

000 001 SCALABLE SINGLE-CELL GENE EXPRESSION GENER- 002 ATION WITH LATENT DIFFUSION MODELS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Computational modeling of single-cell gene expression is crucial for understanding
012 cellular processes, but generating realistic expression profiles remains a major
013 challenge. This difficulty arises from the count nature of gene expression data
014 and complex latent dependencies among genes. Existing generative models often
015 impose artificial gene orderings or rely on shallow neural network architectures.
016 We introduce a scalable latent diffusion model for single-cell gene expression
017 data, which we refer to as scLDM, that respects the fundamental exchangeability
018 property of the data. Our VAE uses fixed-size latent variables leveraging a unified
019 Multi-head Cross-Attention Block (MCAB) architecture, which serves dual
020 roles: permutation-invariant pooling in the encoder and permutation-equivariant
021 unpooling in the decoder. We enhance this framework by replacing the Gaussian
022 prior with a latent diffusion model using Diffusion Transformers and linear
023 interpolants, enabling high-quality generation with multi-conditional classifier-free
024 guidance. We show its superior performance in a variety of experiments for both
025 observational and perturbational single-cell data, as well as downstream tasks like
026 cell-level classification.

027 1 INTRODUCTION 028

029 Single-cell transcriptomics has revolutionized our understanding of cellular heterogeneity and bi-
030 logical processes at unprecedented resolution (Rozenblatt-Rosen et al., 2017), enabling high-
031 throughput gene expression profiling across millions of cells (Virshup et al., 2023), and providing
032 insights into cellular differentiation (Gulati et al., 2020), disease progression (Zeng & Dai, 2019), re-
033 sponses to drug perturbations (Adduri et al., 2025; Bereket & Karaletsos, 2023; Zhang et al., 2025).
034 However, modeling the complex, high-dimensional gene expression data from single cells presents
035 significant computational and methodological challenges (Lähnemann et al., 2020; Luecken et al.,
036 2022; Neu et al., 2017).

037 Deep generative modeling (Tomczak, 2024) offers a powerful framework to formulate expressive
038 probability distributions. In the context of single-cell data, multiple methods have been proposed.
039 In particular, Variational Auto-Encoders (VAEs) have been extensively utilized for representation
040 learning (single-cell Variational Inference; scVI) (Lopez et al., 2018), perturbation modeling (Lot-
041 folla et al., 2023b; Palma et al., 2025b), trajectory inference (Gayoso et al., 2024), among oth-
042 ers (Gayoso et al., 2022). Additionally, Generative Adversarial Networks (GANs) have also been
043 proposed, both for generating realistic cell populations (scGAN; (Marouf et al., 2020b)) and for in-
044 ferring cellular trajectories (Reiman et al., 2021). Recently, diffusion-based models have also been
045 adopted for single-cell gene expression (Luo et al., 2024). An interesting research line was proposed
046 in (Palma et al., 2025a) that combines scVI with a flow matching model in the latent space (CFGen).

047 However, two key challenges limit existing methods. First, they often require a fixed ordering of
048 genes or operate on a restricted subset of highly variable genes (HGVs). This assumption directly
049 clashes with the biological reality that gene expression profiles are **exchangeable** sets, where the
050 order of genes carries no meaning. Second, approaches based on GANs inherit well-known training
051 instabilities and risks of mode collapse. These limitations make current models inflexible, difficult
052 to scale, and unable to properly handle the unordered nature of single-cell data.

053 This paper introduces a novel approach that combines the flexibility of VAEs with the power of la-
tent diffusion models (see Figure 1), specifically designed to handle the exchangeable nature of gene

expression data. The key insight is that careful architectural choices, particularly in the parameterization of permutation-invariant and permutation-equivariant components, result in a scalable, deep, and exchangeable generative model. The contributions of the paper are the following:

- We propose a novel fully transformer-based VAE architecture for exchangeable data that uses a single set of fixed-size, permutation-invariant latent variables. The model utilizes a Multi-head Cross-Attention Block (MCAB) that serves two purposes: It acts as a permutation-invariant pooling operator in the encoder, and functions as a permutation-equivariant unpooling operator in the decoder. This unified approach eliminates the need for separate architectural components for handling varying set sizes.
- We replace the standard Gaussian prior with a latent diffusion model trained with the flow matching loss and linear interpolants using the Scalable Interpolant Transformers formulation (SiT) (Ma et al., 2024), and a denoiser parameterized by Diffusion Transformers (DiT) (Peebles & Xie, 2023). This allows for better modeling of the complex distribution of cellular states and enables controlled generation through classifier-free guidance.
- The proposed framework, which we refer to as scLDM, supports generation conditioned on multiple attributes simultaneously through an extended classifier-free guidance mechanism, enabling fine-grained control over generated cell states, as demonstrated on multiple benchmark datasets. Moreover, we indicate the strengths of our fully transformer-based auto-encoder in terms of reconstruction metrics and on a downstream prediction task.

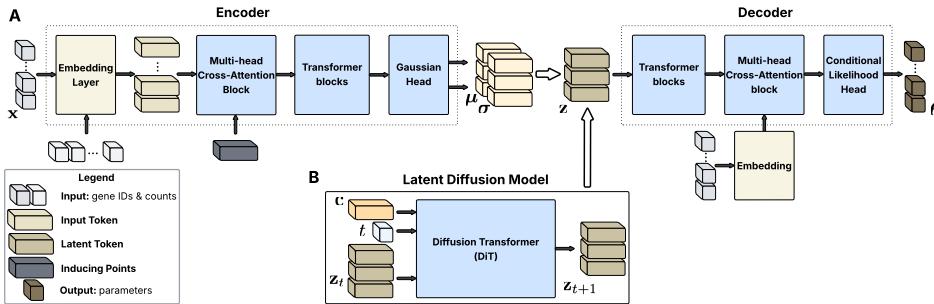


Figure 1: Our deep generative model, scLDM, for single-cell gene expression data. **A:** A fully transformer-based architecture for processing gene expressions. The encoder network results in permutation-invariant latent variables represented as tokens. The decoder network returns permutation-equivariant counts for given gene IDs. **B:** At the second stage, a vanilla prior is replaced by a latent diffusion model. We model latent tokens using Diffusion Transformers (DiT), and train the resulting LDM using linear interpolants and the flow matching loss. Sampling is carried out by applying the Scalable Interpolant Transformers (SiT) library (Ma et al., 2024).

2 BACKGROUND

Variational Auto-Encoders Another approach is Variational Auto-Encoders (Kingma & Welling, 2014; Rezende et al., 2014), which offer flexible modeling capabilities. (Kim et al., 2021) proposed SetVAE with two latent variables for varying set sizes: $\mathbf{z}_{\mathcal{I}}$ matching $\mathbf{x}_{\mathcal{I}}$'s dimensionality (where \mathbf{z}_i corresponds to \mathbf{x}_i , $i \in \mathcal{I}$) and constant-size $\mathbf{c} \in \mathbb{R}^{d_1}$. They used hierarchical VAE with multiple $\mathbf{z}_{\mathcal{I}}$ and \mathbf{c} layers and replaced conditional likelihood with Chamfer Distance. While we appreciate VAE's flexibility, we find two distinct latents and hierarchical structure unnecessary, arguing that careful parameterization is *crucial* for high performance.

Permutation-equivariant/invariant Parameterizations Geometric deep neural networks typically compose permutation-invariant and/or permutation-equivariant layers with nonlinearity activations (Bronstein et al., 2021). DeepSets (Zaheer et al., 2017) exemplifies this blueprint by processing elements consistently regardless of position, then applying symmetric aggregation (averaging or pooling (Kimura et al., 2024; Ilse et al., 2018; Xie & Tong, 2025)) to ensure permutation invariance. However, processing elements separately before aggregation with non-learnable pooling is limiting. Learned attention mechanisms in transformer architectures offer a solution, enabling joint element

transformation. SetTransformer (Lee et al., 2019) introduces multi-head attention blocks and Pooling by Multi-head Attention for permutation invariance. We propose an alternative parameterization using a single multi-head attention layer for fixed-size output, followed by transformer blocks.

Latent Diffusion Models Latent Diffusion Models (LDMs) perform diffusion processes in learned latent spaces rather than directly in high-dimensional data spaces. Stable Diffusion (Rombach et al., 2022) pioneered this approach for text-to-image synthesis by training diffusion models in the latent space of a pre-trained VAE, dramatically reducing computational costs while maintaining generation quality. This paradigm has proven effective across diverse scientific domains: all-atom diffusion transformers (Joshi et al., 2025) generate molecules and materials with atomic-level precision, similarly LaM-SLidE (Sestak et al., 2025) utilizes transformer-based LDM for molecular dynamics (among others), while La-proteina (Geffner et al., 2025) employs transformer-based partially latent flow matching for atomistic protein generation. These advances demonstrate the versatility of latent diffusion approaches for complex, high-dimensional scientific data across multiple modalities. Here, we extend this framework to single-cell transcriptomics by proposing a transformer-based LDM for this biological data type.

