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ABSTRACT

Text-to-image diffusion models deliver high-quality images, yet aligning them
with human preferences remains challenging. We revisit diffusion-based Direct
Preference Optimization (DPO) for these models and identify a critical pathol-
ogy: enlarging the preference margin does not necessarily improve generation
quality. In particular, the standard Diffusion-DPO objective can increase the re-
construction error of both winner and loser branches. Consequently, degrada-
tion of the less-preferred outputs can become sufficiently severe that the preferred
branch is also adversely affected even as the margin grows. To address this, we
introduce Diffusion-SDPO, a safeguarded update rule that preserves the winner
by adaptively scaling the loser gradient according to its alignment with the win-
ner gradient. A first-order analysis yields a closed-form scaling coefficient that
guarantees the error of the preferred output is non-increasing at each optimiza-
tion step. Our method is simple, model-agnostic, broadly compatible with ex-
isting DPO-style alignment frameworks and adds only marginal computational
overhead. Across standard text-to-image benchmarks, Diffusion-SDPO delivers
consistent gains over preference-learning baselines on automated preference, aes-
thetic, and prompt alignment metrics.

1 INTRODUCTION

Text-to-image diffusion models Croitoru et al. (2023) have achieved remarkable success in generat-
ing diverse and high-quality images Labs (2024); Google (2025). However, aligning these powerful
generative models with nuanced human preferences remains a critical challenge. Recent approaches
have begun to incorporate human feedback Christiano et al. (2017) into diffusion model training,
drawing inspiration from alignment techniques used in large language models. In particular, Direct
Preference Optimization (DPO) Rafailov et al. (2023) has emerged as a promising alternative to
reinforcement learning for finetuning on human preferences. DPO directly optimizes the model on
pairwise human comparisons (winner vs. loser outputs), and has been successfully adapted to text-
to-image diffusion models in methods Wallace et al. (2024); Hong et al. (2025); Zhu et al. (2025);
Li et al. (2025a;b) to improve visual appeal and prompt alignment. Despite these advances, we find
that existing DPO-based alignment of diffusion models still faces a fundamental limitation: sim-
ply maximizing the preference margin between “winner” and “loser” outputs does not necessarily
translate to better absolute generation quality of the finetuned model.

In our empirical analysis, we find that standard Diffusion-DPO Wallace et al. (2024) exhibits unsta-
ble training dynamics, and the model’s generative quality can deteriorate as training proceeds. As
illustrated in the left part of Fig. 1, we find that both the winner’s and loser’s denoising losses tend to
increase over time, even though the preference margin (Lw − Ll) becomes more negative in the in-
tended direction. This indicates that the model is widening the relative preference gap by making the
less-preferred outputs worse, rather than truly improving the preferred outputs. In other words, rela-
tive alignment comes at the expense of absolute quality. The lack of a safeguard on the winner’s loss
in existing DPO objectives leads to unstable training and potential collapse, corroborating observa-
tions in prior work Pal et al. (2024); Xiao et al. (2024); Shekhar et al. (2025) that overly aggressive
preference optimization can harm generative performance. These findings motivate the need for a
new approach to preference-based diffusion finetuning that can increase preference alignment while
preserving or improving the quality of the preferred outputs.
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Girl listening
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a headphone
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Figure 1: Training dynamics of preference losses during DPO finetuning without (left) and with
(right) our safe-λ mechanism on SD 1.5 Rombach et al. (2022). Images beneath the plots illustrate
samples generated at training steps {0, 500, 1000, 1500, 2000}.

To address this challenge, we propose Diffusion-SDPO1 – a Safeguarded Direct Preference Opti-
mization method for diffusion models. The key idea in Diffusion-SDPO is to introduce a simple yet
effective winner-preserving update rule that controls the influence of the loser sample’s gradient at
each training step. In contrast to standard DPO Rafailov et al. (2023); Wallace et al. (2024) which
updates the model by contrasting winner and loser equally, we derive an adaptive scaling factor for
the loser’s gradient based on the geometry of the winner and loser gradients. Intuitively, our method
downweights the loser branch’s contribution whenever its gradient is misaligned with the winner’s
gradient. Grounded in a first-order analysis, the safeguard computes a closed-form λsafe from the
inner product of the winner and loser gradients, guaranteeing that each step does not worsen the
preferred output’s reconstruction loss. In practice, Diffusion-SDPO seamlessly modifies the DPO
objective with this adaptive loser scaling (see Fig. 1, right), which expands the preference margin
while strictly controlling the absolute error of preferred outputs. Notably, our approach is model-
agnostic and can be applied on top of various diffusion alignment frameworks Wallace et al. (2024);
Hong et al. (2025); Li et al. (2025a); Zhu et al. (2025), acting as a plug-in optimizer that stabilizes
training. Our contributions can be summarized as follows:

