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ABSTRACT

Warning: This paper contains samples of offensive text.

The popularity of pretrained language models in Natural Language Processing
(NLP) systems calls for a careful evaluation of such models in down-stream tasks,
which have a higher potential for societal impact. The evaluation of such systems
usually focuses on accuracy measures. Our findings in this paper call for atten-
tion to be paid to fairness measures as well. Through the analysis of more than a
dozen pretrained language models of varying sizes on two toxic text classification
tasks, we demonstrate that focusing on accuracy measures alone can lead to mod-
els with wide variation in fairness characteristics. Specifically, we observe that
fairness can vary even more than accuracy with increasing training data size and
different random initializations. At the same time, we find that little of the fairness
variation is explained by model size/compression, despite claims in the literature.
To improve model fairness without retraining, we show that two post-processing
methods developed for structured, tabular data can be successfully applied to a
range of pretrained language models.

1 INTRODUCTION

Pre-trained, bidirectional language models (Devlin et al.,[2019; Liu et al., 2019; Radford et al., 2019;
Clark et al.|[2020; He et al., 2021 ﬂrevolutionized natural language processing (NLP) research. LMs
have provided a route to significant performance increases in several NLP tasks as demonstrated
by the leaderboards (Rajpurkar et al., 2018 Wang et al., 2019a:bj |AI2, |2021). More importantly,
LMs have been applied to practical problems, leading to improved results for web search (Nayakl,
2019) and have become an asset in fields such as medical evidence inference (Lehman et al., 2019}
Subramanian et al., [2020) and even chemistry (Schwaller et al., |2021). These success stories have
led to a sense in the community that application of pre-trained LMs to NLP tasks is beneficial.

While the progress in NLP tasks due to LMs is clear, the reasons behind this success are not as well
understood (Rogers et al., 2021; McCoy et al., 2019), and there are also important downsides. In
particular, several studies have documented the bias of LM-based models (Bolukbasi et al., |2016;
Hutchinson et al.| 2020} [Webster et al.| [2020; Borkan et al., 2019} |de Vassimon Manela et al.| [2021)
and others discuss potential societal harms (Blodgett et al.,|2020; Bender et al.,|2021)) for individuals
or groups. We use the term bias to refer to systematic disparity in representation or outcomes for
individuals based on their membership in certain protected groups such as gender, race, and ethnicity.

In this work, we focus on one important application of fine-tuned LMs, toxic text classification. Text
toxicity predictors are already used in deployed systems (Perspective, [2021)) and they are a crucial
component for content moderation since online harassment is on the rise (Vogels, 2021). In down-
stream applications such as toxic text classification, it is important to examine the behavior of LMs
in terms of measures other than task-specific accuracy. This provides a more holistic understanding
of model performance, leading to improved insights into appropriate uses of LMs for these tasks.
As a first step toward this goal, we provide herein an empirical characterization of LMs for the
task of toxic text classification using a combination of accuracy and bias measures, and study two
post-processing methods for bias mitigation that have proved successful for structured, tabular data.

"We use the acronym LM(s) to refer to language model(s) throughout the paper
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One aspect of LMs that is hard to ignore is the increase in their size, as measured by the number of
parameters in their architectures. In general, larger LMs seem to perform better on NLP tasks as they
have the capacity to capture more complex correlations present in the training data. |Bender et al.
(2021) claim that this same property may also lead to more pronounced biases in their predictions.
On the other hand, for image classification models that use large neural networks, Hooker et al.
(2020) discuss how model pruning can lead to more biased predictions. In this work, we consider
a wide variety of model architectures and sizes. We acknowledge that size is relative and what we
consider large in this paper may not be considered as such in a different context.

We are interested in addressing the following questions regarding the effect of various factors on
model performance:

1. Model size: Building on the work of Bender et al.|(2021)) and |Hooker et al.| (2020), how do
the accuracy and group fairness of fine-tuned LM-based classifiers vary with their size?

2. Random seeds: LMs that start from different random initializations can behave differently
in classification tasks. What is the effect of random seeds on the accuracy-fairness relation-
ship?

3. Data size: The size of training/fine-tuning data is also an important dimension alongside
model size. What happens to accuracy and fairness when more/less data is used for fine-
tuning?

4. Bias mitigation via post-processing: Given the expense of training and fine-tuning large
LMs, to what extent can we correct bias by only post-processing LM outputs?

We study the accuracy-fairness relationship in more than a dozen fine-tuned LMs for two different
datasets that deal with prediction of text toxicity. The key contributions of our analysis are:

1. We empirically show that no blanket statement can be made regarding the fairness charac-
teristics of fine-tuned LMs with respect to their size. It really depends on the combination
of LM, task, and dataset.

2. We find that optimizing for accuracy measures alone can lead to models with wide variation
in fairness characteristics. Specifically:

(a) While increasing data size for fine-tuning does not improve accuracy much beyond
a point, the improvement in fairness is more significant and may continue after the
improvement in accuracy has stopped for certain datasets and tasks. This suggests
that choosing data size based on accuracy alone could lead to suboptimal performance
with respect to fairness.

(b) While accuracy measures are known to vary (Dodge et al., 2020) with respect to dif-
ferent random initializations, the variation in fairness measures can be even greater.

