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ABSTRACT

In the paper, we study a class of useful non-convex minimax optimization prob-
lems on Riemanian manifolds and propose a class of Riemanian gradient descent
ascent algorithms to solve these minimax problems. Specifically, we propose a
new Riemannian gradient descent ascent (RGDA) algorithm for the deterministic
minimax optimization. Moreover, we prove that the RGDA has a sample com-
plexity of O(κ2ε−2) for finding an ε-stationary point of the nonconvex strongly-
concave minimax problems, where κ denotes the condition number. At the same
time, we introduce a Riemannian stochastic gradient descent ascent (RSGDA) al-
gorithm for the stochastic minimax optimization. In the theoretical analysis, we
prove that the RSGDA can achieve a sample complexity of O(κ4ε−4). To further
reduce the sample complexity, we propose a novel momentum variance-reduced
Riemannian stochastic gradient descent ascent (MVR-RSGDA) algorithm based
on a new momentum variance-reduced technique of STORM. We prove that the
MVR-RSGDA algorithm achieves a lower sample complexity of Õ(κ4ε−3) with-
out large batches, which reaches near the best known sample complexity for its
Euclidean counterparts. Extensive experimental results on the robust deep neural
networks training over Stiefel manifold demonstrate the efficiency of our proposed
algorithms.

1 INTRODUCTION

In the paper, we study a class of useful non-convex minimax (a.k.a. min-max) problems on the
Riemannian manifoldM with the definition as:

min
x∈M

max
y∈Y

f(x, y), (1)

where the function f(x, y) is µ-strongly concave in y but possibly nonconvex in x. Here Y ⊆ Rd
is a convex and closed set. f(·, y) : M → R for all y ∈ Y is a smooth but possibly nonconvex
real-valued function on manifoldM, and f(x, ·) : Y → R for all x ∈ M a smooth and (strongly)-
concave real-valued function. In this paper, we mainly focus on the stochastic minimax optimization
problem f(x, y) := Eξ∼D[f(x, y; ξ)], where ξ is a random variable that follows an unknown distri-
bution D. In fact, the problem (1) is associated to many existing machine learning applications:

1). Robust Training DNNs over Riemannian manifold. Deep Neural Networks (DNNs) recently
have been demonstrating exceptional performance on many machine learning applications. How-
ever, they are vulnerable to the adversarial example attacks, which show that a small perturbation
in the data input can significantly change the output of DNNs. Thus, the security properties of
DNNs have been widely studied. One of secured DNN research topics is to enhance the robust-
ness of DNNs under the adversarial example attacks. To be more specific, given training data
D := {ξi = (ai, bi)}ni=1, where ai ∈ Rd and bi ∈ R represent the features and label of sam-
ple ξi respectively. Each data sample ai can be corrupted by a universal small perturbation vector
y to generate an adversarial attack sample ai + y, as in (Moosavi-Dezfooli et al., 2017; Chaubey
et al., 2020). To make DNNs robust against adversarial attacks, one popular approach is to solve the
following robust training problem:

min
x

max
y∈Y

1

n

n∑
i=1

`(h(ai + y;x), bi) , (2)
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where y ∈ Rd denotes a universal perturbation, and x is the weight of the neural network; h(·;x)
is the the deep neural network parameterized by x; and `(·) is the loss function. Here the constraint
Y = {y : ‖y‖ ≤ ε} indicates that the poisoned samples should not be too different from the original
ones.

Recently, the orthonormality on weights of DNNs has gained much interest and has been found to
be useful across different tasks such as person re-identification (Sun et al., 2017) and image classifi-
cation (Xie et al., 2017). In fact, the orthonormality constraints improve the performances of DNNs
(Li et al., 2020; Bansal et al., 2018), and reduce overfitting to improve generalization (Cogswell
et al., 2015). At the same time, the orthonormality can stabilize the distribution of activations over
layers within DNNs (Huang et al., 2018). Thus, we consider the following robust training problem
over the Stiefel manifoldM:

min
x∈M

max
y∈Y

1

n

n∑
i=1

`(h(ai + y;x), bi). (3)

When data are continuously coming, we can rewrite the problem (3) as follows:

min
x∈M

max
y∈Y

Eξ[f(x, y; ξ)], (4)

where f(x, y; ξ) = `(h(a+ y;x), b) with ξ = (a, b).

2). Distributionally Robust Optimization over Riemannian manifold. Distributionally robust
optimization (DRO) (Chen et al., 2017; Rahimian & Mehrotra, 2019) is an effective method to
deal with the noisy data, adversarial data, and imbalanced data. At the same time, the DRO in the
Riemannian manifold setting is also widely applied in machine learning problems such as robust
principal component analysis (PCA). To be more specific, given a set of data samples {ξi}ni=1, the
DRO over Riemannian manifoldM can be written as the following minimax problem:

min
x∈M

max
p∈S

{ n∑
i=1

pi`(x; ξi)− ‖p−
1
n
‖2
}
, (5)

where p = (p1, · · · , pn), S = {p ∈ Rn :
∑n
i=1 pi = 1, pi ≥ 0}. Here `(x; ξi) denotes the loss

function over Riemannian manifold M, which applies to many machine learning problems such
as PCA (Han & Gao, 2020a), dictionary learning (Sun et al., 2016), DNNs (Huang et al., 2018),
structured low-rank matrix learning (Jawanpuria & Mishra, 2018), among others. For example, the
task of PCA can be cast on a Grassmann manifold.

To the best of our knowledge, the existing explicitly minimax optimization methods such as gradient
descent ascent method only focus on the minimax problems in Euclidean space. To fill this gap, in
the paper, we propose a class of efficient Riemannian gradient descent ascent algorithms to solve the
problem (1) via using general retraction and vector transport. When the problem (1) is deterministic,
we propose a new deterministic Riemannian gradient descent ascent algorithm. When the problem
(1) is stochastic, we propose two efficient stochastic Riemannian gradient descent ascent algorithms.
Our main contributions can be summarized as follows:

1) We propose a novel Riemannian gradient descent ascent (RGDA) algorithm for the de-
terministic minimax optimization problem (1). We prove that the RGDA has a sample
complexity of O(κ2ε−2) for finding an ε-stationary point.

2) We also propose a new Riemannian stochastic gradient descent ascent (RSGDA) algorithm
for the stochastic minimax optimization. In the theoretical analysis, we prove that the
SRGDA has a sample complexity of O(κ4ε−4).

3) To further reduce the sample complexity, we introduce a novel momentum variance-
reduced Riemannian stochastic gradient descent ascent (MVR-RSGDA) algorithm based
on a new momentum variance-reduced technique of STORM (Cutkosky & Orabona, 2019).
We prove the MVR-RSGDA achieves a lower sample complexity of Õ(κ4ε−3) (please see
Table 1), which reaches near the best known sample complexity for its Euclidean counter-
parts.

4) Extensive experimental results on the robust DNN training over Stiefel manifold demon-
strate the efficiency of our proposed algorithms.
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Table 1: Convergence properties comparison of our algorithms for obtaining an ε-stationary point
of the min-max optimization problem (1). κ denotes the condition number of function f(x, ·).

Problem Algorithm Learning Rate Batch Size Complexity
Deterministic RGDA Constant – O(κ2ε−2)

Stochastic
RSGDA Constant O(κ2ε−2) O(κ4ε−4)

MVR-RSGDA Decrease O(1) Õ(κ9/2ε−3)

MVR-RSGDA Decrease O(κ) Õ(κ4ε−3)

2 RELATED WORKS

In this section, we briefly review the minimax optimization and Riemannian manifold optimization
research works.

2.1 MINIMAX OPTIMIZATION

Minimax optimization recently has been widely applied in many machine learning problems such as
adversarial training (Goodfellow et al., 2014; Liu et al., 2019), reinforcement learning (Zhang et al.,
2019; 2020), and distribution learning (Razaviyayn et al., 2020). At the same time, many efficient
min-max methods (Rafique et al., 2018; Lin et al., 2019; Nouiehed et al., 2019; Thekumparampil
et al., 2019; Lin et al., 2020; Yang et al., 2020; Ostrovskii et al., 2020; Yan et al., 2020; Xu et al.,
2020a; Luo et al., 2020; Xu et al., 2020b; Boţ & Böhm, 2020; Huang et al., 2020) have been proposed
for solving these minimax optimization problems. For example, Thekumparampil et al. (2019) have
proposed a class of efficient dual implicit accelerated gradient algorithms to solve smooth min-max
optimization. Lin et al. (2019) have proposed a class of efficient gradient decent ascent methods for
non-convex minimax optimization. Subsequently, accelerated first-order algorithms Lin et al. (2020)
have been proposed for minimax optimization. Xu et al. (2020b) have proposed a unified single-
loop alternating gradient projection algorithm for (non)convex-(non)concave minimax problems.
Ostrovskii et al. (2020) have proposed an efficient algorithm for finding first-order Nash equilibria
in nonconvex concave minimax problems. Xu et al. (2020a); Luo et al. (2020) have proposed a
class of fast stochastic variance-reduced GDA algorithms to solve the stochastic minimax problems.
More recently, Huang et al. (2020) have presented a class of new momentum-based first-order and
zeroth-order descent ascent method for the nonconvex strongly concave minimax problems.

2.2 RIEMANNIAN MANIFOLD OPTIMIZATION

Riemannian manifold optimization methods have been widely applied in machine learning problems
including dictionary learning (Sun et al., 2016), matrix factorization (Vandereycken, 2013), and
DNNs (Huang et al., 2018). Many Riemannian optimization methods were recently proposed. E.g.
Zhang & Sra (2016); Liu et al. (2017) have proposed some efficient first-order gradient methods
for geodesically convex functions. Subsequently, Zhang et al. (2016) have presented fast stochastic
variance-reduced methods to Riemannian manifold optimization. More recently, Sato et al. (2019)
have proposed fast first-order gradient algorithms for Riemannian manifold optimization by using
general retraction and vector transport. Subsequently, based on these retraction and vector transport,
some fast Riemannian gradient-based methods (Zhang et al., 2018; Kasai et al., 2018; Zhou et al.,
2019; Han & Gao, 2020a) have been proposed for non-convex optimization. Riemannian Adam-type
algorithms (Kasai et al., 2019) were introduced for matrix manifold optimization. In addition, some
algorithms (Ferreira et al., 2005; Li et al., 2009; Wang et al., 2010) have been studied for variational
inequalities on Riemannian manifolds, which are the implicit min-max problems on Riemannian
manifolds.