Generative Models for scRNA-seq In the context of single-cell genomics, numerous generative models have been developed for (conditional) sampling of gene expression profiles. scVI (Lopez et al., 2018) represents an early VAE-based generative model, while more recent approaches include GAN-based and diffusion-based architectures such as scGAN (Marouf et al., 2020a) and scDiffusion (Luo et al., 2024). These models operate in continuous space and therefore transform discrete gene expression data into log-normalized counts. Recently, latent diffusion frameworks have emerged with models like SCLD (Wang et al., 2023) and CFGen (Palma et al., 2025a), which leverage latent diffusion frameworks. Additionally, application-specific generative models have been developed for perturbational single-cell genomics, including CPA (Lotfollahi et al., 2023a), SquiDiff (He et al., 2024), CellFlow (Klein et al., 2025), and CellOT (Bunne et al., 2023), which are tailored to capture the effects of genetic and chemical perturbations on cellular states. Our approach is similar in vein to CFGen and SCLD, but leverages transformer-based architectures for both our newly proposed VAE as well as the latent diffusion model.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Let us consider M random variables, \mathbf{x} , where each $\mathbf{x}_i \in \mathbb{X}^D$, e.g., $\mathbb{X} = \mathbb{N}$. A set of indices of M random variables is denoted as \mathcal{I} , namely, $\mathcal{I} = \pi(\{1, 2, \dots, M\})$, where $\pi(\cdot)$ is a permutation¹. Further, we denote a specific order of variables in \mathbf{x} determined by \mathcal{I} as $\mathbf{x}_{\mathcal{I}}$. We assume that for a given \mathcal{I} , an object $\mathbf{x}_{\mathcal{I}}$ is equivalent to an object defined by $\pi(\mathcal{I})$, namely, $\mathbf{x}_{\mathcal{I}} = \mathbf{x}_{\pi(\mathcal{I})}$. An example of such a setting is gene expression data where $\{1, 2, \dots, M\}$ corresponds to gene IDs and the order of gene IDs does not change the state of a cell. Further, we assume a *true* conditional distribution model $p(\mathbf{x}_{\mathcal{I}}|\mathcal{I})$ that for a given order of indices \mathcal{I} allows sampling $\mathbf{x}_{\mathcal{I}}$. We access this *true* distribution through observed *iid* data $\mathcal{D} = \{(\mathbf{x}_{\mathcal{I}_n}, \mathcal{I}_n)\}_{n=1}^N$. We look for a model $p(\mathbf{x}_{\mathcal{I}}|\theta, \mathcal{I})$ with parameters θ that optimizes the log-likelihood function for the empirical distribution with data \mathcal{D} , $\ell(\theta; \mathcal{D}) = \sum_{n=1}^N \ln p(\mathbf{x}_{\mathcal{I}_n}|\theta, \mathcal{I}_n)$. Moreover, we are interested in finding a single model that for given indices \mathcal{I} generates corresponding $\mathbf{x}_{\mathcal{I}}$. Formally, we require the model to be *exchangeable*, namely, $p(\mathbf{x}_{\mathcal{I}}|\mathcal{I}) = p(\mathbf{x}_{\pi(\mathcal{I})}|\pi(\mathcal{I}))$. For instance, a model generates the same gene expression profile for given different orders of gene IDs.

To model an exchangeable probabilistic model $p(\mathbf{x}_{\mathcal{I}}|\theta, \mathcal{I})$, we introduce m latent variables (i.e., the number of latents is fixed for all subsets \mathcal{I}), $\mathbf{Z} \in \mathbb{R}^{m \times D}$. By using the family of variational posteriors of the form $q(\mathbf{Z}|\phi, \mathbf{x}_{\mathcal{I}})$, the Evidence Lower BOund (ELBO) is the following:

$$\ln p(\mathbf{x}_{\mathcal{I}}|\theta, \mathcal{I}) \geq \mathbb{E}_{\mathbf{Z} \sim q(\mathbf{Z}|\phi, \mathbf{x}_{\mathcal{I}})} [\ln p(\mathbf{x}_{\mathcal{I}}|\eta, \mathbf{Z}, \mathcal{I}) + \ln p(\mathbf{Z}|\psi) - \ln q(\mathbf{Z}|\phi, \mathbf{x}_{\mathcal{I}})], \quad (1)$$

where $\theta = \{\eta, \psi, \phi\}$ are the parameters of the model. We propose to model these parameters using neural networks, namely: $\phi(\mathbf{x}_{\mathcal{I}}) = \text{NN}_{enc}(\mathbf{x}_{\mathcal{I}})$, $\eta(\mathbf{Z}, \mathcal{I}) = \text{NN}_{dec}(\mathbf{Z}, \mathcal{I})$, and ψ are weights of a parameterization of the prior. Since our assumption is that the model must be exchangeable, we

¹We denote a permutation either as a function $\pi(\cdot)$ or, equivalently, as a matrix \mathbf{P} .

162 propose to parameterize the distributions in a way that: (i) \mathbf{Z} is permutation-invariant, namely, we
 163 aim for defining variational posteriors as Gaussian distributions with permutation-invariant neural
 164 networks NN_{enc} , (ii) the conditional likelihood is defined as $p(\mathbf{x}_{\mathcal{I}}|\eta(\mathbf{Z}, \mathcal{I})) = \prod_{i \in I} p(\mathbf{x}_i|\eta_i(\mathbf{Z}, \mathcal{I}))$,
 165 hence, we must ensure that: $\mathbf{P}\eta(\mathbf{Z}, \pi(\mathcal{I})) = \text{NN}(\mathbf{Z}, \pi(\mathcal{I}))$.
 166

167 3.2 scLDM: A TRANSFORMER-BASED VAE WITH LATENT DIFFUSION

169 **Permutation-invariant/equivariant Cross-Attention** Our VAE is parameterized by a fully
 170 transformer-based architecture that leverages multi-head cross-attention block (MCAB), enabling
 171 pooling/unpooling operations to avoid processing tens of thousands of tokens at the same time:

$$172 \text{MCAB}_{\mathbf{S}}(\mathbf{X}) = F(\mathbf{X}, \mathbf{S}) + \text{MLP}(\text{LN}_F(F(\mathbf{X}, \mathbf{S})) \quad (2)$$

$$173 F(\mathbf{X}, \mathbf{S}) = \mathbf{Q} + \text{Att}_K(\text{LN}_Q(\mathbf{Q}), \mathbf{K}, \mathbf{V}) \quad (3)$$

$$174 \mathbf{Q} = \text{Linear}_S(\mathbf{S}), \mathbf{K} = \text{Linear}_K(\text{LN}_K(\mathbf{X})), \mathbf{V} = \text{Linear}_V(\text{LN}_V(\mathbf{X})), \quad (4)$$

175 where Linear is a linear layer, $\text{LN}(\cdot)$ denotes a layer norm, and $\text{MLP}(\cdot)$ is a small fully-connected
 176 neural network, e.g., $\text{MLP}(\mathbf{X}) = (\text{Linear} \circ (\text{Linear} \odot (\text{silu} \circ \text{Linear}))(\mathbf{X}))$.² \mathbf{S} are learnable pseudo-
 177 inputs. MCAB_S is defined similarly to a block used in Perceiver (Jaegle et al., 2022; 2021).

178 MCAB is either permutation-invariant or permutation-equivariant. Since it relies on the attention
 179 mechanism, if we permute \mathbf{X} but do not permute \mathbf{S} , then MCAB is permutation-invariant (see
 180 Property 3 for the proof). However, if we process \mathbf{Z} by a permutation-invariant function and we
 181 permute \mathbf{S} accordingly to the permuted indices, then MCAB becomes permutation-equivariant (see
 182 Property 4 for the proof). As a result, we use MCAB as a permutation-invariant pooling operator in
 183 the encoder network, and as a permutation-equivariant unpooling operator in the decoder network.