3. We demonstrate that post-processing bias mitigation is an effective, computationally af-
fordable solution to enhance fairness in fine-tuned LMs. In particular, one of the methods
we experimented with allows for a large accuracy-fairness tradeoff space, leading to rel-
ative improvements of 50% for fairness, as measured by equalized odds, while reducing
accuracy only by 2% (see Figure[5|religion group).

Our observations strengthen the chorus of recent work addressing bias mitigation in NLP in calling
for a careful empirical analysis of fairness with fine-tuned LMs in the context of their application.

2 BACKGROUND, TERMINOLOGY AND RELATED WORK

Fairness in machine learning As machine learning models have become routinely deployed in
practice, many studies noticed their tendency to perform unfairly in various contexts (Angwin et al.|
2016;2017; Buolamwini & Gebru, 2018} Bender et al.| 2021} |Park et al., [2021)). To understand and
measure model bias, researchers have proposed many definitions of algorithmic fairness. Broadly
speaking, they fall into two categories: group fairness (Chouldechova & Roth, [2018) and individual
fairness (Dwork et al., [2012). At a high level, group fairness requires similar average outcomes
on different groups of individuals considered, for example comparable university acceptance rates
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across ethnicities. Individual fairness requires similar outputs for similar individuals, e.g. two uni-
versity applicants with similar credentials, but different ethnicity, gender, family background, etc.,
should either be both accepted or both rejected. In this paper we consider group fairness, noting that
both have their pros and cons (Chouldechova & Roth, 2018} [Dwork et al.|[2012).

There are many definitions of group fairness and we refer to|Verma & Rubin| (2018)) for a compre-
hensive overview. Statistical parity (SP) is one of the earlier definitions which requires the output
of a model to be independent of the protected attribute, such as race or gender. In other words, the
average outcome (e.g. prediction) across groups defined by the protected attribute needs to be sim-
ilar. An alternative measure is equalized odds (EO) (Hardt et al.l [2016), which requires the model
output conditioned on the true label to be independent of the protected attribute. The violation of
conditional independence for a given label (positive or negative) can be measured by the difference
in accuracy across protected groups conditioned on that label. Taking the maximum or an average
(average EO) of these label-specific differences quantifies the overall EO violation.

Many methods for achieving group fairness have been proposed. These methods are typically cate-
gorized as follows: (a) modifying the training data (pre-processing), (b) incorporating fairness con-
straints while training the model (in-processing), and (c) transforming the model output to enhance
fairness (post-processing). A summary and implementation of group bias mitigation approaches are
discussed in/Bellamy et al.|(2019). In this study, we investigate the use of post-processing methods to
enhance fairness in classification tasks. We chose post-processing approaches since they do not re-
quire modification of training data or model training procedures, and hence can be efficiently applied
to all LMs we consider. In addition, post-processing approaches could minimize the environmen-
tal impact of re-training/fine-tuning LMs (Bender et al., 2021} |Patterson et al., |2021). We consider
two post-processing approaches proposed by Wei et al.| (2020) and Hardt et al.|(2016), which have
shown considerable success in mitigating bias for tabular data. [Wei et al.| (2020) optimize a score
(predicted probability) transformation function to satisfy fairness constraints that are linear in con-
ditional means of scores while minimizing a cross-entropy objective. |[Hardt et al.| (2016) propose to
solve a linear program to find probabilities with which to change the predicted output labels such
that the equalized odds violation is minimized.

Fairness in Natural Language Processing In NLP systems, bias is broadly understood in two
categories, intrinsic and extrinsic. Intrinsic bias refers to bias inherent in the representations, e.g.
word embeddings used in NLP (Bolukbasi et al., 2016). Extrinsic bias refers to bias in downstream
tasks, such as disparity in false positive rates across groups defined by protected attributes in a spec-
ified application. The concepts of intrinsic and extrinsic bias also correlate well with the notions
of representational and allocative harms. While allocative harms correspond to disparities across
the different groups in terms of decisions that lead to allocation of benefits/harms, representational
harms are those perpetuated by representation of individuals in the feature space (Crawford, [2017).
Abbasi et al.| (2019) discuss how harms from stereotypical representations manifest as allocative
harms later in the ML pipeline. However, probably because of their complexity, measuring intrinsic
bias in the representations created by LMs may not necessarily reflect the behavior of models built
by fine-tuning LMs. |Goldfarb-Tarrant et al.| (2021) discuss how intrinsic measures of bias do not
correlate with extrinsic, application-specific, bias measures. Since we are concerned with the appli-
cation of LMs to the specific task of toxic text classification, we restrict our focus to group fairness
measures, which fall under the category of extrinsic bias. Previous work on bias mitigation in NLP
has been focused on pre- and in-processing methods (Sun et al., 2019} | Ball-Burack et al., [ 2021)) and
to the best of our knowledge, we are the first to use post-processing methods with NLP tasks.

3 METHODOLOGY

We are interested in studying how group fairness varies across different fine-tuned language models
for binary classification. We choose to focus on text toxicity as the prediction task. Due to an in-
crease in online harassment (Vogels| 2021} and the potential of both propagating harmful stereotypes
of minority groups and/or inadvertently reducing their voices, the task of predicting toxicity in text
has received increased attention in recent years (Kiritchenko et al., 2021). While we acknowledge
that text toxicity presents different complex nuances (e.g., offensive text, harassment, hate speech),
we focus on a binary task formulation. We adopt the definition of toxicity described in|Borkan et al.
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(2019) as anything that is rude, disrespectful, or unreasonable that would make someone want to
leave a conversation.

