
From Inverse Optimization to Feasibility to ERM

Saurabh Mishra 1 Anant Raj 2 Sharan Vaswani 1

Abstract
Inverse optimization involves inferring unknown
parameters of an optimization problem from
known solutions and is widely used in fields such
as transportation, power systems, and healthcare.
We study the contextual inverse optimization set-
ting that utilizes additional contextual information
to better predict the unknown problem parameters.
We focus on contextual inverse linear program-
ming (CILP), addressing the challenges posed by
the non-differentiable nature of LPs. For a linear
prediction model, we reduce CILP to a convex
feasibility problem, allowing the use of standard
algorithms such as alternating projections. The
resulting algorithm for CILP is equipped with a
linear convergence guarantee without additional
assumptions such as degeneracy or interpolation.
Next, we reduce CILP to empirical risk mini-
mization (ERM) on a smooth, convex loss that
satisfies the Polyak-Lojasiewicz condition. This
reduction enables the use of scalable first-order
optimization methods to solve large non-convex
problems while maintaining theoretical guaran-
tees in the convex setting. Subsequently, we use
the reduction to ERM to quantify the generaliza-
tion performance of the proposed algorithm on
previously unseen instances. Finally, we experi-
mentally validate our approach on synthetic and
real-world problems, and demonstrate improved
performance compared to existing methods.

1. Introduction
Inverse optimization (Heuberger, 2004) is the reverse of
standard optimization and uses a known output (decision)
of an optimization problem to infer the unknown problem
parameters. For example, in the context of linear program-
ming (LP), inverse optimization uses the optimal solutions

1Simon Fraser University 2SIERRA Project Team (In-
ria), Coordinated Science Laboratory (CSL), UIUC. Correspon-
dence to: Saurabh Mishra <skm24@sfu.ca>, Sharan Vaswani
<vaswani.sharan@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Figure 1: CIO framework: model fθ takes input z and
predicts the cost vector c = fθ(z). This cost vector is the
input of an optimization procedure that outputs decision
x(c). Given the optimal decision x∗, the objective is to
learn the model parameters such that the predicted decision
x(c) is close to the optimal decision. To train the model in
an end-to-end fashion, the key challenge is to compute the
gradient of c w.r.t decision x(c) (shown in red in the figure).

to the LP in order to learn the coefficients (costs) that can
produce these solutions. Inverse optimization has found ap-
plications in transportation (Bertsimas et al., 2015), power
systems (Birge et al., 2017) and healthcare (Chan et al.,
2022) (refer to Chan et al. (2023) for a recent survey).

We focus on integrating additional contextual information
into the inverse optimization framework. In particular, we
leverage historical data and a machine learning (ML) model
to predict the (unknown) optimization problem parameters
that can render (known) optimal decisions. This setting is
commonly referred to as contextual inverse optimization
(CIO) (Besbes et al., 2023; Sun et al., 2023) or data-driven
inverse optimization (Mohajerin Esfahani et al., 2018). CIO
requires a combination of prediction and optimization and
has found applications in optimal transport and vehicle
routing (Li et al., 2022), financial modeling (Cornuejols
& Tütüncü, 2006), power systems (Bansal, 2005; Li et al.,
2018), healthcare (Angalakudati et al., 2014), circuit de-
sign (Boyd et al., 2001), robotics (Raja & Pugazhenthi,
2012). Some use-cases for CIO are as follows.

Example 1: Energy-cost aware scheduling (Wahdany et al.,
2023), which involves using weather data to forecast wind-
energy generation and hence energy prices (prediction).
These predictions can be used to schedule jobs (optimiza-
tion) to minimize energy costs. For the CIO, the contextual
information corresponds to weather data, and the solutions
(decisions) correspond to past schedules.

1

From Inverse Optimization to Feasibility to ERM

Example 2: Shortest path planning (Guyomarch, 2017),
which involves predicting the time taken through different
routes or terrain (prediction). These predictions can be used
to determine the shortest path between two locations (opti-
mization). For CIO, the contextual information corresponds
to images or features of the terrain, and the decisions corre-
spond to known shortest paths for pairs of locations.

Example 3: Inverse reinforcement learning (IRL) (Ng et al.,
2000), which involves learning the underlying reward func-
tion in a Markov decision process (MDP) from the observed
behaviour of a human expert. The learned reward function
can be used to infer a good policy for an artificial agent.
Assuming that the human expert acts in order to maximize
the implicit reward functions, for the CIO, the context cor-
responds to features of the MDP, and decisions correspond
to the observed expert behaviour.

Example 4: In rational choice theory, a common way to
model agents (e.g. users interacting with a recommendation
system) is to assume that the (i) agent is rational and is
making decisions to optimize some unknown implicit utility
function and that (ii) the form (but not the parameters) of
this utility function is known (e.g. whether it is linear or
concave). For recommendation systems, the user’s demo-
graphics and other metadata correspond to the context. In
CIO, this context is used to predict the unknown parameters
of the utility function, such that when it is maximized, it
can explain the users’ past purchases (corresponding to the
known decisions) (Wilder et al., 2019). The estimated utility
function can then be used to make better recommendations.

Since numerous combinatorial problems, including shortest
path, max-flow, and perfect matching, can be cast as linear
programs, we will mainly focus on cases where the opti-
mization problem is a Linear Program (LP) (in Section 4.4,
we briefly consider more general non-linear problems). The
examples of CIO presented earlier fall within the LP frame-
work. For LPs, the key challenge of contextual inverse
linear programming (CILP) lies in the non-differentiable
nature of LPs. This limitation precludes the direct use of
auto-differentiation techniques. To overcome this problem,
we make the following contributions.

Contribution 1: For a linear prediction model, we reduce
CILP to a convex feasibility problem (Section 4). This
reduction enables the use of standard algorithms such as
alternating projections. Unlike existing work (Sun et al.,
2023), the resulting method (Algorithm 1) guarantees linear
convergence to the solution without additional assumptions
such as degeneracy or interpolation.

Contribution 2: To efficiently handle large-scale prob-
lems, we reduce the feasibility problem (and hence CILP)
to empirical risk minimization (ERM) on a smooth, con-
vex loss function satisfying the Polyak-Lojasiewicz condi-

tion (Polyak, 1964) (Section 5). This reduction allows us
to employ scalable first-order optimization methods while
retaining strong theoretical guarantees.

Contribution 3: In Section 6, we argue about the shortcom-
ings of the previous measures of performance for CILP,
and propose a new sub-optimality metric. Subsequently, we
use the reduction to ERM to quantify the performance of
the proposed algorithm on previously unseen instances.

Contribution 4: In Section 7, we validate the effective-
ness of our approach with experiments on synthetic shortest
path and fractional knapsack problems (Sun et al., 2023),
and real-world Warcraft shortest path and MNIST perfect
matching tasks (Vlastelica et al., 2019). Our empirical re-
sults demonstrate that the proposed algorithm results in
improved performance compared to the prior work.

2. Related Work
In this section, we review the related works, contrasting
them with our proposed approach.

Inverse Optimization: Iyengar & Kang (2005), uses the
Karush–Kuhn–Tucker (KKT) optimality conditions for the
LP to define the feasible set of cost vectors. Similarly, Mo-
hajerin Esfahani et al. (2018), uses the Wasserstein metric
to find a set of robust cost vectors by formulating an inverse
optimization problem. However, they do not consider the
contextual setting, so no learning is required. In contrast,
we use the KKT conditions to train a prediction model, map-
ping contextual information to optimal decisions. More
recently, Besbes et al. (2023) consider solving CIO in both
the online and offline settings. Their offline setting is similar
to our problem formulation, but does not make any linearity
or convexity assumptions. They derive bounds on the worst-
case suboptimality for a specific mapping from features to
cost vectors. However, it is unclear whether this mapping
can be efficiently computed even in the special case of LPs.
Furthermore, Besbes et al. (2023) assume realizability i.e.
there is no noise in the decisions and the model can perfectly
fit (interpolate) the data. This further limits the practical util-
ity of their framework. In contrast, we make no realizability
assumptions and develop efficient algorithms for CILP.

Using the reduced cost optimality condition: Sun et al.
(2023) proposed a method to use the reduced cost optimality
conditions (Luenberger et al., 1984) for LPs. The method
constructs a surrogate loss function that encourages the pre-
diction to satisfy the reduced cost optimality conditions. The
resulting method has theoretical convergence guarantees, as-
suming that the LPs are non-degenerate and that the model
can interpolate the training data. Both of these are strong
assumptions and are not necessarily satisfied in practice. In
contrast, we use the KKT conditions that are equivalent to
the reduced cost optimality conditions for non-degenerate
LPs (see Appendix B.2 for proof). Since the KKT condi-

2

From Inverse Optimization to Feasibility to ERM

tions can also be used for degenerate LPs, our proposed
framework provides theoretical guarantees without relying
on this assumption. Moreover, our guarantees hold even
without assuming interpolation.

Differentiating through LPs: Vlastelica et al. (2019) es-
timate the gradient “through” the LP by calculating the
change in the decision by perturbing the prediction. How-
ever, it introduces additional hyper-parameters that are non-
trivial to tune. Another common technique is to use the
straight-through-estimator (ST) (Sahoo et al., 2022). Given
a set of predictions from the model, the ST method uses
the LP to estimate the decisions. However, it does not
consider the LP (treats the corresponding Jacobian as an
identity matrix) while back-propagating the gradient from
the decisions to the model parameters. Though successful
in practice, this method is not theoretically principled. The
method in Berthet et al. (2020) computes expected gradients
by perturbing the prediction target in different directions.
While this method accurately models the gradient, it is not
practically feasible because of the computational cost of
solving LPs multiple times for each update to the model.
One advantage of these techniques is their “black-box” na-
ture, meaning that they only rely on the outputs from an LP,
thus allowing the use of faster problem-specific solvers. In
contrast, our work leverages LP properties (and some other
problems described in Section 4.4), allowing us to develop
a more efficient and principled approach.

Implicit Differentiation: The methods in (Amos & Kolter,
2017; Amos, 2019) focuses on (strongly)-convex optimiza-
tion problems. It calculates the gradient through such prob-
lems by differentiating through its optimality (KKT) condi-
tions. However, since the solutions of LPs are located at the
corners of the feasible polytope, this method will yield zero
gradients for LPs. To address this, QPTL (Wilder et al.,
2019) add a quadratic regularization to the LP, thus relax-
ing the problem to a non-linear strongly-convex quadratic
program (QP) and then use the technique in Amos & Kolter
(2017). Similarly, Cameron et al. (2022) relax Mixed Inte-
ger Programs (MIP) by using a log-barrier regularization
followed by the use of the techniques in Amos & Kolter
(2017). These approaches suffer from two notable limita-
tions: (i) they introduce additional hyper-parameters (the
regularization strength), and (ii) they are only guaranteed
to converge in the vicinity of the optimal solution (because
of the bias introduced by the regularization). While our
proposed framework also uses KKT conditions, it ensures
convergence to the optimal solution without introducing
additional hyper-parameters.

Predict and Optimize: The CIO problem is related to
the predict and optimize (PO) framework (Elmachtoub &
Grigas, 2022). In contrast to the CIO, PO requires the
knowledge of ground-truth costs. Our work does not assume

access to this additional information, but we note that the
proposed algorithms can be directly used in the PO setting.