184 **Encoder (Variational Posterior)** We define the family of variational posteriors as Gaussians,
 185 $q(\mathbf{Z}|\phi(\mathbf{x}_{\mathcal{I}})) = \mathcal{N}(\mathbf{Z}|\mu(\mathbf{x}_{\mathcal{I}}), \sigma^2(\mathbf{x}_{\mathcal{I}}))$, $\phi(\mathbf{x}_{\mathcal{I}}) \stackrel{df}{=} \{\mu(\mathbf{x}_{\mathcal{I}}), \sigma^2(\mathbf{x}_{\mathcal{I}})\}$. We need \mathbf{Z} to be of fixed size
 186 and invariant to permutations of $\mathbf{x}_{\mathcal{I}}$, we propose the following architecture of the encoder network:

$$187 \text{NN}_{enc}(\mathbf{x}_{\mathcal{I}}, \mathcal{I}) = (\text{T}_L \circ \text{T}_{L-1} \circ \dots \circ \text{T}_1 \circ \text{MSCAB}_{\mathbf{S}} \circ \text{Embedding})(\mathbf{x}_{\mathcal{I}}, \mathcal{I}), \quad (5)$$

188 where $\text{T}_l(\cdot)$ denotes a transformer block, e.g., $\text{T}_l(\mathbf{X}) = ((\text{Id} \oplus (\text{MLP} \circ \text{LN}_2)) \circ (\text{Id} \oplus (\text{Att}_K \circ
 189 \text{LN}_1))(\mathbf{X}))$, and $\text{Embedding}(\cdot, \cdot)$ is an embedding layer. Since inputs $\mathbf{x}_{\mathcal{I}}$ form a (column) vector
 190 of counts, and \mathcal{I} are IDs, we propose to use the following embedding layer:

$$191 \text{Embedding}(\mathbf{x}_{\mathcal{I}}, \mathcal{I}) = \text{Linear} \circ (\text{repeat}_D(\mathbf{x}_{\mathcal{I}}) \boxplus \mathbf{E}_{\mathcal{I}}), \quad (6)$$

192 where repeat_D repeats the counts D -times resulting in a matrix $M \times D$, Linear projects the
 193 concatenated $2D$ -dimensional space to the D -dimensional space, and $\mathbf{E} \in \mathbb{R}^{M \times D}$ is the embedding
 194 matrix. The rationale behind this way of embedding both counts and indices is to mix the information
 195 and be able to learn the mixing through a projection layer. Additionally, we propose to encode
 196 only expressed genes, and replace non-expressed genes with a PAD token. We provide more details
 197 and an example in Appendix E.1.

198 The last transformer block duplicates the embedding dimension such that both the means μ and the
 199 variances σ^2 of a Gaussian are modeled. Alternatively, we can output means only to have an auto-
 200 encoder architecture, which is typically used in Latent Diffusion Models (Rombach et al., 2022).
 201 Note that all transformer blocks are permutation-equivariant, but our MCAB_S is permutation-
 202 invariant. As a result, the proposed parameterization NN_{enc} results in permutation-invariant vari-
 203 tional posteriors.

204 **Decoder (Conditional Likelihood)** The decoder network parameterizes the conditional likelihood
 205 function $p(\mathbf{x}_{\mathcal{I}}|\eta(\mathbf{Z}, \mathcal{I}))$ for given latents \mathbf{Z} and indices \mathcal{I} . The conditional likelihood could be
 206 a Gaussian if \mathbf{x} 's are continuous, or Poisson or Negative Binomial for counts. To fulfill the
 207 requirement on modeling exchangeable distributions, we need to ensure the conditional likeli-
 208 hood is exchangeable. In other words, for a given permutation π , the following holds true:
 209 $p(\mathbf{x}_{\mathcal{I}}|\eta(\mathbf{Z}, \mathcal{I})) = p(\mathbf{x}_{\pi(\mathcal{I})}|\eta(\mathbf{Z}, \pi(\mathcal{I})))$. First, we assume that for given \mathbf{Z} , the conditional likelihood
 210 is fully factorized: $p(\mathbf{x}_{\mathcal{I}}|\eta(\mathbf{Z}, \mathcal{I})) = \prod_{i \in I} p(\mathbf{x}_i|\eta_i(\mathbf{Z}, \mathcal{I}))$. Next, we make the parameterization of

211 ²We use the following notation for function compositions: $(f \circ g)(x) \stackrel{df}{=} f(g(x))$, $(f \cdot g)(x) \stackrel{df}{=} f(x)g(x)$,
 212 $(f \oplus g)(x) \stackrel{df}{=} f(x) + g(x)$, and $(f \boxplus g)(x) \stackrel{df}{=} \text{concatenate}(f(x), g(x))$.

216 $p(\mathbf{x}_{\mathcal{I}}|\eta(\mathbf{Z}, \mathcal{I}))$ permutation equivariant, because, otherwise, transforming \mathbf{Z} would result in incor-
 217 rect parameters for each component $p(\mathbf{x}_i|\eta_i(\mathbf{Z}, \mathcal{I}))$. Keeping in mind that \mathbf{Z} is permutation-invariant
 218 to permutations of $\mathbf{x}_{\mathcal{I}}$, we propose the following decoder network:
 219

$$220 \quad \text{NN}_{dec}(\mathbf{Z}, \mathcal{I}) = (\text{MCAB}_{\mathbf{E}_{\mathcal{I}}} \circ \mathbf{T}_L \circ \dots \circ \mathbf{T}_1)(\mathbf{Z}, \mathcal{I}), \quad (7)$$

221 and then use the outcomes of $\text{NN}_{dec}(\mathbf{Z}, \mathcal{I})$ to parameterize an appropriate distribution, e.g., the
 222 Negative Binomial (see Appendix E.2 for further details).
 223

224 In our decoder network, we use $\text{MCAB}_{\mathbf{E}_{\mathcal{I}}}$ as our final block that outputs the parameters of the
 225 conditional likelihood. To make sure the model is permutation-equivariant, we define pseudoinputs
 226 in the multi-head cross-attention block selecting embedding vectors specified by \mathcal{I} , $\mathbf{S} = \mathbf{E}_{\mathcal{I}}$, where
 227 \mathbf{E} is the embedding used in the encoder network. This way, we ensure permutation-equivariance
 228 since permuting indices is equivalent to permuting embedding vectors, $\mathbf{E}_{\pi(\mathcal{I})} = \mathbf{E}_{\mathcal{I}}$, see Property 4
 229 in Appendix. Eventually, we obtain a family of exchangeable conditional likelihood functions.
 230

231 **Prior (Marginal over Latents)** The final component of the proposed VAE is the *prior* of latent
 232 variables. Formulating permutation-equivariant priors is challenging (Kuzina et al., 2022); fortu-
 233 nately, our latents \mathbf{Z} are permutation-invariant and length-invariant. As a result, we can use any
 234 prior distribution we prefer, including standard Gaussian, $p(\mathbf{Z}) = \mathcal{N}(\mathbf{Z}|\mathbf{0}, \mathbf{I})$.
 235

236 In this paper, we advocate to use a Latent Diffusion Model (LDM) (Rombach et al., 2022), namely,
 237 for a pre-trained VAE, we fit a diffusion-based model in the latent space to replace a *simpler* prior like
 238 $\mathcal{N}(\mathbf{Z}|\mathbf{0}, \mathbf{I})$. Using LDMs not only results in a better match with the aggregated posterior (Tomczak &
 239 Welling, 2018; Tomczak, 2024), but allows the application of controlled sampling using techniques
 240 such as classifier-free guidance (Ho & Salimans, 2022). In particular, we focus on linear interpolants
 241 and the flow matching (FM) loss (Lipman et al., 2022); Tong et al. (2023), and the following version
 242 of the classifier-free guidance for FM:
 243

$$244 \quad \tilde{v}_{t,\epsilon}(\mathbf{Z}, y) = v_{t,\epsilon}(\mathbf{Z}; \text{Null}) + \omega [v_{t,\epsilon}(\mathbf{Z}; y) - v_{t,\epsilon}(\mathbf{Z}; \text{Null})], \quad (8)$$

245 where $v_{t,\epsilon}(\mathbf{Z}; \cdot)$ is a parameterized vector field, and ω is the guidance strength for attributes $y \in$
 246 $\{0, 1\}^J$, where any combination of attributes is possible (we refer to it as *joint conditioning*); the
 247 Null attribute corresponds to no conditioning. In CFGGen (Palma et al., 2025a), a different classifier-
 248 free guidance was used, namely, $\tilde{v}_{t,\epsilon}(\mathbf{Z}, y) = v_{t,\epsilon}(\mathbf{Z}; \text{Null}) + \sum_{j=1}^J \omega_j [v_{t,\epsilon}(\mathbf{Z}; y_j) - v_{t,\epsilon}(\mathbf{Z}; \text{Null})]$,
 249 that assumes *additive conditioning* s.t. $\sum_j y_j = 1$.
 250

251 We parameterize the vector field (score) model using Diffusion Transformer (DiT) blocks (Peebles
 252 & Xie, 2023). The network is a composition of DiT and perfectly fits our modeling scenario since
 253 latents \mathbf{Z} are tokens.
 254