Datasets We used two datasets that deal with toxic text classification: 1) Jigsaw, a large dataset re-
leased for a Kaggle competition (Jigsawl 2019)) that contains online comments on news articles, and
2) HateXplain, a dataset recently introduced with the intent of studying explanations for offensive
and hate speech in Twitter and Twitter-like data (i.e., gab.com). Both datasets have fine-grained
annotations for religion, race and gender. We used as protected groups the coarse-grained groups
(e.g., religion) as opposed to the finer-grained annotations (e.g., Muslim, see below). Details about
the sizes of the datasets, the splits we used and examples of text can be found in Appendix [A.T]

Language models We consider more than a dozen LMs that cover a large spectrum of sizes. We
selected the models to not only represent various sizes but also different styles of architecture and
training. The models we included in our study are shown in Table [/| along with the number of pa-
rameters and the size of the PyTorch (Paszke et al.,[2019) model on disk. If not specified, the version
of the model used is base. For all our experiments, we used the Hugging Face implementation of
Transformers (Wolf et al., 2020) and the corresponding implementations for all LMs in our study. In
particular, we use the text sequence classifier without any modifications to increase reproducibility.
For details on model sizes, fine-tuning and hyper-parameter tuning, as well as the computational
infrastructure and costs, we refer the reader to Appendix [A.2]

Fairness measures and implications In all our measurements, we considered two distinct groups:
the protected group, consisting of text annotated as mentioning either religion, race or gender, and
the rest of the samples, denoted as the unprotected group. Note we do not create fine-grained groups
(e.g., Jewish), but consider larger groups (e.g., any mention of religion, such as Muslim, Jewish,
atheist). We use equalized odds as the group fairness measure. Equalized odds is defined as the
maximum of the true positive rate difference and false positive rate difference, where these differ-
ences are between the protected group and unprotected group. In toxic text classification, a true
positive means that a toxic text is correctly identified as such, while a false positive means that a
benign piece of text is marked as toxic. In terms of harms, a false negative (toxic text that is missed)
may cause individuals to feel threatened or disrepected, while a false positive may be seen as cen-
soring, which is particularly problematic if it reduces the voices of minority protected groups from
online conversations. By using the protected groups of religion/race/gender mentioned above, we
aim to reduce the effect of the presence or absence of religion/race/gender terms on the false nega-
tive and false positive rates. By taking the maximum, we are emphasizing the larger discrepancy as
opposed to other studies that take the average of the two rate differences (average equalized odds).
Note that unlike statistical parity, equalized odds does allow the protected (e.g., mention of religion)
and unprotected (no religion) groups to have different toxicity (positive prediction) rates.

4 POST-PROCESSING METHODS FOR BIAS MITIGATION

We investigated the use of post-processing methods to mitigate violations of equalized odds. By
post-processing, we mean methods that operate only on the outputs of the fine-tuned LMs and do
not modify the models themselvesE] The ability to avoid retraining models is a major advantage of
post-processing due to the large computational cost of fine-tuning LMs. Post-processing also targets
unfairness at a point closest to deployment and hence can have a direct impact on downstream
operations that use the model predictions.

Hardt et al.| (2016) The first post-processing method that we consider is by Hardt et al.| (2016)
(abbreviated HPS), who were the original proposers of the equalized odds criterion. We used the
open-source implementation of their method from Bellamy et al.|(2019), which post-processes bi-
nary predictions to satisfy EO while minimizing classification loss. While this method is effective
in enforcing EO, one limitation is that it does not offer a trade-off between minimizing the deviation
from EO and reducing the loss in accuracy.

Fair Score Transformer We also considered the Fair Score Transformer (FST) method of Wei et al.
(2020), in part to provide the above-mentioned trade-off, and in part because it is a recent post-
processing method shown to be competitive with several other methods (including in-processing).

2This is not to be confused with the post-processing of LM embeddings, before they are passed to classifi-
cation layers. In this case, the classification layers must be retrained to account for the modified embeddings.
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FST takes predicted probabilities (referred to as scores) as input and post-processes them to satisfy
a fairness criterion. We choose generalized equalized odds (GEO), a score-based variant of EO,
as the fairness criterion and then threshold the output score to produce a binary prediction. The
application of FST required attention to three issues: 1) the provision of input scores that are indeed
calibrated probabilities; 2) the choice of fairness parameter ¢, which bounds the allowed GEO on
the data used to fit FST; 3) the choice of binary classification threshold ¢. We consider a range of €
and ¢ values to explore the trade-off between EO and accuracy. Due to numerical instability of the
FST implementation in the original paper (occasional non-convergence in reasonable time for the
Jigsaw dataset), we obtained a closed-form solution for one step in the optimization that leads to a
more efficient implementation, running in minutes for all models and all datasets considered. More
details on this implementation and the tuning of the parameters can be found in Appendix

Threshold post-processing We also tested the effect of thresholding alone, without fairness-
enhancing transformation. We refer to this as threshold post-processing (TPP). This simple method
corresponds to FST without calibrating the LM outputs, choosing e large enough so that FST yields
an identity transformation, and thresholding at level ¢.