Notations: ‖ · ‖ denotes the `2 norm for vectors and spectral norm for matrices. 〈x, y〉 denotes the
inner product of two vectors x and y. For function f(x, y), f(x, ·) denotes function w.r.t. the second
variable with fixing x, and f(·, y) denotes function w.r.t. the first variable with fixing y. Given a
convex closed set Y , we define a projection operation on the set Y as PY(y0) = arg miny∈Y

1
2‖y −

y0‖2. We denote a = O(b) if a ≤ Cb for some constant C > 0, and the notation Õ(·) hides
logarithmic terms. Id denotes the identity matrix with d dimension. The operation

⊕
denotes the

Whitney sum. Given Bt = {ξit}Bi=1 for any t ≥ 1, let ∇fBt(x, y) = 1
B

∑B
i=1∇f(x, y; ξit).
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(a) Retraction Rx (b) Vector Transport T y
x

Figure 1: Illustration of manifold operations.(a) A vector u in TxM is mapped to Rx(u) inM; (b)
A vector v in TxM is transported to TyM by T yx v (or Tuv), where y = Rx(u) and u ∈ TxM.

3 PRELIMINARIES

In this section, we first re-visit some basic information on the Riemannian manifoldM. In general,
the manifoldM is endowed with a smooth inner product 〈·, ·〉x : TxM× TxM → R on tangent
space TxM for every x ∈ M. The induced norm ‖ · ‖x of a tangent vector in TxM is associated
with the Riemannian metric. We first define a retraction Rx : TxM →M mapping tangent space
TxM onto M with a local rigidity condition that preserves the gradients at x ∈ M (please see
Fig.1 (a)). The retraction Rx satisfies all of the following: 1) Rx(0) = x, where 0 ∈ TxM; 2)
〈∇Rx(0), u〉x = u for u ∈ TxM. In fact, exponential mapping Expx is a special case of retraction
Rx that locally approximates the exponential mapping Expx to the first order on the manifold.

Next, we define a vector transport T : TM
⊕
TM → TM (please see Fig.1 (b)) that satisfies

all of the following 1) T has an associated retraction R, i.e., for x ∈ M and w, u ∈ TxM, Tuw
is a tangent vector at Rx(w); 2) T0v = v; 3) Tu(av + bw) = aTuv + bTuw for all a, b ∈ R a
u, v, w ∈ TM. Vector transport T yx v or equivalently Tuv with y = Rx(u) transports v ∈ TxM
along the retraction curve defined by direction u. Here we focus on the isometric vector transport
T yx , which satisfies 〈u, v〉x = 〈T yx u, T yx v〉y for all u, v ∈ TxM.

Let ∇f(x, y) = (∇xf(x, y),∇yf(x, y)) denote the gradient over the Euclidean space, and let
gradf(x, y) = (gradxf(x, y), gradyf(x, y)) = ProjTxM(∇f(x, y)) denote the Riemannian gradi-
ent over tangent space TxM, where ProjX (z) = arg minx∈X ‖x−z‖ is a projection operator. Based
on the above definitions, we provide some standard assumptions about the problem (1). Although
the problem (1) is non-convex, following (Von Neumann & Morgenstern, 2007), there exists a local
solution or stationary point (x∗, y∗) satisfies the Nash Equilibrium, i.e.,

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗),

where x∗ ∈ X and y∗ ∈ Y . Here X ⊂M is a neighbourhood around an optimal point x∗.
Assumption 1. X is compact. Each component function f(x, y) is twice continuously differentiable
in both x ∈ X and y ∈ Y , and there exist constants L11, L12, L21 and L22, such that for every
x, x1, x2 ∈ X and y, y1, y2 ∈ Y , we have

‖gradxf(x1, y; ξ)− T x1
x2

gradxf(x2, y; ξ)‖ ≤ L11‖u‖,
‖gradxf(x, y1; ξ)− gradxf(x, y2; ξ)‖ ≤ L12‖y1 − y2‖,
‖∇yf(x1, y; ξ)−∇yf(x2, y; ξ)‖ ≤ L21‖u‖,
‖∇yf(x, y1; ξ)−∇yf(x, y2; ξ)‖ ≤ L22‖y1 − y2‖,

where u ∈ Tx1
M and x2 = Rx1

(u).

Assumption 1 is commonly used in Riemannian optimization (Sato et al., 2019; Han & Gao,
2020a), and min-max optimization (Lin et al., 2019; Luo et al., 2020; Xu et al., 2020b). Here,
the terms L11, L12 and L21 implicitly contain the curvature information as in (Sato et al.,
2019; Han & Gao, 2020a). Specifically, Assumption 1 implies the partial Riemannian gradi-
ent gradxf(·, y; ξ) for all y ∈ Y is retraction L11-Lipschitz continuous as in (Han & Gao,
2020a) and the partial gradient ∇yf(x, ·; ξ) for all x ∈ X is L22-Lipschitz continuous as in
(Lin et al., 2019). Since ‖gradxf(x, y1; ξ) − gradxf(x, y2; ξ)‖ = ‖ProjTxM

(
∇xf(x, y1; ξ)

)
−
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ProjTxM
(
∇xf(x, y2; ξ)

)
‖ ≤ ‖∇xf(x, y1; ξ) − ∇xf(x, y2; ξ)‖ ≤ L12‖y1 − y2‖, we can ob-

tain ‖gradxf(x, y1; ξ) − gradxf(x, y2; ξ)‖ ≤ L12‖y1 − y2‖ by the L12-Lipschitz continu-
ous of ∇xf(x, ·; ξ) for all x ∈ X . Let the partial Riemannian gradient gradyf(·, y; ξ)

for all y ∈ Y be retraction L̃21-Lipschitz, i.e., ‖gradyf(x1, y; ξ) − T x1
x2

gradyf(x2, y; ξ)‖ ≤
L̃21‖u‖. Since ‖gradyf(x1, y; ξ) − T x1

x2
gradyf(x2, y; ξ)‖ = ‖ProjTxM

(
∇yf(x1, y; ξ)

)
−

T x1
x2

ProjTxM
(
∇yf(x2, y; ξ)

)
‖ ≤ ‖∇yf(x1, y; ξ)−∇yf(x2, y; ξ)‖ ≤ L21‖u‖, we have L21 ≥ L̃21.

For the deterministic problem, let f(x, y) instead of f(x, y; ξ) in Assumption 1. Since f(x, y) is
strongly concave in y ∈ Y , there exists a unique solution to the problem maxy∈Y f(x, y) for any x.
We define the function Φ(x) = maxy∈Y f(x, y) and y∗(x) = arg maxy∈Y f(x, y).
Assumption 2. The function Φ(x) is retraction L-smooth. There exists a constant L > 0, for all
x ∈ X , z = Rx(u) with u ∈ TxM, such that

Φ(z) ≤ Φ(x) + 〈gradΦ(x), u〉+
L

2
‖u‖2. (6)

Assumption 3. The objective function f(x, y) is µ-strongly concave w.r.t y, i.e., for any x ∈M

f(x, y1) ≤ f(x, y2) + 〈∇yf(x, y2), y1 − y2〉 −
µ

2
‖y1 − y2‖2, ∀y1, y2 ∈ Y. (7)

Assumption 4. The function Φ(x) is bounded from below inM, i.e., Φ∗ = infx∈M Φ(x).
Assumption 5. The variance of stochastic gradient is bounded, i.e., there exists a constant σ1 > 0
such that for all x, it follows Eξ‖gradxf(x, y; ξ) − gradxf(x, y)‖2 ≤ σ2

1; There exists a constant
σ2 > 0 such that for all y, it follows Eξ‖∇yf(x, y; ξ) − ∇yf(x, y)‖2 ≤ σ2

2 . We also define
σ = max{σ1, σ2}.

Assumption 2 imposes the retraction smooth of function Φ(x), as in Sato et al. (2019); Han & Gao
(2020b;a). Assumption 3 imposes the strongly concave of f(x, y) on variable y, as in (Lin et al.,
2019; Luo et al., 2020). Assumption 4 guarantees the feasibility of the nonconvex-strongly-concave
problems, as in (Lin et al., 2019; Luo et al., 2020). Assumption 5 imposes the bounded variance of
stochastic (Riemannian) gradients, which is commonly used in the stochastic optimization (Han &
Gao, 2020b; Lin et al., 2019; Luo et al., 2020).

4 RIEMANIAN GRADIENT DESCENT ASCENT

In the section, we propose a class of Riemannian gradient descent ascent algorithm to solve the
deterministic and stochastic minimax optimization problem (1), respectively.

4.1 RGDA AND RSGDA ALGORITHMS

In this subsection, we propose an efficient Riemannian gradient descent ascent (RGDA) algorithm to
solve the deterministic min-max problem (1). At the same time, we propose a standard Riemannian
stochastic gradient descent ascent (RSGDA) algorithm to solve the stochastic min-max problem (1).
Algorithm 1 summarizes the algorithmic framework of our RGDA and RSGDA algorithms.

At the step 5 of Algorithm 1, we apply the retraction operator to ensure the variable xt for all t ≥ 1
in the manifoldM. At the step 6 of Algorithm 1, we use 0 < ηt ≤ 1 to ensure the variable yt for all
t ≥ 1 in the convex constraint Y .

Here we define a reasonable metric to measure the convergence:

Ht = ‖gradΦ(xt)‖+ L̃‖yt − y∗(xt)‖, (10)

where L̃ = max(1, L11, L12, L21, L22), and the first term of Ht measures convergence of the iter-
ation solutions {xt}Tt=1, and the last term measures convergence of the iteration solutions {yt}Tt=1.
Since the function f(x, y) is strongly concave in y ∈ Y , there exists a unique solution y∗(x) to the
problem maxy∈Y f(x, y) for any x ∈ M. Thus, we apply the standard metric ‖yt − y∗(xt)‖
to measure convergence of the parameter y. Given y = y∗(xt), we use the standard metric
‖gradΦ(xt)‖ = ‖gradxf(xt, y

∗(xt))‖ to measure convergence of the parameter x. Note that we
use the coefficient L̃ to balance the scale of metrics of the variable x and the variable y.
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Algorithm 1 RGDA and RSGDA Algorithms for Min-Max Optimization

1: Input: T , parameters {γ, λ, ηt}Tt=1, mini-batch size B, and initial input x1 ∈M, y1 ∈ Y;
2: for t = 1, 2, . . . , T do
3: (RGDA) Compute deterministic gradients

vt = gradxf(xt, yt), wt = ∇yf(xt, yt); (8)

4: (RSGDA) Draw B i.i.d. samples {ξit}Bi=1, then compute stochastic gradients

vt =
1

B

B∑
i=1

gradxf(xt, yt; ξ
i
t), wt =

1

B

B∑
i=1

∇yf(xt, yt; ξ
i
t); (9)

5: Update: xt+1 = Rxt(−γηtvt);
6: Update: ỹt+1 = PY(yt + λwt) and yt+1 = yt + ηt(ỹt+1 − yt);
7: end for
8: Output: xζ and yζ chosen uniformly random from {xt, yt}Tt=1.