• We show that enlarging the winner–loser margin in diffusion preference optimization does
not guarantee higher quality and can degrade preferred outputs, revealing a gap between
relative alignment and absolute error control.

• Based on these analysis, we propose Diffusion-SDPO, a winner-preserving training scheme
that adaptively scales the loser gradient by its geometric alignment with the winner gradient
to first order. Our method is simple to implement and adds negligible overhead.

• Extensive experiments on SD 1.5 Rombach et al. (2022), SDXL Podell et al. (2024), and the
industrial-scale Ovis-U1 Wang et al. (2025a) show that our method consistently improves
preference metrics while preserving or enhancing aesthetic quality, stabilizing training, and
avoiding collapse. Moreover, the gains hold across text-to-image models, unified genera-
tors, and image-editing setups.

2 RELATED WORK.

Diffusion Models for Text-to-Image and Unified Generation. Diffusion models have become a
leading paradigm for image synthesis, offering strong quality and diversity Croitoru et al. (2023).
Denoising diffusion with a variational objective Ho et al. (2020) and continuous-time score-based

1Throughout the text, “Diffusion-SDPO” is used as a conceptual umbrella for our method and its guiding
principles. When referring to concrete instantiations, we write “X+SDPO” to denote the integration of SDPO
with a specific base DPO variant X (e.g., Diffusion-DPO, DSPO, DMPO), which clarifies the application
setting and configuration.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

formulations with SDEs Jo et al. (2022); Song et al. (2022) underpin modern systems. Refinements
such as EDM Karras et al. (2022) and rectified flow or flow matching Liu et al. (2023); Lipman
et al. (2023) clarify objectives and improve robustness. Guidance-based conditioning Dhariwal
& Nichol (2021); Ho & Salimans (2022) enhances controllability. For text-to-image generation,
latent diffusion Rombach et al. (2022) enables efficient high-resolution synthesis and supports large
systems like SD3 Esser et al. (2024) and FLUX Labs (2024). In parallel, unified generators handle
text-to-image and image editing within a single model Wang et al. (2025a). Our method applies to
both families and is architecture-agnostic, working with UNet Ronneberger et al. (2015)-style and
DiT Peebles & Xie (2023)-style backbones.

Preference Optimization for Diffusion Models. Direct Preference Optimization Rafailov et al.
(2023); Wallace et al. (2024); Gambashidze et al. (2024) has been adapted to diffusion models to
align generation with human comparisons while avoiding full reinforcement learning. A broad class
of variants Wang et al. (2025b); Hong et al. (2025) calibrates the preference margin or the relative
branch influence to improve stability and protect the generation. Other approaches seek to guide
the update directions and step magnitudes in LLMs Zhao et al. (2023) by employing subspace pro-
jections and modest objective clipping Yang et al. (2024); Cho et al. (2025); Xiao et al. (2024);
Chowdhury et al. (2024); Huang et al. (2025). Related work such as DPOP Pal et al. (2024) pro-
motes positivity constraints to mitigate failure modes in preference optimization, and MaPPO Lan
et al. (2025) incorporates prior knowledge via a maximum-a-posteriori objective. Diffusion-specific
methods further account for the multi-step nature of denoising by reweighting across timesteps or by
adding entropy regularization, exemplified by Balanced-DPO Tamboli et al. (2025), DSPO Zhu et al.
(2025), and SEE-DPO Shekhar et al. (2025). In contrast, our Diffusion-SDPO introduces a per-step,
geometry-aware safe scaling factor based on the inner product between winner and loser output-
space gradients, which provides direct control over the winner loss at each step while continuing to
expand the preference margin.