255 3.3 TRAINING & SAMPLING

256 **Training** We train our model (scLDM) using the two-stage approach: (1) A VAE is trained to learn a
 257 permutation-invariant latent space by reconstructing subsets of variables; and (2) An LDM is trained
 258 to generate new samples from this latent space which can be controlled by classifier-free guidance
 259 (Ho & Salimans, 2022) with multiple conditions (Palma et al., 2025a).
 260

261 **Stage 1: VAE** We train our VAE with a standard Gaussian prior by optimizing the ELBO in equa-
 262 tion 1. However, to encourage better reconstruction capabilities, we introduce β -weighting of the
 263 KL-term like in (Higgins et al., 2017). In the most extreme case, we set β to 0 and the encoder
 264 returns means only, $\mu(\mathbf{x}_{\mathcal{I}})$.
 265

266 **Stage 2: LDM** In the second stage, we freeze the VAE and replace the standard Gaussian prior with
 267 a score-based (diffusion) model parameterized by a DiT network trained with linear interpolants
 268 and the flow matching loss. Additionally, to encourage controlled sampling, for each element of
 269 a mini-batch, we sample from the Bernoulli distribution with probability ρ to determine whether
 270 conditioning is used or not.
 271

272 **Sampling** In our model, sampling \mathbf{x} 's determined by the indices \mathcal{I} is defined by the following gener-
 273 ative process: (i) $\mathbf{Z} \sim p(\mathbf{Z})$, (ii) $\mathbf{x}_{\mathcal{I}} \sim p(\mathbf{x}_{\mathcal{I}}|\eta(\mathbf{Z}, \mathcal{I}))$. We can also sample *conditionally* by applying
 274 the classifier-free guided sampling technique, following the vector field defined in equation 8.
 275

270

4 EXPERIMENTS

271
 272 **Settings** We provide more details on the experiments in the Appendix, namely, the datasets in
 273 Appendix F, the baselines in Appendix G, the hyperparams of our scLDM in Appendix H, the
 274 evaluation pipeline with metrics in Appendix I, and additional results in Appendix K. In the fol-
 275 lowing experiments, we present superior capabilities of our scLDM: (i) the powerful reconstructive
 276 performance of the fully transformer-based VAE, (ii) the unconditional and conditional generative
 277 performance on observational and perturbational datasets, (iii) the usefulness of the embeddings
 278 provided by our auto-encoder on classification downstream tasks.

280

4.1 (UN)CONDITIONAL CELL GENERATION ON OBSERVATIONAL DATA

281
 282 **Details** For the first experiment, we used single-cell RNA-sequencing data from the benchmark
 283 datasets used in (Palma et al., 2025a). Here, we are interested in evaluating the reconstructive and
 284 generative capabilities of our scLDM. For generations, we train our scLDM to synthesize gene
 285 expression profiles conditioned on a single attribute. At inference time, we query the model with
 286 specific labels to generate new synthetic cells that match the desired cellular identity. In the case
 287 of unconditional generation, we sample from the vector field without conditioning on the cell type
 288 label (i.e., $y = \text{Null}$). We compare our approach to scVI (Lopez et al., 2018), scDiffusion (Luo
 289 et al., 2024), and the current SOTA generative model CFGen (Palma et al., 2025a).

290 **Results and discussion** Our proposed scLDM
 291 model demonstrates substantial improvements
 292 over existing approaches across all evaluated
 293 datasets and metrics, see Table I. scLDM
 294 consistently achieves the lowest reconstruction
 295 error values, with particularly notable improve-
 296 ments on Tabula Muris (4569.6 vs. 5547.6 for
 297 CFGen) and HLCA (4102.1 vs. 5428.7 for
 298 CFGen) datasets. The Pearson correlation co-
 299 efficients show dramatic improvements, with
 300 scLDM achieving 0.391 on Tabula Muris com-
 301 pared to 0.221 for scVI and 0.136 for CFGen, nearly doubling the correlation with ground truth.
 302 Similarly, MSE is consistently reduced, with scLDM achieving 0.069 on HLCA compared to 0.117
 303 for CFGen and 0.238 for scVI. These results suggest that our fully transformer-based VAE is able
 304 to more effectively capture the complex structure of single-cell gene expression data compared to
 305 traditional VAE-based methods (scVI, CFGen). The consistent improvements across diverse tissue
 306 types (brain, entire organism, and lung) indicate the generalizability of our approach, namely, a
 307 parameterization of the VAE using the proposed transformer-based architectures.

308 Table 2 presents the generation benchmarks,
 309 where scLDM demonstrates superior perfor-
 310 mance across both unconditional and condi-
 311 tional generation sampling. In the uncondi-
 312 tional setting, our model achieves the lowest
 313 Wasserstein-2 distance across all datasets, with
 314 improvements ranging from 14% on Dentate
 315 Gyrus to 12% on Tabula Muris. While CF-
 316 Gen shows competitive performance on MMD^2
 317 RBF, our approach matches or outperforms it,
 318 achieving identical scores on HLCA and su-
 319 perior results on Tabula Muris. In terms of
 320 the Fréchet Distance (FD), scLDM still shows
 321 superior performance, with particularly strik-
 322 ing improvements on Tabula Muris, where it
 323 achieves a nearly three-fold reduction com-
 324 pared to the second-best baseline. For condi-
 325 tional generation, scLDM maintains its perfor-
 326 mance edge with consistent improvements in W2,
 327 MMD^2 RBF, and FD scores across all datasets.

281 Table 1: Model performance comparison on cell
 282 reconstruction task.

Dataset	Model	RE ↓	PCC ↑	MSE ↓
Dentate Gyrus	scVI	5193.2 ± 0.1	0.058 ± 0.000	0.378 ± 0.000
	CFGen	5468.8 ± N/A	0.076 ± N/A	0.253 ± N/A
	scLDM	5232.9 ± 43.1	0.103 ± 0.005	0.249 ± 0.002
Tabula Muris	scVI	5588.2 ± 1.7	0.221 ± 0.000	0.132 ± 0.000
	CFGen	5547.6 ± N/A	0.136 ± N/A	0.127 ± N/A
	scLDM	4569.6 ± 105.1	0.391 ± 0.021	0.092 ± 0.004
HLCA	scVI	5659.2 ± 0.5	0.125 ± 0.000	0.238 ± 0.000
	CFGen	5428.7 ± N/A	0.146 ± N/A	0.117 ± N/A
	scLDM	4102.1 ± 41.1	0.421 ± 0.013	0.069 ± 0.001

281 Table 2: Model performance comparison on
 282 (un)conditional cell generation benchmarks on
 283 highly variable genes.

Setting	Model	W2 ↓	MMD ² RBF ↓	FD ↓
Dentate Gyrus				
Uncond	scDiffusion	17.443 ± 0.028	0.258 ± 0.002	256.630 ± 0.357
	CFGen	12.617 ± 0.034	0.022 ± 0.001	28.105 ± 0.332
	scLDM	10.317 ± 0.065	0.023 ± 0.000	28.403 ± 0.099
Cond	scDiffusion	17.321 ± 0.041	0.689 ± 0.000	261.217 ± 1.856
	CFGen	11.608 ± 0.066	0.075 ± 0.000	41.425 ± 1.612
	scLDM	10.615 ± 0.028	0.102 ± 0.003	34.388 ± 1.014
Tabula Muris				
Uncond	scDiffusion	14.143 ± 0.007	0.144 ± 0.001	158.977 ± 1.070
	CFGen	11.658 ± 0.127	0.008 ± 0.000	36.373 ± 1.165
	scLDM	10.295 ± 0.110	0.004 ± 0.000	13.130 ± 0.318
Cond	scDiffusion	14.143 ± 0.007	0.144 ± 0.001	158.977 ± 1.070
	CFGen	8.921 ± 0.034	0.026 ± 0.000	21.517 ± 0.596
	scLDM	7.717 ± 0.030	0.016 ± 0.000	11.008 ± 0.716
HLCA				
Uncond	scDiffusion	15.886 ± 0.038	0.163 ± 0.001	210.853 ± 1.165
	CFGen	12.433 ± 0.045	0.007 ± 0.000	24.639 ± 0.738
	scLDM	10.419 ± 0.079	0.007 ± 0.000	18.024 ± 0.372
Cond	scDiffusion	15.886 ± 0.038	0.163 ± 0.001	210.853 ± 1.165
	CFGen	9.757 ± 0.078	0.090 ± 0.006	33.900 ± 5.116
	scLDM	8.445 ± 0.045	0.074 ± 0.002	20.974 ± 1.504

We report further generation results on all genes in Appendix. In Figure 2 we report qualitative evaluations of generation results for the HLCA datasets for all three models. Our model shows qualitatively a better coverage of the cell state variation on UMAP coordinates, showcasing how it is able to recapitulate high resolution cell states in highly heterogenous tissues like the human lung. Additionally, in Appendix K.2 we provide an interpretability analysis on the cross-attention scores of the encoder-decoder model of scLDM, showing how the latent tokens map to specific marker gene set patterns. These results demonstrate that our latent diffusion approach not only generates more realistic single-cell expression profiles but also maintains superior performance when conditioning on cell state information, a crucial capability for practical applications in single-cell genomics.

