
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCOPE: SPATIALLY-CONSTRAINED PARAMETRIC EDIT-
ING FOR TEXT-GUIDED CAD MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-based CAD editing (e.g., CAD-Editor) has emerged as a promising approach
for automating CAD modifications from natural language instructions. However,
existing methods lack explicit spatial understanding, limiting their ability to ac-
curately interpret instructions that involve relative positions or geometric con-
straints. To address this gap, we introduce SCOPE, an extension of the locate-
then-infill framework that integrates language-guided spatial reasoning into text-
guided CAD editing. SCOPE enhances training by synthesizing spatially grounded
editing samples and enables the model to learn spatial relations between CAD
features (e.g., “drill a hole on the left panel above the rectangle”). Furthermore,
we integrate spatial context into both the locate and infill stages, improving tar-
get region identification and spatially consistent modifications. Experiments on a
public CAD dataset demonstrate that incorporating spatial reasoning significantly
improves the accuracy of text-based CAD editing with more precise region local-
ization and control while retaining the efficiency of the original framework.

1 INTRODUCTION

Computer-Aided Design (CAD) has become indispensable across modern engineering and manufac-
turing workflows where designers create complex models through iterative sketching and extrusion
processes (Li et al. (2023); Ren et al. (2022)). As CAD designing involves understanding spa-
tial relationship between geometric components, designers constantly reference relative positions,
orientations, and geometric constraints—language instructions in professional workflows frequently
contain spatial context. Despite substantial progress in automating CAD generation, current methods
either synthesize new models without user control (Wu et al. (2021)) or support limited controlla-
bility through disentangled codebooks for topology and geometry (Xu et al. (2022; 2023)), limiting
fine-grained edits.

Text-based CAD editing aims to overcome these limitations by allowing designers to modify ex-
isting models via natural language commands. Early work on design variation generation yields
uncontrolled random perturbations (Wu et al. (2021); Xu et al. (2022)), while emerging text-to-
CAD methods map descriptions to new models without leveraging prior design context (Khan et al.
(2024b); Li et al. (2025)). However, these approaches do not incorporate explicit spatial reasoning,
a critical capability for interpreting instructions referring to relative positions such as “above,” “next
to,” or “within” CAD features. Large Language Models (LLMs) and Large Vision-Language Models
(LVLMs) have shown promise for sequence-to-sequence tasks and data synthesis across domains,
including CAD code understanding(Xu et al. (2024); Wu et al. (2024). Usage of 2D CAD draw-
ings Wang et al. (2025c) enabled 2D-to-3D parametric generation and editability across geometric
entities and contexts. Yet existing pipelines do not generate spatially-grounded editing, preventing
models from learning the geometric relationships fundamental to professional design workflows.
This gap manifests in poor region localization and imprecise edit execution when spatial cues are
present.

A core challenge in text-based CAD editing is successfully converting spatially descriptive instruc-
tions (e.g., “add a slot above the handle” or ”align the chamfered edge next to the circular hole”) into
accurate parametric modifications. Flexible editing thus requires joint reasoning over spatial cues
and underlying 3D geometry to enable precise identification and manipulation of target regions.
However, most traditional methods either treat spatial cues implicitly or rely on global model repre-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

sentations, lacking mechanisms that fuse spatial grounding with instruction parsing Li et al. (2023);
Wang et al. (2025b); Zhang et al. (2025b); Wang et al. (2025a). As a result, models often misinter-
pret spatially anchored commands, which lead to ambiguities or incorrect editing outcomes Wang
et al. (2025b); Zhang et al. (2025b). Bridging this gap requires frameworks that synthesize spa-
tially explicit training data and reason jointly over language, geometry, and design context. This can
support robust and controllable editing grounded in spatial semantics—an area that remains largely
unexplored in current CAD-editing research Wang et al. (2025a); Khan et al. (2025).

In this work, we present SCOPE, a Spatially-Constrained Parametric Editing framework that fills
this gap by (1) generating an open-source dataset of triplets—original CAD, spatially grounded
instruction and edited CAD through an automated pipeline, and (2) extending the locate-then-infill
paradigm with hierarchy-aware spatial tokens that explicitly model relative relationships between
CAD features. SCOPE achieves significant gains in region localization and edit precision on public
benchmarks, establishing a new standard for spatially-aware text-guided CAD editing. Our main
contributions are:

• We propose SCOPE, a spatial context-aware parametric CAD editing framework that extends
the locate-then-infill approach, enabling precise and bidirectional (forward and inverse)
CAD modifications from natural language instructions.

• We propose an automated data synthesis pipeline to procedurally generate a large-scale
spatially-grounded CAD editing dataset. To our knowledge, this is the first approach ad-
dressing the lack of spatial understanding in existing text-based CAD editing methods.

• Our method establishes a new state-of-the-art on the CAD editing benchmark, achieving
significant gains over existing baselines. Our approach yields a 63.6% increase in the D-
CLIP score, achieving significant improvements in both region localization and instruction-
following for complex CAD editing tasks.

2 RELATED WORKS

Large Language Models for CAD Generation. Recent advances in Text-to-CAD research dis-
tinguished between CAD generation and editing tasks, where generation creates new designs from
scratch and editing modifies generated models based on user instruction Khan et al. (2024b). CAD
editing enables users to iteratively refine and customize models, offering flexibility that genera-
tion frameworks cannot offer. Large Language Models (LLMs) have transformed the text-to-CAD
landscape. LLM-based CAD generation approaches (Khan et al. (2024b); Li et al. (2024a; 2025))
focused on mapping textual prompts to new CAD models, often using two-tuple data (instruction,
output model) and lack the capacity to interpret editing intent and preserve prior design context.
However, Yuan et al. (2025) showed text-guided CAD editing requires triplet structures (instruc-
tion, original model, edited model) to enable step-by-step, spatial-aware, and user-driven manipu-
lations, which is not addressed by LLM-based generation works Zhang et al. (2025c). Multimodal
approaches (Xu et al. (2024); Wu et al. (2024); Alrashedy et al. (2025)) leveraged LVLMs with
image input to enrich generative capacities, but failed to enable an editing step for reuse and human-
centric design iteration. Unlike previous strategies that rely on direct text-to-object mapping or
require extensive user segmentation input (Li et al. (2020; 2022)), integrating LLMs/LVLMs into
editing frameworks enables automated and flexible operation over both global and local model hi-
erarchies, and supports summarizing the difference between model states—critical for effective edit
tracking and guidance (Khan et al. (2024b)). Stepwise captioning and context-aware editing further
differentiate editing-focused pipelines, allowing LLMs to facilitate fine-grained modifications while
maintaining the design intent. This substantially makes the CAD design process more interactive
and adaptable.