3 PRELIMINARIES

Diffusion Models. Diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020) construct a
Markov chain that gradually corrupts clean data with additive noise and then learn a parametric
denoiser to invert this corruption. Let a variance schedule {βt}Tt=1 be given and define αt = 1− βt

and ᾱt =
∏t

s=1 αs. The forward process can be defined as:

q(xt | xt−1) = N
(
xt;
√
αt xt−1, (1− αt) I

)
, (1)

which implies the following closed-form perturbation of a clean sample x0:
xt =

√
ᾱt x0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I). (2)

Equivalently, the marginal distribution conditioned on x0 is
q(xt | x0) = N

(
xt;
√
ᾱt x0, (1− ᾱt) I

)
. (3)

Learning proceeds by training a network ϵθ that receives the noised input xt and the time index t to
predict the injected noise. Using the reparameterization in Eq. 2, the standard objective minimizes
mean squared error between the true noise and the prediction:

Ldiffusion = E x0∼pdata, t∼Uniform{1,...,T}, ϵ∼N (0,I)

∥∥ ϵθ(xt, t
)
− ϵ

∥∥2
2
. (4)

Minimizing Ldiffusion yields a time-aware denoiser that can be applied in reverse order to iteratively
remove noise and synthesize new samples from an initial Gaussian latent.

Diffusion Model Alignment via Preference. Given a prompt c and two images xw
0 (preferred,

“winner”) and xl
0 (less preferred, “loser”), preference alignment for diffusion models seeks param-

eters θ such that the model assigns higher likelihood to xw
0 than to xl

0 Gambashidze et al. (2024);
Wallace et al. (2024). A diffusion sampler produces a trajectory (xT , . . . , x0) and, at each time t, a
reverse conditional pθ(xt | xt+1, c) Ho et al. (2020); Sohl-Dickstein et al. (2015); Liu et al. (2023).
To instantiate DPO in this setting, we adopt the standard formulation wherein the stepwise prefer-
ence score is the log-likelihood ratio with respect to a frozen reference model Wallace et al. (2024);
Zhu et al. (2025):

rt(xt, c) = β log
pθ(xt | xt+1, c)

pref(xt | xt+1, c)
. (5)
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The Diffusion–DPO Wallace et al. (2024) loss applies Bradley-Terry-style Bradley & Terry (1952)
logistic regression to the winner-loser pair at the same t:

LDiffusion-DPO = − E
[
log σ

(
rt(x

w
t , c) − rt(x

l
t, c)

)]
, (6)

and averages Eq. 6 over t∈{0, . . . , T−1} (or samples a single t per pair for an unbiased stochastic
estimator). Equivalently, substituting Eq. 5 into Eq. 6 gives the explicit form

LDiffusion-DPO = − E
[
log σ

(
β log

pθ(x
w
t | xw

t+1, c)

pref(xw
t | xw

t+1, c)
− β log

pθ(x
l
t | xl

t+1, c)

pref(xl
t | xl

t+1, c)

)]
. (7)

Under common parameterizations, Eq. 5 reduces to simple residual comparisons. For DDPM-style
Gaussians Ho et al. (2020); Sohl-Dickstein et al. (2015), writing ϵ̂θ = ϵθ(xt+1, c, t) for the predicted
noise, ϵ̂ref = ϵref(xt+1, c, t) for the reference noise and ϵ for the ground-truth noise that forms xt,
the log-ratio can be expressed as:

log
pθ(xt | xt+1, c)

pref(xt | xt+1, c)
∝ − 1

2

∥∥ϵ̂θ − ϵ
∥∥2
2
+ 1

2

∥∥ϵ̂ref − ϵ
∥∥2
2
+ const, (8)

and an analogous expression holds for velocity or flow-matching parameterizations by replacing the
noise residual with the corresponding target Liu et al. (2023). For notational brevity, we write the
stepwise contrastive objective as L(xt+1, c, t) =

1
2∥ϵθ(xt+1, c, t) − ϵ∥22 − 1

2∥ϵref(xt+1, c, t) − ϵ∥22.
Hence, the winner and loser margin loss are defined as Lw = L(xw

t+1, c, t) and Ll = L(xl
t+1, c, t),

respectively. Substituting Eq. 8 into Eq. 7 gives the training loss

L̂Diffusion-DPO = −Et∼Uniform{0,...,T−1},ϵ∼N (0,I),(c,xw
0 ,xl

0)∼D

[
log σ

(
− β (Lw − Ll)

)]
, (9)

where D = {(c, xw
0 , x

l
0)} denotes the DPO training dataset.