5 THE ACCURACY-FAIRNESS RELATIONSHIP IN TOXIC TEXT CLASSIFICATION

We report on our study of the performance and fairness characteristics of several language models
while varying parameters such as random seeds and the amount of training data. We also experiment
with two post-processing methods for group bias mitigation and show that it is possible to reduce
some of the bias presented by these models.

Jigsaw Dataset
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Figure 1: Balanced accuracy versus equalized odds for several fine-tuned LMs on the Jigsaw and
HateXplain datasets.

5.1 CHARACTERIZATION OF LANGUAGE MODELS OF VARIED SIZES

The first set of experiments show how performance and fairness measures vary across models. In
Figure |1{ we show the performance as measured by balanced accuracyﬂ and the group fairness as

3We use balanced accuracy as a measure for performance as it is more honest, especially for the imbalanced
Jigsaw dataset where a trivial predictor that always outputs the label “normal” would achieve ~92% accuracy.
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measured by equalized odds on the z-axis (lower EO is better). The models are color-coded by their
size - dark blue for small models, orange for regular size models and light blue for large models.
From the figure, it can be noted that the variation in balanced accuracy is not as wide as the variation
observed for equalized odds. For the HateXplain dataset, the gap between balanced accuracy and
fairness variability is more prominent. In terms of accuracy (not balanced), the models perform
even closer as shown in the plots in Appendix [A.3] For EO, the spread is significant, with gaps
of 0.10 between the largest and smallest values for Jigsaw, and 0.15 for HateXplain. Depending
on the dataset and protected group, some larger models seem to lead to lower EO; for example,
ELECTRA-large achieves best accuracy-EO results for religion as protected group (Jigsaw). For
race, SqueezeBERT, which is one of the small models included in the study, achieves one of the best
balanced accuracy-EO operating points (Jigsaw), hinting that size is not really correlated with the
fairness of the model. Similarly, for HateXplain with religion as the protected group, DistilBERT,
which is one of the small models, obtains the best balanced accuracy-EO operating point. In the
next section, we will show models trained using various random seeds and show a low correlation
between EO and model size.

These results strongly suggest that fairness measures should be included in the evaluation of lan-
guage models. In the next sections, we show that, if fairness is not carefully considered, we can end
up with models with widely varying fairness characteristics depending on the training conditions.

5.2 THE INFLUENCE OF RANDOM SEEDS ON ACCURACY AND FAIRNESS

Fine-tuning LMs depends on a random seed used for mini-batch sampling and for initializing
the weights in the last layers of the network responsible for the binary classification. It is well
documented in the literature that this random seed may influence the accuracy of the resulting
model (Dodge et al., [2020). In Figure 2] we show that while balanced accuracy is somewhat sta-
ble, fairness can vary widely by only changing the random seed.

In fact, if we were to plot the accuracy instead of the balanced accuracy, all points would be virtually
on a horizontal line for Jigsaw, as shown in Figure [A.3] There are larger variations for EO. For
Jigsaw, we observe a variation of up to 0.05 in equalized odds for some cases. In the case of
HateXplain, the variation is considerably larger, with several models corresponding to a spread of
0.15 for the protected group of religion. The results in our experiments align with the ones shown
in a recent study on underspecification in machine learning (D’ Amour et al.| 2020)), where different
random seeds lead to small variations in accuracy, but considerable variations in intrinsic bias as
measured by gendered correlations.

To further probe whether there is a correlation between fairness and model size, we used the results
for random seeds to compute the Pearson’s coefficient of correlation. These values are -0.357 for
Jigsaw and -0.188 for HateXplain, with p-values of .000005 and 0.017, respectively. These results
show a low correlation between fairness as measured by EO and model size.

5.3 LOW DATA REGIME

In general, it is known that more training data improves model accuracy. We experiment with
training the models using a fraction of the training dataset, while keeping the test set the same. When
the smaller datasets are subsampled from the original dataset, we ensure that the larger datasets
include the smaller ones to simulate situations when more data is collected and used for training.
The results are shown for one small/regular/large model in Figure 3] Each data point in the graph
represents the average of eleven runs performed with different random seeds, one for each run. In
very few cases, the random seed led to a degenerate model and we did not include these runs in the
averaged results. Overall, there were about five degenerate runs for each dataset.

We observe that in the case of Jigsaw, equalized odds generally keeps improving even when the
accuracy plateaus, suggesting that, from a fairness point of view, it may be beneficial to collect more
data for training. This does not seem to be the case for the HateXplain dataset, where the accuracy
does not plateau and the fairness measure oscillates. One of the reasons could be that HateXplain is
much smaller in size than Jigsaw and hence Jigsaw’s training is much more stable. Similar trends
are observed for the rest of the models in our study.
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Figure 2: Balanced accuracy versus equalized odds for several fine-tuned LMs when varying only
the random seed used in fine-tuning.
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Figure 3: Accuracy, balanced accuracy and equalized odds (religion) for fine-tuned LMs when
varying the amount of data used in training and the random seeds. Error bars denote the =1 SE
(standard error) of the mean.
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5.4 BIAS MITIGATION THROUGH POST-PROCESSING METHODS