Sequence modeling for CAD. Transformer-based models (Vaswani et al. (2017)) inspired CAD
construction as autoregressive modeling. Recent frameworks utilize domain-specific languages
(DSL) to represent geometric operations as discrete tokens, enabling autoregressive generation of
CAD sequences (Willis et al. (2021); Ganin et al. (2021)). DeepCAD (Wu et al. (2021)) pioneered
transformer-based autoencoders for sketch-and-extrude modeling and more subsequent works de-
veloped for sequence representations (Seff et al. (2022); Xu et al. (2022); Guo et al. (2022); Xu
et al. (2023)). Building upon this sequential modeling approach, our approach incorporates spatial

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

reasoning to understand and execute editing instructions on relative positions and geometric rela-
tionships between CAD components.

Spatially-grounded CAD editing. While recent advances in Text-to-CAD editing have demon-
strated significant progress across different representation paradigms, existing approaches predomi-
nantly focus on shape synthesis (Zhang et al. (2025c); Govindarajan et al. (2025)) without incorpo-
rating explicit spatial reasoning capabilities. Current text-based CAD editing methods (Khan et al.
(2024a); Li et al. (2024b)) can interpret basic geometric descriptions but struggle with instructions
containing spatial relationships between CAD components. For instance, unconditional generation
approaches like DeepCAD (Wu et al. (2021)) lack any form of spatial control, while controllable
methods such as SkexGen (Xu et al. (2022)) and Hnc-cad (Xu et al. (2023)) provide topology
and geometry control but cannot handle relative positioning constraints. This limitation becomes
particularly evident in CAD editing scenarios where users frequently reference spatial relationships
(e.g., “add a hole above the existing rectangle” or “extend the left panel”). The absence of spa-
tial understanding requires post-processing, significantly limiting the practical utility of automated
CAD manipulation systems. Moreover, existing training pipelines lack spatial grounding(Yuan
et al. (2025)), limiting models from learning the spatial relationships fundamental to professional
CAD workflows Wang et al. (2025b). This gap highlights the need for CAD frameworks that can
handle spatial relationships for intuitive parametric CAD design. In contrast to these approaches,
our method explicitly integrates spatial reasoning into both the training data synthesis and model
architecture, which offers relative positioning controls during editing operations.

3 METHODOLOGY

3.1 SCOPE FRAMEWORK

In this section, we introduce SCOPE, a novel framework for text-guided CAD editing that explicitly
models spatial understanding to interpret the edit instructions. As illustrated in Figure 1, SCOPE
adopts two finetuning stages (locate and infill) from CAD-Editor(Yuan et al. (2025)), where it
finetunes an LLM for CAD editing with spatial context. In the locate stage, it is finetuned with
the original CAD sequence and the editing instruction tokens to predict a masked sequence where
a target region is replaced by a <mask> token. The target region is a specific part of the token
sequence derived from the CAD manipulation instruction. Subsequently, the infill stage uses this
masked sequence along with the two inputs from the locate stage to generate the final edited CAD
sequence by filling in the <mask> tokens with generated tokens. SCOPE addresses the lack of explicit
spatial understanding in CAD-Editor’s finetuning strategy by incorporating spatially-grounded data
and a dedicated spatial relation <SR> token into the finetuning pipeline. The <SR> token guides both
stages to achieve precise, context-aware region localization and consistent CAD modification.

LLM

…
<CAD seq> <Edit seq>

…
<Masked CAD seq>

…

[1] Locate Stage

LLM

…
<CAD seq> <Edit seq>

…
<Final CAD seq>

…

[2] Infill Stage

…
<Masked CAD seq>

Add a smaller central
rectangular prism

Add a smaller central
rectangular prism

LoRA

Spatial Relation Token

Original CAD Sequence

<mask> Token (locate)

Edit Text Token

filled Token (infill)

Input Output Tokens

<SR> → ‘central’

<SR> <SR>

Figure 1: Overview of the SCOPE framework. The framework consists of LLM finetuning in a two-
stage locate-then-infill Yuan et al. (2025). The locate stage predicts <mask> tokens in the original
CAD sequence based on spatially-augmented (spatial relation <SR> token) editing instructions. The
infill stage translates masked sequences and spatial cues into accurately edited CAD models with
proper spatial grounding.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 SPATIALLY-CONSTRAINED CAD EDITING

We formulate text-guided CAD modification as a conditional sequence generation task. Let I denote
the language command for CAD editing, Cmain be the token sequence of the original CAD model
and Cedit be the target edited sequence. A parameterized function fθ learns to map the instruction
and main model to the desired edit:

Cedit = fθ(I, Cmain) (1)

This is typically optimized by maximizing the log-likelihood of the target sequence over a dataset
D of (I, Cmain, Cedit) triplets:

L(θ) =
∑

(I,Cmain,Cedit)∈D

logPθ(Cedit | I, Cmain) (2)