Limitations of Standard DPO. Substituting Eq. 8 into Eq. 7 yields an implementable objec-
tive whose inner term is the per-step error difference between winner and loser branches. Dif-
fusion–DPO Wallace et al. (2024) thus encourages decreasing the winner’s prediction error while
increasing the loser’s at the same timestep. However, this objective does not guarantee a monotonic
decrease of the winner loss. Empirically, over-penalizing the loser can also worsen the preferred
sample. In the left part of Fig. 1, the margin Lw − Ll becomes increasingly negative, yet both
Lw and Ll increase, indicating degradation of absolute performance and potential instability or col-
lapse. This exposes a gap between relative alignment (widening the margin) and absolute error
control (preserving the preferred sample). The difficulty is that the winner and loser gradients are
misaligned and vary across timesteps. We therefore introduce a simple stepwise update that, to
first order, guarantees the preferred loss does not increase at each step while still promoting margin
expansion.

4 METHOD: DIFFUSION-SDPO (SAFE DPO)

We propose Diffusion-SDPO, a novel preference optimization scheme that adds a safety guard to
the DPO update. The method adaptively scales the influence of the loser branch by a time-dependent
factor λt so that the preferred sample’s loss Lw does not increase after each parameter update. In
practice, we follow the standard Diffusion–DPO pipeline: given a prompt c and a pair (xw

0 , x
l
0),

we compute the per-sample losses Lw and Ll at the same diffusion time t, and then modify the
backpropagated update by multiplying the loser-branch gradient by the safety factor to enforce a
safe update condition. This directly addresses the limitation discussed above, because preventing
any increase in the preferred loss ensures that preference-driven updates do not degrade the preferred
output while still improving the preference margin.

4.1 SAFE UPDATE VIA FIRST-ORDER APPROXIMATION

Our objective is to ensure that a gradient update driven by the preference loss (cf. Eq. 7) does
not increase the winner’s loss. For clarity of exposition, consider a linearized preference objective

4
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combining the two branches:2

Lpref(θ) = Lw(θ)− λ · Ll(θ), (10)

where λ > 0 is a scalar that adjusts the relative weight on the loser’s loss. Setting λ = 1 recovers the
intuitive gradient direction of standard DPO (decrease Lw, increase Ll), while λ > 1 would place
even more emphasis on penalizing the loser. Our goal is to find an upper bound on λ that guarantees
Lw will not increase for an infinitesimal gradient step on Lpref.

Let ∇θLw and ∇θLl denote the gradients of the winner and loser losses, respectively. A gradient
descent step of size η on Eq. 10 gives the parameter update:

∆θ = −η · ∇θLpref = −η
(
∇θLw − λ∇θLl

)
. (11)

The first-order change in the winner’s loss can be approximated by a Taylor expansion:

∆Lw ≈ ∇θLw⊤∆θ = −η
(
∥∇θLw∥22 − λ∇θLw⊤∇θLl

)
. (12)

To prevent increase in Lw, we require ∆Lw ≤ 0, i.e., ∇θLw⊤∆θ ≤ 0. Ignoring the trivial positive
factor η, the safety condition becomes:

∥∇θLw∥22 − λ∇θLw⊤∇θLl ≥ 0. (13)

Solving for λ yields a bound on the allowable loser weight:

λ ≤ ∥∇θLw∥22
∇θLw⊤∇θLl

. (14)

Notably, if the dot product ∇θLw⊤∇θLl is negative or zero, then Eq. 13 is automatically satisfied
for any λ ≥ 0. In those cases, the update is intrinsically safe: the loser branch either helps reduceLw

or affects orthogonal parameter directions. The problematic scenario is when ∇θLw⊤∇θLl > 0,
i.e., the loser’s gradient has a component that would raise the winner’s loss. Eq. 14 then yields a
finite positive λ threshold. Any choice of λ above this threshold would violate the safety inequality,
leading to ∆Lw > 0 to first order. Conversely, choosing λ at or below this threshold ensures
∆Lw ≈ 0 or negative, guaranteeing that the winner’s loss does not increase.