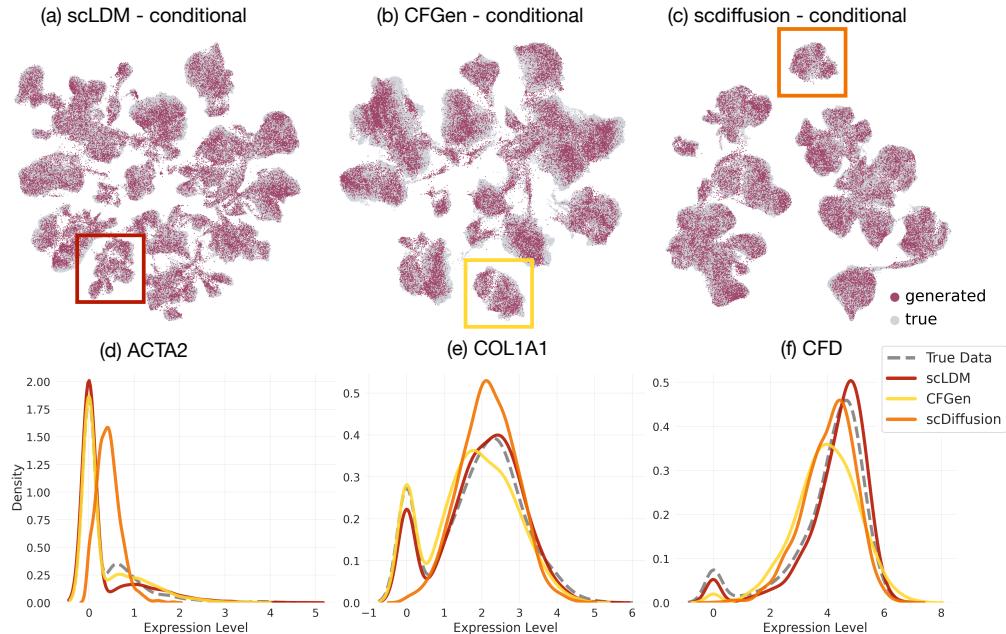


Figure 2: Conditional generation for the HLCA dataset for: (a) scLDM, (b) CFGen and (c) scdiffusion. Expression levels for 3 marker genes: (d) ACTA2, (e) COL1A1 and (f) CFD, markers of “alveolar type 2 fibroblast cell”, corresponding to cell populations in the insets.

4.2 CONDITIONAL CELL GENERATION ON PERTURBATIONAL DATA

Details In the second experiment, we train our model for conditional gene expression generation based on multiple attributes: a cell context (cell lines and cell types) and a perturbation type (gene knockouts and cytokines). The VAE baseline is trained without attribute conditioning, focusing solely on the reconstruction objective, while the flow matching component incorporates multi-attribute conditioning. By training across diverse contexts, the model learns to capture joint structure spanning different axes of variation. At inference time, the flow matching model is queried with specific combinations of cell type and perturbation to generate new gene expression profiles.

We leverage two datasets: (1) Parse 1M, containing perturbational single-cell RNA-sequencing data from human peripheral blood mononuclear cells (PBMCs) generated by Parse Biosciences (par) with 1,267,690 single cells across 18 annotated cell types, each subjected to one of 90 cytokine perturbations or a control condition, and to test generalization capabilities, we hold out 27 cytokine perturbations in CD4 Naive cells; and (2) Replogle, a benchmark genetic perturbation dataset (Nadig et al., 2025) consisting of 2,024 gene knockouts across four cell lines after filtering perturbations with low on-target efficacy (Adduri et al., 2025), holding out 372 genetic perturbations in HepG2 cells to evaluate generalization to unseen cell context-perturbation pairs. For both datasets, we restricted analysis to the top 2,000 highly variable genes (HVGs) following (Adduri et al., 2025). We compare our model against established baselines: CPA (Lotfollahi et al., 2023a), scVI (Lopez et al., 2018), scGPT (Cui et al., 2024), STATE-Tx (Adduri et al., 2025) and CellFlow (Klein et al., 2025).

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Results and Discussion The results presented in Table 3 demonstrate that our proposed approach significantly outperforms the baselines in both the Parse 1M dataset (cytokine perturbation) and the Repleglo dataset (gene knockouts). Our model scLDM is substantially better across all metrics, improving up to $\sim 90\%$ for MMD² RBF and FD for the Parse 1M dataset and $\sim 60\%$ for MMD² RBF and FD for the Repleglo dataset. This demonstrates how our model outperforms others in capturing the full range of cellular variation in perturbation responses across unseen combinations of cell contexts and perturbations. In Appendix 14, we report four additional metrics on perturbation predictions in unseen context, using the `cell-eval` [Adduri et al. (2025)]. Our model is competitive, and sometimes outperforms the stronger baseline STATE-Tx across both datasets.

In Figure 3, we report a qualitative evaluation of our model generative performances for the Parse 1M dataset for unseen combinations of CD4-Naive cells with various cytokine perturbations such as IL-9 and LT-alpha1-beta2. Furthermore, we show the same for Repleglo dataset for unseen combinations of HepG2 cells with PPP6c and ZDHHC7 gene edits.

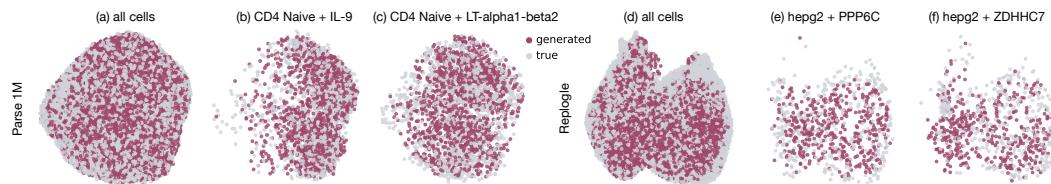


Figure 3: Conditional generation across multiple attributes: cell type and perturbation. (a) Generated vs. true cells across all cell types in the Parse 1M dataset show close alignment. (b–c) For CD4 Naive cells, conditioning on cytokine perturbations (IL-9, LT-alpha1-beta2) produces perturbation-specific shifts consistent with the true test distributions. (d) Generated vs. true cells across all cell types in the Repleglo dataset. (e–f) For HepG2 cells, conditioning on genetic perturbations (PPP6C, ZDHHC7) yields realistic perturbation-dependent distributions that closely follow the experimental data.

In Appendix 19, we additionally report reconstruction results between the VAE component of scLDM and scVI for both datasets, showing how our improved transformer-based VAE significantly outperforms MLP-based scVI on the reconstruction task. Finally, we also tested how the additive conditioning for the classifier-free guidance proposed in [Palma et al. (2025a)] performs compared to the standard classifier-free guidance approach [Ho & Salimans (2022)]. In Supplementary Table 19, we report that the standard approach is superior to the additive approach in multi-attribute conditional settings for perturbational single-cell data.

4.3 scLDM-VAE EMBEDDING EVALUATIONS ON CLASSIFICATION TASKS

Details For the third experiment, we leveraged two datasets: the first dataset is a human lung single-cell RNA-sequencing data from healthy donors and patients affected by COVID-19 (Wu et al. (2024)), the second dataset consists of 6 tissues from the Tabula Sapiens 2.0 (Consortium & Quake (2025)). The goal of this experiment is to verify the quality of embeddings provided by the auto-encoder on a downstream task (here: classification). We compare our approach to embeddings provided by TranscriptFormer (Pearce et al. (2025)), scVI (Lopez et al. (2018)), AIDO.Cell (Ho et al. (2024)), Geneformer (Theodoris et al. (2023)), scGPT (Cui et al. (2024)), UCE (Rosen et al. (2023)). We used Human Census data (CellxGene)³ to train three versions of scLDM-VAE, namely, with around 20M parameters, 70M parameters, and 270M parameters. For our scLDM-VAE and benchmark models, both datasets represent out-of-distribution data that were unseen during training.