In the next section, we formally formulate the problem and
highlight the technical challenges.

3. Problem Formulation
We consider the optimization procedure to be a linear pro-
gram (LP). Without loss of generality, we assume the stan-
dard form of the LP and define x̂(c) as the solution to the
LP with cost-vector c ∈ Rm,

x̂(c) := argmin
x

⟨c, x⟩ s.t Ax = b, x ≥ 0 ,

where A ∈ Rn×m and b ∈ Rn. The CILP problem consists
of a training dataset D = {zi, x∗i }Ni=1 where zi ∈ R1×d is
the input (Z ∈ RN×d is the corresponding feature matrix)
and x∗i ∈ Rm is the corresponding optimal decision. We as-
sume that the LP parameters (A, b) encoding the constraints
are known, whereas the cost vector c is unknown and will
be predicted using the data.

Example: In the context of the shortest path problem (Ex-
ample 2 in Section 1), consider an arbitrary x, c ∈ Rm in
the dataset; for all j ∈ [m], x∗j ∈ {0, 1} variables denote
whether an edge is included in the shortest path and the
weight of each edge is represented by the cost cj . To ensure
a valid path from the start vertex s to the target vertex t,
the “flow” constraints are encoded via A and b. These con-
straints ensure that every vertex, except s and t, maintains
an equal number of incoming and outgoing edges. Vertex s
is constrained to have exactly one outgoing edge, and vertex
t has precisely one incoming edge.

When using a model fθ with parameters θ to predict the
cost-vector, we define x̂(ĉ) as:

x̂(ĉ) := argmin
x

⟨ĉ, x⟩ s.t Ax = b, x ≥ 0, ĉ = fθ(z) .

Given the dataset D and knowledge of (A, b), the CILP
objective is to learn θ s.t. x̂(fθ(zi)) ≈ x∗i for all i ∈ [N].

3.1. Challenge in Gradient Estimation

To gain some intuition as to why the typical end-to-end
learning approach via auto-differentiation (Paszke et al.,
2019) will not work for CILP, consider using the squared
loss to quantify the discrepancy between x̂(fθ(zi)) and x∗i ,
i.e. ℓ(θ) := 1

2

∑N
i=1 ∥x̂(fθ(zi)) − x∗i ∥2. Using the chain

rule to compute the gradient with respect to θ, we get that
∂l
∂θ = ∂l

∂x
∂x
∂c

∂c
∂θ . The first and last terms can be easily

calculated. However, for an LP, the decision x is piece-wise
constant with respect to c, and ∂x

∂c is either 0 or undefined.

Consequently, in the next section, we aim to develop an
algorithm that does not rely on directly calculating ∂x

∂c .

3

From Inverse Optimization to Feasibility to ERM

4. Reduction to Convex Feasibility
For a linear model, we reduce the CILP problem to convex
set feasibility (Section 4.1). In Section 4.2, we use alter-
nating projections onto convex sets (POCS) to solve the
feasibility problem and completely instantiate Algorithm 1.
In Section 4.3, we describe some practical considerations
when using Algorithm 1. In Section 4.4, we describe how
to extend these ideas to handle non-linear but convex objec-
tives and constraints.

4.1. Reduction

Recall that for an input (z, x∗) ∈ D, we aim to find a c such
that x̂(c) = x∗. However, due to the non-uniqueness of the
mapping from x to c, there are potentially infinitely many
values of c that can yield x∗. We define C to represent the
set encompassing all such values of c. The set C can be
represented by exploiting the optimality conditions for the
LP. KKT conditions (Kuhn & Tucker, 1951) give necessary
and sufficient conditions for the optimality of the LP. If x∗

is the solution to the standard LP, then the KKT conditions
can be written as follows:

νTA+ λ− c = 0 , x∗ · λ = 0 , λ ≥ 0 , Ax∗ = b , x∗ ≥ 0

where λ ∈ Rm
+ , ν ∈ Rn are the dual variables, x∗i λi = 0

(for all i) represents the complementary slackness condition
and Ax∗ = b, x∗ ≥ 0 represents the feasibility of x∗. At
optimality, there exist dual variables (λ, ν) such that the
tuple (x∗, λ, ν, c) satisfies the KKT conditions.

Since the KKT optimality conditions are both necessary
and sufficient, given an optimal solution x∗, we can identify
the set of cost vectors c that satisfy these conditions. This
enables us to define the convex set C as:

C = {c | ∃λ, ν s.t. νTA+ λ− c = 0,

x∗ · λ = 0, λ ≥ 0} (1)

Note that we omit the condition Ax∗ = b, x∗ ≥ 0 as it is
satisfied by definition for the optimal solution x∗. For any
λ, ν, the set C is affine and hence convex in c.

We define F as the set of cost vectors that are realizable by
the linear model parameterized by θ ∈ Rd×m. Formally, F
can be written as:

F = {c |∃θ s.t. c = zθ}. (2)

For a linear model, the set F is linear and hence convex in
c. The objective of CILP is to find a c ∈ C (resulting in
the optimal solution x∗) and is also realizable by the model,
i.e. it lies in set F . Hence, we aim to find a c that lies in the
intersection (C ∩ F). Therefore, CILP is equivalent to a
convex feasibility problem in this setting.

4.2. Algorithm

The commonly employed method for solving convex feasi-
bility problems is the alternating projections (POCS) algo-
rithm (Von Neumann, 1949; Bauschke & Borwein, 1996).
The POCS algorithm alternatively projects a point onto the
two sets. The algorithm is guaranteed to converge to a
point in the intersection if the intersection is non-empty;
otherwise, it converges to the closest point between the two
sets (Deutsch, 1984; Bauschke & Borwein, 1993). More-
over, the rate of convergence is linear in the number of
POCS iterations. In order to use the POCS algorithm for
the CILP problem, we require the projection of an arbitrary
point q ∈ Rm onto the set C. This corresponds to solving
the quadratic program (QP) as follows:

PC(q) := argmin
c

||c− q||22

subject to νTA− c+ λ = 0, λ · x∗ = 0, λ ≥ 0 (3)

Eq. (3) returns a point PC(q), the Euclidean projection of q
onto C. For the projection of a point q onto the set F , we
require solving the following regression problem,

θ̂ := argmin
θ

1

2
||q − zθ||2 ; PF (q) = zθ̂ (4)

Eq. (4) returns a point PF (q), the Euclidean projection
of q onto F . Hence, POCS consists of alternatively solv-
ing the optimization problems in Eq. (3) and Eq. (4). In

Algorithm 1 for CILP
Input: A, b, Training dataset D ≡ (zi, x

∗
i)

N
i=1, Model fθ

Initialize θ1
for t = 1, 2, .., T do

ĉi = fθt(zi), ∀i ∈ [N]
for i = 1, 2, .., N do

qi = PCi(ĉi) by solving the optimization problem
in Eq. (3)

end
θt+1 = argminθ

1
2N

∑N
i=1 ||qi − fθ(zi)||2

end
Output: θT+1

order to extend the above idea to N training points, we
will define sets Ci analogous to Eq. (1) for each i ∈ [N].
We define C := C1 × C2 . . . × CN to be the Cartesian
product of these sets. Hence, C consists of concatenated
vectors (c1, c2, . . . , cN) ∈ RNm where ci ∈ Ci. Similarly,
we define F := {(c1, c2, . . . , cN)|∃θ s.t. ∀i ∈ [N] , ci =
ziθ}. Hence, the projection onto C corresponds to solv-
ing the QP in Eq. (3) for every point i ∈ [N]. Pro-
jecting an arbitrary point q̃ = (q̃1, q̃2, . . . , q̃N) ∈ RNm

onto F involves solving the regression problem, θ̂ :=
argminθ

1
2N

∑N
i=1 ∥q̃i − ziθ∥2. Since the Cartesian prod-

uct of sets is convex, both C and F are convex and hence
the resulting POCS algorithm will converge at a linear rate.

4

From Inverse Optimization to Feasibility to ERM

Finally, we note that our algorithmic framework can handle
a generic model fθ, though our theoretical results only hold
for a linear model. The complete algorithm for a generic
model fθ is described in Algorithm 1. Next, we describe
practical considerations when implementing the algorithm.

4.3. Practical considerations: Margin

Recently, Sun et al. (2023) have noted the benefits of using
a margin with the LP optimality conditions (Luenberger
et al., 1984). In Appendix B.2, we show how to modify their
margin formulation for the KKT conditions, resulting in the
modified set C below:

C = {c | ∃λ, ν s.t. νTA− c+ λ = 0,

λi I{x∗i ̸= 0} = 0, λi I{x∗i = 0} ≥ χ} (5)

There are two key motivations for adding the margin: (i)
it ensures that the algorithm does not converge to a trivial
solution corresponding to c = 0, (ii) it ensures that the algo-
rithm will converge to the interior (rather than the boundary)
of C making it more robust to perturbations and improv-
ing the algorithm’s generalization performance (El Balghiti
et al., 2019) to previously unseen instances. We note that
our framework and the resulting algorithm is not limited to
LPs. Next, we describe how to extend these ideas to handle
non-linear but convex objectives and constraints.

4.4. Handling non-linear optimization problems

Similar to the linear case, the KKT optimality conditions
can be used to derive a convex set C for a class of non-linear
convex objectives and constraints (Iyengar & Kang, 2005).
As an example, we instantiate C for a specific quadratic pro-
gram (QP) below and defer the general case to Appendix B.

x̂(c) := argmin
x≥0

−⟨c, x⟩+ γ

2
xTQx s.t

m∑
i=1

xi = 1 (6)

Example: For the portfolio optimization problem (Fabozzi
et al., 2008) common in econometrics, xj and cj in Eq. (6)
represent the fraction of investment and the expected return
for stock j ∈ [m] respectively. The matrix Q ∈ Rm×m

represents the risk associated with selecting similar stocks,
and γ is the given risk tolerance. The task is to maximize
the return while minimizing the risk, subject to simplex
constraints. Given historical data and a model that can be
used to predict the expected return and risk matrix, and
the “best” portfolios in hindsight, the CIO problem is to
infer the model parameters. In this case, the convex set C
consisting of χ := {c∗, Q∗} that satisfy the KKT conditions
of the QP is given as: C = {c,Q | ∃λ, ν s.t. ν1m + λ +
c − γ

2 (Q + QT)x∗ = 0, x∗ · λ = 0, λ ≥ 0} where λ ∈
Rm

+ , ν ∈ R1, 1m = (1, 1, . . . , 1). The set C is linear and
therefore convex in {c,Q}. Consequently, when using a
linear prediction model, the inverse problem for portfolio
optimization can also be reduced to convex feasibility.

For a general non-linear convex objective ϕ(x, ω) where
ω represents a general cost vector, set C is convex in ω if
∂ϕ(x,ω)

∂x |x=x∗ , the derivative of the objective function ϕ w.r.t
x evaluated at x∗ is convex in ω. For instance, this condition
also applies to semi-definite programs. Finally, we note that
our framework is not limited to linear constraints, and can
easily handle non-linear convex constraints. Please refer
to Appendix B.1 for the derivation.