Algorithm 2 MVR-RSGDA Algorithm for Min-Max Optimization

1: Input: T , parameters {γ, λ, b,m, c1, c2} and initial input x1 ∈M and y1 ∈ Y;
2: Draw B i.i.d. samples B1 = {ξi1}Bi=1, then compute v1 = gradxfB1(x1, y1) and w1 =
∇yfB1(x1, y1);

3: for t = 1, 2, . . . , T do
4: Compute ηt = b

(m+t)1/3
;

5: Update: xt+1 = Rxt
(−γηtvt);

6: Update: ỹt+1 = PY(yt + λwt) and yt+1 = yt + ηt(ỹt+1 − yt);
7: Compute αt+1 = c1η

2
t and βt+1 = c2η

2
t ;

8: Draw B i.i.d. samples Bt+1 = {ξit+1}Bi=1, then compute

vt+1 = gradxfBt+1
(xt+1, yt+1) + (1− αt+1)T xt+1

xt

[
vt − gradxfBt+1

(xt, yt)
]
, (12)

wt+1 = ∇yfBt+1
(xt+1, yt+1) + (1− βt+1)

[
wt −∇yfBt+1(xt, yt)

]
; (13)

9: end for
10: Output: xζ and yζ chosen uniformly random from {xt, yt}Tt=1.

4.2 MVR-RSGDA ALGORITHM

In this subsection, we propose a novel momentum variance-reduced stochastic Riemannian gradient
descent ascent (MVR-RSGDA) algorithm to solve the stochastic min-max problem (1), which builds
on the momentum-based variance reduction technique of STORM (Cutkosky & Orabona, 2019).
Algorithm 2 describes the algorithmic framework of MVR-RSGDA method.

In Algorithm 2, we use the momentum-based variance-reduced technique of STORM to update
stochastic Riemannian gradient vt:

vt+1 = αt+1 gradxfBt+1(xt+1, yt+1)︸ ︷︷ ︸
SGD

+ (1− αt+1)
(
gradxfBt+1(xt+1, yt+1)− T xt+1

xt

(
gradxfBt+1(xt, yt)− vt

))︸ ︷︷ ︸
SPIDER

= gradxfBt+1
(xt+1, yt+1) + (1− αt+1)T xt+1

xt

(
vt − gradxfBt+1

(xt, yt)
)
, (11)

where αt+1 ∈ (0, 1]. When αt+1 = 1, vt will degenerate a vanilla stochastic Riemannian gradient;
When αt+1 = 0, vt will degenerate a stochastic Riemannian gradient based on variance-reduced
technique of SPIDER (Nguyen et al., 2017; Fang et al., 2018). Similarly, we use this momentum-
based variance-reduced technique to estimate the stochastic gradient wt.

6
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5 CONVERGENCE ANALYSIS

In this section, we study the convergence properties of our RGDA, RSGDA, and MVR-RSGDA al-
gorithms under some mild conditions. For notational simplicity, let L̃ = max(1, L11, L12, L21, L22)
and κ = L21/µ denote the number condition of function f(x, y). We first give a useful lemma.
Lemma 1. Under the assumptions in §3, the gradient of function Φ(x) = maxy∈Y f(x, y) is re-
traction G-Lipschitz, and the mapping or function y∗(x) = arg maxy∈Y f(x, y) is retraction κ-
Lipschitz. Given any x1, x2 = Rx1(u) ∈ X ⊂M and u ∈ Tx1M, we have:

‖gradΦ(x1)− T x1
x2

gradΦ(x2)‖ ≤ G‖u‖, ‖y∗(x1)− y∗(x2)‖ ≤ κ‖u‖, (14)

where G = κL12 + L11 and κ = L21/µ.

5.1 CONVERGENCE ANALYSIS OF BOTH THE RGDA AND RSGDA ALGORITHMS

In the subsection, we study the convergence properties of deterministic RGDA and stochastic RS-
GDA algorithms. The related proofs of RGDA and RSGDA are provided in Appendix A.1.
Theorem 1. Suppose the sequence {xt, yt}Tt=1 is generated from Algorithm 1 by using deterministic
gradients. Given η = ηt for all t ≥ 1, 0 < η ≤ min(1, 1

2γL ), 0 < λ ≤ 1
6L̃

and 0 < γ ≤ µλ

10L̃κ
, we

have

1

T

T∑
t=1

[
‖gradΦ(xt)‖+ L̃‖yt − y∗(xt)‖

]
≤

2
√

Φ(x1)− Φ∗√
γηT

. (15)

Remark 1. Since 0 < η ≤ min(1, 1
2γL ) and 0 < γ ≤ µλ

10L̃κ
, we have 0 < ηγ ≤ min( µλ

10L̃κ
, 1

2L ).

Let ηγ = min( µλ

10L̃κ
, 1

2L ), we have ηγ = O( 1
κ2 ). The RGDA algorithm has convergence rate of

O
(

κ
T 1/2

)
. By κ

T 1/2 ≤ ε, i.e., E[Hζ ] ≤ ε, we choose T ≥ κ2ε−2. In the deterministic RGDA
Algorithm, we need one sample to estimate the gradients vt and wt at each iteration, and need
T iterations. Thus, the RGDA reaches a sample complexity of T = O(κ2ε−2) for finding an ε-
stationary point.
Theorem 2. Suppose the sequence {xt, yt}Tt=1 is generated from Algorithm 1 by using stochastic
gradients. Given η = ηt for all t ≥ 1, 0 < η ≤ min(1, 1

2γL ), 0 < λ ≤ 1
6L̃

and 0 < γ ≤ µλ

10L̃κ
, we

have

1

T

T∑
t=1

E
[
‖gradΦ(xt)‖+ L̃‖yt − y∗(xt)‖

]
≤

2
√

Φ(x1)− Φ∗√
γηT

+

√
2σ√
B

+
5
√

2L̃σ√
Bµ

. (16)

Remark 2. Since 0 < η ≤ min(1, 1
2γL ) and 0 < γ ≤ µλ

10L̃κ
, we have 0 < ηγ ≤ min( µλ

10L̃κ
, 1

2L ). Let

ηγ = min( µλ

10L̃κ
, 1

2L ), we have ηγ = O( 1
κ2 ). Let B = T , the RSGDA algorithm has convergence

rate of O
(

κ
T 1/2

)
. By κ

T 1/2 ≤ ε, i.e., E[Hζ ] ≤ ε, we choose T ≥ κ2ε−2. In the stochastic RSGDA
Algorithm, we need B samples to estimate the gradients vt and wt at each iteration, and need
T iterations. Thus, the RSGDA reaches a sample complexity of BT = O(κ4ε−4) for finding an
ε-stationary point.

5.2 CONVERGENCE ANALYSIS OF THE MVR-RSGDA ALGORITHM

In the subsection, we provide the convergence properties of the MVR-RSGDA algorithm. The
related proofs of MVR-RSGDA are provided in Appendix A.2.
Theorem 3. Suppose the sequence {xt, yt}Tt=1 is generated from Algorithm 2. Given y1 = y∗(x1),
c1 ≥ 2

3b3 + 2λµ, c2 ≥ 2
3b3 + 50λL̃2

µ , b > 0, m ≥ max
(
2, (c̃b)3

)
, 0 < γ ≤ µλ

2κL̃
√

25+4µλ
and

0 < λ ≤ 1
6L̃

, we have

1

T

T∑
t=1

E
[
‖gradΦ(xt)‖+ L̃‖yt − y∗(xt)‖

]
≤
√

2M ′m1/6

T 1/2
+

√
2M ′

T 1/3
, (17)

where c̃ = max(1, c1, c2, 2γL) and M ′ = 2(Φ(x1)−Φ∗)
γb + 2σ2

Bλµη0b
+

2(c21+c22)σ2b2

Bλµ ln(m+ T ).
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(a) MNIST (b) CIFAR-10 (c) CIFAR-100

Figure 2: Training loss of robust training DNNs with orthogonality regularization on weights.

(a) MNIST (b) CIFAR-10 (c) CIFAR-100

Figure 3: Attack loss when using uniform attack on DNNs trained by SGDA, RSGDA and MVR-
RSGDA.

Remark 3. Let c1 = 2
3b3 + 2λµ, c2 = 2

3b3 + 50λL̃2

µ , λ = 1
6L̃

, γ = µλ

2κL̃
√

25+4µλ
and η0 = b

m1/3 . It

is easy verified that γ = O( 1
κ2 ), λ = O(1), λµ = O( 1

κ ), c1 = O(1), c2 = O(κ), m = O(κ3) and
η0 = O( 1

κ ). Without loss of generality, let T ≥ m = O(κ3), we haveM ′ = O
(
κ2+ κ2

B + κ3

B ln(T )
)
.

When B = κ, we have M ′ = O
(
κ2 ln(T )

)
. Thus, the MVR-RSGDA algorithm has a convergence

rate of Õ
(

κ
T 1/3

)
. By κ

T 1/3 ≤ ε, i.e., E[Hζ ] ≤ ε, we choose T ≥ κ3ε−3. In Algorithm 2, we require
B samples to estimate the stochastic gradients vt and wt at each iteration, and need T iterations.
Thus, the MVR-RSGDA has a sample complexity of BT = Õ

(
κ4ε−3

)
for finding an ε-stationary

point of the problem (1). Similarly, when B = 1, the MVR-RSGDA algorithm has a convergence
rate of Õ

(
κ3/2

T 1/3

)
, and has a sample complexity of BT = Õ

(
κ9/2ε−3

)
for finding an ε-stationary

point.