In this section we experiment with applying post-processing methods for group bias mitigation. We
first discuss the results of parameter tuning for Fair Score Transformer (FST) (Wei et al., [2020).
More details can be found in the appendix [A:4] The FST method has one parameter, ¢, that can
be fine-tuned. Using the transformed scores from the FST, we also investigate tuning the threshold
used in the binary classifier, instead of using the default value of 0.5, as explained in Section [4]
Figure ] depicts the data points obtained by varying epsilon and for each epsilon value, varying the
classification threshold. [l When choosing an operating point, the points on the black Pareto frontier
are the most interesting points: highest balanced accuracy and lowest equalized odds. For reference,
we also show the baseline points without bias mitigation for the dev and test sets. All data points
are plotted for fine-tuned BERT. Similar trends are observed for the rest of the models considered in
this study and for the HateXplain dataset.
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Figure 4: BERT: Balanced accuracy versus equalized odds for several fine-tuned LMs on the Jig-
saw dataset when varying epsilon and the threshold for binary classification after applying the FST
method for group bias mitigation.

—— FST

0.875

o
@
&
S

0.825

=)
@
S
3

0.775

Balanced accuracy

0.750

Xm

0.875

0.850

0.825

0.800

0.875
N | 0.850
0.825

0.800

PP

W Baseline dev
% Baseline test

\
\ *\ % FST dev
» 0.775 0.775 \ FST test
[ o ad | W HPS dev
0.15 0.10 0.05 0.2 0.100 0.075 0.050 0.025 % HPS test

Equalized odds

religion

0.1
Equalized odds

race

Equalized odds

gender and sexual orientation

FST with calibration

Figure 5: BERT: Balanced accuracy versus equalized odds on the Jigsaw dataset when applying the
FST and HPS methods for group bias mitigation and threshold post-processing (TPP) alone.

We also experimented with calibrating the scores using logistic regression before post-processing.
In Figure [5] we plot the Pareto frontiers of bias mitigation when applying FST, with and without
calibration, along with the threshold post-processing (TPP) method. We also show the result of
HPS, which yields a single operating point, as well as the baselines without bias mitigation. In
general on the Jigsaw dataset, FST is successful in reducing EO with different degrees of success
depending on the model/group. It thus offers an interesting set of points with different accuracy-EO
trade-offs. For reference, we show the equivalent point for the test set (orange x) for the operating
point in dev that achieves an equalized odds of at most 0.05 (orange square). In certain cases, FST
manages to lower the equalized odds with minimal or no decrease in accuracy, as seen in the religion
and gender columns in Figure[5] Note that all points in the plots except for the x points are plotted
using the dev dataset split, the x points are test points corresponding to dev points that obtain an EO
of at most 0.05.

* All points are shown for the dev set as this plot corresponds to hyper-tuning FST parameters.
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Figure 6: Balanced accuracy versus equalized odds for xseveral fine-tuned LMs (religion group)
on the HateXplain dataset when applying the FST and HPS methods for group bias mitigation and
threshold post-processing (TPP) alone.

In comparison, HPS seems particularly effective in lowering the equalized odds and thus improving
the fairness of the model, with some penalty on the accuracy. For Jigsaw, applying only TPP (i.e.,
tuning the threshold used in the binary classification) also offers some interesting operating points.
TPP has a small search space compared to FST and sometimes the Pareto frontier is reduced to one
point, as is the case for the religion group. In general, FST has superior Pareto frontiers compared to
TPP alone. In addition, as we will discuss shortly, TPP proved inefficient for the HateXplain dataset.
Last, using score calibration before feeding the scores to FST does not seem to offer significant
improvements. Similar trends can be observed for the rest of the models.

In Figure[6] we show the results of applying bias mitigation techniques for a few LMs, one for each
size category, on the HateXplain dataset with religion as the protected group. Unlike Jigsaw, the
results of the bias mitigation techniques follow different trends. HPS still manages to substantially
reduce the EO for all models, but with a considerable decrease in balanced accuracy (in some cases,
more than six percentage points). For FST, the fine-tuning for epsilon and classification threshold
does not lead to a large search space as observed in the Jigsaw case. Moreover, the reduction in EO is
more limited and sometimes the improvement observed for the dev set disappears in test. There are
cases, though, such as BERT, where FST successfully reduces EO and the reduction is maintained
or even improved in test. Across the board, tuning only the threshold used in classification (TPP)
did not lead to improved results and we omit showing them in the plots.

Overall, we find the post-processing methods for bias mitigation worth considering. They are
straightforward to apply, run in the order of seconds or minutes on the CPU of a laptop and they offer
interesting operating points when other methods for bias elimination would incur a significant com-
putational cost, such as pre-processing or in-processing techniques. Obtaining the Pareto frontiers
is instantaneous as the search space for FST is not that large.