4.5. Challenges for solving large-scale problems

The POCS approach described above requires computing
the exact projection of point q onto the set F . For high-
dimensional problems, computing these exact projections
is computationally expensive. Moreover, for non-linear
models such as neural networks, F is non-convex and the
resulting projection is ill-defined. Additionally, computing
the exact projection requires iterating through the entire
dataset of N points, which can be prohibitive for large
datasets typical in practice.

Consequently, in the next section, we reduce the problem
to empirical risk minimization on an appropriate smooth,
convex loss satisfying the PL condition. This reduction
enables the use of computationally efficient (stochastic)
first-order optimization algorithms common in the machine
learning literature.

5. Reduction to Empirical Risk Minimization
For a linear model, in Section 5.1, we reduce the feasibility
problem to empirical risk minimization (ERM) on an appro-
priate smooth, convex loss satisfying the PL condition and
prove that the preconditioned gradient method (with a spe-
cific preconditioner) on this loss is equivalent to the POCS
approach of Algorithm 1. Subsequently, in Section 5.3, we
consider using computationally efficient (stochastic) first-
order methods for minimizing the loss functions.

5.1. Reduction

We define the loss function h(θ) as follows:

h(θ) :=
1

2N

N∑
i=1

min
qi∈Ci

∥fθ(zi)− qi∥2 , (7)

where Ci represents the set of feasible cost vectors (defined
in Eq. (1)) for data-point i. Hence, h(θ) represents the mean
(across the data-points) of squared distances between the
predicted cost vector fθ(zi) and the set Ci. In order to better
interpret h(θ), consider a point cθ = (c1, c2, . . . , cN) ∈
RNm such that ci = fθ(zi). Hence, h(θ) = d2(cθ,C)

N where
d2(w,W) is the squared Euclidean distance of point w to
the set W . Since cθ ∈ F , minimizing h(θ) is related to
minimizing the distance between the sets F and C. Formally,
in Proposition 5.1 (proved in Appendix B.4), we can reduce
the feasibility problem in Section 4 to minimizing h(θ).

5

From Inverse Optimization to Feasibility to ERM

Proposition 5.1. Point ĉ := (c1, c2, . . . , cN) where ci =
ziθ̃ and θ̃ ∈ argminh(θ) lies in the intersection C ∩ F if it
exists, else ĉ ∈ F is the point closest to C.

5.2. Properties of h(θ)

For a linear model where fθ(z) = zθ, we show that h(θ) has
desirable properties that allow it to be minimized efficiently.
In the proposition below, we establish the convexity and
smoothness of h(θ).
Proposition 5.2. For a linear model fθ(z) = zθ parame-
terized by θ ∈ Rd×m, assuming (without loss of generality)
that ∀i, ∥zi∥ ≤ 1, h(θ) is a 1-smooth convex function.

The proof of the above proposition is included in Ap-
pendix B.3. In addition to convexity, we prove that when
using a linear model, h(θ) satisfies the Polyak-Lojasiewicz
(PL) inequality (Polyak, 1964; Karimi et al., 2016). The
PL condition is a gradient domination property that implies
curvature near the minima and entails that every stationary
point is a global minimum. Formally, the PL inequality
states that there exists a constant µ > 0 such that for all θ,

h(θ)− h∗ ≤ 1

2µ
||∇h(θ)||2 , (8)

where h∗ is the minimum of h.
Proposition 5.3. For a linear model fθ(z) = zθ and as-
suming (i) (without loss of generality) that ∀i, ∥zi∥ ≤ 1 and
(ii) λmin[Z

TZ] > 0, h(θ) is not necessarily strongly-convex

but satisfies the PL inequality with µ = λmin

[∑N
i=1 ziz

⊤
i

N

]
.

We include the proof in Appendix B.6 and note that such
a result showing that square distance functions to (non)-
convex sets is PL was also recently shown in (Garrigos,
2023). Importantly, we note that convexity coupled with the
PL condition implies that the function satisfies the restricted
secant inequality (RSI) (Zhang & Yin, 2013), a stronger
condition than PL but weaker than strong-convexity (Karimi
et al., 2016, Theorem 2).

Since we have reduced the CILP to a problem of minimiz-
ing a loss function with desirable properties, we can use
computationally efficient techniques like gradient descent
and its stochastic and adaptive (Kingma & Ba, 2014; Duchi
et al., 2011) variants.

5.3. First-order Methods

We first show that for a linear model, Algorithm 1 is equiva-
lent to the preconditioned gradient method on h(θ). With
Z ∈ RN×d being the feature matrix, the preconditioned
gradient update for minimizing h(θ) at iteration t ∈ [T]

with step-size η and the preconditioner equal to
[
ZTZ
N

]−1

,
is given as:

θt+1 = θt − η [ZTZ]−1 ZT (Zθt − qt) , (9)

where qt = PC(Zθt) and ∥Zθt − qt∥ is the Euclidean dis-
tance to the set C at iteration t. Consequently, point Zθt+1

is exactly the Euclidean projection of qt onto the set F .
In Appendix B.5, we prove the following proposition.

Proposition 5.4. For a linear model fθ(z) = zθ, the iter-
ates corresponding to the preconditioned gradient method
on h(θ) with η = 1 are identical to Algorithm 1.

We note that for general non-linear models, this connection
to POCS and hence Algorithm 1 does not necessarily hold.

Next, we consider minimizing h(θ) using gradient descent
(GD) with step-size ηt at iteration t. This results in the
following general update:

θt+1 = θt − ηt

∑N
i=1

∂fθ(zi)
∂θ |θ=θt [fθ(zi)− qi,t]

N
(10)

where qi,t = PCi
(fθt(zi)) and ∂fθ(zi)

∂θ |θ=θt is the Jacobian
of fθ at iterate θt. For a linear model, this simplifies to:

θt+1 = θt −
ηt
N

[
ZT (Zθt − qt)

]
, (11)

where qt = PC(Zθt) and ∥Zθt − qt∥ is the Euclidean dis-
tance to the set C at iteration t. The update in Eq. (11) can
be interpreted as an inexact projection of qt onto F .

If θ̃ ∈ argminθ h(θ), standard convergence results (Karimi
et al., 2016) for smooth, convex and PL loss functions
guarantee that GD, after T iterations, returns θT such that
h(θT)− h(θ̃) = O(exp(−T)). To illustrate what this con-
vergence rate implies for the feasibility and consequently the
CILP problem, consider the case where C∩F is non-empty.
In this case, Proposition 5.1 guarantees that h(θ̃) = 0 and
hence, using GD with T = O

(
ln(

√
N/ϵ)

)
iterations is

guaranteed to return a point ĉ := (c1, c2, . . . , cN) ∈ F
where ci = ziθT that is ϵ close to C. Compared to Algo-
rithm 1, we see that GD retains the fast linear convergence
rate to a point in C ∩ F .

GD requires iterating through the entire dataset for each
update, which is inefficient for large datasets. To address
this, we use stochastic gradient descent (SGD) (Robbins
& Monro, 1951). Writing h(θ) = 1

N

∑N
i=1 hi(θ) where

hi(θ) =
1
2 minqi∈Ci

∥fθ(zi)− qi∥2, the SGD update with
step-size ηt at iteration t is:

θt+1 = θt − ηt
∂fθ(zit)

∂θ

∣∣∣∣
θ=θt

[fθ(zit)− qit,t] , (12)

where it ∈ [N] is the index of the loss function sampled
uniformly at random at iteration t. For a linear model,

θt+1 = θt − ηt z
T
it(zitθt − qit,t) , (13)

6

From Inverse Optimization to Feasibility to ERM

where qit,t = PCi
(zitθt). Similar to GD, the update

in Eq. (13) can be interpreted as an inexact projection
of qit onto Ci. Compared to GD, which has an O(N)
per-iteration cost, SGD has an O(1) iteration cost, mak-
ing it preferable for large datasets. However, in general,
SGD has a slower rate of convergence compared to GD.
Specifically, when minimizing smooth, convex functions
and PL functions, T iterations of SGD with a decreas-
ing O(1/T) step-size is guaranteed to return θT such that
E[h(θT)] − h(θ̃) = O(1/T) (Karimi et al., 2016; Gower
et al., 2021), where the expectation is over the random sam-
pling in each iteration.

If an additional interpolation property is satisfied, SGD
with a constant step-size can match the convergence rate of
GD (Ma et al., 2018; Vaswani et al., 2019; Bassily et al.,
2018; Raj & Bach, 2021). Formally, for convex loss func-
tions, interpolation is satisfied when θ̃ := argminh(θ) also
simultaneously minimizes each hi, i.e. ||∇hi(θ̃)|| = 0 for
all i ∈ [N]. In the context of the feasibility problem, in-
terpolation is satisfied if fθ̃(zi) ∈ Ci and hence hi(θ̃) = 0
for all i ∈ [N]. This implies that the intersection C ∩ F is
non-empty and in this case, SGD with a constant step-size
requires T = O

(
ln(

√
N/ϵ)

)
iterations to return a point

ϵ-close to C ∩ F . Notably, the PL condition is not required
for convergence; smooth and convex functions (even with-
out the PL condition) ensure convergence with first-order
methods, though at a slower rate (e.g., O(1/

√
T) instead of

O(1/T) for SGD).

The above results hold when using a linear model, en-
suring convexity in the resulting function h(θ). Similar
guarantees extend to non-parametric techniques like kernel
methods, demonstrating the generality of our results. How-
ever, for expressive models such as deep neural networks,
convexity is not necessarily satisfied. In certain regimes
of over-parametrized neural networks, conditions resem-
bling PL or variations thereof are satisfied (Liu et al., 2022;
2023). In these cases, SGD can still achieve linear conver-
gence (Vaswani et al., 2019; Bassily et al., 2018), matching
the results in the convex case.

The above results are concerned with minimizing the loss
on the training dataset. In the next section, we study the
generalization performance of SGD on previously unseen
instances sampled from the same distribution.

6. Generalization Guarantees
In this section, we use the existing results on algorithmic
stability (Bousquet & Elisseeff, 2002; Hardt et al., 2016;
Lei & Ying, 2020) to control the generalization error and
subsequently bound the suboptimality for CILP.

We first define the necessary notation and recall the nec-
essary results from the algorithmic stability literature. We

define ρ to be the probability measure on the sample space
Y = Z × X ∗, where Z ⊆ Rd and X ∗ ⊆ Rm. We assume
that the training dataset D = {(z1, x∗1), · · · , (zN , x∗N)},
is drawn independently and identically from ρ. We de-
fine h(θ, (z, x∗)) := 1

2 minq∈C(x∗) ∥fθ(z) − q∥2, where
C(x∗) is the set constructed according to Eq. (1). Further-
more, we denote the population loss for parameter θ as:
ĥ(θ) = E(z,x∗)∼ρ[h(θ, (z, x

∗))].

Based on algorithmic stability, Lei & Ying (2021) prove
the following generalization result for learning with smooth
loss functions satisfying the PL condition.