Remark 4. In the about theoretical analysis, we only assume the convexity of constraint set Y ,
while Lin et al. (2019) not only assume the convexity of set Y , but also assume and use its bounded
(Please see Assumption 4.2 in (Lin et al., 2019)). Clearly, our assumption is milder than (Lin et al.,
2019). When there does not exist a constraint set on parameter y, i.e.,Y = Rd, our algorithms and
theoretical results still work, while Lin et al. (2019) can‘t work.

6 EXPERIMENTS

In this section, we conduct the deep neural network (DNN) robust training over the Stiefel manifold
St(r, d) = {W ∈ Rd×r : WTW = Ir} to evaluate the performance of our algorithms. In the
experiment, we use MNIST, CIFAR-10, and CIFAR-100 datasets to train the model ( More exper-
imental results on SVHN, STL10, and FashionMNIST datasets are provided in the Appendix B ).
Considering the sample size is large in these datasets, we only compare the proposed stochastic al-
gorithms (RSGDA and MVR-RSGDA) in the experiments. Here, we use the SGDA algorithm (Lin
et al., 2019) as a baseline, which does not apply the orthogonal regularization in the DNN robust
training.

6.1 EXPERIMENTAL SETTING

Given a deep neural network h(·;x) parameterized by x as shown in the above problem (2), the
weights of l-th layer is xi ∈ St(nlin, n

l
out), where St(nlin, n

l
out) is the Stiefel manifold of l-th layer.

8
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Table 2: Test accuracy against nature images and uniform attack for MNIST, CIFAR-10, and CIFAR-
100 datasets.

Methods Eval. Against MNIST CIFAR-10 CIFAR-100

RSGDA Nat. Images 98.92% 62.87% 29.92%
Uniform Attack 98.58% 61.45% 31.14%

MVR-RSGDA Nat. Images 99.15% 67.45% 32.92%
Uniform Attack 99.03% 68.56% 34.69%

SGDA Nat. Images 98.96% 76.75% 43.41%
Uniform Attack 98.59% 55.68% 27.81%

For the weights in dense layers, nlin, n
l
out are the number of inputs and outputs neurons. For the

weights in convolution layers, nlin is the number of input channels, nlout is the product of the number
of output channels and kernel sizes. Note that the trainable parameters from other components (e.g.
batchnorm) are not in Stiefel manifold.

For both RSGDA and MVR-RSGDA algorithms, we set {γ, λ} to {1.0, 0.1}. We further set {b, m,
c1, c2} to 0.5, 8, 512, 512 for MVR-RSGDA. η in RSGDA is set to 0.01. For both algorithms, the
mini-batch size is set to 512. We set ε for y as 0.05 and 0.03 for the MNIST dataset and CIFAR-
10/100 datasets. The above settings are the same for all datasets. An 8-layer (5 convolution layers
and 3 dense layers) deep neural network is used in all experiments. All codes are implemented with
McTorch (Meghwanshi et al., 2018) which is based on PyTorch (Paszke et al., 2019).

6.2 EXPERIMENTAL RESULTS

The training loss plots of the robust training problem in the above Eq. (2) are shown in Fig. 2. From
the figure, we can see that MVR-RSGDA enjoys a faster convergence speed compared to the baseline
RSGDA. It’s also clear that when the dataset becomes complicate (from MNIST to CIFAR-10/100),
the advantage of MVR-RSGDA becomes larger.

When it comes to robust training, the training loss is not enough to identify which algorithm is
better. We also use a variant of uniform perturbation to attack the model trained by our algorithms.
We follow the design of uniform attack in previous works (Moosavi-Dezfooli et al., 2017; Chaubey
et al., 2020), and the detail uniform attack objective is shown below:

min
y∈Y

1

n

n∑
i=1

max
(
hbi(y + ai)−max

j 6=bi
hj(y + ai), 0

)
, s.t. Y = {‖y‖∞ ≤ ε}

where hj is the j-th logit of the output from the deep neural network, and y here is a uniform
permutation added for all inputs. In practice, we sample a mini-batch with 512 samples at each
iteration. The optimization of the uniform permutation lasts for 1000 iterations for all settings.
The attack loss is presented in Fig 3. The attack loss for the model trained by MVR-RSGDA is
higher compared to both RSGDA and SGDA, which indicates the model trained by MVR-RSGDA
is harder to attack and thus more robust. The test accuracy with natural image and uniform attack is
shown in Tab. 2, which also suggests the advantage of MVR-RSGDA. More results are provided in
Appendix B.

7 CONCLUSION

In the paper, we investigated a class of useful min-max optimization problems on the Riemanian
manifold. We proposed a class of novel efficient Riemanian gradient descent ascent algorithms to
solve these minimax problems, and studied the convergence properties of the proposed algorithms.
For example, we proved that our new MVR-RSGDA algorithm achieves a sample complexity of
Õ(κ4ε−3) without large batches, which reaches near the best known sample complexity for its Eu-
clidean counterparts.
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A APPENDIX

In this section, we provide the detailed convergence analysis of our algorithms. We first review some
useful lemmas.

Lemma 2. (Nesterov, 2018) Assume that f(x) is a differentiable convex function and X is a convex
set. x∗ ∈ X is the solution of the constrained problem minx∈X f(x), if

〈∇f(x∗), x− x∗〉 ≥ 0, x ∈ X . (18)

Lemma 3. (Nesterov, 2018) Assume the function f(x) is L-smooth, i.e., ‖∇f(x) − ∇f(y)‖ ≤
L‖x− y‖, and then the following inequality holds

|f(y)− f(x)−∇f(x)T (y − x)| ≤ L

2
‖x− y‖2. (19)

Next, based on the above assumptions and Lemmas, we gives some useful lemmas:

Lemma 4. The gradient of function Φ(x) = maxy∈Y f(x, y) is retraction G-Lipschitz, and the
mapping or function y∗(x) = arg maxy∈Y f(x, y) is retraction κ-Lipschitz. Given any x1, x2 =
Rx1

(u) ∈ X ⊂M and u ∈ Tx1
M, we have

‖gradΦ(x1)− T x1
x2

gradΦ(x2)‖ ≤ G‖u‖,
‖y∗(x1)− y∗(x2)‖ ≤ κ‖u‖,

where G = κL12 + L11 and κ = L21/µ, and vector transport T x1
x2

transport the tangent space of
x1 to that of x2.

Proof. Given any x1, x2 = Rx1
(u) ∈ X and u ∈ Tx1

M, define y∗(x1) = arg maxy∈Y f(x1, y)
and y∗(x2) = arg maxy∈Y f(x2, y), by the above Lemma 2, we have

(y − y∗(x1))T∇yf(x1, y
∗(x1)) ≤ 0, ∀y ∈ Y (20)

(y − y∗(x2))T∇yf(x2, y
∗(x2)) ≤ 0, ∀y ∈ Y. (21)

Let y = y∗(x2) in the inequality (20) and y = y∗(x1) in the inequality (21), then summing these
inequalities, we have

(y∗(x2)− y∗(x1))T
(
∇yf(x1, y

∗(x1))−∇yf(x2, y
∗(x2))

)
≤ 0. (22)

Since the function f(x1, ·) is µ-strongly concave, we have

f(x1, y
∗(x1)) ≤ f(x1, y

∗(x2)) + (∇yf(x1, y
∗(x2)))T (y∗(x1)− y∗(x2))− µ

2
‖y∗(x1)− y∗(x2)‖2,

(23)

f(x1, y
∗(x2)) ≤ f(x1, y

∗(x1)) + (∇yf(x1, y
∗(x1)))T (y∗(x2)− y∗(x1))− µ

2
‖y∗(x1)− y∗(x2)‖2.

(24)

Combining the inequalities (23) with (24), we obtain

(y∗(x2)− y∗(x1))T
(
∇yf(x1, y

∗(x2))−∇yf(x1, y
∗(x1))

)
+ µ‖y∗(x1)− y∗(x2)‖2 ≤ 0. (25)

By plugging the inequalities (22) into (25), we have

µ‖y∗(x1)− y∗(x2)‖2 ≤ (y∗(x2)− y∗(x1))T
(
∇yf(x2, y

∗(x2))−∇yf(x1, y
∗(x2))

)
≤ ‖y∗(x2)− y∗(x1)‖‖∇yf(x2, y

∗(x2))−∇yf(x1, y
∗(x2))‖

≤ L21‖u‖‖y∗(x2)− y∗(x1)‖, (26)

where the last inequality is due to Assumption 1. Thus, we have

‖y∗(x1)− y∗(x2)‖ ≤ κ‖u‖, (27)

where κ = L21/µ and x2 = Rx1(u), u ∈ Tx1M.
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Since Φ(x) = f(x, y∗(x)), we have gradΦ(x) = gradxf(x, y∗(x)). Then we have
‖gradΦ(x1)−T x1

x2
gradΦ(x2)‖

= ‖gradxf(x1, y
∗(x1))− T x1

x2
gradxf(x2, y

∗(x2))‖
≤ ‖gradxf(x1, y

∗(x1))−gradxf(x1, y
∗(x2))‖+‖gradxf(x1, y

∗(x2))−T x1
x2

gradxf(x2, y
∗(x2))‖

≤ L12‖y∗(x1)− y∗(x2)‖+ L11‖u‖
≤ (κL12 + L11)‖u‖, (28)

where u ∈ Tx1
M.

Lemma 5. Suppose the sequence {xt, yt}Tt=1 is generated from Algorithm 1 or 2. Given 0 < ηt ≤
1

2γL , we have

Φ(xt+1) ≤ Φ(xt) + γL12ηt‖y∗(xt)− yt‖2 + γηt‖gradxf(xt, yt)− vt‖2 −
γηt
2
‖gradΦ(xt)‖2

− γηt
4
‖vt‖2. (29)

Proof. According to Assumption 2, i.e., the function Φ(x) is retraction L-smooth, we have

Φ(xt+1) ≤ Φ(xt)− γηt〈gradΦ(xt), vt〉+
γ2η2

tL

2
‖vt‖2 (30)

= Φ(xt) +
γηt
2
‖gradΦ(xt)− vt‖2 −

γηt
2
‖gradΦ(xt)‖2 + (

γ2η2
tL

2
− γηt

2
)‖vt‖2

= Φ(xt) +
γηt
2
‖gradΦ(xt)− gradxf(xt, yt) + gradxf(xt, yt)− vt‖2 −

γηt
2
‖gradΦ(xt)‖2

+ (
γ2η2

tL

2
− γηt

2
)‖vt‖2

≤ Φ(xt) + γηt‖gradΦ(xt)− gradxf(xt, yt)‖2 + γηt‖gradxf(xt, yt)− vt‖2 −
γηt
2
‖gradΦ(xt)‖2

+ (
Lγ2η2

t

2
− γηt

2
)‖vt‖2

≤ Φ(xt) + γηt‖gradΦ(xt)− gradxf(xt, yt)‖2 + γηt‖gradxf(xt, yt)− vt‖2 −
γηt
2
‖gradΦ(xt)‖2

− γηt
4
‖vt‖2,

where the last inequality is due to 0 < ηt ≤ 1
2γL .