A major challenge in this formulation is the model’s ability to interpret spatial context within I to
accurately localize edits. Standard LLMs often exhibit “bag-of-tokens” behavior (Qi et al. (2025)),
struggling to ground spatial relations like “above” or “infront of” within the geometric context of
Cmain. This leads to ambiguity in the conditional probability distribution over Cedit, given I and
Cmain. To address this, SCOPE extends the problem formulation by introducing an explicit spatial
relation <SR> token into the vocabulary. The input edit instruction I is augmented to I ′ = (I, <SR>)
whenever spatial constraints are present. This token provides a strong inductive bias, enabling the
model to explicitly condition its predictions on spatial context. Thus, the locate-then-infill stages are
refined as conditional generation with spatial constraints. Let Ω be the set of token indices whose
semantics are spatially dependent, then 1 extends to:

Pθ(Cedit | I, Cmain) ≈ Pθ(Cedit,Ω | I ′, Cmain) · Pθ(Cedit,Ω̄ | I, Cmain) (3)

1. Locate Stage: The model learns to predict a masked sequence Cmask where tokens corresponding
to the target region are replaced by a <mask> token. The <SR> sharpens the conditional distribution:

Cmask ∼ Pθ(· | I ′, Cmain) (4)

The presence of <SR> guides the model’s attention mechanism to more efficiently identify the subse-
quence in Cmain that corresponds to the spatial instruction, thereby improving localization accuracy.

2. Infill Stage: The model generates the final edited sequence Cedit by filling in the masked regions.
This stage is conditioned on the full spatial context provided by the instruction, the original model,
and the precisely localized <mask> tokens:

Cedit ∼ Pθ(· | I ′, Cmain, Cmask) (5)

By explicitly tokenizing spatial relations, we transform an implicit reasoning challenge into a struc-
tured sequence modeling task. As supported by theoretical work on spatial reasoning in language
models (Wang et al. (2025b); Qi et al. (2025)), this factorization improves the optimization land-
scape. It allows the model to learn a more sample-efficient mapping from instruction to spatially
precise design modifications. The joint optimization objective for SCOPE becomes:

LSCOPE(θ) =
∑

(I′,Corig,Cedit)∈D

[logPθ(Cmask | I ′, Cmain) + logPθ(Cedit | I ′, Cmain, Cmask)] (6)

We observe that naive models (without <mask> tokens) implicitly treat all tokens as i.i.d. or rely on
standard positional embeddings. However, Zhang et al. (2025a) shows that positional tokens alone
are insufficient for nuanced spatial reasoning. Therefore, our approach ensures that both localization
and modification are directly conditioned on the spatial semantics embedded within the instruction,
where the <mask> token serves as a powerful anchor for the model’s attention mechanism.

3.3 CAD AS STRUCTURED TEXT REPRESENTATION

Our approach builds upon the established sketch-and-extrude modeling (SEM) (Wu et al. (2021);
Xu et al. (2022)) while incorporating spatial awareness throughout the hierarchical construction
process. CAD models naturally exhibit multiple construction hierarchies, from basic geometric

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

primitives to complete 3D bodies. At the foundational level, curves serve as elementary building
blocks encompassing lines (l), arcs (a), and circles (c). Each of them is defined by specific coordinate
points: lines by two endpoints, arcs by three control points, and circles by center and radius points.
These curves aggregate into loops (L), which form closed geometric paths either as single entities
(e.g., standalone circles (c)) or composite structures (e.g., line-arc-line sequences (l-a-l) that define
complex contours). Faces (F) represent bounded 2D regions, characterized by outer boundary loops
and potentially multiple inner loops that create holes or cutouts within the geometry. Sketches (S)
comprise collections of faces that share common extrusion parameters and geometric constraints.
Extrusions (E) transform 2D sketches into 3D volumes through operations like additive extrusion
or subtractive cuts. Finally, complete CAD models (M) consist of multiple sketch-extrusion (SE)
entities that collectively define the final parametric design.

We follow the FlexCAD (Zhang et al. (2025c)) approach to convert CAD models into structured
text sequences using specialized termination tokens (‘Hend’ for H ∈ {curve, loop, face, sketch,
extrusion}) to separate out each hierarchy and enable precise manipulation. Spatial descriptors
(e.g., “above,” “left of”) are interleaved with coordinate tokens so that, for an instruction like “drill
a hole on the left panel above the existing rectangle,” the model can directly identify and locate the
target and reference components within the hierarchy. During the spatial-context aware fine-tuning,
we pass standard CAD sequences with instruction-editing triplets—such as “add a cylindrical hole
above the rectangular cutout on the front face” paired with before and after texts—to teach the model
to predict curve-level, loop-level, and sketch-level modifications conditioned on spatial language.
This hierarchy-aware masking strategy ensures the model learns to map relative spatial instructions
to precise geometric transformations across all SEM levels for spatial-aware CAD edits.

3.4 SPATIALLY-GROUNDED DATA SYNTHESIS

To effectively train our model for spatially-aware CAD editing, we develop an automated pipeline to
generate a large-scale, spatially-grounded dataset. This process is designed to create instruction-edit
triplets, denoted as D = {(I, Cmain, Cedit)}. We begin by filtering CAD models from the Deep-
CAD dataset (Wu et al. (2021)). For each model, we employ a design variation model, Hnc-CAD
(Xu et al. (2023)), to generate a diverse set of modified counterparts. This creates (Cmain, Cedit)
pairs that include a wide range of common CAD edit operations, including the addition, deletion,
and modification of geometric features. Next, for each pair of CAD models, we generate a cor-
responding editing instruction that is both descriptive and spatially precise. This is achieved by
leveraging a large vision-language model1 (LVLM) to analyze rendered images of the original and
edited models. While CAD-Editor also uses LVLMs to generate editing instructions, our approach
is specifically designed to elicit and embed spatial relation in the instruction. We use a stepwise
captioning strategy where the LVLM is prompted to perform a three-step iteration- first: describe the
geometric properties of each model; second: identify the differences between them; and third: com-
press these differences into a concise editing instruction. The LVLM generates a natural language
editing instruction (I) with explicit spatial relationships (e.g., “above, “to the right of”), which are
then encoded as dedicated spatial relation <SR> tokens.