Theorem 6.1. (Theorem 1 in (Lei & Ying, 2021)) Let θD
denote the output of a randomized algorithm A when mini-
mizing an L-smooth function h that satisfies PL inequality
with constant µ. Under the condition N ≥ 4L/µ, we have,

E[ĥ(θD)− inf
θ
h(θ)] = O

(
E[infθ h(θ)]

Nµ

+
E[h(θD)− infθ h(θ)]

µ

) (14)

The expectation in the above theorem is w.r.t the random-
ness in selecting the training dataset of size N and w.r.t the
stochasticity in the learning algorithm. In our context, since
the randomized algorithm A is SGD, the bound on its gener-
alization is a direct consequence of Theorem 6.1. In partic-
ular, since ED[infθ h(θ)] ≤ infθ ED[h(θ)] = infθ ĥ(θ), we
can obtain the following result from Lei & Ying (2021).

Corollary 6.2. (Theorem 6 in (Lei & Ying, 2021)) When
minimizing an L-smooth, µ-RSI function, SGD with step-
size ηt = 1

µ(t+1) for all t > 0 has the following guarantee,

E[ĥ(θT)]− inf
θ
ĥ(θ) = O

(
1

Nµ
+

1

µ2T

)
.

The expectation in the above result is only over the stochas-
ticity in SGD. The LHS represents the excess risk, while
the first term on the RHS decreases as N increases, and the
second term on the RHS represents the average (over D)
optimization error that decreases as T increases.

In the interpolation setting, since the model can fit any
training dataset of size N using SGD, infθ E[h(θ)] = 0. In
this case, we obtain the following result from Lei & Ying
(2021, Theorem 7).

Corollary 6.3. When minimizing an L-smooth, µ-RSI func-
tion and if infθ E[h(θ)] = 0 for any choice of training
dataset D of size N , SGD with step-size ηt = η = 1

L for all
t > 0 has the following guarantee,

E[ĥ(θT)] = O

(
L(1− µ

L)
T

2µ

)
.

The above result shows that in the interpolation setting, the
expected (over the randomness in SGD) population loss

7

From Inverse Optimization to Feasibility to ERM

decreases at a linear rate (depending on T). Importantly,
the above bound does not depend on N . Intuitively, if h(θ)
is smooth and N is large enough s.t. it satisfies the PL
condition with µ > 0, minimizing the loss over a single
dataset results in minimizing the population loss.

The above results bound the population loss ĥ(θ), which
serves as a proxy for the decision quality of SGD. Subse-
quently, we establish a connection between h(θ) and the
suboptimality in the CIO framework.

6.1. Sub-optimality

In this section, we first argue about the shortcomings of pre-
vious definitions of sub-optimality to measure performance
forCILP and then propose a new sub-optimality metric.

Recently, Sun et al. (2023) define the suboptimality gap
as Γ1(θ, (z, x

∗)) := ⟨cθ, x∗ − x̂(cθ)⟩ where cθ = fθ(z),
and prove theoretical guarantees for this loss. We argue
that Γ1(z, x

∗) is not the right metric as the predicted cθ
can be made arbitrarily small, resulting in smaller values of
Γ1(z, x

∗) without ensuring that x∗ ≈ x̂(cθ). On the other
hand, work in predict-and-optimize (Elmachtoub & Grigas,
2022) assumes access to the ground-truth cost-vector c∗

and proposes to use a sub-optimality Γ2(θ, (z, c
∗, x∗)) :=

⟨c∗, x̂(cθ) − x∗⟩. Since we do not have access to c∗, we
cannot directly use this measure of sub-optimality. Conse-
quently, we use the projection of cθ onto C as a proxy for
the ground-truth c∗ and define the suboptimality gap as:

Γ(z, x∗) =

〈
PC(cθ)

∥PC(cθ)∥2
, x̂(cθ)− x∗

〉
(15)

It is important to note that we divide PC(cθ) by its corre-
sponding ℓ2 norm to make the sub-optimality scale-invariant
i.e. small values of PC(cθ) do not necessarily imply
small sub-optimality (unlike Γ1). We now relate the sub-
optimality to the loss h(θ) and prove the following result
in Appendix B.7.

Proposition 6.4. For cθ ∈ Rm := fθ(z), assuming that

∀j ∈ [m], [x̂(cθ)]j , x
∗
j ∈ [0, 1], Γ(θ, (z, x∗)) ≤

√
2mh(θ)

δ
where δ := O(χ/

√
m), χ is the margin and the O notation

hides constants that depend on the LP.

As the sub-optimality is upper-bounded by O(
√
h(θ)),

we can control it by controlling the loss h(θ).
Putting together the results in Corollaries 6.2 and 6.3
and Proposition 6.4, we observe that T iterations of
SGD result in the following bounds on the expected
sub-optimality: E(z,x∗)∼ρ [ED∼ρ [E[Γ(θT , (z, x∗))]]] =

O

(√
2m
δ

[
infθ ĥ(θ) +

[
1

Nµ + 1
µ2T

]]1/2)
in the general

setting and O
(√

2m
δ [exp(−µT)]1/2

)
(independent of N)

in the interpolation setting. Compared to these results, Sun
et al. (2023) derive an O(1/

√
N) bound on the expected

sub-optimality in terms of Γ1 for both the interpolation
and general settings. In the next section, we compare our
method against several baselines on real-world and synthetic
datasets and present the results.

7. Experiments1

Figure 2: Decision loss: Training and Test plot for the real
world experiments. Our method significantly outperforms
the other methods (ST, BB, MOM, SPO+).

Datasets and Model: To validate the effectiveness of our
approach, we experiment with both synthetic and real-world
benchmarks. We consider two real-world tasks (Vlastelica
et al., 2019) – Warcraft Shortest Path and Perfect Matching
below and defer the synthetic experiments to Appendix C.

Warcraft Shortest Path (SP): The dataset consists of
(z, x∗) pairs where the input z is an RGB image gener-
ated from the Warcraft II tileset. The output x∗ corresponds
to the shortest path between given source-target pairs. The
model predicts the edge weights for each tile in a k × k
grid (where k ∈ {12, 18}). Given these edge-weights, the
optimization problem is to find the shortest path.

Perfect Matching (PM): The dataset consists of (z, x∗)
pairs where the input z is a grey-scale image consisting of
MNIST digits on a k × k grid. The output x∗ is a matching
for each digit to one of its neighbors on the grid. The model
predicts the edge-weights between each pair of neighbouring
digits. Given these edge-weights, the optimization problem
is to find a matching that has the minimal cumulative weight
of the selected edges.

1The code is available here

8

https://github.com/Saurabh-29/Inverse_Optimization_To_Feasibility_To_ERM

From Inverse Optimization to Feasibility to ERM

Figure 3: Estimate loss: training and test plots for real-
world experiments. Our method significantly outperforms
existing methods (ST, BB, MOM) and is comparable to
SPO+, which uses the knowledge of c∗.

Both datasets consist of 10000 training samples, 1000 val-
idation samples and 1000 test samples each. For both SP
and PM, we use Resnet-18 (He et al., 2016) followed by
a softplus function s(x) = log(1 + exp (x)) to ensure the
predicted cost is non-negative. Please refer to Appendix D
for additional details about the model and datasets.

Methods: We compare the proposed method against sev-
eral existing methods, including ST (Sahoo et al., 2022),
MOM (Sun et al., 2023), BB (Vlastelica et al., 2019), QPTL
Wilder et al. (2019) and SPO+ (Bertsimas & Kallus, 2020).
We use adaptive first-order methods: AdaGrad (Duchi
et al., 2011) and Adam (Kingma & Ba, 2014) to mini-
mize the loss in Eq. (7) for our method and the corre-
sponding losses for the other baselines. We train all the
methods for 50 epochs with a batch size of 100. We
employ a grid search to find the best constant step size
in {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005},
across both the Adam and Adagrad optimizers. The opti-
mal settings are determined based on performance on the
validation set. For optimal settings, we consider 5 indepen-
dent runs and plot the average result and standard deviation.
Following Sun et al. (2023), we set χ = 1 for all our ex-
periments. In Appendix D.4, we also provide an ablation
study varying χ in Table 1 and show that the algorithm is
robust to χ. We note that the QPTL approach is excluded
from real-world experiments as it is prohibitively slow for
large problems (Amos & Kolter, 2017; Geng et al., 2023).
For all the methods, we implement the LPs and QPs using
the CVXPY library (Diamond & Boyd, 2016). For LPs, we

use the ECOS solver (Domahidi et al., 2013), and for QPs,
we use the OSQP solver (Stellato et al., 2020).

Metrics: For each method, we plot the standard metrics:
estimate-loss and decision-loss on both the train and test set,
defined as:

Estimate-Loss(θ) =
N∑
i=1

⟨c∗i , x̂(fθ(zi))⟩ − ⟨c∗i , x∗i ⟩ (16)

Decision-Loss(θ) =
N∑
i=1

∥x̂(fθ(zi))− x∗i ∥2 (17)

Since all the datasets consist of (zi, c
∗
i , x

∗
i) pairs where

x∗i = x̂(c∗i), the estimate-loss and decision-loss are com-
monly used to measure performance in these tasks2. We note
that SPO+ requires access to the ground-truth cost-vector
c∗, while other methods, including ours, do not. Though
the MOM method does not require access to c∗ in prin-
ciple, the paper’s implementation3 uses this ground-truth
information to calculate the basis and use the LP optimality
conditions. We continue using this information for MOM,
thereby overestimating its performance.

Results: In Fig. 2 w.r.t to the decision-loss, our method
consistently outperforms the baselines by a considerable
margin across tasks. In Fig. 3, w.r.t to the estimate-loss, our
method outperforms all the baselines except for SPO+ on
the SP problem. In Appendix D.3, we plot the wall-clock
time/epoch for all the methods, and observe that our method
is comparable to the baselines and scales gracefully as the
dimension and the number of training examples increase.
These results demonstrate the strong empirical performance
of our method compared to other baselines.

8. Discussion
We presented a reduction of CIO to convex feasibility, which
enabled us to guarantee linear convergence to the solution
without additional assumptions such as degeneracy or inter-
polation. We further reduced it to ERM on a smooth, convex
loss that satisfies the PL condition. This enabled us to use
first-order optimizers and demonstrate strong empirical per-
formance on real-world tasks while being computationally
efficient. For future work, we aim to address the following
areas: (1) since solving the QP takes a substantial amount
of time, we plan to incorporate techniques from Lavington
et al. (2023) to allow for multiple updates to the model for
every solve of the QP, (2) we intend to extend our frame-
work to accommodate unknown constraints, broadening its
applicability (3) finally, we aim to experiment with general
non-linear convex objectives.

2Experimentally, we found that the sub-optimality in Eq. (15)
has a similar trend as the estimate-loss.

3See MOM code

9

https://github.com/liushangnoname/Maximum-Optimality-Margin

From Inverse Optimization to Feasibility to ERM

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgements
We would like to thank Michael Lu, Anh Dang, Reza Ba-
banezhad, Vibhuti Dhingra, Tarannum Khan, Karan Desai,
Ashwin Samudre and Hardik Chauhan for helpful feed-
back on the paper. This research was partially supported
by the Natural Sciences and Engineering Research Council
of Canada (NSERC) Discovery Grant RGPIN-2022-04816.
Anant Raj is supported by the a Marie SklodowskaCurie
Fellowship (project NN-OVEROPT 101030817).