³<https://cellxgene.cziscience.com/>

Table 3: Model performance comparison on conditional cell generation on Parse1M and Repleglo. For scLDM, we evaluated the generation performance across 3 different guidance weights (ω)

Dataset	Model	W2 ↓	MMD ² RBF ↓	FD ↓
Parse 1M	scVI	35.508 \pm 0.182	1.372 \pm 0.016	1233.109 \pm 12.694
	CPA	13.534 \pm 0.036	1.117 \pm 0.014	181.324 \pm 0.985
	Cellflow	11.836 \pm 0.063	0.015 \pm 0.002	9.443 \pm 1.238
	scGPT	22.870 \pm 0.152	2.203 \pm 0.013	523.932 \pm 7.043
	STATE	19.111 \pm 0.136	0.714 \pm 0.009	312.344 \pm 5.743
	scLDM ($\omega=1$)	12.457 \pm 0.045	0.027 \pm 0.002	18.136 \pm 0.903
Repleglo	scLDM ($\omega=5$)	12.902 \pm 0.087	0.071 \pm 0.004	43.363 \pm 2.246
	scLDM ($\omega=10$)	13.638 \pm 0.111	0.122 \pm 0.006	69.769 \pm 3.363
	scVI	17.359 \pm 0.051	0.453 \pm 0.003	284.474 \pm 1.825
	CPA	11.510 \pm 0.029	0.532 \pm 0.003	126.805 \pm 0.693
	Cellflow	10.684 \pm 0.046	0.289 \pm 0.003	73.358 \pm 0.977
	scGPT	34.166 \pm 0.272	3.087 \pm 0.010	1247.679 \pm 20.245
Repleglo	STATE	20.582 \pm 0.039	0.730 \pm 0.003	366.642 \pm 1.547
	scLDM ($\omega=1$)	11.292 \pm 0.033	0.200 \pm 0.002	53.750 \pm 0.666
	scLDM ($\omega=5$)	12.900 \pm 0.069	0.320 \pm 0.004	105.365 \pm 1.935
	scLDM ($\omega=10$)	14.911 \pm 0.091	0.436 \pm 0.005	166.877 \pm 3.036

432 To evaluate the quality of the learned representations, we process each of the four COVID-
 433 19 donors through the models to generate cell
 434 embeddings. For scLDM variants, we use the
 435 mean of the latent distribution, $\mu(\mathbf{x})$, which is
 436 flattened to a 4096-dimensional vector. To en-
 437 sure fair comparison across models with dif-
 438 ferent embedding dimensions, we apply prin-
 439 cipal component analysis (PCA) to all embed-
 440 dings, retaining the top 128 principal compo-
 441 nents. For each donor independently, we train
 442 an unregularized logistic regression classifier
 443 to distinguish infected from uninfected cells
 444 using 5-fold cross-validation. The final met-
 445 rics are computed as equally weighted averages
 446 across the four donors, with uncertainties prop-
 447 agated using standard error addition in quadra-
 448 ture: $\sigma_{\text{combined}} = \frac{1}{n} \sqrt{\sum_{i=1}^n \sigma_i^2}$, where $n = 4$ donors.
 449

450 For the Tabula Sapiens 2.0 dataset, we evaluated cell type classification across 6 tissues: blood,
 451 spleen, lymph node, small intestine, thymus, and liver. Following the same protocol as the COVID-
 452 19 analysis, we stratified samples by tissue instead of donor and filtered out cell types with fewer
 453 than 100 cells to ensure robust classification. We employed multinomial logistic regression for
 454 the multi-class cell type prediction task. Final metrics are averaged over tissues with propagated
 455 uncertainties (see Appendix K.6).

456 **Results and discussion** As shown in Table 4,
 457 our 270M and 70M models achieve superior
 458 performance across all evaluated metrics for
 459 COVID-19 infection detection. The perfor-
 460 mance differences between scLDM (270M)
 461 and TranscriptFormer—the strongest bench-
 462 mark model—represent meaningful differences
 463 given the measurement uncertainty, with our
 464 model achieving F1 score of 0.820 ± 0.001
 465 compared to TranscriptFormer’s 0.814 ± 0.002 .
 466 The strong discriminative performance demon-
 467 strates that our transformer-based VAE learns
 468 biologically meaningful representations that
 469 capture infection-related transcriptional sig-
 470 natures. We observe substantial improvements
 471 over the VAE-based scVI model (F1: $0.675 \pm$
 472 0.001), highlighting the advantages of our ar-
 473 chitectural innovations and model scale.

474 For the Tabula Sapiens 2.0 classification results shown in Table 5, the differences in F1 scores
 475 between the scLDM model variants are within measurement uncertainty and may not be sig-
 476 nificant. Moreover, all top-performing models—scLDM variants, scGPT, scVI, and Transcrip-
 477 tFormer—achieve F1 scores within each other’s uncertainties (ranging from 0.799 to 0.804 with
 478 standard errors of 0.002), indicating comparable performance for multi-class cell type classifica-
 479 tion. The consistent performance across both binary (COVID-19 infection) and multi-class (cell
 480 type) classification tasks validates the biological utility of our learned embeddings, making them
 481 valuable for biological discovery applications beyond generation.

5 CONCLUSION

482 In this paper, we demonstrate that enforcing the inductive bias of exchangeability is crucial for
 483 the generative modeling of single-cell data. We introduced a scalable architecture that combines
 484 a permutation-invariant encoder and a permutation-equivariant decoder within a fully transformer-

Table 4: COVID-19 model performance comparison (averaged across all donors). Since all standard errors are below 0.003 (see Appendix K.6), they are omitted in this table.

Model	F1 Score	Recall	Precision
TranscriptFormer	0.814	0.829	0.801
UCE	0.775	0.781	0.771
scGPT	0.779	0.793	0.766
Geneformer	0.768	0.781	0.757
AIDO.Cell	0.717	0.729	0.708
scVI	0.675	0.680	0.680
scLDM (20M)	0.811	0.827	0.797
scLDM (70M)	0.815	0.830	0.801
scLDM (270M)	0.820	0.836	0.806

Table 5: Tabula Sapiens 2.0 model performance comparison (averaged across all tissues). Since all standard errors are below 0.003 (see Appendix K.6), they are omitted in this table.

Model	F1 Score	Recall	Precision
scGPT	0.8	0.802	0.806
scVI	0.799	0.794	0.814
TranscriptFormer	0.799	0.8	0.802
UCE	0.796	0.797	0.801
Geneformer	0.777	0.776	0.786
AIDO.Cell	0.724	0.715	0.748
scLDM (20M)	0.804	0.805	0.812
scLDM (70M)	0.802	0.802	0.810
scLDM (270M)	0.802	0.803	0.811

486 based VAE with a latent diffusion model parameterized using DiTs, achieving state-of-the-art per-
 487 formance on cell generation benchmarks, both observational and perturbational data, as well as
 488 downstream classification tasks. Our work extends beyond imposing artificial structure on gene
 489 expression data, instead providing a principled framework for learning from unordered sets. This
 490 approach is not limited to transcriptomics and lays the groundwork for developing foundational
 491 models for other exchangeable biological data, such as proteomics and epigenomics, as well as
 492 multi-omics and multi-modal data, thereby enabling more faithful and powerful virtual models of
 493 cellular biology.

494

495 REFERENCES

496

497 10 Million Human PBMCs in a Single Experiment. <https://www.parsebiosciences.com/datasets/10-million-human-pbmc-in-a-single-experiment/>. [On-
 498 line; accessed on September 5, 2025].

500 Abhinav K Adduri, Dhruv Gautam, Beatrice Bevilacqua, Alishba Imran, Rohan Shah, Mohsen
 501 Naghipourfar, Noam Teyssier, Rajesh Ilango, Sanjay Nagaraj, Mingze Dong, et al. Predicting
 502 cellular responses to perturbation across diverse contexts with STATE. *bioRxiv*, pp. 2025–06,
 503 2025.

504 Pau Badia-I-Mompel, Jesús Vélez Santiago, Jana Brauner, Celina Geiss, Daniel Dimitrov, Sophia
 505 Müller-Dott, Petr Taus, Aurelien Dugourd, Christian H Holland, Ricardo O Ramirez Flores, and
 506 Julio Saez-Rodriguez. decoupler: ensemble of computational methods to infer biological activi-
 507 ties from omics data. *Bioinform. Adv.*, 2(1):vbac016, March 2022.

508 Michael Bereket and Theofanis Karaletsos. Modelling cellular perturbations with the sparse additive
 509 mechanism shift variational autoencoder. In *Neural Information Processing Systems*, 2023.

510 Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
 511 Grids, groups, graphs, geodesics, and gauges. *arXiv preprint arXiv:2104.13478*, 2021.