Each generated triplet is structured to explicitly include this spatial relation, as illustrated in the
following example for adding a prism to the right of an existing CAD model:

{
"original_sequence ": "line ,9,9 <curve_end > ... <extrude_end >",
"edited_sequence ": "line ,9,9 <curve_end > ...",
"masked_sequence ": "line ,9,9 <curve_end > ... <mask >",
"instruction ": "Add a smaller triangular prism 7 units to the right.",
"type": "add",
"method ": "sequence",
"spatial_relation ": "right" −→ spatial context added

}

This explicit encoding of spatial relation differentiates our approach from CAD-Editor, which re-
lies on a general Longest Common Subsequence (LCS) algorithm to create ground-truth masked
sequences. While LCS can identify token-level differences, it is agnostic to the underlying spatial

1https://huggingface.co/openai/gpt-oss-20b

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

semantics of the edit. In contrast, our <SR> tokens provide a direct, unambiguous guidance signal to
the model.

3.5 PROMPT TEMPLATE WITH SPATIALLY-GUIDED MASKING

Our method enhances the prompt template of CAD-Editor by incorporating the spatial context.
During finetuning stages, we employ a hierarchy-aware masking strategy (Xu et al. (2023)) where
the <SR> token guides the model to the precise target region. The masking process is applied across
different hierarchical levels: for example, an entire internal sketch-extrusion is replaced with a single
<sketch-extrusion mask> for high-level edits, allowing the model to learn to generate structures
of varying complexity. Unlike FlexCAD (Zhang et al. (2025c)), our masking does not rely on
structural difference but is semantically linked to the user’s spatial intent. For instance, <face
mask> or <curve mask> tokens are inserted at hierarchical levels directly corresponding to the
region identified by the <SR> token. This approach allows the model to condition its predictions
on precise spatial semantics during both the locate and infill stages. <SR> guided masking process
allows SCOPE to robustly interpret and execute complex, spatially-constrained CAD edits during
inference.

Our spatially-guided masking is implemented through a two-stage finetuning process (locate and
infill) with distinct prompt templates for each stage. The prompts are structured as follows:

Locate Stage Prompt Template
Inst: Below is a CAD operation

sequence. Replace the parts
that need to be modified with
the string <mask > according to
the editing instruction.

Input: <Inst > <OrigSeq >
Output: <MaskedSeq >

Infill Stage Prompt Template
Inst: Based on the original CAD

sequence , editing instruction
and masked sequence , generate
the edited CAD sequence that
could replace <mask > in the CAD
model.

Input: <Inst > <OrigSeq > <MaskedSeq >
Output: <EditedSeq >

The terms in the prompt templates define the data flow for each training stage. The <Inst> is the
natural language instruction guiding the CAD edit. The <OrigSeq> refers to the token sequence
of the original CAD model before modification. The <MaskedSeq> in the locate stage denotes the
intermediate representation where the specific tokens of the target region are replaced by a <mask>
token. The <mask> tokens are inserted at curve-, loop-, or face-level boundaries based on spatial
descriptors (e.g., “above,” “left of”), guiding the model to predict which SE hierarchies require
modification. Finally, the <EditedSeq> is the output sequence from the infill stage, representing the
fully modified final CAD model with the new geometry generated in place of the masked tokens.
We jointly optimize both stages using cross-entropy loss over the generated tokens. Given an editing
instruction <Inst>, an original SE token sequence <OrigSeq>, we first train an LLM to predict a
<MaskedSeq> by inserting <mask> tokens at hierarchical boundaries indicated by spatial descrip-
tors (e.g., “right”, “above”). Then, in the second stage, the model attends to the triplet—<Inst>,
<OrigSeq>, and <MaskedSeq>—to generate the precise edited sequence <EditedSeq> while pre-
serving the unmasked portions. This framework allows generating a targeted and spatially accurate
CAD edit sequence.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We build upon the DeepCAD (Wu et al. (2021)), comprising 178K semantically rich
Sketch-and-Extrude models. After de-duplication following prior protocols (Xu et al. (2022; 2023)),
we allocate 90% for training, 5% for validation, and 5% for held-out testing. To furnish spatially
grounded editing examples, our automated pipeline (Section 4) synthesizes 150K triplets—each
containing an original model, a spatial instruction, and the corresponding edited model with relative-
position descriptors (“spatial relation”) at all hierarchy levels. For evaluation, we randomly se-
lect 2000 cases from the held-out test split, generate initial edited versions via the same pipeline, and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

perform manual verification to guarantee spatial-instruction fidelity. Each test instance is processed
to produce three edit hypotheses, resulting in 6000 candidate outputs for comparative benchmarking.

Models. The spatial data synthesis leverages GPT-oss Agarwal et al. (2025) for visual-difference
summarization and LLaMA-3-70B for sequence-level instruction generation. Fine-tuning employs
Gemma3-1B Kamath et al. (2025) as the base, optimized for 70 epochs under PyTorch Distributed
Data Parallel (DDP) on NVIDIA A100×80 GB GPUs. We initialize learning at 1 × 10−4, Max
token length at 1024, and integrate LoRA adapters of rank 16, batch size 2. At inference, we sample
with a temperature of 0.8 and top-p of 0.9 to balance precision and diversity in generated edits.

Metrics. (1) Validity Ratio (VR): Proportion of generated CAD sequences that can be successfully
parsed and rendered into 3D models.

VR =
Nvalid

Ntotal
(7)

(2) Jensen–Shannon Divergence (JSD) for realism: Measures similarity between point cloud dis-
tributions of generated and ground-truth models Wu et al. (2021). It measures KL divergences
(Kullback & Leibler (1951)) of P and Q from the mean distribution M .