4.2 CLOSED-FORM SAFEGUARD IN OUTPUT SPACE

Directly evaluating the parameter-space bound in Eq. 14 is infeasible for a high-dimensional model,
since it would require computing and storing the full gradients ∇θLw and ∇θLl just to take their
dot product. However, we can derive a convenient proxy by considering gradients in the model’s
output space. Modern diffusion models predict a noise or image tensor as output, and the training
loss (e.g., a denoising score-matching loss Ho et al. (2020)) is defined on this output. Let ow and ol

denote the model’s output activations for the winner and loser branches respectively (for example,
o could be the predicted noise residual at a certain diffusion step). Using the chain rule, we have
∇θLw = Jw⊤∇oLw and ∇θLl = J l⊤∇oLl, where J is the Jacobian ∂o/∂θ and ∇oL is the
gradient of the loss with respect to the model output. The term∇θLw⊤∇θLl can then be written as:

∇θLw⊤∇θLl = (∇oLw)⊤
(
JwJ l⊤)(∇oLl). (15)

If we assume a local near-isometry, namely JwJ l⊤ ≈ I (see Sec. A for more details), then the
parameter-space inner product is well approximated by the Euclidean dot product in output space,
(∇oLw)⊤(∇oLl). Let gw = ∇oLw and gl = ∇oLl denote the output-space gradients for the
winner and the loser. We then define the safe step-size as:

λsafe :=
∥gw∥22
gw⊤gl

, (16)

2In practice, the actual Diffusion-DPO gradient (Eq. 6) includes a logistic scaling factor σ(·) that multiplies
the winner and loser gradients equally, thus not altering the update direction. We therefore analyze the simpler
weighted difference objective that captures the same first-order direction.
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Algorithm 1: Diffusion-SDPO: Winner-preserving scaling for DPO-style diffusion training

Input: DPO dataset D = {(c, xw
0 , x

l
0)}; model ϵθ; reference ϵref; safety slack µ∈ [0, 1];

schedule length (timesteps) T ; learning rate η.
while not converged do

1. Sample t ∼ Uniform{0, . . . , T − 1}, ϵ ∼ N (0, I), (c, xw
0 , x

l
0) ∼ D.

2. Get (xw
t+1, x

l
t+1) from Eq. 2 and compute

ϵ̂wθ = ϵθ(x
w
t+1, c, t), ϵ̂

l
θ = ϵθ(x

l
t+1, c, t), ϵ̂

w
ref = ϵref(x

w
t+1, c, t), ϵ̂

l
ref = ϵref(x

l
t+1, c, t).

3. Get per-branch residual objectives:

Lw = 1
2∥ϵ̂

w
θ − ϵ∥22 − 1

2∥ϵ̂
w
ref − ϵ∥22, Ll = 1

2∥ϵ̂
l
θ − ϵ∥22 − 1

2∥ϵ̂
l
ref − ϵ∥22.

4. Compute λsafe using Eq. 17: λsafe = (1− µ)∥gw∥22/gw
⊤gl.

5. Scale only loser gradients: Ll
scaled = Ll

detach + λsafe
(
Ll − Ll

detach

)
.

Mark: Ll
detach is a copy of Ll with gradients detached (no gradient flow).

6. Build loss using Eq. 9: LDPO = − log σ
(
−β(Lw − Ll

scaled)
)
.

7. Update θ ← θ − η∇θ LDPO.
Output: Finetuned model ϵθ.

if gw⊤gl > 0, and we set λsafe = +∞ (i.e., impose no cap on λ) if gw⊤gl ≤ 0. In words, λsafe
is a closed-form upper bound on the loser weight based on output-space gradients. It is computed
cheaply per batch by taking the dot product of the two model-output error signals. Whenever the
loser’s error vector has a positive correlation with the winner’s error vector (gw⊤gl > 0), λsafe
provides a finite limit to how strongly we can apply the loser’s gradient without risking an increase in
the winner’s loss. On the other hand, if the errors are orthogonal or negatively correlated (gw⊤gl ≤
0), the winner is not threatened by the loser’s update.