512 Charlotte Bunne, Stefan G. Stark, Gabriele Gut, Jacobo Sarabia del Castillo, Mitch Levesque,
 513 Kjong-Van Lehmann, Lucas Pelkmans, Andreas Krause, and Gunnar Rätsch. Learning single-
 514 cell perturbation responses using neural optimal transport. *Nature Methods*, 20(11):1759–1768,
 515 September 2023. ISSN 1548-7105. doi: 10.1038/s41592-023-01969-x. URL <http://dx.doi.org/10.1038/s41592-023-01969-x>

516 The Tabula Sapiens Consortium and Stephen R Quake. Tabula sapiens reveals transcription factor
 517 expression, senescence effects, and sex-specific features in cell types from 28 human organs and
 518 tissues. *bioRxiv*, 2025. doi: 10.1101/2024.12.03.626516. URL <https://www.biorxiv.org/content/early/2025/08/27/2024.12.03.626516>

519 Haotian Cui, Chloe Wang, Hassaan Maan, Kuan Pang, Fengning Luo, Nan Duan, and Bo Wang.
 520 scGPT: toward building a foundation model for single-cell multi-omics using generative AI. *Nature
 521 methods*, 21(8):1470–1480, 2024.

522 Adam Gayoso, Romain Lopez, Galen Xing, Pierre Boyeau, Valeh Valiollah Pour Amiri, Justin
 523 Hong, Katherine Wu, Michael Jayasuriya, Edouard Mehlman, Maxime Langevin, Yining Liu,
 524 Jules Samaran, Gabriel Misrachi, Achille Nazaret, Oscar Clivio, Chenling Xu, Tal Ashuach,
 525 Mariano Gabitto, Mohammad Lotfollahi, Valentine Svensson, Eduardo da Veiga Beltrame, Vi-
 526 talii Kleshchevnikov, Carlos Talavera-López, Lior Pachter, Fabian J. Theis, Aaron Streets,
 527 Michael I. Jordan, Jeffrey Regier, and Nir Yosef. A python library for probabilistic analysis
 528 of single-cell omics data. *Nature Biotechnology*, Feb 2022. ISSN 1546-1696. doi: 10.1038/s41587-021-01206-w. URL <https://doi.org/10.1038/s41587-021-01206-w>

529 Adam Gayoso, Philipp Weiler, Mohammad Lotfollahi, Dominik Klein, Justin Hong, Aaron Streets,
 530 Fabian J Theis, and Nir Yosef. Deep generative modeling of transcriptional dynamics for rna
 531 velocity analysis in single cells. *Nature Methods*, 21(1):50–59, 2024.

532 Tomas Geffner, Kieran Didi, Zhonglin Cao, Danny Reidenbach, Zuobai Zhang, Christian Dallago,
 533 Emine Kucukbenli, Karsten Kreis, and Arash Vahdat. La-proteina: Atomistic protein generation
 534 via partially latent flow matching. *arXiv preprint arXiv:2507.09466*, 2025.

540 Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
 541 A kernel two-sample test. *The journal of machine learning research*, 13(1):723–773, 2012.
 542

543 Gunsagar S Gulati, Shaheen S Sikandar, Daniel J Wesche, Anoop Manjunath, Anjan Bharadwaj,
 544 Mark J Berger, Francisco Ilagan, Angera H Kuo, Robert W Hsieh, Shang Cai, et al. Single-cell
 545 transcriptional diversity is a hallmark of developmental potential. *Science*, 367(6476):405, 2020.

546 Siyu He, Yuefei Zhu, Daniel Naveed Tavakol, Haotian Ye, Yeh-Hsing Lao, Zixian Zhu, Cong Xu,
 547 Shradha Chauhan, Guy Garty, Raju Tomer, et al. Squidiff: Predicting cellular development and
 548 responses to perturbations using a diffusion model. *bioRxiv*, pp. 2024–11, 2024.
 549

550 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
 551 Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
 552 constrained variational framework. In *International conference on learning representations*, 2017.

553 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
 554 *arXiv:2207.12598*, 2022.
 555

556 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 557 *neural information processing systems*, 33:6840–6851, 2020.

558 Nicholas Ho, Caleb N. Ellington, Jinyu Hou, Sohan Addagudi, Shentong Mo, Tianhua Tao, Dian
 559 Li, Yonghao Zhuang, Hongyi Wang, Xingyi Cheng, Le Song, and Eric P. Xing. Scaling dense
 560 representations for single cell with transcriptome-scale context. In *NeurIPS 2024 Workshop on*
 561 *AI for New Drug Modalities*. *bioRxiv*, 2024.
 562

563 Maximilian Ilse, Jakub Tomczak, and Max Welling. Attention-based deep multiple instance learning.
 564 In *International conference on machine learning*, pp. 2127–2136. PMLR, 2018.

565 Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
 566 Perceiver: General perception with iterative attention. In *International conference on machine*
 567 *learning*, pp. 4651–4664. PMLR, 2021.
 568

569 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
 570 Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver IO: A
 571 General Architecture for Structured Inputs & Outputs. In *International Conference on Learning*
 572 *Representations*, 2022.

573 Chaitanya K Joshi, Xiang Fu, Yi-Lun Liao, Vahe Gharakhanyan, Benjamin Kurt Miller, Anuroop
 574 Sriram, and Zachary Ward Ulissi. All-atom Diffusion Transformers: Unified generative modelling
 575 of molecules and materials. In *Forty-second International Conference on Machine Learning*,
 576 2025.
 577

578 Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham M Kakade, and Sitan Chen. Train for the worst,
 579 plan for the best: Understanding token ordering in masked diffusions. In *Forty-second Interna-*
 580 *tional Conference on Machine Learning*, 2025.

581 Jinwoo Kim, Jaehoon Yoo, Juho Lee, and Seunghoon Hong. Setvae: Learning hierarchical compo-
 582 sition for generative modeling of set-structured data. In *Proceedings of the IEEE/CVF Conference*
 583 *on Computer Vision and Pattern Recognition*, pp. 15059–15068, 2021.
 584

585 Masanari Kimura, Ryotaro Shimizu, Yuki Hirakawa, Ryosuke Goto, and Yuki Saito. On
 586 permutation-invariant neural networks. *arXiv preprint arXiv:2403.17410*, 2024.
 587

588 Diederik P Kingma and Max Welling. Auto-encoding variational {Bayes}. In *Int. Conf. on Learning*
 589 *Representations*, 2014.

590 Dominik Klein, Jonas Simon Fleck, Daniil Bobrovskiy, Lea Zimmermann, Sören Becker, Alessan-
 591 dro Palma, Leander Dony, Alejandro Tejada-Lapuerta, Guillaume Huguet, Hsiu-Chuan Lin,
 592 Nadezhda Azbukina, Fátima Sanchís-Calleja, Theo Uscidda, Artur Szalata, Manuel Gander, Aviv
 593 Regev, Barbara Treutlein, J Gray Camp, and Fabian J Theis. CellFlow enables generative single-
 cell phenotype modeling with flow matching. April 2025.

594 Anna Kuzina, Kumar Pratik, Fabio Valerio Massoli, and Arash Behboodi. Equivariant priors for
 595 compressed sensing with unknown orientation. In *International Conference on Machine Learning*, pp. 11753–11771. PMLR, 2022.

596

597 David Lähnemann, Johannes Köster, Ewa Szczurek, Davis J McCarthy, Stephanie C Hicks, Mark D
 598 Robinson, Catalina A Vallejos, Kieran R Campbell, Niko Beerewinkel, Ahmed Mahfouz, et al.
 599 Eleven grand challenges in single-cell data science. *Genome biology*, 21:1–35, 2020.

600

601 Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
 602 transformer: A framework for attention-based permutation-invariant neural networks. In *International
 603 conference on machine learning*, pp. 3744–3753. PMLR, 2019.

604

605 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 606 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

607

608 Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, and Nir Yosef. Deep generative
 609 modeling for single-cell transcriptomics. *Nature methods*, 15(12):1053–1058, 2018.

610

611 Mohammad Lotfollahi, Anna Klimovskaia Susmelj, Carlo De Donno, Leon Hetzel, Yuge Ji, Ig-
 612 nacio L Ibarra, Sanjay R Srivatsan, Mohsen Naghipourfar, Riza M Daza, Beth Martin, Jay
 613 Shendure, Jose L McFaline-Figueroa, Pierre Boyeau, F Alexander Wolf, Nafissa Yakubova,
 614 Stephan Günemann, Cole Trapnell, David Lopez-Paz, and Fabian J Theis. Predicting cel-
 615 lular responses to complex perturbations in high-throughput screens. *Molecular Systems Bi-
 616 ology*, 19(6):e11517, 2023a. doi: <https://doi.org/10.15252/msb.202211517>. URL <https://www.embopress.org/doi/abs/10.15252/msb.202211517>.

616

617 Mohammad Lotfollahi, Anna Klimovskaia Susmelj, Carlo De Donno, Leon Hetzel, Yuge Ji, Igna-
 618 cito L Ibarra, Sanjay R Srivatsan, Mohsen Naghipourfar, Riza M Daza, Beth Martin, et al. Predict-
 619 ing cellular responses to complex perturbations in high-throughput screens. *Molecular systems
 620 biology*, 19(6):e11517, 2023b.