References
Amos, B. Differentiable optimization-based modeling for

machine learning. Ph. D. thesis, 2019. (cited on 3)

Amos, B. and Kolter, J. Z. Optnet: Differentiable opti-
mization as a layer in neural networks. In International
Conference on Machine Learning, pp. 136–145. PMLR,
2017. (cited on 3, 9)

Angalakudati, M., Balwani, S., Calzada, J., Chatterjee, B.,
Perakis, G., Raad, N., and Uichanco, J. Business analytics
for flexible resource allocation under random emergen-
cies. Management Science, 60:1552–1573, 2014. (cited
on 1)

Armijo, L. Minimization of functions having Lipschitz
continuous first partial derivatives. Pacific Journal of
Mathematics, 16(1):1 – 3, 1966. (cited on 21)

Bansal, R. Optimization methods for electric power systems:
An overview. International Journal of Emerging Electric
Power Systems, 2, 2005. (cited on 1)

Bassily, R., Belkin, M., and Ma, S. On exponential conver-
gence of sgd in non-convex over-parametrized learning.
arXiv preprint arXiv:1811.02564, 2018. (cited on 7)

Bauschke, H. H. and Borwein, J. M. On the convergence of
von neumann’s alternating projection algorithm for two
sets. Set-Valued Analysis, 1:185–212, 1993. (cited on 4)

Bauschke, H. H. and Borwein, J. M. On projection algo-
rithms for solving convex feasibility problems. SIAM
review, 38(3):367–426, 1996. (cited on 4)

Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-
P., and Bach, F. Learning with differentiable pertubed
optimizers. Advances in neural information processing
systems, 33:9508–9519, 2020. (cited on 3)

Bertsimas, D. and Kallus, N. From predictive to prescriptive
analytics. Management Science, 66:1025–1044, 2020.
(cited on 9)

Bertsimas, D., Gupta, V., and Paschalidis, I. C. Data-
driven estimation in equilibrium using inverse optimiza-
tion. Mathematical Programming, 153:595–633, 2015.
(cited on 1)

Besbes, O., Fonseca, Y., and Lobel, I. Contextual inverse
optimization: Offline and online learning. Operations
Research, 2023. (cited on 1, 2)

Birge, J. R., Hortaçsu, A., and Pavlin, J. M. Inverse opti-
mization for the recovery of market structure from market
outcomes: An application to the miso electricity market.
Operations Research, 65(4):837–855, 2017. (cited on 1)

Bousquet, O. and Elisseeff, A. Stability and generalization.
The Journal of Machine Learning Research, 2:499–526,
2002. (cited on 7)

Boyd, S. P. and Vandenberghe, L. Convex optimization.
Cambridge university press, 2004. (cited on 17)

Boyd, S. P., Lee, T. H., et al. Optimal design of a cmos op-
amp via geometric programming. IEEE Transactions on
Computer-aided design of integrated circuits and systems,
20:1–21, 2001. (cited on 1)

Cameron, C., Hartford, J., Lundy, T., and Leyton-Brown,
K. The perils of learning before optimizing. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 3708–3715, 2022. (cited on 3)

Chan, T. C., Eberg, M., Forster, K., Holloway, C., Ieraci,
L., Shalaby, Y., and Yousefi, N. An inverse optimiza-
tion approach to measuring clinical pathway concordance.
Management Science, 68(3):1882–1903, 2022. (cited on
1)

Chan, T. C., Mahmood, R., and Zhu, I. Y. Inverse opti-
mization: Theory and applications. Operations Research,
2023. (cited on 1)

Cornuejols, G. and Tütüncü, R. Optimization methods in
finance, volume 5. Cambridge University Press, 2006.
(cited on 1)

Deutsch, F. Rate of convergence of the method of alternating
projections. Parametric optimization and approximation
(Oberwolfach, 1983), 72:96–107, 1984. (cited on 4)

Diamond, S. and Boyd, S. Cvxpy: A python-embedded
modeling language for convex optimization. The Jour-
nal of Machine Learning Research, 17:2909–2913, 2016.
(cited on 9)

10

From Inverse Optimization to Feasibility to ERM

Domahidi, A., Chu, E., and Boyd, S. Ecos: An socp solver
for embedded systems. In 2013 European control con-
ference (ECC), pp. 3071–3076. IEEE, 2013. (cited on
9)

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011. (cited
on 6, 9)

El Balghiti, O., Elmachtoub, A. N., Grigas, P., and Tewari,
A. Generalization bounds in the predict-then-optimize
framework. Advances in neural information processing
systems, 32, 2019. (cited on 5)

Elmachtoub, A. N. and Grigas, P. Smart “predict, then opti-
mize”. Management Science, 68(1):9–26, 2022. (cited
on 3, 8, 21)

Fabozzi, F. J., Markowitz, H. M., and Gupta, F. Portfolio
selection. Handbook of finance, 2, 2008. (cited on 5)

Garrigos, G. Square distance functions are polyak-
{\L} ojasiewicz and vice-versa. arXiv preprint
arXiv:2301.10332, 2023. (cited on 6)

Geng, H., Ruan, H., Wang, R., Li, Y., Wang, Y., Chen,
L., and Yan, J. Rethinking and benchmarking predict-
then-optimize paradigm for combinatorial optimization
problems. arXiv preprint arXiv:2311.07633, 2023. (cited
on 9)

Gower, R., Sebbouh, O., and Loizou, N. Sgd for structured
nonconvex functions: Learning rates, minibatching and
interpolation. In International Conference on Artificial
Intelligence and Statistics, pp. 1315–1323. PMLR, 2021.
(cited on 7)

Guyomarch, J. Warcraft ii open-source map editor. URL
http://github. com/war2/war2edit, 2017. (cited on 2)

Hardt, M., Recht, B., and Singer, Y. Train faster, generalize
better: Stability of stochastic gradient descent. In Inter-
national conference on machine learning, pp. 1225–1234.
PMLR, 2016. (cited on 7)

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016. (cited on 9)

Heuberger, C. Inverse combinatorial optimization: A survey
on problems, methods, and results. Journal of combina-
torial optimization, 8:329–361, 2004. (cited on 1)

Iyengar, G. and Kang, W. Inverse conic programming with
applications. Operations Research Letters, 33(3):319–
330, 2005. (cited on 2, 5)

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the polyak-łojasiewicz condition. In Machine Learn-
ing and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2016, Riva del Garda, Italy,
September 19-23, 2016, Proceedings, Part I 16, pp. 795–
811. Springer, 2016. (cited on 6, 7)

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization. arXiv preprint arXiv:1412.6980, 2014. (cited
on 6, 9)

Kuhn, H. W. and Tucker, A. W. Nonlinear programming,
paper presented at proceedings of the second berkeley
symposium on mathematical statistics and probability,
1951. (cited on 4)

Lavington, J. W., Vaswani, S., Babanezhad, R., Schmidt, M.,
and Roux, N. L. Target-based surrogates for stochastic
optimization. arXiv preprint arXiv:2302.02607, 2023.
(cited on 9)

Lei, Y. and Ying, Y. Fine-grained analysis of stability and
generalization for stochastic gradient descent. In Interna-
tional Conference on Machine Learning, pp. 5809–5819.
PMLR, 2020. (cited on 7)

Lei, Y. and Ying, Y. Sharper generalization bounds for
learning with gradient-dominated objective functions. In
International Conference on Learning Representations,
2021. (cited on 7)

Li, B., Wu, G., He, Y., Fan, M., and Pedrycz, W. An
overview and experimental study of learning-based op-
timization algorithms for the vehicle routing problem.
IEEE/CAA Journal of Automatica Sinica, 9:1115–1138,
2022. (cited on 1)

Li, J., Liu, F., Wang, Z., Low, S. H., and Mei, S. Optimal
power flow in stand-alone dc microgrids. IEEE Transac-
tions on Power Systems, 33:5496–5506, 2018. (cited on
1)

Liu, C., Zhu, L., and Belkin, M. Loss landscapes and opti-
mization in over-parameterized non-linear systems and
neural networks. Applied and Computational Harmonic
Analysis, 59:85–116, 2022. (cited on 7)

Liu, C., Drusvyatskiy, D., Belkin, M., Davis, D., and Ma,
Y.-A. Aiming towards the minimizers: fast convergence
of sgd for overparametrized problems. arXiv preprint
arXiv:2306.02601, 2023. (cited on 7)

Luenberger, D. G., Ye, Y., et al. Linear and nonlinear
programming, volume 2. Springer, 1984. (cited on 2, 5,
20)

11

From Inverse Optimization to Feasibility to ERM

Ma, S., Bassily, R., and Belkin, M. The power of interpo-
lation: Understanding the effectiveness of sgd in mod-
ern over-parametrized learning. In International Confer-
ence on Machine Learning, pp. 3325–3334. PMLR, 2018.
(cited on 7)

Mohajerin Esfahani, P., Shafieezadeh-Abadeh, S., Hana-
susanto, G. A., and Kuhn, D. Data-driven inverse op-
timization with imperfect information. Mathematical
Programming, 167:191–234, 2018. (cited on 1, 2)

Ng, A. Y., Russell, S., et al. Algorithms for inverse rein-
forcement learning. In Icml, volume 1, pp. 2, 2000. (cited
on 2)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019. (cited on 3)

Polyak, B. T. Gradient methods for solving equations and in-
equalities. USSR Computational Mathematics and Math-
ematical Physics, 4(6):17–32, 1964. (cited on 2, 6)

Raj, A. and Bach, F. Explicit regularization of stochas-
tic gradient methods through duality. In International
Conference on Artificial Intelligence and Statistics, pp.
1882–1890. PMLR, 2021. (cited on 7)

Raja, P. and Pugazhenthi, S. Optimal path planning of mo-
bile robots: A review. International journal of physical
sciences, 7:1314–1320, 2012. (cited on 1)

Robbins, H. and Monro, S. A stochastic approximation
method. The annals of mathematical statistics, pp. 400–
407, 1951. (cited on 6)

Sahoo, S. S., Paulus, A., Vlastelica, M., Musil, V., Kuleshov,
V., and Martius, G. Backpropagation through combina-
torial algorithms: Identity with projection works. arXiv
preprint arXiv:2205.15213, 2022. (cited on 3, 9, 21)

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and
Boyd, S. Osqp: An operator splitting solver for quadratic
programs. Mathematical Programming Computation, 12
(4):637–672, 2020. (cited on 9)

Sun, C., Liu, S., and Li, X. Maximum optimality mar-
gin: A unified approach for contextual linear program-
ming and inverse linear programming. arXiv preprint
arXiv:2301.11260, 2023. (cited on 1, 2, 5, 8, 9, 14, 15,
21)

Vaswani, S., Bach, F., and Schmidt, M. Fast and faster
convergence of sgd for over-parameterized models and
an accelerated perceptron. In The 22nd international
conference on artificial intelligence and statistics, pp.
1195–1204. PMLR, 2019. (cited on 7)

Vlastelica, M., Paulus, A., Musil, V., Martius, G., and
Rolínek, M. Differentiation of blackbox combinatorial
solvers. arXiv preprint arXiv:1912.02175, 2019. (cited
on 2, 3, 8, 9, 21, 22, 23)

Von Neumann, J. On rings of operators. reduction theory.
Annals of Mathematics, pp. 401–485, 1949. (cited on 4)