Consider an upper bound of ‖gradΦ(xt)− gradxf(xt, yt)‖2, we have

‖gradΦ(xt)− gradxf(xt, yt)‖2 = ‖gradxf(xt, y
∗(xt))− gradxf(xt, yt)‖2

≤ L12‖y∗(xt)− yt‖2. (31)
Then we have

Φ(xt+1) ≤ Φ(xt) + γηtL12‖y∗(xt)− yt‖2 + γηt‖gradxf(xt, yt)− vt‖2 −
γηt
2
‖gradΦ(xt)‖2

− γηt
4
‖vt‖2. (32)

Lemma 6. Suppose the sequence {xt, yt}Tt=1 is generated from Algorithm 1 or 2. Under the above
assumptions, and set 0 < ηt ≤ 1 and 0 < λ ≤ 1

6L̃
, we have

‖yt+1 − y∗(xt+1)‖2 ≤ (1− ηtµλ

4
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2

+
25ηtλ

6µ
‖∇yf(xt, yt)− wt‖2 +

25γ2κ2ηt
6µλ

‖vt‖2, (33)

where κ = L21/µ.
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Proof. According to the assumption 3, i.e., the function f(x, y) is µ-strongly concave w.r.t y, we
have

f(xt, y) ≤ f(xt, yt) + 〈∇yf(xt, yt), y − yt〉 −
µ

2
‖y − yt‖2

= f(xt, yt) + 〈wt, y − ỹt+1〉+ 〈∇yf(xt, yt)− wt, y − ỹt+1〉

+ 〈∇yf(xt, yt), ỹt+1 − yt〉 −
µ

2
‖y − yt‖2. (34)

According to the assumption 1, i.e., the function f(x, y) is L22-smooth w.r.t y, and L̃ ≥ L22, we
have

f(xt, ỹt+1)− f(xt, yt)− 〈∇yf(xt, yt), ỹt+1 − yt〉 ≥ −
L22

2
‖ỹt+1 − yt‖2

≥ − L̃
2
‖ỹt+1 − yt‖2. (35)

Combining the inequalities (34) with (35), we have

f(xt, y) ≤ f(xt, ỹt+1) + 〈wt, y − ỹt+1〉+ 〈∇yf(xt, yt)− wt, y − ỹt+1〉

− µ

2
‖y − yt‖2 +

L̃

2
‖ỹt+1 − yt‖2. (36)

According to the step 6 of Algorithm 1 or 2, we have ỹt+1 = PY(yt + λwt) = arg miny∈Y
1
2‖y −

yt − λwt‖2. Since Y is a convex set and the function 1
2‖y − yt − λwt‖

2 is convex, according to
Lemma 2, we have

〈ỹt+1 − yt − λwt, y − ỹt+1〉 ≥ 0, y ∈ Y. (37)

Then we obtain

〈wt, y − ỹt+1〉 ≤
1

λ
〈ỹt+1 − yt, y − ỹt+1〉

=
1

λ
〈ỹt+1 − yt, yt − ỹt+1〉+

1

λ
〈ỹt+1 − yt, y − yt〉

= − 1

λ
‖ỹt+1 − yt‖2 +

1

λ
〈ỹt+1 − yt, y − yt〉. (38)

Combining the inequalities (36) with (38), we have

f(xt, y) ≤ f(xt, ỹt+1) +
1

λ
〈ỹt+1 − yt, y − yt〉+ 〈∇yf(xt, yt)− wt, y − ỹt+1〉

− 1

λ
‖ỹt+1 − yt‖2 −

µ

2
‖y − yt‖2 +

L̃

2
‖ỹt+1 − yt‖2. (39)

Let y = y∗(xt) and we obtain

f(xt, y
∗(xt)) ≤ f(xt, ỹt+1) +

1

λ
〈ỹt+1 − yt, y∗(xt)− yt〉+ 〈∇yf(xt, yt)− wt, y∗(xt)− ỹt+1〉

− 1

λ
‖ỹt+1 − yt‖2 −

µ

2
‖y∗(xt)− yt‖2 +

L̃

2
‖ỹt+1 − yt‖2. (40)

Due to the concavity of f(·, y) and y∗(xt) = arg maxy∈Y f(xt, y), we have f(xt, y
∗(xt)) ≥

f(xt, ỹt+1). Thus, we obtain

0 ≤ 1

λ
〈ỹt+1 − yt, y∗(xt)− yt〉+ 〈∇yf(xt, yt)− wt, y∗(xt)− ỹt+1〉

− (
1

λ
− L̃

2
)‖ỹt+1 − yt‖2 −

µ

2
‖y∗(xt)− yt‖2. (41)

By yt+1 = yt + ηt(ỹt+1 − yt), we have

‖yt+1 − y∗(xt)‖2 = ‖yt + ηt(ỹt+1 − yt)− y∗(xt)‖2

= ‖yt − y∗(xt)‖2 + 2ηt〈ỹt+1 − yt, yt − y∗(xt)〉+ η2
t ‖ỹt+1 − yt‖2. (42)
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Then we obtain

〈ỹt+1 − yt, y∗(xt)− yt〉 ≤
1

2ηt
‖yt − y∗(xt)‖2 +

ηt
2
‖ỹt+1 − yt‖2 −

1

2ηt
‖yt+1 − y∗(xt)‖2. (43)

Consider the upper bound of the term 〈∇yf(xt, yt)− wt, y∗(xt)− ỹt+1〉, we have

〈∇yf(xt, yt)− wt, y∗(xt)− ỹt+1〉
= 〈∇yf(xt, yt)− wt, y∗(xt)− yt〉+ 〈∇yf(xt, yt)− wt, yt − ỹt+1〉

≤ 1

µ
‖∇yf(xt, yt)− wt‖2 +

µ

4
‖y∗(xt)− yt‖2 +

1

µ
‖∇yf(xt, yt)− wt‖2 +

µ

4
‖yt − ỹt+1‖2

=
2

µ
‖∇yf(xt, yt)− wt‖2 +

µ

4
‖y∗(xt)− yt‖2 +

µ

4
‖yt − ỹt+1‖2. (44)

By plugging the inequalities (41), (43) to (44), we have

1

2ηtλ
‖yt+1 − y∗(xt)‖2 ≤ (

1

2ηtλ
− µ

4
)‖yt − y∗(xt)‖2 + (

ηt
2λ

+
µ

4
+
L̃

2
− 1

λ
)‖ỹt+1 − yt‖2

+
2

µ
‖∇yf(xt, yt)− wt‖2

≤ (
1

2ηtλ
− µ

4
)‖yt − y∗(xt)‖2 + (

3L̃

4
− 1

2λ
)‖ỹt+1 − yt‖2 +

2

µ
‖∇yf(xt, yt)− wt‖2

= (
1

2ηtλ
− µ

4
)‖yt − y∗(xt)‖2 −

( 3

8λ
+

1

8λ
− 3L̃

4

)
‖ỹt+1 − yt‖2

+
2

µ
‖∇yf(xt, yt)− wt‖2

≤ (
1

2ηtλ
− µ

4
)‖yt − y∗(xt)‖2 −

3

8λ
‖ỹt+1 − yt‖2 +

2

µ
‖∇yf(xt, yt)− wt‖2,

(45)

where the second inequality holds by L̃ ≥ L22 ≥ µ and 0 < ηt ≤ 1, and the last inequality is due
to 0 < λ ≤ 1

6L̃
. It implies that

‖yt+1 − y∗(xt)‖2 ≤ (1− ηtµλ

2
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2 +

4ηtλ

µ
‖∇yf(xt, yt)− wt‖2.

(46)

Next, we decompose the term ‖yt+1 − y∗(xt+1)‖2 as follows:

‖yt+1 − y∗(xt+1)‖2 = ‖yt+1 − y∗(xt) + y∗(xt)− y∗(xt+1)‖2

= ‖yt+1 − y∗(xt)‖2 + 2〈yt+1 − y∗(xt), y∗(xt)− y∗(xt+1)〉+ ‖y∗(xt)− y∗(xt+1)‖2

≤ (1 +
ηtµλ

4
)‖yt+1 − y∗(xt)‖2 + (1 +

4

ηtµλ
)‖y∗(xt)− y∗(xt+1)‖2

≤ (1 +
ηtµλ

4
)‖yt+1 − y∗(xt)‖2 + (1 +

4

ηtµλ
)η2
t γ

2κ2‖vt‖2, (47)

where the first inequality holds by the Cauchy-Schwarz inequality and Young’s inequality, and the
last equality is due to Lemma 4.

By combining the above inequalities (46) and (47), we have

‖yt+1 − y∗(xt+1)‖2 ≤ (1 +
ηtµλ

4
)(1− ηtµλ

2
)‖yt − y∗(xt)‖2 − (1 +

ηtµλ

4
)
3ηt
4
‖ỹt+1 − yt‖2

+ (1 +
ηtµλ

4
)
4ηtλ

µ
‖∇yf(xt, yt)− wt‖2 + (1 +

4

ηtµλ
)η2
t γ

2κ2‖vt‖2.