JSD(P∥Q) =
1

2
KL(P∥M) +

1

2
KL(Q∥M) (8)

M =
1

2
(P +Q) (9)

(3) Chamfer Distance (CD): Measures the geometric distance between the edited and ground-truth
CAD point sets. It calculates how close the point sets (S1, S2) are by averaging the nearest neighbor
distances.

CD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

∥x− y∥22 +
1

|S2|
∑
y∈S2

min
x∈S1

∥x− y∥22 (10)

(4) Directional CLIP Score (D-CLIP): Using the CLIP score (Sohn et al. (2023)), D-CLIP assesses
if the visual change made to a CAD model matches the semantic direction described by the text
instruction. Both images and texts are encoded in CLIP’s (Radford et al. (2021)) multimodal space
and D-CLIP computes the cosine similarity between the difference in image features and the differ-
ence in text features induced by the edit. The score consists of two directional embeddings: visual
direction (∆v) and textual direction (∆u).

∆v = Eimg(Iedit)− Eimg(Iorig), ∆u = Etext(tedit)− Etext(tbase) (11)

D-CLIP =
⟨∆v,∆u⟩

|∆v|2 · |∆u|2
(12)

Here, Eimg and Etext are the CLIP image and text encoders, Iorig and Iedit denote the image of the orig-
inal and edited CAD respectively, while tbase and tedit are the baseline (e.g., “This is a 3D shape”) and
textual instruction prompts. The final D-CLIP score is computed as the cosine similarity between
∆u and ∆v.

Baselines. We evaluate our approach against three baseline approaches- including those produc-
ing design variants (e.g., SkexGen Xu et al. (2022), Hnc-CAD Xu et al. (2023), FlexCAD Zhang
et al. (2025c)), text-driven CAD synthesis (Text2CAD Khan et al. (2024b)), and large pretrained
foundation models such as GPT-4o with both standard (GPT-4o-Basic) and in-context prompting
(GPT-4o-IC). We report D-CLIP scores to quantitatively assess the fidelity of spatially-grounded
modifications—emphasizing the alignment between user intent and visual edits. All methods are
evaluated using standard metrics described above and reported in Section 4.2. Since baseline meth-
ods do not incorporate spatial reasoning, D-CLIP serves as a promising metric for evaluating how
well CAD edits align with user-specified spatial instructions.

4.2 PERFORMANCE COMPARISON RESULTS

Qualitative Comparison. Our qualitative results demonstrate that SCOPE consistently outperforms
both CAD-Editor and GPT-4o-IC in instruction following (specifically for the edits requiring spatial

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

understanding) and edit quality. As shown in Figure 2, while baseline models often struggle with
spatial editing commands—such as placing an object, maintaining symmetrical alignment—SCOPE
successfully interprets and executes them in a 3D context. For instance, when tasked with adding
a feature (e.g., “centrally beneath the arch”), SCOPE correctly identifies the reference geometry and
applies the edit with high precision. Similarly, for instructions requiring alignment with existing
features (e.g., “aligning with the left hole”), it exhibits superior geometric fidelity. In contrast, CAD-
Editor and GPT-4o-IC frequently fail to ground these spatial constraints, which result in misplaced
geometry or incomplete edits. This trend highlights the effectiveness of our framework to translate
nuanced user commands into accurate and spatially-aware CAD edits.

Input SCOPE CAD-Editor GPT-4o-IC

“Add a horizontal cylinder centrally beneath the arch structure.”

Input SCOPE CAD-Editor GPT-4o-IC

“Add smaller coaxial cylinders to each end.”

“Add a cylinder with a central circular hole, aligning with the left hole.”

“Attach an annular groove around the central hole.”

“Add a smaller cylinder vertically on top of one larger cylinder.” “Add a smaller prism on the center top.”

“Drill four smaller holes through corners, maintaining symmetry and alignment.”

“Add a centered semicircular cutout above the two circular holes.”

Figure 2: Comparison of CAD editing with SOTA methods. The input CAD model is on the
left with the edited model on the right and the corresponding editing instruction is provided below.
Compared to CAD-Editor and GPT-4o-IC, SCOPE consistently generates edits that closely align with
the user’s spatial intents, showcasing its improved localization precision and geometric fidelity.

Quantitative Comparison. As shown in Table 1, SCOPE demonstrates highly competitive perfor-
mance against existing state-of-the-art methods. Even with a significantly smaller Gemma3-1B
backbone, our model achieves a superior D-CLIP score (0.15) compared to CAD-Editor (0.11),
underscoring the effectiveness of our spatially-grounded framework.

Table 1: Comparison of SCOPE with CAD editing methods across different evaluation metrics.
Bold values indicate the best results and underlined values denote the second-best.

Method Backbone VR ↑ JSD ↓ CD ↓ D-CLIP ↑
SkexGen - 74.3 1.94 – –
Hnc-CAD - 77.4 1.77 – –
FlexCAD Llama3-8B 82.1 1.72 – –
Text2CAD Mistral-7B 84.8 2.39 1.91 –

GPT-4o-Basic >1B 63.2 1.10 2.30 –
GPT-4o-IC >1B 84.5 0.70 1.55 –
CAD-Editor Llama3-8B 95.6 0.65 1.18 0.11
SCOPE (ours) Gemma3-1B 75.5 1.82 1.51 0.15
SCOPE (ours) Gemma3-12B 91.3 0.61 1.12 0.18

When scaled to the Gemma3-12B backbone, SCOPE establishes a new SOTA, outperforming CAD-
Editor in almost all key metrics. It improves upon CAD-Editor’s realism with a 6.2% reduction in
JSD, enhances geometric alignment with a 5.1% decrease in Chamfer Distance, and demonstrates
a remarkable 63.6% increase in instruction-following capability as measured by the D-CLIP score
while maintaining a high validity ratio of 91.3. These results confirm that embedding explicit spatial

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

relation <SR> tokens into the training pipeline significantly improves CAD editing performance. The
substantial gains in the D-CLIP score, in particular, provide direct evidence that SCOPE more accu-
rately interprets user spatial intent compared to other approaches, which lack this spatial guidance.
The fact that our larger model surpasses the previous SOTA across all key metrics demonstrates that
this architectural enhancement is not merely a trade-off but a fundamental improvement that scales
effectively with model capacity, leading to superior geometric fidelity and instruction-following.