Wahdany, D., Schmitt, C., and Cremer, J. L. More than ac-
curacy: end-to-end wind power forecasting that optimises
the energy system. Electric Power Systems Research, 221:
109384, 2023. (cited on 1)

Wilder, B., Dilkina, B., and Tambe, M. Melding the data-
decisions pipeline: Decision-focused learning for combi-
natorial optimization. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pp. 1658–1665,
2019. (cited on 2, 3, 9, 21)

Zhang, H. and Yin, W. Gradient methods for convex min-
imization: better rates under weaker conditions. arXiv
preprint arXiv:1303.4645, 2013. (cited on 6)

12

From Inverse Optimization to Feasibility to ERM

Supplementary material

Organization of the Appendix
A Definitions

B Theoretical Results

C Synthetic Experimental Results

D Additional Real-world Experiment Details

A. Definitions
If the function f is differentiable and L-smooth, then for all v and w,

f(v) ≤ f(w) + ⟨∇f(w), v − w⟩+ L

2
∥v − w∥2 , (Smoothness)

If f is convex, then for all v and w,

f(v) ≥ f(w) + ⟨∇f(w), v − w⟩, (Convexity)

If f is µ strongly-convex, then for all v and w,

f(v) ≥ f(w) + ⟨∇f(w), v − w⟩+ µ

2
∥v − w∥2 (Strong Convexity)

B. Theoretical Results
B.1. Generalizing our method to other classes of optimization problem:

In this section, we relax our assumption on the class of problem from LP to non-linear convex optimization objectives
and constraints. We specify the condition on the objective for our reduction to hold; there is no extra condition (apart
from convexity) on optimization constraints for reduction to hold. Similar to Section 4.1, we consider a single data-point
(z, x∗) ∈ D with |D|= N , where z ∈ Rd, x∗ ∈ Rm we aim to find a c ∈ Rp such that x̂(c) = x∗. Consider a non-linear
convex optimization problem defined as :

x̂(c) = argmin
x

ϕ(x, c)

subject to G(x) = 0

H(x) ≤ 0

(18)

whereG(x), H(x) consist of k, l convex constraints respectively and, ϕ(x, c), Gi(x), Hi(x) are (non-linear) convex function
with respect to parameter x.

Assumptions: For this reduction to hold, the condition we have is ∂ϕ(c,x)
∂x |x=x∗ should be convex. Example: For LPs, the

condition ∂<c,x>
∂x |x=x∗ simplifies to c which is convex in c.

Writing the KKT optimality conditions for Eq. (18), we get:

∂ϕ(x, c)

∂x
+
ν · ∂G(x)

∂x
+
λ · ∂H(x)

∂x
∈ 0 (stationary condition)

λ ≥ 0 (dual feasibility)
λ ·H(x) = 0 (complementary slackness)

G(x) = 0 (primal feasibility)
H(x) ≤ 0 (primal feasibility)

13

From Inverse Optimization to Feasibility to ERM

where λ ∈ Rl, ν ∈ Rk are referred to as the dual-variables. The equations, G(x) = 0, H(x) ≤ 0 come from problem
definition. The first term is derived by differentiating the Lagrangian. The term λ ·H(x) = 0 represents the complementary
slackness condition.

Morever, after substituing the value of x∗ in Eq. (primal feasibility), we get:

∂ϕ(x, c)

∂x

∣∣∣
x=x∗

+
ν · ∂G(x)

∂x

∣∣∣
x=x∗

+
λ · ∂H(x)

∂x

∣∣∣
x=x∗

∈ 0

λ ≥ 0

λ ·H(x∗) = 0

(19)

Now, for a given optimal decision x∗, H(x∗), G(x∗) are inherently satisfied. Thus, we omit them from the Eq. (19). The
term ∂G(x)

∂x |x=x∗ represents gradient of G(x) taken w.r.t x and evaluated at x∗.

From our assumption, ∂ϕ(x,c)
∂x

∣∣
x=x∗ is convex in c and as λ, ν are multiplied with constants. Thus the Eq. (19) is convex in

c, λ, ν.

Therefore, the feasible set C encompassing all the values of c s.t. x̂(c) = x∗ can be written as:

C =
{
c | ∃λ, ν s.t.

∂ϕ(x, c)

∂x

∣∣∣
x=x∗

+
ν · ∂G(x)

∂x

∣∣∣
x=x∗

+
λ · ∂H(x)

∂x

∣∣∣
x=x∗

∈ 0, λ ≥ 0, λ ·H(x∗) = 0
}

(20)

Moreover, the projection of point ĉ onto set C can be attained by solving the below QP:

q(ĉ) = argmin
c

∥c− ĉ∥2 (21)

subject to
∂ϕ(x, c)

∂x

∣∣∣
x=x∗

+
ν · ∂G(x)

∂x

∣∣∣
x=x∗

+
λ · ∂H(x)

∂x

∣∣∣
x=x∗

∈ 0 (22)

λ ≥ 0 (23)
λ ·H(x∗) = 0 (24)

Thus, our framework can be used for a non-linear convex class of functions where the first-order KKT conditions are
both sufficient and necessary and ∂ϕ(x,c)

∂x |x=x∗ is convex in c. Moreover, we do not assume any additional condition on
constraints G,H apart from convexity.

B.2. Equivalence between margin in KKT formulation and (Sun et al., 2023)

In this section, we derive the equivalent margin for the KKT formulation as in Sun et al. (2023). We further show that our
margin formulation can be extended to the degenerate LPs. Additionally, our margin formulation does not require specific
handling in the case of degenerate/non-degenerate cases.

First, we will derive the same margin formulation as in (Sun et al., 2023) for non-degenerate LPs in terms of KKT conditions.

In the case of non-degenerate LP, we denote B as the basis set defined as B := {j | x∗j > 0} and M as the set of indices not
in B, i.e. M = [n]−B. AB represents the columns corresponding to the indices in set B, is invertible by definition. The
reduced cost is given as cM − cB(AB)

−1AM ≥ 0 from LP optimality conditions. And to add margin χ in the reduced cost
optimality conditions, (Sun et al., 2023) proposed the following modification: cM − cB(AB)

−1AM ≥ χ.

Recall the the KKT conditions for LP:

νTA− c+ λ = 0 (25)
λ ≥ 0 (26)

λ · x∗ = 0 (27)

From KKT conditions, we have the condition νTA− c+ λ = 0. Separating it row-wise for index B,M respectively for

14

From Inverse Optimization to Feasibility to ERM

matrix A , we get:

νTAB − cB + λB = 0 (28)

νTAM − cM + λM = 0 (29)

where AB , AM are the the corresponding columns of matrix A defined by set B and M respectively.

Now, from Eq. (27), we have λ · x∗ = 0. For non-degenerate LPs, we have xB > 0; this implies that λB = 0. Substituting
this value in Eq. (28), we get:

νT = cB(AB)
−1 (substituting λB = 0)

λM = cM − νTAM (rearranging Eq. (29))

λM = cM − cB(AB)
−1AM (30)

From Eq. (26), we have λ ≥ 0 that implies λM ≥ 0. Thus, in Eq. (30), we retrieve the reduced cost optimality condition
from KKT formulation. Therefore, the equivalent of cM − cB(AB)

−1AM ≥ χ to the KKT formulation would be to impose
the same constraint on λM , i.e. λM ≥ χ.

B.2.1. EXTENSION TO DEGENERATE CASE:

In the case of degenerate LPs, ∃i ∈ B s.t. xi = 0. Moreover, the set B is no longer unique. Our experiments found that a
choice of B affects the results in (Sun et al., 2023).

Here, let us define a separate set of basis Bd,Md as: Bd := {i | x∗i > 0}, Md := {i | x∗i = 0}. Note that Bd,Md differ
from the standard definition of basis in LPs.

For the degenerate case, we propose the following modification for margin, λMd
≥ χ. This can be written as:

∀i ∈ [n]; λiI{x∗i = 0} ≥ χ (31)

Note that margin modification in Eq. (31) is exactly the same as in the non-degenerate case. Thus, unifying the margin
formulation for the degenerate and non-degenerate LPs. Moreover, this also resolves the problem of determining the basis
for degenerate LPs.

B.3. Proof of Proposition 5.2

Proposition 5.2. For a linear model fθ(z) = zθ parameterized by θ ∈ Rd×m, assuming (without loss of generality) that ∀i,
∥zi∥ ≤ 1, h(θ) is a 1-smooth convex function.

To prove that the loss function h(θ) is a smooth, convex function for a linear model, we define ζi(θ) such that,

h(θ) =
1

N

N∑
i=1

ζi(θ) where ζi(θ) :=
1

2
min
q∈Ci

∥ziθ − q∥2 =
1

2
d2(ziθ, Ci) , (32)

where d2(ziθ, Ci) represents squared Euclidean distance of a point ziθ from set Ci and Ci represents the set of feasible cost
vectors (defined in Eq. (1)) for corresponding solution x∗i .

We will prove that for an arbitrary z, ζ(θ) := 1
2 minq∈C ∥zθ − q∥2 is 1-smooth and convex. This will prove the desired

statement since the mean of 1-smooth convex functions is 1-smooth and convex.

For this, we define

ψ(θ) := min
c∈C

∥zθ − c∥ = d(zθ, C) , (33)

where d(zθ, C) represents Euclidean distance of a point zθ from set C and C represents the set of feasible cost vectors
(defined in Eq. (1)) for corresponding solution x∗. We will first prove that ψ(θ) is 1-Lipschitz and convex and use that to
prove the smoothness and convexity of ζ(θ).

15

From Inverse Optimization to Feasibility to ERM

Lemma B.1. For ∥z∥ ≤ 1, loss ψ(θ) is 1-Lipschitz.

Proof. : We first prove that the projection of a point onto a closed convex set C is non-expansive. Consider two arbitrary
points x, y ∈ Rd for this. Now, for a point p ∈ C s.t. p is the projection of y on C, we know that d(y, C) = d(y, p) and
d(x,C) ≤ d(x, p).

d(x,C) ≤ d(x, p) ≤ d(x, y) + d(y, p) = d(x, y) + d(y, C) (Triangle inequality)
=⇒ d(x,C)− d(y, C) ≤ d(x, y) (34)

Similarly, now consider point q ∈ C s.t. q is the projection of x on C, we know d(x,C) = d(x, q) and d(y, C) ≤ d(y, q).
For the same reason,

d(y, C) ≤ d(y, q) ≤ d(y, x) + d(x,C) = d(y, x) + d(x,C) (35)
=⇒ d(y, C)− d(x,C) ≤ d(x, y) (36)

As, d(y, x) = d(x, y), from Eq. (34), Eq. (36), we get |d(y, C)− d(x,C)| ≤ d(x, y) = ∥x− y∥. Thus, the projection to a
convex closed set C is non-expansive.

Now consider two points θ1, θ2 for function ψ,

∥ψ(θ1)− ψ(θ2)∥ = ∥d(zθ1, C)− d(zθ2, C)∥ (By definition of ψ)
≤ d(zθ1, zθ2) (From the above relation)
= ∥zθ1 − zθ2∥ (37)
≤ ∥z∥∥θ1 − θ2∥ (Cauchy-Schwartz)
≤ 1∥θ1 − θ2∥ (Since ∥z∥ ≤ 1 by assumption)

Lemma B.2. Loss function ψ(θ) is convex.