621

622 Malte D Luecken, Maren Büttner, Kridsadakorn Chaichoompu, Anna Danese, Marta Interlandi,
 623 Michaela F Müller, Daniel C Strobl, Luke Zappia, Martin Dugas, Maria Colomé-Tatché, et al.
 624 Benchmarking atlas-level data integration in single-cell genomics. *Nature methods*, 19(1):41–50,
 625 2022.

626

627 Erpai Luo, Minsheng Hao, Lei Wei, and Xuegong Zhang. scdiffusion: conditional generation of
 628 high-quality single-cell data using diffusion model. *Bioinformatics*, 40(9), 2024.

629

630 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
 631 ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 632 transformers. In *European Conference on Computer Vision*, pp. 23–40. Springer, 2024.

633

634 Matteo Marouf, Pierre Machart, Vikas Bansal, Christoph Kilian, Daniel S Magruder, Christian F
 635 Krebs, and Stefan Bonn. Realistic in silico generation and augmentation of single-cell RNA-seq
 636 data using generative adversarial networks. *Nat. Commun.*, 11(1):166, January 2020a.

637

638 Mohamed Marouf, Pierre Machart, Vikas Bansal, Christoph Kilian, Daniel S Magruder, Christian F
 639 Krebs, and Stefan Bonn. Realistic in silico generation and augmentation of single-cell rna-seq
 640 data using generative adversarial networks. *Nature communications*, 11(1):166, 2020b.

641

642 Ajay Nadig, Joseph M Replogle, Angela N Pogson, Mukundh Murthy, Steven A McCarroll,
 643 Jonathan S Weissman, Elise B Robinson, and Luke J O’Connor. Transcriptome-wide analysis
 644 of differential expression in perturbation atlases. *Nature Genetics*, pp. 1–10, 2025.

645

646 Karlynn E Neu, Qingming Tang, Patrick C Wilson, and Aly A Khan. Single-cell genomics: ap-
 647 proaches and utility in immunology. *Trends in immunology*, 38(2):140–149, 2017.

648

649 Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
 650 Li. Scaling up masked diffusion models on text. In *The Thirteenth International Conference on
 651 Learning Representations*, 2025.

648 Alessandro Palma, Till Richter, Hanyi Zhang, Manuel Lubetzki, Alexander Tong, Andrea Dittadi,
 649 and Fabian J Theis. Multi-modal and multi-attribute generation of single cells with cngen. In *The*
 650 *Thirteenth International Conference on Learning Representations*, 2025a.

651

652 Alessandro Palma, Fabian J Theis, and Mohammad Lotfollahi. Predicting cell morphological re-
 653 sponds to perturbations using generative modeling. *Nature Communications*, 16(1):505, 2025b.

654 Arnaud Pannatier, Evann Courdier, and François Fleuret. σ -gpts: A new approach to autoregres-
 655 sive models. In *Joint European Conference on Machine Learning and Knowledge Discovery in*
 656 *Databases*, pp. 143–159. Springer, 2024.

657

658 James D Pearce, Sara E Simmonds, Gita Mahmoudabadi, Lakshmi Krishnan, Giovanni Palla, Ana-
 659 Maria Istrate, Alexander Tarashansky, Benjamin Nelson, Omar Valenzuela, Donghui Li, et al.
 660 A cross-species generative cell atlas across 1.5 billion years of evolution: The transcriptformer
 661 single-cell model. *bioRxiv*, pp. 2025–04, 2025.

662

663 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 664 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

665

666 Derek Reiman, Godhev Kumar Manakkat Vijay, Heping Xu, Andrew Sonin, Dianyu Chen, Nathan
 667 Salomonis, Harinder Singh, and Aly A Khan. Pseudocell tracer—a method for inferring dynamic
 668 trajectories using scrnaseq and its application to b cells undergoing immunoglobulin class switch
 669 recombination. *PLoS computational biology*, 17(5):e1008094, 2021.

670

671 Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
 672 proximate inference in deep generative models. In *International conference on machine learning*,
 673 pp. 1278–1286. PMLR, 2014.

674

675 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 676 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 677 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

678

679 Yanay Rosen, Yusuf Roohani, Ayush Agarwal, Leon Samotorčan, Tabula Sapiens Consortium,
 680 Stephen R Quake, and Jure Leskovec. Universal cell embeddings: A foundation model for cell
 681 biology. *bioRxiv*, pp. 2023–11, 2023.

682

683 Orit Rozenblatt-Rosen, Michael JT Stubbington, Aviv Regev, and Sarah A Teichmann. The Human
 684 Cell Atlas: from vision to reality. *Nature*, 550(7677):451–453, 2017.

685

686 Florian Sestak, Artur Toshev, Andreas Fürst, Günter Klambauer, Andreas Mayr, and Johannes
 687 Brandstetter. LaM-SLidE: Latent Space Modeling of Spatial Dynamical Systems via Linked
 688 Entities. *arXiv preprint arXiv:2502.12128*, 2025.

689

690 L Theis, A van den Oord, and M Bethge. A note on the evaluation of generative models. In *International Conference on Learning Representations (ICLR 2016)*, pp. 1–10, 2016.

691

692 Christina V Theodoris, Ling Xiao, Anant Chopra, Mark D Chaffin, Zeina R Al Sayed, Matthew C
 693 Hill, Helene Mantineo, Elizabeth M Brydon, Zexian Zeng, X Shirley Liu, et al. Transfer learning
 694 enables predictions in network biology. *Nature*, 618(7965):616–624, 2023.

695

696 Jakub Tomczak and Max Welling. Vae with a vampprior. In *International conference on artificial
 697 intelligence and statistics*, pp. 1214–1223. PMLR, 2018.

698

699 Jakub M. Tomczak. *Deep Generative Modeling*. Springer International Publishing, 2024.

700

701 Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
 702 Fatras, Guy Wolf, and Yoshua Bengio. Conditional flow matching: Simulation-free dynamic
 703 optimal transport. *arXiv preprint arXiv:2302.00482*, 2(3), 2023.

704

705 Aaron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
 706 Nal Kalchbrenner, Andrew Senior, Koray Kavukcuoglu, et al. Wavenet: A generative model for
 707 raw audio. *arXiv preprint arXiv:1609.03499*, 12:1, 2016.

702 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 703 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 704 *tion processing systems*, 30, 2017.

705 Isaac Virshup, Danila Bredikhin, Lukas Heumos, Giovanni Palla, Gregor Sturm, Adam Gayoso,
 706 Ilia Kats, Mikaela Koutrouli, Bonnie Berger, et al. The scverse project provides a computational
 707 ecosystem for single-cell omics data analysis. *Nature biotechnology*, 41(5):604–606, 2023.

708 Yixuan Wang, Shuangyin Li, Shimin DI, and Lei Chen. Single-cell rna-seq synthesis with latent
 709 diffusion model, 2023. URL <https://arxiv.org/abs/2312.14220>.

710 Timothy Ting-Hsuan Wu, Kyle J Travaglini, Arjun Rustagi, Duo Xu, Yue Zhang, Leonid Andronov,
 711 SoRi Jang, Astrid Gillich, Rozbeh Dehghannasiri, Giovanny J Martínez-Colón, et al. Interstitial
 712 macrophages are a focus of viral takeover and inflammation in covid-19 initiation in human lung.
 713 *Journal of Experimental Medicine*, 221(6):e20232192, 2024.

714 Jiahao Xie and Guangmo Tong. Advances in set function learning: a survey of techniques and
 715 applications. *ACM Computing Surveys*, 57(7):1–37, 2025.

716 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
 717 Alexander J Smola. Deep sets. *Advances in neural information processing systems*, 30, 2017.

718 Tao Zeng and Hao Dai. Single-cell rna sequencing-based computational analysis to describe disease
 719 heterogeneity. *Frontiers in Genetics*, 10:629, 2019.

720 Jesse Zhang, Airol A Ubas, Richard de Borja, Valentine Svensson, Nicole Thomas, Neha Thakar,
 721 Ian Lai, Aidan Winters, Umair Khan, Matthew G Jones, et al. Tahoe-100m: A giga-scale single-
 722 cell perturbation atlas for context-dependent gene function and cellular modeling. *BioRxiv*, pp.
 723 2025–02, 2025.

724 Lily Zhang, Veronica Tozzo, John Higgins, and Rajesh Ranganath. Set norm and equivariant skip
 725 connections: Putting the deep in deep sets. In *International Conference on Machine Learning*,
 726 pp. 26559–26574. PMLR, 2022.

727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755