4.3 CAD EDITING WITH SPATIAL MANIPULATION

Spatial manipulation tasks reveal SCOPE’s effectiveness in precise spatial editing. Figure 3 shows
qualitative results highlighting its robust performance across diverse spatial editing scenarios. It
showcases that it can execute challenging edits, including modifying sizes, shapes, and positions,
as well as understanding multi-object relativity. Additionally, the model interprets parameterized
text instructions with explicit numeric values (e.g., “Increase the central hole radius by 3 units”).
Moreover, it successfully follows multiple spatial relations in complex prompts (e.g., “Add a smaller
cylinder at the bottom right corner”).

Remove the smaller vertical cylinder
from the top of the left large cylinder

Add a smaller cube at the front face to the right Add a smaller central rectangular prism

Reduce the inner hole diameter and add
a concentric ring behind the cylinder

Add a smaller cylinder at the bottom
right corner

Increase the central hole radius by 3 units

Figure 3: Examples of Spatial CAD editing using SCOPE. The left model indicates input, the right
one is the output and the corresponding input instruction is shown below. The prompt highlights
the spatial relation terms in bold. It shows SCOPE accurately interprets and applies spatial
instructions— left, right, front, center, etc. to perform precise and spatially-grounded CAD edits.

5 CONCLUSION

We present SCOPE, a unique framework for text-based parametric CAD editing that integrates spatial
reasoning into both data synthesis and sequence modeling. Our approach enhances the locate-then-
infill method with hierarchy-aware spatial tokens, achieving superior performance in region local-
ization and edit precision. We proposed an automated spatially-grounded data synthesis pipeline
to address a critical training-data bottleneck and establish a robust benchmark for future research.
SCOPE paves the way for more intuitive, context-aware CAD design workflows, empowering users
to perform complex edits through natural language instructions.

While SCOPE marks a significant step forward, we acknowledge its limitations. First, the data synthe-
sis pipeline’s reliance on LVLMs presents a bottleneck for scalability. Second, the model’s ability to
interpret highly complex and compositionally dense spatial instructions remains an open challenge.
Finally, the framework’s performance is inherently tied to the quality of the synthesized data, where
inaccuracies in generated instructions could propagate errors. Future work will focus on develop-
ing more efficient data synthesis methods and enhancing the model’s compositional reasoning for
multi-step spatial edits.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY

Our code is shared at this anonymous link. We promise to open-source the code after acceptance.
To promote reproducibility, we include detailed hyperparameter settings in Appendix 8.2.

ETHICS STATEMENT

The data and methods presented in this work are specifically designed for the creation and mod-
ification of Computer-Aided Design (CAD) models. Given this specialized application, the risk
of misuse is inherently low, ensuring that our research primarily benefits professional design and
engineering disciplines. We have adhered to ethical guidelines in all aspects of our work. No hu-
man subjects, personal data or human evaluations were involved in this research. Our research is
solely dependent on improving the language-guided CAD generation and modification. We strongly
believe this research does not raise serious ethical concerns.

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Kamel Alrashedy, Pradyumna Tambwekar, Zulfiqar Haider Zaidi, Megan Langwasser, Wei Xu, and
Matthew Gombolay. Generating cad code with vision-language models for 3d designs. In The
Thirteenth International Conference on Learning Representations, 2025.

Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and Stefano Saliceti. Computer-aided
design as language. Advances in Neural Information Processing Systems, 34:5885–5897, 2021.

Prashant Govindarajan, Davide Baldelli, Jay Pathak, Quentin Fournier, and Sarath Chandar. Cad-
mium: Fine-tuning code language models for text-driven sequential cad design. arXiv preprint
arXiv:2507.09792, 2025.

Haoxiang Guo, Shilin Liu, Hao Pan, Yang Liu, Xin Tong, and Baining Guo. Complexgen: Cad
reconstruction by b-rep chain complex generation. ACM Transactions on Graphics (TOG), 41(4):
1–18, 2022.

Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical report. arXiv
preprint arXiv:2503.19786, 2025.

Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali, Kseniya Cherenkova, Anis Kacem, and
Djamila Aouada. Cad-signet: Cad language inference from point clouds using layer-wise sketch
instance guided attention. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 4713–4722, 2024a. doi: 10.1109/CVPR52733.2024.00451.

Mohammad Sadil Khan, Sankalp Sinha, Talha Uddin Sheikh, Didier Stricker, Sk Aziz Ali, and
Muhammad Zeshan Afzal. Text2cad: generating sequential cad designs from beginner-to-expert
level text prompts. In Proceedings of the 38th International Conference on Neural Information
Processing Systems, pp. 7552–7579, 2024b.

Muhammad Tayyab Khan, Lequn Chen, Ye Han Ng, Wenhe Feng, Nicholas Yew Jin Tan, and
Seung Ki Moon. Leveraging vision-language models for manufacturing feature recognition in
computer-aided designs. Journal of Computing and Information Science in Engineering, 25(10):
104501, 2025.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86, 1951.

Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J Mitra. Sketch2cad: Sequential cad modeling
by sketching in context. ACM Transactions on Graphics (TOG), 39(6):1–14, 2020.

10

https://anonymous.4open.science/r/scope-FB5D/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J Mitra. Free2cad: Parsing freehand drawings
into cad commands. ACM Transactions on Graphics (TOG), 41(4):1–16, 2022.

Jiahao Li, Weijian Ma, Xueyang Li, Yunzhong Lou, Guichun Zhou, and Xiangdong Zhou. Cad-
llama: Leveraging large language models for computer-aided design parametric 3d model gener-
ation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 18563–18573, June 2025.