Proof. Consider two parameter values θ1, θ2 and let the projection of zθ1, zθ2 on C be c1, c2 respectively. Additionally,
consider θ3 to be the convex combination of θ1, θ2 i.e. θ3 := λθ1 + (1− λ)θ2 for a arbitrary λ ∈ (0, 1).

Now, we can write:

λψ(θ1) + (1− λ)ψ(θ2) = λ∥zθ1 − c1∥+ (1− λ)∥zθ2 − c2∥ (38)
≥ ∥λ(zθ1 − c1) + (1− λ)(zθ2 − c2)∥ (Triangle Inequality)
= ∥λ zθ1 + (1− λ) zθ2 − λc1 − (1− λ)c2∥ (39)
= ∥λzθ1 + (1− λ)zθ2 − c∥ (c := λc1 + (1− λ)c2)
= ∥zθ3 − c∥ (By definition of θ3)
= d(zθ3, c) ≥ d(zθ3, C) (Since C is convex, c ∈ C)
= ψ(θ3) (By definition of ψ)

=⇒ λψ(θ1) + (1− λ)ψ(θ2) ≥ ψ(θ3) (40)
=⇒ λψ(θ1) + (1− λ)ψ(θ2) ≥ ψ(λθ1 + (1− λ)θ2) (41)

Thus, the function ψ is convex from the definition of convexity.

16

From Inverse Optimization to Feasibility to ERM

Lemma B.3. For ∥z∥ ≤ 1, loss ζ(θ) is 1-smooth.

Proof. Consider two parameter values θ1, θ2 and lets denote the projection of zθ1 and zθ2 on C as c1 and c2 respectively.

∥∇ζ(θ1)−∇ζ(θ2)∥ =

∥∥∥∥∇(1

2
∥zθ1 − c1∥2

)
−∇

(
1

2
∥zθ2 − c2∥2

)∥∥∥∥ (By definition of ζ)

= ∥zT (zθ1 − c1)− zT (zθ2 − c2)∥ (42)
≤ ∥z∥∥d(zθ1, C)− d(zθ2, C)∥ (Cauchy Schwarz)
≤ ∥ψ(θ1)− ψ(θ2)∥ (Since ∥z∥ ≤ 1 by assumption and by definition of ψ)
≤ ∥θ1 − θ2∥ (Lemma B.1)

Thus, the function ζ(θ) is 1-smooth.

Lemma B.4. Loss ζ(θ) is convex.

Proof. Consider a function g(x) = 1
2x

2 and note that ζ(θ) = g(ψ(θ)). From Lemma B.2, we know that ψ is convex. g(x)
is non-decreasing for x ∈ {R+ ∪ 0} and ψ(θ) is always non-negative. The composition of two functions is convex if g is
non-decreasing and ψ is convex (Boyd & Vandenberghe, 2004). Thus, the composite function ζ is convex.

B.4. Proof for Proposition 5.1

Proposition 5.1. Point ĉ := (c1, c2, . . . , cN) where ci = ziθ̃ and θ̃ ∈ argminh(θ) lies in the intersection C ∩ F if it exists,
else ĉ ∈ F is the point closest to C.

Proof. Loss h(θ) is defined as:

h(θ) =
1

2N

N∑
i=1

min
qi∈Ci

∥fθ(zi)− qi∥2 (43)

where Ci represents the set of feasible cost vectors (defined in Eq. (1)) for data-point i. We assume fθ is a linear model for
this proof for which the function h(θ) is convex.

In order to better interpret h(θ), consider a point cθ = (c1, c2, . . . , cN) ∈ RNm such that ci = fθ(zi). Since cθ ∈ F ,
h(θ) = d2(cθ,C)

N where d2(w,W) is the squared Euclidean distance of point w to the set W . Hence, minimizing h(θ) is
related to minimizing the distance between the sets F and C.

Consequently, our loss can be reformulated as:

h(θ) =
1

2N
d(cθ, C)2 (44)

Let us denote θ̃ ∈ argminh(θ) and the predicted point as ĉ := Z θ̃ ∈ F . Therefore, h(θ̃) = 1
2N d(ĉ, C)

2.

We can prove the proposition by contradiction. Assume, ĉ := Z θ̃ ∈ F and is not the closest point to set C. Conversely,
assume the closest point to the set C in F is given by Z θp. Now, the loss h(θp) = 1

2N d(Zθp, C)
2 and since, Zθp is the

closest point in the set C in F , this means, that θp is also the argmin of h(θ). As θ̃ is also the argmin, this implies that
h(θ̃) = h(θp), Thus, d(Zθ̃, C) = d(Zθp, C). This implies that minimizing h(θ) leads to convergence to a point ĉ = Zθ̃,
which is the closest distance to C. In the case where an intersection exists, the closest distance to C = 0; therefore, it
converges in F ∩ C.

17

From Inverse Optimization to Feasibility to ERM

B.5. Proof of Proposition 5.4

Proposition 5.4. For a linear model fθ(z) = zθ, the iterates corresponding to the preconditioned gradient method on h(θ)
with η = 1 are identical to Algorithm 1.

Proof. Consider iteration t, and the current value of model parameters at iteration t is denoted by θt. Let us denote the
updated parameter at time t+ 1 as θt+1(POCS) and θt+1(ERM) for POCS update and first order pre-conditioned update on
h(θ) respectively.

Let qt = PC(Zθt) denote the projection of Zθt.

In POCS, the θt+1 = argminθ
1

2N ∥Zθ − qt∥2. Solving it exactly gives the projection of qt onto the set F , which can be
written as:

PF (qt) = Zθt+1 s.t. θt+1 = (ZTZ)−1ZT qt (45)

Thus, θt+1(POCS) = (ZTZ)−1ZT qt

Considering first order update for function h(θ) with step-size η and pre-conditioner
[
ZTZ
N

]−1

can be written as:

θt+1 = θt − η

[
ZTZ

N

]−1

∇h(θt) (from definition of preconditioner update)

where, ∇h(θt) = 1
NZ

T (Zθt − qt).

Now, putting the values back in preconditioned update, we get the following:

θt+1 = θt − η[ZTZ]−1(ZT (Zθt − qt)) (46)

= θt(1− η) + [ZTZ]−1ZT qt (47)

= (ZTZ)−1ZT qt (for η = 1)

Thus, θt+1(ERM) = (ZTZ)−1ZT qt. Therefore, we can see that iterates produced by POCS is equivalent to 1-step of
preconditioned gradient update with η = 1.

B.6. Proof for Proposition 5.3

Proposition 5.3. For a linear model fθ(z) = zθ and assuming (i) (without loss of generality) that ∀i, ∥zi∥ ≤ 1 and (ii)

λmin[Z
TZ] > 0, h(θ) is not necessarily strongly-convex but satisfies the PL inequality with µ = λmin

[∑N
i=1 ziz

⊤
i

N

]
.

We prove that h(θ) is not necessarily a strongly convex function by contradiction. Let us assume that h(θ) is α-strongly
convex function with α > 0. From the definition of α-strong convexity, h(θ) must satisfy this following inequality for all
θ1, θ2.

Figure 4: In this figure, we can see two point x, y and their projection onto a linear boundary of set C denoted as x1, y1
respectively. Moreover, the angle between x, y and x, x1 is the right angle; thus, the two vectors are orthogonal.

18

From Inverse Optimization to Feasibility to ERM

h(θ1) ≥ h(θ2) + (∇h(θ2))T (θ1 − θ2) +
α

2
∥θ1 − θ2∥2 (48)

Consider a special case where N = 1 point and m = d = 1 and z = 1. Let y = zθ1 = θ1 and x = zθ2 = θ2. Consider C
as an affine set and two points (x, y) equidistant from C. Define x1, y1 to be the projection of x and y onto C respectively
(refer to Fig. 4 above).

Since x and y are equidistant from C, ∥x− x1∥ = ∥y − y1∥. Moreover, since x and y are on the same side of C, vector
x− y is orthogonal vector x− x1. Hence, ⟨y − x, x− x1⟩ = 0. Substituting these values in Eq. (48), we get:

1

2
∥y − y1∥2 ≥ 1

2
∥x− x1∥2 + ⟨x− x1, y − x⟩+ α

2
∥x− y∥2 (49)

0 ≥ α

2
∥x− y∥2 (50)

=⇒ α = 0 (51)

As α = 0 therefore the function h(θ) is not strongly convex for this case when C is an affine set. However, we can show that
function h(θ) satisfies the PL inequality with µ = λmin[Z

TZ]
N . Recall, h(θ) is defined as 1

2N ∥Zθ − q∥2 where q = PC(Zθ)
is projection of Zθ on C. Hence, ∇h(θ) = 1

NZ
T [Zθ − q].

∥∇h(θ)∥2 =
1

N2

∥∥ZT [Zθ − q]
∥∥2 (By definition of ∇h(θ))

≥ 1

N2
σ2
min(Z

T) ∥[Zθ − q]∥2 (∥Ax∥ ≥ σmin(A) ∥x∥)

=
1

N2
λmin(Z

TZ) ∥[Zθ − q]∥2 (using σ2
min(Z

T) = λmin(Z
TZ))

=
2

N
λmin(Z

TZ)h(θ) (By definition of h)

≥ 2

N
λmin(Z

TZ)[h(θ)− h(θ∗)] (Since h is non-negative)

=
2

N
λmin

(
N∑
i=1

ziz
⊤
i

)
[h(θ)− h(θ∗)] (replacing ZTZ as

∑N
i=1 ziz

⊤
i)

= 2µ [h(θ)− h(θ∗)] (For µ = λmin

[∑N
i=1 ziz

⊤
i

N

]
)

Hence, h(θ) is µ-PL.

19

From Inverse Optimization to Feasibility to ERM

B.7. Sub-optimality proofs

Proposition 6.4. For cθ ∈ Rm := fθ(z), assuming that ∀j ∈ [m], [x̂(cθ)]j , x
∗
j ∈ [0, 1], Γ(θ, (z, x∗)) ≤

√
2mh(θ)

δ where
δ := O(χ/

√
m), χ is the margin and the O notation hides constants that depend on the LP.

Proof.

Γ(θ, (z, x∗)) =

〈
PC(cθ)

∥PC(cθ)∥
, x̂(cθ)− x∗

〉
(By definition)

≤
〈
PC(cθ)

δ
, x̂(cθ)− x∗

〉
(Since by Lemma B.5, ∥PC(cθ)∥ ≥ δ)

≤ ⟨PC(cθ)

δ
, x̂(cθ)− x∗⟩+ 1

δ
⟨cθ, x∗ − x̂(cθ)⟩ (By definition of x̂(cθ), ⟨cθ, x∗⟩ ≥ ⟨cθ, x̂(cθ)⟩)

=
1

δ
⟨PC(cθ)− cθ, x̂(cθ)− x∗⟩ (rearranging terms)

≤ 1

δ
∥PC(cθ)− cθ∥∥x̂(cθ)− x∗∥ (Cauchy-Schwartz)

≤ 1

δ
∥PC(cθ)− cθ∥

√
m (From assumption that ∀j, x̂j , x∗j ∈ [0, 1])

=
1

δ

√
2h(θ)

√
m (from definition of h(θ))

=

√
2mh(θ)

δ
(52)

Next, we give the lower-bound on the term δ which depends on the margin χ defined in Section 4.3.