(48)
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Since 0 < ηt ≤ 1, 0 < λ ≤ 1
6L̃

and L̃ ≥ L22 ≥ µ, we have λ ≤ 1
6L̃
≤ 1

6µ and ηt ≤ 1 ≤ 1
6µλ . Then

we obtain

(1 +
ηtµλ

4
)(1− ηtµλ

2
) = 1− ηtµλ

2
+
ηtµλ

4
− η2

t µ
2λ2

8
≤ 1− ηtµλ

4
,

−(1 +
ηtµλ

4
)
3ηt
4
≤ −3ηt

4
,

(1 +
ηtµλ

4
)
4ηtλ

µ
≤ (1 +

1

24
)
4ηtλ

µ
=

25ηtλ

6µ
,

(1 +
4

ηtµλ
)γ2κ2η2

t = γ2κ2η2
t +

4γ2κ2ηt
µλ

≤ γ2κ2ηt
6µλ

+
4γ2κ2ηt
µλ

=
25γ2κ2ηt

6µλ
. (49)

Thus we have

‖yt+1 − y∗(xt+1)‖2 ≤ (1− ηtµλ

4
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2

+
25ηtλ

6µ
‖∇yf(xt, yt)− wt‖2 +

25γ2κ2ηt
6µλ

‖vt‖2. (50)

A.1 CONVERGENCE ANALYSIS OF RGDA AND RSGDA ALGORITHMS

In the subsection, we study the convergence properties of deterministic RGDA and stochastic RS-
GDA algorithms, respectively. For notational simplicity, let L̃ = max(1, L11, L12, L21, L22).
Theorem 4. Suppose the sequence {xt, yt}Tt=1 is generated from Algorithm 1 by using deterministic
gradients. Given η = ηt for all t ≥ 1, 0 < η ≤ min(1, 1

2γL ), 0 < λ ≤ 1
6L̃

and 0 < γ ≤ µλ

10L̃κ
, we

have

1

T

T∑
t=1

[
L̃‖yt − y∗(xt)‖+ ‖gradΦ(xt)‖

]
≤

2
√

Φ(x1)− Φ∗√
γηT

. (51)

Proof. According to Lemma 6, we have

‖yt+1 − y∗(xt+1)‖2 ≤ (1− ηtµλ

4
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2 +

25ηtλ

6µ
‖∇yf(xt, yt)− wt‖2

+
25γ2κ2ηt

6µλ
‖vt‖2. (52)

We first define a Lyapunov function Λt, for any t ≥ 1

Λt = Φ(xt) +
6γL̃2

λµ
‖yt − y∗(xt)‖2. (53)

According to Lemma 5, we have

Λt+1 − Λt = Φ(xt+1)− Φ(xt) +
6γL̃2

λµ

(
‖yt+1 − y∗(xt+1)‖2 − ‖yt − y∗(xt)‖2

)
≤ γηtL12‖yt − y∗(xt)‖2 + γηt‖gradxf(xt, yt)− vt‖2 −

γηt
2
‖gradΦ(xt)‖2 −

γηt
4
‖vt‖2

+
6γL̃2

λµ

(
− µληt

4
‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2 +

25ληt
6µ
‖∇yf(xt, yt)− wt‖2

+
25γ2κ2ηt

6µλ
‖vt‖2

)
≤ − L̃

2γηt
2
‖yt − y∗(xt)‖2 −

γηt
2
‖gradΦ(xt)‖2 −

9γL̃2ηt
2λµ

‖ỹt+1 − yt‖2

−
(1

4
− 25κ2L̃2γ2

µ2λ2

)
γηt‖vt‖2

≤ − L̃
2γηt
2
‖yt − y∗(xt)‖2 −

γηt
2
‖gradΦ(xt)‖2, (54)
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where the first inequality holds by the inequality (52); the second last inequality is due to L̃ =
max(1, L11, L12, L21, L22) and vt = gradxf(xt, yt), wt = ∇yf(xt, yt), and the last inequality is
due to 0 < γ ≤ µλ

10L̃κ
. Thus, we obtain

L̃2γηt
2
‖yt − y∗(xt)‖2 +

γηt
2
‖gradΦ(xt)‖2 ≤ Λt − Λt+1. (55)

Since the initial solution satisfies y1 = y∗(x1) = arg maxy∈Y f(x1, y), we have

Λ1 = Φ(x1) +
6γL̃2

λµ
‖y1 − y∗(x1)‖2 = Φ(x1). (56)

Taking average over t = 1, 2, · · · , T on both sides of the inequality (55), we have

1

T

T∑
t=1

[ L̃2ηt
2
‖yt − y∗(xt)‖2 +

ηt
2
‖gradΦ(xt)‖2

]
≤ Λ1 − ΛT+1

γT
≤ Φ(x1)− Φ∗

γT
, (57)

where the last equality is due to the above equality (56) and Assumption 4. Let η = η1 = · · · = ηT ,
we have

1

T

T∑
t=1

[
L̃2‖yt − y∗(xt)‖2 + ‖gradΦ(xt)‖2

]
≤ 2(Φ(x1)− Φ∗)

γηT
. (58)

According to Jensen’s inequality, we have

1

T

T∑
t=1

[
L̃‖yt − y∗(xt)‖+ ‖gradΦ(xt)‖

]
≤
(

2

T

T∑
t=1

[
L̃2‖yt − y∗(xt)‖2 + ‖gradΦ(xt)‖2

)1/2

≤
(

4(Φ(x1)− Φ∗)

γηT

)1/2

=
2
√

Φ(x1)− Φ∗√
γηT

. (59)

Theorem 5. Suppose the sequence {xt, yt}Tt=1 is generated from Algorithm 1 by using stochastic
gradients. Given η = ηt for all t ≥ 1, 0 < η ≤ min(1, 1

2γL ), 0 < λ ≤ 1
6L̃

and 0 < γ ≤ µλ

10L̃κ
, we

have

1

T

T∑
t=1

E
[
L̃‖yt − y∗(xt)‖+ ‖gradΦ(xt)‖

]
≤

2
√

Φ(x1)− Φ∗√
γηT

+

√
2σ√
B

+
5
√

2L̃σ√
Bµ

. (60)

Proof. According to Lemma 6, we have

‖yt+1 − y∗(xt+1)‖2 ≤ (1− ηtµλ

4
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2 +

25ηtλ

6µ
‖∇yf(xt, yt)− wt‖2

+
25γ2κ2ηt

6µλ
‖vt‖2. (61)

We first define a Lyapunov function Θt, for any t ≥ 1

Θt = E
[
Φ(xt) +

6γL̃2

λµ
‖yt − y∗(xt)‖2

]
. (62)

By Assumption 5, we have

E‖gradxf(xt, yt)− vt‖2 = E‖gradxf(xt, yt)−
1

B

B∑
i=1

gradxf(xt, yt; ξ
i
t)‖2 ≤

σ2

B
, (63)

E‖∇yf(xt, yt)− wt‖2 = E‖∇yf(xt, yt)−
1

B

B∑
i=1

∇yf(xt, yt; ξ
i
t)‖2 ≤

σ2

B
. (64)
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According to Lemma 5, we have

Θt+1 −Θt = E[Φ(xt+1)]− E[Φ(xt)] +
6γL̃2

λµ

(
E‖yt+1 − y∗(xt+1)‖2 − E‖yt − y∗(xt)‖2

)
≤ γηtL12E‖yt − y∗(xt)‖2 + γηtE‖gradxf(xt, yt)− vt‖2 −

γηt
2

E‖gradΦ(xt)‖2 −
γηt
4
‖vt‖2

+
6γL̃2

λµ

(
− µληt

4
E‖yt − y∗(xt)‖2 −

3ηt
4

E‖ỹt+1 − yt‖2 +
25ληt

6µ
E‖∇yf(xt, yt)− wt‖2

+
25γ2κ2ηt

6µλ
‖vt‖2

)
≤ − L̃

2γηt
2

E‖yt − y∗(xt)‖2 −
γηt
2

E‖gradΦ(xt)‖2 −
9γL̃2ηt

2λµ
E‖ỹt+1 − yt‖2

−
(1

4
− 25κ2L̃2γ2

µ2λ2

)
γηt‖vt‖2 + γηtE‖gradxf(xt, yt)− vt‖2 +

25L̃2γηt
µ2

E‖∇yf(xt, yt)− wt‖2

≤ − L̃
2γηt
2

E‖yt − y∗(xt)‖2 −
γηt
2

E‖gradΦ(xt)‖2 +
γηtσ

2

B
+

25L̃2γηtσ
2

Bµ2
, (65)

where the first inequality holds by the inequality (61); the second last inequality is due to L̃ =
max(1, L11, L12, L21, L22), and the last inequality is due to 0 < γ ≤ µλ

10L̃κ
and Assumption 5.

Thus, we obtain

L̃2γηt
2

E‖yt − y∗(xt)‖2 +
γηt
2

E‖gradΦ(xt)‖2 ≤ Θt −Θt+1 +
γηtσ

2

B
+

25L̃2γηtσ
2

Bµ2
. (66)

Since the initial solution satisfies y1 = y∗(x1) = arg maxy∈Y f(x1, y), we have

Θ1 = Φ(x1) +
6γL̃2

λµ
‖y1 − y∗(x1)‖2 = Φ(x1). (67)

Taking average over t = 1, 2, · · · , T on both sides of the inequality (66), we have

1

T

T∑
t=1

E
[ L̃2ηt

2
‖yt − y∗(xt)‖2 +

ηt
2
‖gradΦ(xt)‖2

]
≤ Θt −Θt+1

γT
+

1

T

T∑
t=1

ηtσ
2

B
+

1

T

T∑
t=1

25L̃2ηtσ
2

Bµ2

=
Φ(x1)− Φ∗

γT
+

1

T

T∑
t=1

ηtσ
2

B
+

1

T

T∑
t=1

25L̃2ηtσ
2

Bµ2
,

(68)

where the last equality is due to the above equality (67). Let η = η1 = · · · = ηT , we have

1

T

T∑
t=1

E
[
L̃2‖yt − y∗(xt)‖2 + ‖gradΦ(xt)‖2

]
≤ 2(Φ(x1)− Φ∗)

γηT
+
σ2

B
+

25L̃2σ2

Bµ2
. (69)

According to Jensen’s inequality, we have

1

T

T∑
t=1

E
[
L̃‖yt − y∗(xt)‖+ ‖gradΦ(xt)‖

]
≤
( 2

T

T∑
t=1

E
[
L̃2‖yt − y∗(xt)‖2 + ‖gradΦ(xt)‖2

)1/2
≤ 4(Φ(x1)− Φ∗)

γηT
+

2σ2

B
+

50L̃2σ2

Bµ2

)1/2
≤

2
√

Φ(x1)− Φ∗√
γηT

+

√
2σ√
B

+
5
√

2L̃σ√
Bµ

, (70)

where the last inequality is due to (a1 + a2 + a3)1/2 ≤ a1/2
1 + a

1/2
2 + a

1/2
3 for all a1, a2, a3 > 0.
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A.2 CONVERGENCE ANALYSIS OF THE MVR-RSGDA ALGORITHM

In the subsection, we study the convergence properties of the MVR-RSGDA algorithm. For nota-
tional simplicity, let L̃ = max(L11, L12, L21, L22, 1).