Pu Li, Jianwei Guo, Xiaopeng Zhang, and Dong-Ming Yan. Secad-net: Self-supervised cad recon-
struction by learning sketch-extrude operations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16816–16826, 2023.

Xingang Li, Yuewan Sun, and Zhenghui Sha. Llm4cad: Multi-modal large language models for 3d
computer-aided design generation. In International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, volume 88407, pp. V006T06A015.
American Society of Mechanical Engineers, 2024a.

Xueyang Li, Yu Song, Yunzhong Lou, and Xiangdong Zhou. Cad translator: An effective drive for
text to 3d parametric computer-aided design generative modeling. In Proceedings of the 32nd
ACM International Conference on Multimedia, pp. 8461–8470, 2024b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Jianing Qi, Jiawei Liu, Hao Tang, and Zhigang Zhu. Beyond semantics: Rediscovering spatial
awareness in vision-language models. arXiv preprint arXiv:2503.17349, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, and Junzhe Zhang. Extrudenet: Unsupervised
inverse sketch-and-extrude for shape parsing. In European Conference on Computer Vision, pp.
482–498. Springer, 2022.

Ari Seff, Wenda Zhou, Nick Richardson, and Ryan P Adams. Vitruvion: A generative model of
parametric cad sketches. In ICLR, 2022.

Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro Chin, Irina Blok, Huiwen Chang, Jarred
Barber, Lu Jiang, Glenn Entis, Yuanzhen Li, et al. Styledrop: text-to-image generation in any
style. In Proceedings of the 37th International Conference on Neural Information Processing
Systems, pp. 66860–66889, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Ruiyu Wang, Yu Yuan, Shizhao Sun, and Jiang Bian. Text-to-cad generation through infusing visual
feedback in large language models. In International Conference on Machine Learning, 2025a.

Siyu Wang, Cailian Chen, Xinyi Le, Qimin Xu, Lei Xu, Yanzhou Zhang, and Jie Yang. Cad-
gpt: Synthesising cad construction sequence with spatial reasoning-enhanced multimodal llms.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 7880–7888,
2025b.

Xilin Wang, Jia Zheng, Yuanchao Hu, Hao Zhu, Qian Yu, and Zihan Zhou. From 2d cad drawings
to 3d parametric models: A vision-language approach. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pp. 7961–7969, 2025c.

Karl DD Willis, Pradeep Kumar Jayaraman, Joseph G Lambourne, Hang Chu, and Yewen Pu. Engi-
neering sketch generation for computer-aided design. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 2105–2114, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
aided design models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 6772–6782, 2021.

Sifan Wu, Amir Hosein Khasahmadi, Mor Katz, Pradeep Kumar Jayaraman, Yewen Pu, Karl Willis,
and Bang Liu. Cadvlm: Bridging language and vision in the generation of parametric cad
sketches. In European Conference on Computer Vision, pp. 368–384. Springer, 2024.

Jingwei Xu, Chenyu Wang, Zibo Zhao, Wen Liu, Yi Ma, and Shenghua Gao. Cad-mllm: Unifying
multimodality-conditioned cad generation with mllm. arXiv preprint arXiv:2411.04954, 2024.

Xiang Xu, Karl DD Willis, Joseph G Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayaraman, and
Yasutaka Furukawa. Skexgen: Autoregressive generation of cad construction sequences with
disentangled codebooks. In International Conference on Machine Learning, pp. 24698–24724.
PMLR, 2022.

Xiang Xu, Pradeep Kumar Jayaraman, Joseph George Lambourne, Karl D.D. Willis, and Yasu-
taka Furukawa. Hierarchical neural coding for controllable CAD model generation. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scar-
lett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pp. 38443–38461. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/xu23f.html.

Yu Yuan, Shizhao Sun, Qi Liu, and Jiang Bian. Cad-editor: A locate-then-infill framework with
automated training data synthesis for text-based cad editing. In Forty-second International Con-
ference on Machine Learning, 2025.

Huanyu Zhang, Chengzu Li, Wenshan Wu, Shaoguang Mao, Ivan Vulić, Zhang Zhang, Liang Wang,
Tieniu Tan, Furu Wei, et al. A call for new recipes to enhance spatial reasoning in mllms. arXiv
e-prints, pp. arXiv–2504, 2025a.

Zhanwei Zhang, Kaiyuan Liu, Junjie Liu, Wenxiao Wang, Binbin Lin, Liang Xie, Chen
Shen, and Deng Cai. Geocad: Local geometry-controllable cad generation. arXiv preprint
arXiv:2506.10337, 2025b.

Zhanwei Zhang, Shizhao Sun, Wenxiao Wang, Deng Cai, and Jiang Bian. Flexcad: Unified and
versatile controllable cad generation with fine-tuned large language models. In ICLR, 2025c.

12

https://proceedings.mlr.press/v202/xu23f.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Supplementary Material

6 Reproducibility 13

7 Impact Statement 13

8 Experiment and Implementation Details 13
8.1 Computational Resources . 13
8.2 Hyperparameters . 13

9 Disclosure of LLM Usage 13

6 REPRODUCIBILITY

Our code is shared at this anonymous link. We promise to open-source the code after acceptance.
As part of the reproducibility, we include detailed hyperparameter settings in XX.

7 IMPACT STATEMENT

Our method introduces a novel framework for text-guided CAD editing that significantly improves
a model’s ability to understand and execute commands with complex spatial constraints. The pre-
sented work will facilitate future research into more sophisticated and spatially-aware generative
models for engineering and manufacturing.

8 EXPERIMENT AND IMPLEMENTATION DETAILS

8.1 COMPUTATIONAL RESOURCES

All experiments are conducted on two NVIDIA A100 GPUs equipped with 80GB of memory. The
implementation is based on PyTorch and leverages the Hugging Face Transformers library for model
execution. For large language model runs, we adopt the official default system prompt and set the
decoding temperature to 0.6, ensuring a trade-off between stability and diversity.