Lemma B.5. For c ∈ C defined using a margin χ, ∥c∥2 ≥ δ := χ√
m

maxj∈M min
{
1,minp∈B

1
|τpj |

}
.

Proof. We lower-bound ∥c∥2 for an arbitrary c ∈ C using the reduced cost optimality conditions (Luenberger et al., 1984).
For this, we denote B as the basis set defined as B := {j | x∗j > 0} and M as the set of indices not in B, i.e. M = [m]−B.
Let us define a new term τij = [(AB)

†Aj]i where AB represents the columns corresponding to the indices in set B, and
A†

B is the pseudo-inverse of the matrix AB .

To prove this proposition, we first consider two arbitrary vectors a, b ∈ Rm and show that ∥a∥1 ≥ χ
maxn

p=1 |bp| is a necessary

condition to ensure that aT b ≥ χ. We do this by contradiction: assume ∥a∥1 ≤ χ
maxm

p=1 |bp| , but aT b ≥ χ. In this case,

∥a∥1
m

max
p=1

|bp| ≤ χ =⇒ ∥a∥1 ∥b∥∞ ≤ χ

By Holders inequality, since aT b ≤ ∥a∥1 ∥b∥∞, the above inequality implies that

aT b ≤ χ ,

which is a contradiction. Since ∥a∥1 ≥ χ
maxm

p=1 |bp| , it gives us a lower-bound on ∥a∥1. Now, we can use this result to find

the lower bound on ∥c∥1.

In Appendix B.2, we have shown that KKT conditions are equivalent to reduced cost optimality conditions. We first find the
lower bound to satisfy reduced cost inequality for a specific index j ∈ [M] and then extend the result for all indices in M to
find the lower-bound on ∥c∥1.

The reduced cost for an index j ∈ M and margin χ is given by r(j) := cj − cB(AB)
†Aj . The reduced costs conditions

imply that for all j ∈M , r(j) ≥ χ. In terms of τ , these conditions imply that cj −
∑

p∈B cpτpj ≥ χ. Equivalently, for all
j ∈M , cTαj ≥ χ, where αj represents the coefficients of c in r(j).

20

From Inverse Optimization to Feasibility to ERM

Using the above result to obtain a lower-bound on ∥c∥1, we have that,

∥c∥1 ≥ χ

maxmp=1 |(αj)p|
(53)

=
χ

max{1,maxp∈B |τpj |}
(substituting the value of αj)

= χ min

{
1,min

p∈B

1

|τpj |

}
(rearranging terms)

Since we require that the reduced cost condition be satisfied for all j ∈M , we get that,

∥c∥1 ≥ χ max
j∈M

min

{
1,min

p∈B

1

|τpj |

}

Finally, we use the relation between norms to lower-bound the value of ∥c∥2.

δ := min
c∈C

∥c∥2 (54)

≥ min
c∈C

1√
m
∥c∥1 (by norm inequality)

≥ χ√
m

max
j∈M

min

{
1,min

p∈B

1

|τpj |

}
(55)

C. Synthetic Experimental Results
We conduct numerical experiments for two LP problems – the shortest path (SP) problem and the fractional Knapsack
problems considered in (Sun et al., 2023). For both SP and Knapsack, we generate 100 samples for training, validation and
test sets. We used the codebase provided by the (Sun et al., 2023) to generate the dataset.

Shortest Path (SP-synth): The Shortest Path problem is defined on a 5× 5 grid with m = 40 directed edges associated
with the ground truth cost-vector c∗ ∈ Rm. Input z ∈ Rd with d = 6. Thus, θ ∈ Rd×m. To make the problem harder, we
use the degree= 4 in the data-generation process.

Fractional Knapsack: The Fractional Knapsack problem is defined with input z ∈ Rd with d = 5. We have 10 items
with associated cost-vectors, and slack variables are added to convert the problem to standard form, making the dimension
m = 21. Thus, θ ∈ Rd×m. To make the problem harder, we use the degree= 2 in the data-generation process with the
attacking noise of attack-power= 3.0.

Methods and model: For the experiments, we compare both our variants, POCS (Algorithm 1) and ERM (Section 5)
with GD and show that they have similar performance. We compare our method against against several existing methods,
including ST (Sahoo et al., 2022), MOM (Sun et al., 2023), BB (Vlastelica et al., 2019), QPTL Wilder et al. (2019) and
SPO+ (Elmachtoub & Grigas, 2022). We train all the models in a deterministic setting employing a linear model.

Training Details For Ours (POCS), we solve the regression problem using closed-form solutions obtained through matrix
inversion. For the MOM, Ours (ERM) method, we employ the Armijo line search algorithm (Armijo, 1966) with
Gradient Descent. For the BB, ST, QPTL, and SPO+ methods, a grid search is used to find the best constant step-size in
{10, 1, 0.1, 0.01, 0.001, 0.0001}. We also did a grid search for λ, regularizer in QPTL and the perturbation weight in BB
with λ ∈ {100, 10, 1, 0.1, 0.01, 0.001}. The optimal settings are determined based on performance on the validation set,
and we plot the training and test plot for the best-performing model.

Results: In Fig. 6 w.r.t to the decision-loss, all the methods have similar performance except SPO+, BB. For Knapsack,
our method outperforms all the other baselines except SPO+. In Fig. 5, w.r.t to the estimate-loss, our method significantly
outperforms the other methods (ST, QPTL, BB, MOM) and is comparable to SPO+, which uses the knowledge of c∗.
Moreover, we can see that both our variants, POCS and ERM, have negligible performance differences.

21

From Inverse Optimization to Feasibility to ERM

Figure 5: Estimate loss Figure 6: Decision loss

Figure 7: : Training and Test plot for synthetic tasks. For both problems, our method significantly outperforms the other
methods (ST, QPTL, BB, MOM) and is comparable to SPO+, which uses the knowledge of c∗

D. Additional real-world experiment details
D.1. Warcraft shortest Path

In this section, we define the LP for the shortest path problem. Consider xij represents the edge from vertex i to vertex j.
Since all edges are bidirectional, xij is not the same as xji. s and t denote source and target vertices, respectively. Let cij be
the cost of selecting edge xij . Before initializing the LP, let N(i) be the set of vertices with an outgoing edge from vertex i,
and I(i) be the set of vertices with an incoming edge to vertex i. The LP can be written as follows:

minimize
x

cTx

subject to ∀i /∈ {s, t},
∑

j∈N(i)

xij =
∑

j∈I(i)

xji (flow conservation)

∑
j

xsj = 1 (source has one outgoing edge)

∑
j

xjt = 1 (target has one incoming edge)

x ≥ 0

In this case, the source is always in the top-left grid, and the target is in the bottom-right grid. As in the dataset, ground-truth
weights are defined on the vertex. To run it as LP defined in Eq. (56), we directly predict the weights of the edges. Given
that the ground-truth cost c∗(BB) is defined for vertex weights in the dataset, we define c∗ for the edge-weighted shortest
path as:

∀i, ∀j ∈ N(i), c∗ij = c∗i (BB) (56)

Both approaches yield the same shortest path, validating the conversion. Please see (Vlastelica et al., 2019) for more details
regarding the dataset.

D.2. Perfect Matching

In this section, we define the LP associated with the perfect matching problem. xij represents the edge from vertex i to
vertex j. N(i) represents the neighbors of vertex i. All the edges in the graph are unidirectional, i.e. xij and xji represent
the same edge. cij represent the cost of selecting the edge xij . Thus, the LP can be written as:

22

From Inverse Optimization to Feasibility to ERM

Figure 8: Warcraft SP dataset sample: The input image (left), ground truth shortest path (center), and the ground truth vertex
weights (right). The task is to learn the edge weights to retrieve the same shortest path.

minimize
c

cTx

subject to ∀i
∑

j∈N(i)

xij = 1 (each vertex should have exactly one incident edge)

x ≥ 0

Figure 9: Perfect Matching dataset sample: This figure shows the input image (left) and the corresponding min-cost perfect
matching overlayed on the input image on the right. Each input is a 12× 12 grid, with each grid containing an MNIST digit.
In Perfect Matching(PM), edges highlighted by the orange lines represent the edge selected by the solving min-cost perfect
matching optimization problem. Ground truth edge weights are inferred by reading the digits connected by the edge as a
two-digit number. The task is to predict edge weights such that we get the same PM

In our case, ground-truth edge weights are inferred by reading the digits on the two ends of the vertex as two-digit numbers.
Please see (Vlastelica et al., 2019) for more details regarding the dataset.

23

From Inverse Optimization to Feasibility to ERM

Figure 10: Training Time (in seconds) per epoch vs method for three real-world experiments. We can see that our method is
comparable to other methods and scales well with the dimension of the problem

D.3. Runtime Comparison

To benchmark the computational efficiency of our method, we plot the average training time per epoch for all methods
in Fig. 10. Our method is competitive with ST and SPO+, and faster than MOM and BB. BB requires two solver calls per
gradient evaluation, while MOM, despite not needing solver calls, involves inverting a matrix AB , which scales poorly with
dimension. As shown in the plot, our method scales well with both the problem dimension and dataset size.

D.4. Ablation study for margin

In order to verify the robustness of Algorithm 1 for varying χ, we do an ablation study varying χ from [10, 0.01] for
the synthetic datasets in the deterministic setting (refer to Appendix C for details). We train each model for 150 epochs
according to Algorithm 1 and report the mean decision error (Eq. (17)) for both the train/test data for the synthetic shortest-
path (SP) and Knapsack (K) problems. We see that increasing the margin (from 0.01 to 1) leads to small sub-optimality and
that increasing it beyond 1 does not improve the performance.

Margin Train Sp-synth Test Sp-synth Train Knapsack Test Knapsack

10 0.779 1.95 2.033 2.32
1 0.779 1.89 2.033 2.32

0.1 0.699 2.11 2.08 2.39
0.01 2.63 3.23 2.11 2.32

Table 1: Ablation results varing margin (χ) from 10 to 0.01 and their performance on train/test set for the synthetic dataset

24

	Introduction
	Related Work
	Problem Formulation
	Challenge in Gradient Estimation

	Reduction to Convex Feasibility
	Reduction
	Algorithm
	Practical considerations: Margin
	Handling non-linear optimization problems
	Challenges for solving large-scale problems

	Reduction to Empirical Risk Minimization
	Reduction
	Properties of h()
	First-order Methods

	Generalization Guarantees
	Sub-optimality

	ExperimentsThe code is available here
	Discussion
	Definitions
	Theoretical Results
	Generalizing our method to other classes of optimization problem:
	Equivalence between margin in KKT formulation and sun2023maximum
	Extension to degenerate case:

	Proof of thm:smooth-convex
	Proof for thm:convproof
	Proof of thm:pocs-pgd
	Proof for thm:pl
	Sub-optimality proofs

	Synthetic Experimental Results
	Additional real-world experiment details
	Warcraft shortest Path
	Perfect Matching
	Runtime Comparison
	Ablation study for margin