6 LIMITATIONS AND CONCLUSIONS

We presented a comprehensive study of language models and their performance/fairness relation-
ship. We chose several models to cover different sizes and different architectures. While we did not
consider some of the largest recent models available, we believe we have experimented with a wide
variety of models that have been discussed well in the literature. Using A100 GPUs, we were able
to finish fine-tuning for our largest models in at most 24 hours. One important aspect we would like
to emphasize is that identifying toxic text is not an easy task, not even for humans. As such, we
expect the datasets to be noisy and contain samples that are not annotated correctly. Upon manual
inspection, we could identify some samples for which we did not agree with their labels. As a con-
sequence, while we expect the trends shown in this paper to hold, the actual absolute numbers may
vary with datasets. We hope that this study can drive the following point across: we cannot make a
blanket statement on the fairness of language models with respect to their size or architecture, while
training factors such as data size and random seeds can make a large difference. This makes it all
the more important for researchers/practitioners to make fairness an integral part of the performance
evaluation of language models before deployment.
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7 REPRODUCIBILITY STATEMENT

The data processing we performed for the datasets we used is briefly explained in Ap-
pendix [A] 1In all our experiments we used unmodified versions of the model implemen-
tations from the Hugging Face transformers library and the main scripts to tune the mod-
els are modified versions of the sequence text classification examples accompaying the library.
The hyper-parameter tuning we performed was minimal (varying the epochs size 1-3, two val-
ues for learning rates, 11 values for random seeds). More details on the experimental in-
frastructure can be found in Appendix The limiting factor in reproducing these results
is having access to GPUs such as the V100 and A100. We could not find a public im-
plementation for FST. We provide details on our implementation in Appendix [A.4] HPS is
open source and can be found at https://github.com/Trusted-AI/AIF360/blob/
master/aif360/algorithms/postprocessing/eq_odds_postprocessing.py.

8 ETHICS STATEMENT

In this work, we attempted to address the following research questions for language models: how
do model size, training size, random seeds affect the relationship between performance and fairness
(as measured by equalized odds)? Can post-processing methods for bias mitigation lead to better
operating points for both accuracy and fairness? We find these questions important to ask in the
context of the ethics of using language models in text toxicity prediction, in particular, and in NLP
research, in general. This study used a considerable amount of computational resources and this is
our main ethics concern for conducting this study. We did try to keep the number and the size of
models we experimented with limited to reduce the carbon footprint of the study. We hope the results
we show in this paper are worth the computational resources used to perform the experiments.

Bias mitigation can lead to undesirable outcomes. For example, one aspect we did not look into is
what happens with other groups when the mitigation is applied only for one of the groups. Similarly,
we did not consider intersectionality. We focused only on group fairness and do not provide any
insights into individual fairness. Last, but not least, abstract metrics have limitations and the societal
impacts resulting from bias mitigation are not well understood (Olteanu et al.,|2017). These issues
are universal to bias mitigation techniques and not particular to our use case.
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A APPENDIX

In this section, we discuss all aspects related to the methodology of the experiments we performed,
include additional experimental results and provide more details on post-processing methods for
bias mitigation.

A.1 DATASETS

A.1.1 JIGSAW UNINTENDED BIAS IN TEXT TOXICITY CLASSIFICATION

In 2019, Jigsaw released a large dataset as part of a public Kaggle competition (Jigsaw, 2019). The
dataset is a collection of roughly two million samples of text from online discussions (Bogdanoff,
2017). The samples are rated for toxicity and annotated with attributes for protected groups. Table/I]
shows the groups we considered in our analysis and the available fine-grained group annotations.
Note that we considered the coarser groups; a sample text belongs to a protected (coarse) group if
any (fine-grained) annotation for the sample text exists. We used the original training dataset split in
a 80/20 ratio for training and development (dev) tuning, respectively. For reporting test results, we
used the private test split released on Kaggle. Statistics for the dataset splits are shown in Table [3]
Each sample in the dataset (see Table 2] for a few samples from the dataset) has a toxicity score and
we consider anything higher than 0.5 to be toxic.
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Table 1: The identity groups for Jigsaw dataset with their corresponding fine-grained annotations.

Group Fine-grained annotation
religion atheist, buddhist, christian, hindu, jewish, other religion
race white, asian, black, latino, other race or ethnicity

gender and sexual orientation | bisexual, female, male, heterosexual, homosexual gay or
lesbian, transgender, other gender, other sexual orientation

Table 2: Jigsaw dataset samples

Comment text Toxicity Group
The Atwood fable is Donald, is it? My impression of this noise (over | Toxic Gender
Atwood) is that it’s a gimmick by Atwood and her publisher to cash
in on the Donald effect. As if we needed slaves in bonnets to remind
us that Donald is a jerk (and where was Atwood’s novel when Monica
was being pawed over?). A word to defenders of women: don’t spend
your political capital on stupid analogies.

I got a question for you, dear, and it is a fair question: We all know | Normal Gender
what is happening in Syria; where are all the women’s marches over
the slaughter in that country?. And, why has Trudeau been silent, like
his pal Barry Obama, on taking effective military action against Syria?
All you lefties are the same: you have no side vision.

A.1.2 HATEXPLAIN: TOXIC TEXT IN TWITTER AND TWITTER-LIKE TEXT

HateXplain (Mathew et al.| 202 1)) was recently introduced with the intent of studying explanations in
offensive and hate speech in Twitter and Twitter like data (i.e., gab . com)). For the purposes of our
study, we collapse the annotations for offensive and hate speech into one class of toxic text. Similar
to the Jigsaw dataset, HateXplain samples have fine-grained annotations for protected groups. We
use as groups the coarse-level annotations, as we did for the Jigsaw dataset. The groups that we
consider are presented in Table ] and a few examples from the dataset are shown in Table[5] Note
the text in each sample is represented in the dataset as a list of tokens; in the table, we concatenated
them with spaces and this is the way we use them as inputs for the classifiers as well. We used the
splits as provided in the dataset; dataset statistics are shown in Table [6]

A.2 LANGUAGE MODELS AND COMPUTATION INFRASTRUCTURE USED IN TUNING

We consider more than a dozen language models that cover a large spectrum of sizes. We selected
the models covering not only various sizes, but also different styles of architecture and training. The
models we included in our study are shown in Table[/|along with the number of parameters and the
size of the PyTorch [Paszke et al.|(2019) model on disk. If not specified, the version of the model
used is base.