Lemma 7. Suppose the stochastic gradients vt and wt is generated from Algorithm 2, given 0 <
αt+1 ≤ 1 and 0 < βt+1 ≤ 1, we have

E‖gradxf(xt+1, yt+1)− vt+1‖2 ≤ (1− αt+1)2E‖gradxf(xt, yt)− vt‖2 + 4(1− αt+1)2L2
11γ

2η2
t ‖vt‖2

+ 4(1− αt+1)2L2
12η

2
t ‖ỹt+1 − yt‖2 +

2α2
t+1σ

2

B
. (71)

E‖∇yf(xt+1, yt+1)− wt+1‖2 ≤ (1− βt+1)2E‖∇yf(xt, yt)− wt‖2 + 4(1− βt+1)2L2
21γ

2η2
t ‖vt‖2

+ 4(1− βt+1)2L2
22η

2
t ‖ỹt+1 − yt‖2 +

2β2
t+1σ

2

B
. (72)

Proof. We first prove the inequality (71). According to the definition of vt in Algorithm 2, we have

vt+1 − T xt+1
xt

vt = −αt+1T xt+1
xt

vt + (1− αt+1)
(
gradxfBt+1

(xt+1, yt+1)− T xt+1
xt

gradxfBt+1
(xt, yt)

)
+ αt+1gradxfBt+1

(xt+1, yt+1). (73)

Then we have

E‖gradxf(xt+1, yt+1)− vt+1‖2 (74)

= E‖gradxf(xt+1, yt+1)− T xt+1
xt

vt − (vt+1 − T xt+1
xt

vt)‖2

= E‖gradxf(xt+1, yt+1)− T xt+1
xt

vt + αt+1T xt+1
xt

vt − αt+1gradxfBt+1
(xt+1, yt+1)

− (1− αt+1)
(
gradxfBt+1

(xt+1, yt+1)− T xt+1
xt

gradxfBt+1
(xt, yt)

)
‖2

= E‖(1− αt+1)T xt+1
xt

(gradxf(xt, yt)− vt) + (1− αt+1)
(
gradxf(xt+1, yt+1)− T xt+1

xt
gradxf(xt, yt)

− gradxfBt+1(xt+1, yt+1) + T xt+1
xt

gradxfBt+1(xt, yt)
)

+ αt+1

(
gradxf(xt+1, yt+1)− gradxfBt+1

(xt+1, yt+1)
)
‖2

= (1− αt+1)2E‖gradxf(xt, yt)− vt‖2 + α2
t+1E‖gradxf(xt+1, yt+1)− gradxfBt+1

(xt+1, yt+1)‖2

+ (1− αt+1)2E‖gradxf(xt+1, yt+1)− T xt+1
xt

gradxf(xt, yt)− gradxfBt+1
(xt+1, yt+1)

+ T xt+1
xt

gradxfBt+1
(xt, yt)‖2 + 2αt+1(1− αt+1)

〈
gradxf(xt+1, yt+1)− T xt+1

xt
gradxf(xt, yt)

− gradxfBt+1
(xt+1, yt+1) + T xt+1

xt
gradxfBt+1

(xt, yt), gradxf(xt+1, yt+1)− gradxfBt+1
(xt+1, yt+1)

〉
≤ (1− αt+1)2E‖gradxf(xt, yt)− vt‖2 + 2α2

t+1E‖gradxf(xt+1, yt+1)− gradxfBt+1
(xt+1, yt+1)‖2

+ 2(1− αt+1)2E‖gradxf(xt+1, yt+1)− T xt+1
xt

gradxf(xt, yt)− gradxfBt+1(xt+1, yt+1)

+ T xt+1
xt

gradxfBt+1(xt, yt)‖2

≤ (1− αt+1)2E‖gradxf(xt, yt)− vt‖2 +
2α2

t+1σ
2

B

+ 2(1− αt+1)2 E‖gradxfBt+1
(xt+1, yt+1)− T xt+1

xt
gradxfBt+1

(xt, yt)‖2︸ ︷︷ ︸
=T1

,

where the fourth equality follows by E[gradxfBt+1
(xt+1, yt+1)] = gradxf(xt+1, yt+1) and

E[gradxfBt+1
(xt+1, yt+1) − gradxfBt+1

(xt, yt)] = gradxf(xt+1, yt+1) − gradxf(xt, yt); the first
inequality holds by Young’s inequality; the last inequality is due to the equality E‖ζ − E[ζ]‖2 =
E‖ζ‖2 − ‖E[ζ]‖2 and Assumption 5.
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Next, we consider an upper bound of the above term T1 as follows:

T1 = E
∥∥gradxfBt+1

(xt+1, yt+1)− T xt+1
xt

gradxfBt+1
(xt, yt)

∥∥2
(75)

= E
∥∥gradxfBt+1(xt+1, yt+1)− T xt+1

xt
gradxf(xt, yt+1; ξt+1) + T xt+1

xt
gradxf(xt, yt+1; ξt+1)

− T xt+1
xt

gradxfBt+1
(xt, yt)

∥∥2

≤ 2E
∥∥gradxfBt+1

(xt+1, yt+1)− T xt+1
xt

gradxf(xt, yt+1; ξt+1)‖2

+ 2E‖gradxf(xt, yt+1; ξt+1)− gradxfBt+1(xt, yt)
∥∥2

≤ 2L2
11γ

2η2
t ‖vt‖2 + 2L2

12‖yt+1 − yt‖2

= 2L2
11γ

2η2
t ‖vt‖2 + 2L2

12η
2
t ‖ỹt+1 − yt‖2, (76)

where the last inequality is due to Assumption 1. Thus, we have

E‖gradxf(xt+1, yt+1)− vt+1‖2 ≤ (1− αt+1)2E‖gradxf(xt, yt)− vt‖2 + 4(1− αt+1)2L2
11γ

2η2
t ‖vt‖2

+ 4(1− αt+1)2L2
12η

2
t ‖ỹt+1 − yt‖2 +

2α2
t+1σ

2

B
. (77)

We apply a similar analysis to prove the above inequality (72). We obtain

E‖∇yf(xt+1, yt+1)− wt+1‖2 ≤ (1− βt+1)2E‖∇yf(xt, yt)− wt‖2 + 4(1− βt+1)2L2
21γ

2η2
t ‖vt‖2

+ 4(1− βt+1)2L2
22η

2
t ‖ỹt+1 − yt‖2 +

2β2
t+1σ

2

B
. (78)

Theorem 6. Suppose the sequence {xt, yt}Tt=1 is generated from Algorithm 2. Given y1 = y∗(x1),
c1 ≥ 2

3b3 + 2λµ, c2 ≥ 2
3b3 + 50λL̃2

µ , b > 0, m ≥ max
(
2, (c̃b)3

)
, 0 < γ ≤ µλ

2κL̃
√

25+4µλ
and

0 < λ ≤ 1
6L̃

, we have

1

T

T∑
t=1

E
[
‖gradΦ(xt)‖+ L̃‖yt − y∗(xt)‖

]
≤
√

2M ′m1/6

T 1/2
+

√
2M ′

T 1/3
, (79)

where c̃ = max(2γL, c1, c2, 1) and M ′ = 2(Φ(x1)−Φ∗)
γb + 2σ2

λµη0bB
+

2(c21+c22)σ2b2

λµB ln(m+ T ).

Proof. Since ηt is decreasing and m ≥ b3, we have ηt ≤ η0 = b
m1/3 ≤ 1. Similarly, due to

m ≥ (2γLb)3, we have ηt ≤ η0 = b
m1/3 ≤ 1

2γL . Due to 0 < ηt ≤ 1 andm ≥ max
(
(c1b)

3, (c2b)
3
)
,

we have αt+1 = c1η
2
t ≤ c1ηt ≤ c1b

m1/3 ≤ 1 and βt+1 = c2η
2
t ≤ c2ηt ≤ c2b

m1/3 ≤ 1. According to
Lemma 7, we have
1

ηt
E‖gradxf(xt+1, yt+1)− vt+1‖2 −

1

ηt−1
E‖gradxf(xt, yt)− vt‖2 (80)

≤
( (1− αt+1)2

ηt
− 1

ηt−1

)
E‖gradxf(xt, yt)− vt‖2 + 4(1− αt+1)2L2

11γ
2ηt‖vt‖2

+ 4(1− αt+1)2L2
12ηt‖ỹt+1 − yt‖2 +

2α2
t+1σ

2

ηtB

≤
(1− αt+1

ηt
− 1

ηt−1

)
E‖gradxf(xt, yt)− vt‖2 + 4L2

11γ
2ηt‖vt‖2 + 4L2

12ηt‖ỹt+1 − yt‖2 +
2α2

t+1σ
2

ηtB

=
( 1

ηt
− 1

ηt−1
− c1ηt

)
E‖gradxf(xt, yt)− vt‖2 + 4L2

11γ
2ηt‖vt‖2 + 4L2

12ηt‖ỹt+1 − yt‖2 +
2α2

t+1σ
2

ηtB
,

where the second inequality is due to 0 < αt+1 ≤ 1. By a similar way, we also obtain
1

ηt
E‖∇yf(xt+1, yt+1)− wt+1‖2 −

1

ηt−1
E‖∇yf(xt, yt)− wt‖2 (81)

≤
( 1

ηt
− 1

ηt−1
− c2ηt

)
E‖∇yf(xt, yt)− wt‖2 + 4L2

21γ
2ηt‖vt‖2 + 4L2

22ηt‖ỹt+1 − yt‖2 +
2β2

t+1σ
2

ηtB
.
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By ηt = b
(m+t)1/3

, we have

1

ηt
− 1

ηt−1
=

1

b

(
(m+ t)

1
3 − (m+ t− 1)

1
3

)
≤ 1

3b(m+ t− 1)2/3
≤ 1

3b
(
m/2 + t

)2/3
≤ 22/3

3b(m+ t)2/3
=

22/3

3b3
b2

(m/2 + t)2/3
=

22/3

3b3
η2
t ≤

2

3b3
ηt, (82)

where the first inequality holds by the concavity of function f(x) = x1/3, i.e., (x + y)1/3 ≤
x1/3 + y

3x2/3 ; the second inequality is due to m ≥ 2, and the last inequality is due to 0 < ηt ≤ 1.
Let c1 ≥ 2

3b3 + 2λµ, we have

1

ηt
E‖gradxf(xt+1, yt+1)− vt+1‖2 −

1

ηt−1
E‖gradxf(xt, yt)− vt‖2 (83)

≤ −2λµηtE‖gradxf(xt, yt)− vt‖2 + 4L2
11γ

2ηt‖vt‖2 + 4L2
12ηt‖ỹt+1 − yt‖2 +

2α2
t+1σ

2

ηtB
.