8.2 HYPERPARAMETERS

We fine-tune the Gemma3-1B and Gemma3-12B backbones using two NVIDIA A100 GPUs, each
with 80GB memory. Training is performed with the AdamW optimizer Loshchilov & Hutter (2017)
at a learning rate of 1 × 10−4. We adopt the lowa rank (LoRA) finetuning with rank 16 for a
parameter-efficient finetuning strategy. Training is conducted using mixed precision with bfloat16.
The batch size is set to 2. We set a gradient accumulation with 4 steps and set the weight decay to
0.01 for all training runs. This yields an effective batch size of 8. We train the model for 70 epochs
with a maximum of 3000 training steps.

9 DISCLOSURE OF LLM USAGE

We used a Large Language Model (LLM) to assist in enhancing the clarity and revising the writing
of this manuscript. The contents are the sole responsibility and original work of the authors.

13

https://anonymous.4open.science/r/scope-FB5D/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Language Command

Locating Prompt
Below is a Computer-Aided Design (CAD) operation sequence. Replace the parts that need to
be modified with the string <mask> according to the editing instruction.

Original CAD Operation Sequence:

{
"original_sequence ": "circle ,31,53,31,9,53,31,9,31 <curve_end >

<loop_end > circle ,31,37,31,25,37,31,25 ,31 <curve_end >
<loop_end > <face_end > <sketch_end >
add ,31,63,31,31,31,1,0,0,0,0,1,0,-1,0,25,30,30 <extrude_end >"

}

Editing Instruction:

{
"instruction ": "Attach an annular groove around the central hole."

}

Masked CAD Operation Sequence:

{
"masked_sequence ": "circle ,31,53,31,9,53,31,9,31 <curve_end >

<loop_end > circle ,31,37,31,25,37,31,25 ,31 <curve_end >
<loop_end > <face_end > <sketch_end > <mask > <extrude_end >
<mask >"

}

Infilling Prompt
Below is the original Computer-Aided Design (CAD) operation sequence.

Original CAD Operation Sequence:

{
"original_sequence ": "circle ,31,53,31,9,53,31,9,31 <curve_end >

<loop_end > circle ,31,37,31,25,37,31,25 ,31 <curve_end >
<loop_end > <face_end > <sketch_end >
add ,31,63,31,31,31,1,0,0,0,0,1,0,-1,0,25,30,30 <extrude_end >"

}

The parts that need to be modified according to the editing instruction have been replaced by
the string <mask>.
Editing Instruction:

{
"instruction ": "Attach an annular groove around the central hole."

}

Masked CAD Operation Sequence:

{
"masked_sequence ": "circle ,31,53,31,9,53,31,9,31 <curve_end >

<loop_end > circle ,31,37,31,25,37,31,25 ,31 <curve_end >
<loop_end > <face_end > <sketch_end > <mask > <extrude_end >
<mask >"

}

Based on the original CAD sequence, the editing instruction, and the masked sequence, generate
the complete edited CAD sequence by replacing <mask> with the appropriate content.

Figure 4: An example of CAD editing instruction for both the locating and infilling stages.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

CAD editing using SCOPE

Locating Stage
(Input)

“Attach an annular groove around the central hole.”

{
"original_sequence ": "circle ,31,53,31,9,53,31,9,31 <curve_end >

<loop_end > circle ,31,47,31,15,47,31,15,31 <curve_end >
<loop_end > <face_end > <sketch_end >
add ,31,47,31,31,31,1,0,0,0,1,0,0,0,1,43,30,30 <extrude_end >",

}

(Output)

{
"masked_sequence ": "circle ,31,53,31,9,53,31,9,31 <curve_end >

<loop_end > circle ,31,47,31,15,47,31,15,31 <curve_end >
<loop_end > <face_end > <sketch_end >
add ,31,47,31,31,31,1,0,0,0,1,0,0,0,1,43,30,30 <extrude_end >
<mask >"

}

Infilling Stage
(Input)

“Attach an annular groove around the central hole.”

{
"original_sequence ": "circle ,31,53,31,9,53,31,9,31 <curve_end >

<loop_end > circle ,31,47,31,15,47,31,15,31 <curve_end >
<loop_end > <face_end > <sketch_end >
add ,31,47,31,31,31,1,0,0,0,1,0,0,0,1,43,30,30 <extrude_end >",

"masked_sequence ": "circle ,31,53,31,9,53,31,9,31 <curve_end >
<loop_end > circle ,31,47,31,15,47,31,15,31 <curve_end >
<loop_end > <face_end > <sketch_end >
add ,31,47,31,31,31,1,0,0,0,1,0,0,0,1,43,30,30 <extrude_end >
<mask >"

}

(Output)

{
"edited_sequence ": "circle ,31,53,31,9,53,31,9,31 <curve_end >

<loop_end > circle ,31,47,31,15,47,31,15,31 <curve_end >
<loop_end > <face_end > <sketch_end >
add ,31,47,31,31,31,1,0,0,0,1,0,0,0,1,43,30,30 <extrude_end >
circle ,31,53,31,9,53,31,9,31 <curve_end > <loop_end >
circle ,31,48,31,14,48,31,14,31 <curve_end > <loop_end >
<face_end > <sketch_end >
add ,31,39,31,31,31,1,0,0,0,1,0,0,0,1,63,30,30 <extrude_end >",

}

(Text-to-CAD)

Figure 5: End-to-end CAD editing using SCOPE.

15

	Introduction
	Related Works
	Methodology
	SCOPE framework
	Spatially-Constrained CAD Editing
	CAD as Structured Text Representation
	Spatially-Grounded Data Synthesis
	Prompt Template with Spatially-Guided Masking

	Experiments
	Experimental Setup
	Performance Comparison Results
	CAD editing with Spatial Manipulation

	Conclusion
	Reproducibility
	Impact Statement
	Experiment and Implementation Details
	Computational Resources
	Hyperparameters

	Disclosure of LLM Usage