For all our experiments, we used the Hugging Face implementation of Transformers Wolf et al.
(2020) and the corresponding implementations for all the language models used in our study. In par-
ticular, we use the fext sequence classifier without any modifications to increase the reproducibility
of this study. For most experiments, we run model fine-tuning for 1-3 epochs and choose the best
model based on the highest accuracy obtained on the dev split. When presenting experimental re-

Table 3: Jigsaw dataset statistics: sample counts per dataset split and protected group

Dataset split Total Religion Race  Gender
Train 1443899 50748 31022 70703
Dev 360975 12769 7999 17869
Test 97320 3316 1911 4367
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Table 4: The identity groups for HateXplain dataset with their corresponding fine-grained annota-
tions.

Group Fine-grained annotation

race African, Arab, Asian, Caucasian, Hispanic
religion Islam, Buddhism, Jewish, Hindu, Christian
gender Men, Women

Table 5: HateXplain dataset samples

Text Toxicity | Group
why is anna acting like she black Normal | Race
like brazil many are descendants of west africa social constructs labels | Toxic Race

classifications have ruined a many people who falsely self identify as
white or just do not even know abt their native land all b ¢ of them
bum ass caucazoids aka caucasians

sults, we focus on balanced accuracy as the Jigsaw dataset is imbalanced and looking only at accu-
racy results may be misleading. In general, higher accuracy leads to higher balanced accuracy, with
the exception of two models — GPT2 and SqueezeBERT. For these two, the best balanced accuracy is
less than 2 percentage points higher than the balanced accuracy corresponding to the highest overall
accuracy across the various hyper-parameter runs. We also experiment with two learning rates and
observe that the large models tend to prefer smaller learning rates, degenerating for lower learning
rates. For large models with Jigsaw we fine-tune only for one epoch to keep the compute time under
24 hours. The model accuracy we obtained are in line with state-of-the-art results for these types of
tasks.

The large models are fine-tuned using the A100 Nvidia GPUs, while the rest of the models are fine-
tuned on V100 Nvidia GPUs. The experiments for HateXplain dataset run from 10 minutes to under
an hour, while the experiments for the large models with the Jigsaw dataset can take up to 24 hours.

A.3 THE INFLUENCE OF RANDOM SEEDS ON ACCURACY AND EQUALIZED ODDS

In this section we present graphs similar to the ones in Section [5.2] using accuracy as a measure of
performance instead of balanced accuracy. These plots makes it obvious how close in performance
all models are and emphasize the gap in fairness measure observed across different random seeds
for each fine-tuned model. The results are shown in Figure [/} Note that all Jigsaw models get an
accuracy in performance of approximately 95% with a gap of approximately .05 for equalized odds.
HateXplain models exhibit a higher variance in accuracy (4-5%) with an even larger gap of .15 for
equalized odds for most models.

A.4 FAIR SCORE TRANSFORMER (FST)

FST takes predicted probabilities (referred to as scores) as input and outputs scores satisfying a
fairness criterion. We choose generalized equalized odds (GEO), a score-based variant of EO, as
the fairness criterion and then threshold the output score to produce a binary prediction. Instead of
rages, GEO is computed as the maximum between the group-wise difference in the scores for the true

Table 6: HateXplain dataset statistics: sample counts per dataset split and protected group

Dataset split  Total Religion Race Gender

Train 15383 3924 5418 3102
Dev 1922 481 672 396
Test 1924 468 685 375

17



Under review as a conference paper at ICLR 2022

Table 7: The size (number of parameters, size on disk) for the language models considered in this

study.
Group Size | Language Model # of parameters  Size on disk
ALBERT (Lan et al.,[2020) 12M 45MB
Small MobileBERT (Sun et al.,[2020) 25.3M 95MB
SqueezeBERT (landola et al., 2020) SIM* 196MB
DistilBERT (Sanh et al.; 2020 66M 256MB
BERT (]Devlin et al.,[2019) 110M 418MB
BERTweet (Nguyen et al., 2020 110M 418MB
ELECTRA (Clark et al. 110M 418MB
Regular Funnel (small) (Dai et al., 2020) 117Mx 444MB
RoBERTa (Liu et al., 201 125M 476MB
GPT?2 (Radford et al. 117M 487MB
DeBERTa (He et al.,[2021) 140M 532MB
ELECTRA-large 335M 1.3GB
Laree BERT-large 340M 1.3GB
& RoBERTa-large 355M 1.4GB
DeBERTa-large 400M 1.6GB
* Approximate number of parameters, as exact parameter size could not be found.
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Figure 7: Accuracy versus equalized odds for several fine-tuned LMs when varying only the random
seed used in fine-tuning.

positive and the false positive, respectively, where instead of the predicted label, the corresponding
probability for the label is used instead.