4.3 TRAINING WITH DIFFUSION-SDPO

At each iteration, we use preference pairs with a shared prompt c and diffusion step t. Two forward
passes yield the per-step losses (Lw,Ll) and the corresponding output-space gradients (gw, gl). We
set the safeguard

λsafe =
(1− µ) ∥gw∥22

gw⊤gl
, (17)

and clip it to [0, 1] for stability (if gw⊤gl ≤ 0, we set λsafe = 1). Here µ∈ [0, 1] is a safety slack to
offset curvature and mini-batch noise in the first-order estimate (see Sec. B for more details). Any
λ < λsafe ensures ∥∇θLw∥22 − λ∇θLw⊤∇θLl > 0, hence ∆Lw < 0 and the winner loss strictly
decreases. For the logistic DPO objective, we implement this by scaling the backpropagated loser
gradient with λsafe. Algorithm 1 summarizes the procedure to integrate SDPO into Diffusion-DPO.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Datasets and Models. We finetune Stable Diffusion 1.5 (SD1.5) and SDXL on preference pairs
from Pick-a-Pic V2 (Pick V2) Kirstain et al. (2023) training set. For evaluation, we use the test
prompts from Pick V2, HPS V2 Wu et al. (2023), and PartiPrompts Yu et al. (2022) following Zhu
et al. (2025); Li et al. (2025a). Beyond SD1.5 and SDXL, we also conduct experiments on Ovis-
U1 Wang et al. (2025a) (3.6B), a unified model for text-to-image synthesis and image editing. To
enable DPO finetuning on Ovis-U1, we construct a mixed preference corpus that integrates text-to-
image and editing pairs, totaling about 33K pairs.

Training Details and Baselines. We integrate SDPO into Diffusion-DPO Wallace et al. (2024),
DSPO Zhu et al. (2025), and DMPO Li et al. (2025a) implementations and keep their official hyper-
parameters. All models are finetuned for 2000 steps with a global batch size of 2048. The learning
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Table 1: Reward score comparison on the HPS V2 with SD 1.5. Rows labeled “+ SDPO” report
the performance obtained by applying our SDPO to the corresponding base method in the preceding
row. †: results from our implementation due to the lack of official code. Best results are in bold.
Owing to space constraints, the full table is provided in the appendix (Table 6).

Method PickScore(↑) HPS(↑) Aesthetics(↑) CLIP(↑) Image Reward(↑)
SD 1.5 0.2088 0.2697 5.4933 0.3480 -0.0469
SFT 0.2168 0.2838 5.7851 0.3591 0.6619
Diff.-KTO 0.2164 0.2766 5.6288 0.3420 0.5593
MaPO† 0.2124 0.2760 5.6890 0.3528 0.3308
DPOP† 0.2144 0.2780 5.7071 0.3563 0.3735
Diff.-DPO 0.2131 0.2743 5.6639 0.3552 0.1705

+ SDPO 0.2174 0.2827 5.8744 0.3600 0.6211
DSPO 0.2168 0.2837 5.8346 0.3598 0.6483

+ SDPO 0.2172 0.2847 5.8474 0.3586 0.6578
DMPO† 0.2131 0.2766 5.6538 0.3551 0.3171

+ SDPO 0.2182 0.2848 5.8574 0.3612 0.7061

Table 2: Average win rate comparison (%) over the HPS V2 using SD 1.5. Each row reports Model
1 vs. Model 2 on identical prompts. The upper block summarizes SDPO augmentation results (base
+ SDPO vs. base), and the lower block compares each model against SD 1.5. Values > 50% indicate
that Model 1 generally outperforms Model 2.

Model 1 Model 2 Pick HPS V2 Aesth. CLIP ImageReward Mean
SDPO augmentation effect (base+SDPO vs base)
Diff.-DPO+ SDPO Diff.-DPO 66.12 78.62 70.62 52.50 71.62 67.90
DSPO + SDPO DSPO 52.62 53.00 53.25 48.50 52.38 51.95
DMPO + SDPO DMPO 73.50 79.25 67.12 53.12 71.50 68.90
Versus SD 1.5
Diff.-DPO SD 1.5 76.38 69.50 66.88 57.50 63.50 66.75
Diff.-DPO+ SDPO SD 1.5 80.75 86.25 83.38 56.88 79.25 77.30
DSPO SD 1.5 78.38 86.00 78.75 58.88 79.75 76.35
DSPO + SDPO SD 1.5 81.75 89.75 79.12 56.75 80.12 77.50
DMPO SD 1.5 68.50 74.50 68.38 53.00 69.88 66.85
DMPO + SDPO SD 1.5 82.25 88.12 79.25 58.38 81.75 77.95

