M models achieve superior
performance across all evaluated metrics for
COVID-19 infection detection. The perfor-
mance differences between scLDM (270M)
and TranscriptFormer—the strongest bench-
mark model—represent meaningful differences
given the measurement uncertainty, with our
model achieving F1 score of 0.820 ± 0.001
compared to TranscriptFormer’s 0.814±0.002.
The strong discriminative performance demon-
strates that our transformer-based VAE learns
biologically meaningful representations that
capture infection-related transcriptional signa-
tures. We observe substantial improvements
over the VAE-based scVI model (F1: 0.675 ±

0.001), highlighting the advantages of our ar-
chitectural innovations and model scale.

For the Tabula Sapiens 2.0 classification results shown in Table 5, the differences in F1 scores
between the scLDM model variants are within measurement uncertainty and may not be sig-
nificant. Moreover, all top-performing models—scLDM variants, scGPT, scVI, and Transcript-
Former—achieve F1 scores within each other’s uncertainties (ranging from 0.799 to 0.804 with
standard errors of 0.002), indicating comparable performance for multi-class cell type classifica-
tion. The consistent performance across both binary (COVID-19 infection) and multi-class (cell
type) classification tasks validates the biological utility of our learned embeddings, making them
valuable for biological discovery applications beyond generation.

5 CONCLUSION

In this paper, we demonstrated that enforcing the inductive bias of exchangeability is critical for gen-
erative modeling of single-cell data. We introduced a scalable architecture combining a permutation-
invariant encoder and a permutation-equivariant decoder within a fully transformer-based VAE with
a latent diffusion model parameterized with DiTs, achieving state-of-the-art performance on cell
generation benchmarks, on both observational and perturbational data, as well as on classifica-
tion downstream tasks. Our work moves beyond imposing artificial structure on gene expression
data and instead provides a principled framework for learning from unordered sets. This approach
is not limited to transcriptomics and lays the groundwork for developing foundational models for
other exchangeable biological data, such as proteomics and epigenomics, as well as multi-omics and
multi-modal data, thereby enabling more faithful and powerful virtual models of cellular biology.
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Malte D Luecken, Maren Büttner, Kridsadakorn Chaichoompu, Anna Danese, Marta Interlandi,
Michaela F Müller, Daniel C Strobl, Luke Zappia, Martin Dugas, Maria Colomé-Tatché, et al.
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