Let c2 ≥ 2
3b3 + 50λL̃2

µ , we have

1

ηt
E‖∇yf(xt+1, yt+1)− wt+1‖2 −

1

ηt−1
E‖∇yf(xt, yt)− wt‖2 (84)

≤ −50λL̃2

µ
ηtE‖∇yf(xt, yt)− wt‖2 + 4L2

21γ
2ηt‖vt‖2 + 4L2

22ηt‖ỹt+1 − yt‖2 +
2β2

t+1σ
2

ηtB
.

According to Lemma 6, we have

‖yt+1 − y∗(xt+1)‖2 − ‖yt − y∗(xt)‖2 ≤ −
ηtµλ

4
‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2

+
25ληt

6µ
‖∇yf(xt, yt)− wt‖2 +

25γ2κ2ηt
6µλ

‖vt‖2.

(85)

Next, we define a Lyapunov function Ωt, for any t ≥ 1

Ωt = E
[
Φ(xt)

]
+

γ

2λµ

( 1

ηt−1
E‖gradxf(xt, yt)− vt‖2 +

1

ηt−1
E‖∇yf(xt, yt)− wt‖2

)
+

6γL̃2

λµ
E‖yt − y∗(xt)‖2. (86)
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Then we have

Ωt+1 − Ωt = E[Φ(xt+1)]− E[Φ(xt)] +
6γL̃2

λµ

(
E‖yt+1 − y∗(xt+1)‖2 − E‖yt − y∗(xt)‖2

)
+

γ

2λµ

( 1

ηt
E‖gradxf(xt+1, yt+1)− vt+1‖2 −

1

ηt−1
E‖gradxf(xt, yt)− vt‖2

+
1

ηt
E‖∇yf(xt+1, yt+1)− wt+1‖2 −

1

ηt−1
E‖∇yf(xt, yt)− wt‖2

)
≤ L12γηtE‖yt − y∗(xt)‖2 + γηtE‖gradxf(xt, yt)− vt‖2 −

γηt
2

E‖gradΦ(xt)‖2 −
γηt
4
‖vt‖2

+
6γL̃2

λµ

(
− µληt

4
E‖yt − y∗(xt)‖2 −

3ηt
4

E‖ỹt+1 − yt‖2 +
25ληt

6µ
E‖∇yf(xt, yt)− wt‖2 +

25γ2κ2ηt
6µλ

‖vt‖2
)

+
γ

2λµ

(
− 2λµηtE‖gradxf(xt, yt)− vt‖2 + 4L2

11γ
2ηt‖vt‖2 + 4L2

12ηtE‖ỹt+1 − yt‖2 +
2α2

t+1σ
2

ηtB

− 50λL̃2

µ
ηtE‖∇yf(xt, yt)− wt‖2 + 4L2

21γ
2ηt‖vt‖2 + 4L2

22ηtE‖ỹt+1 − yt‖2 +
2β2

t+1σ
2

ηtB

)
≤ −γL̃

2ηt
2

E‖yt − y∗(xt)‖2 −
γηt
2

E‖gradΦ(xt)‖2 −
γL̃2ηt
2λµ

E‖ỹt+1 − yt‖2 −
(γ

4
− 25γ3κ2L̃2

µ2λ2
− 4γ3L̃2

µλ

)
ηt‖vt‖2

+
γα2

t+1σ
2

λµηtB
+
γβ2

t+1σ
2

λµηtB

≤ −γL̃
2ηt
2

E‖yt − y∗(xt)‖2 −
γηt
2

E‖gradΦ(xt)‖2 +
γα2

t+1σ
2

λµηtB
+
γβ2

t+1σ
2

λµηtB
, (87)

where the first inequality holds by Lemmas 5 and the above inequalities (83), (84) and (85); the
second inequality is due to L̃ = max(1, L11, L12, L21, L22); the last inequality is due to 0 ≤ γ ≤

µλ

2κL̃
√

25+4µλ
and κ ≥ 1.

According to the above inequality (87), we have

γηt
2

(
E‖gradΦ(xt)‖2 + L̃2E‖yt − y∗(xt)‖2

)
≤ Ωt − Ωt+1 +

γα2
t+1σ

2

λµηtB
+
γβ2

t+1σ
2

λµηtB
. (88)

Taking average over t = 1, 2, · · · , T on both sides of the inequality (88), we have

1

T

T∑
t=1

Eηt
(
‖gradΦ(xt)‖2 + L̃2‖yt − y∗(xt)‖2

)
≤

T∑
t=1

2(Ωt − Ωt+1)

γT
+

1

T

T∑
t=1

(2α2
t+1σ

2

λµηtB
+

2β2
t+1σ

2

λµηtB

)
.

Since the initial solution satisfies y1 = y∗(x1) = arg maxy∈Y f(x1, y), we have

Ω1 = Φ(x1) +
6γL̃2

λµ
‖y1 − y∗(x1)‖2 +

γ

2λµ

( 1

η0
‖gradxf(x1, y1)− v1‖2 +

1

η0
‖∇yf(x1, y1)− w1‖2

)
= Φ(x1) +

γ

2λµ

( 1

η0
‖gradxf(x1, y1)− gradxfB1

(x1, y1)‖2 +
1

η0
‖∇yf(x1, y1)−∇yfB1

(x1, y1)‖2
)

≤ Φ(x1) +
γσ2

λµη0B
, (89)

where the last inequality holds by Assumption 5.
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Table 3: Benchmark Datasets Used in Experiments

datasets #samples #dimension #classes
MNIST 60,000 28×28 10

CIFAR-10 50,000 32×32×3 10
CIFAR-100 50,000 32×32×3 100

SVHN 73,257 32×32×3 10
Fashion-MNIST 60,000 28×28 10

STL-10 5,000 32×32×3 10

Consider ηt is decreasing, i.e., η−1
T ≥ η−1

t for any 0 ≤ t ≤ T , we have

1

T

T∑
t=1

E
(
‖gradΦ(xt)‖2 + L̃2‖yt − y∗(xt)‖2

)
(90)

≤
T∑
t=1

2(Ωt − Ωt+1)

TγηT
+

1

TηT

T∑
t=1

(2α2
t+1σ

2

λµηtB
+

2β2
t+1σ

2

λµηtB

)
≤ 1

TηT

(2Φ(x1)

γ
+

2σ2

λµη0B
− 2Φ∗

γ
) +

1

TηT

T∑
t=1

(2α2
t+1σ

2

λµηtB
+

2β2
t+1σ

2

λµηtB

)
=

2(Φ(x1)− Φ∗)

TγηT
+

2σ2

Tλµη0ηTB
+

2(c21 + c22)σ2

TηTλµB

T∑
t=1

η3
t

≤ 2(Φ(x1)− Φ∗)

TγηT
+

2σ2

Tλµη0ηTB
+

2(c21 + c22)σ2

TηTλµB

∫ T

1

b3

m+ t
dt

≤ 2(Φ(x1)− Φ∗)

TγηT
+

2σ2

Tλµη0ηTB
+

2(c21 + c22)σ2b3

TηTλµB
ln(m+ T )

=
2(Φ(x1)− Φ∗)

Tγb
(m+ T )1/3 +

2σ2

Tλµη0bB
(m+ T )1/3 +

2(c21 + c22)σ2b2

TλµB
ln(m+ T )(m+ T )1/3,

where the third inequality holds by
∑T
t=1 η

3
t ≤

∫ T
1
η3
t dt. Let M ′ = 2(Φ(x1)−Φ∗)

γb + 2σ2

λµη0bB
+

2(c21+c22)σ2b2

λµB ln(m+ T ), we rewrite the above inequality as follows:

1

T

T∑
t=1

E
(
‖gradΦ(xt)‖2 + L̃2‖yt − y∗(xt)‖2

)
≤ M ′

T
(m+ T )1/3. (91)

According to Jensen’s inequality, we have

1

T

T∑
t=1

E
(
‖gradΦ(xt)‖+ L̃‖yt − y∗(xt)‖

)
≤
(

2

T

T∑
t=1

E
(
‖gradΦ(xt)‖2 + L̃2‖yt − y∗(xt)‖2

))1/2

≤
√

2M ′

T 1/2
(m+ T )1/6 ≤

√
2M ′m1/6

T 1/2
+

√
2M ′

T 1/3
,

(92)

where the last inequality is due to (a1 + a2)1/6 ≤ a1/6
1 + a

1/6
2 for all a1, a2 > 0.

B ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results on SVHN, FashionMNIST and STL-10
datasets, given in Table 3. The training loss and attack loss under uniform attack is shown in Fig 4.
The test accuracy with natural images and uniform attack is shown in Tab. 4. From these results, our
methods are robust to the uniform attack in training DNNs.
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Table 4: Test accuracy against nature images and uniform attack for FashionMNIST, SVHN and
STL-10 datasets.

Method Eval. Against FashionMNIST SVHN STL-10

RSGDA Nat. Images 84.96% 75.72% 52.34%
Uniform Attack 82.54% 43.19% 47.28%

MVR-RSGDA Nat. Images 88.49% 76.05% 54.92%
Uniform Attack 76.75% 45.06% 48.89%

SGDA Nat. Images 88.57% 91.96% 56.10%
Uniform Attack 50.90% 45.97% 45.27%

(a) FashionMNIST (b) SVHN (c) STL-10

(d) FashionMNIST (e) SVHN (f) STL-10

Figure 4: Additional results for robust training (a-c) and uniform attack (d-f) with SGDA, RSGDA
and MVR-RSGDA algorithms.
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