The application of FST requires attention to three issues: 1) the provision of input scores that are
indeed calibrated probabilities; 2) the choice of fairness parameter ¢, which bounds the allowed GEO
on the data used to fit FST; 3) the choice of binary classification threshold ¢.

Regarding issue 1), we found that the distributions of softmax outputs of the tested LMs are bi-
modal and highly concentrated near values of 0 and 1 (as commonly observed with deep neural

18



Under review as a conference paper at ICLR 2022

networks). Such skewed distributions appear to violate FST’s assumption of probabilities as input
and are typically not encountered on tabular datasets on which FST was previously tested. Thus we
experimented with calibrating the LM outputs. We considered both logistic regression of the class
label on the logit outputs of the LMs (a generalization of temperature scaling (Guo et al., 2017)),
as well as linear regression on the logit outputs followed by clipping of the resulting values to the
interval [0, 1]. In general, logistic regression proved somewhat beneficial for the Jigsaw dataset and
we included it in our results.

Regarding issue 2), we found, as noted by |Wei et al.| (2020), that while the parameter e controls the
deviation from GEO (i.e. the “GEO difference”), this is not always correlated with the EO differ-
ence, which is a function of the output after thresholding. Regarding 3), we found that varying the
threshold ¢ can significantly affect equalized odds as well as accuracy and balanced accuracy, and
can sometimes even produce a reasonable trade-off between them. For this reason, we included a
version of post-processing (see “Threshold post-processing” in Section 4] This effect of the predic-
tion threshold on fairness has not been explored in previous work to our knowledge.

As a result of our observations regarding 2) and 3), we used the following procedure to select a set
of (e, t) pairs to map out a trade-off between fairness and performance. The training set used to
fine-tune the LMs is never seen by FST. The development dataset (“dev”) is used to both tune the
FST parameters and evaluate the resulting transformation. As such, the dev dataset was further split
into a dev-train set and a dev-eval set. Given an e value, FST was fit on the dev-train set to ensure
a GEO difference of at most €. Then on the dev-eval set, given € and ¢, scores were transformed by
FST with parameter e, thresholded at level ¢ to produce a binary label, and finally evaluated for both
fairness and performance. Each (e, t) pair thus yields one point in the equalized odds-performance
plane, as seen in Figure |4l We selected (e, ¢) pairs that are Pareto-efficient on the dev-eval set, to
ensure the best fairness-accuracy trade-off.

This is the first time FST is used with unstructured, text data and with large datasets in the order
of millions of samples. First, we implemented FST following the proposed implementaiton in |Wei
et al| (2020). This first implementation ended up with numerical instabilities that lead to either
slow running times (in the order of hours) or even situation when the method did not converge.
We managed to improve upon the computational cost of FST, which was instrumental in scaling
to the large Jigsaw dataset and allowing rapid experimentation. Specifically, in the dual ADMM
algorithm of |Wei et al.| (2020), the first step (eq. (14) therein) consists of n parallel optimizations,
each involving a single variable. We observed that these optimizations can be done in closed form by
solving a cubic equation. The replacement of an iterative optimization with a closed-form solution
greatly reduces the computational cost of FST. FST runs in the order of 1-2 minutes for the Jigsaw
dataset and in seconds for HateXplain. Equally important, it also eliminates instances of the iterative
optimization failing to converge.

A.5 POST-PROCESSING METHODS FOR BIAS MITIGATION

In addition to the two post-processing methods that we considered in our study, other post-processing
methods for bias mitigation include assigning favorable labels to unprivileged groups in regions of
high classifier uncertainty (Kamiran et al.,[2012), minimizing error disparity while maintaining clas-
sifier calibration (Pleiss et al.l [2017), a relaxed nearly-optimal procedure for optimizing equalized
odds (Woodworth et al.| 2017), shifting the decision boundary for the protected group (Fish et al.,
2016)), iterative post-processing to achieve unbiased predictions on every identifiable subpopulation
(Kim et al., |2019), recalibrating a classifier using a group-dependent threshold to optimize equality
of opportunity (defined as the difference between the group-wise true positive rates) (Chzhen et al.,
2019)), using optimal transport to ensure similarity in group-wise predicted score distributions (Jiang
et al., [2020), and a plug-in approach for transforming the predicted probabilities to satisfy fairness
constraints (Yang et al.l 2020).

A.6 MATHEMATICAL DEFINITIONS FOR THE MEASURES USED

Accuracy

number of samples predicted correctly

accuracy =
Y total number of samples
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Balanced accuracy

true negatives i true positives
total number of negative samples ' total number of positive samples

2

balanced accuracy =

Equalized odds

TPR — number of samples predicted correctly as positive

total number of positive samples

number of samples predicted incorrectly as positive

FPR =
total number of negative samples

EO = max(abs(TPRprotected group — TPRunproteczed group) s abs (FPRpmtected group — FPRunprozected group))

Generalized equalized odds

sum of predicted probabilities for positive samples

lized TPR = TPR =
generaiize gen total number of positive samples

generalized TNR — genTNR — sum of predicted probabilities for negative samples

total number of negative samples

generalized EO = max(abs(genTPR,,y;pc10q—8eNTPR abs(genTNR,

D

rotected —8€N TNR

unprotected ) ’ unprotected) )
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