rate is 1×10−8 for SD1.5 and 1×10−9 for SDXL. For the safeguard coefficient µ, on SD 1.5 we set
0.9 for Diffusion-DPO+SDPO and DMPO+SDPO, 0.2 for DSPO+SDPO. On SDXL, µ is fixed as
0.6 for all variants. We compare against several baselines: the original pretrained SD1.5 and SDXL,
supervised finetuning (SFT), Diffusion-KTO Li et al. (2025b), MaPO Hong et al. (2025), DPOP Pal
et al. (2024), and original Diffusion-DPO, DSPO, DMPO. For baselines we follow a strict hierarchy.
If official checkpoints are publicly available, we evaluate those directly. If checkpoints are unavail-
able but official code exists, we run the released implementation with the authors’ recommended
settings. If neither is available, we reimplement the method from the paper.

Evaluation. We evaluate models on automatic preference metrics, including PickScore Kirstain
et al. (2023), HPS V2 Wu et al. (2023), LAION Aesthetic Classifier Schuhmann et al. (2022),
CLIP Radford et al. (2021) and ImageReward Xu et al. (2024) scores. Sampling uses a guidance
scale of 7.5 and 50 denoising steps. For Ovis-U1, we additionally evaluate structured text-to-image
alignment on GenEval Ghosh et al. (2023) and DPG-Bench Hu et al. (2024), as well as image-editing
performance on ImgEdit Ye et al. (2025) and GEdit-EN Liu et al. (2025).

5.2 MAIN RESULTS

Table 1 shows that augmenting Diffusion-DPO, DSPO, and DMPO with SDPO consistently im-
proves automatic reward metrics under SD 1.5, with DMPO+SDPO typically achieving the best
overall scores. Win-rate results on SD 1.5 (Table 2) further confirm that each base method benefits
from SDPO and that SDPO variants also outperform the SD 1.5 baseline, indicating stronger prefer-
ence alignment without quality loss. On SDXL (Table 3), gains are more moderate yet consistent,
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Table 3: Average win rate comparison (%) over the HPS V2 using SDXL.

Model 1 Model 2 Pick HPS V2 Aesth. CLIP ImageReward Mean
SDPO augmentation effect (base+SDPO vs base)
Diff.-DPO+ SDPO Diff.-DPO 64.62 53.37 47.75 57.75 51.88 55.08
DSPO + SDPO DSPO 64.25 62.62 59.75 48.62 58.13 58.67
DMPO + SDPO DMPO 55.88 53.75 52.25 55.50 56.00 54.68
Versus SDXL
Diff.-DPO SDXL 48.25 63.38 52.50 48.38 59.13 54.33
Diff.-DPO+ SDPO SDXL 59.25 66.75 49.12 55.00 58.00 57.63
DSPO SDXL 37.88 57.00 40.25 55.63 56.87 49.53
DSPO + SDPO SDXL 54.63 68.00 44.62 55.00 65.12 57.47
DMPO SDXL 58.63 64.88 46.00 53.62 62.00 57.03
DMPO + SDPO SDXL 60.88 68.50 47.63 58.38 68.63 60.80

Table 4: Comparison of Ovis-U1 Wang et al. (2025a) variants on preference, structured alignment,
and image editing benchmarks. Higher is better (↑). SDPO is particularly effective for preference
alignment in large-scale models.

Model Preference Eval (↑) Structured Alignment Eval (↑) Image Editing (↑)
CLIP HPS V2 GenEval DPG-Bench ImgEdit GEdit-EN

Ovis-U1 0.3188 0.2986 0.89 83.72 4.00 6.42
Ovis-U1 + DPO 0.3192 0.2997 0.88 83.78 4.01 6.43
Ovis-U1 + SDPO 0.3201 0.3082 0.89 84.84 4.11 6.60

suggesting reliable scaling to larger backbones. Finally, on the unified Ovis-U1 model (Table 4),
SDPO yields clear improvements in preference metrics and editing scores, highlighting effective-
ness for large-scale unified generation and editing. Fig. 2 compares SD 1.5 and aligned variants.
While naive Diffusion-DPO can enlarge preference margins at the expense of fidelity, our safe-
guarded integrations preserve details and improve prompt adherence across diverse prompts. The
visual evidence aligns with the quantitative trends, indicating that SDPO stabilizes optimization and
enhances perceptual quality. See Sec. D for more results.

5.3 ABLATION STUDY

Table 5: Ablation study on winner-preserving
rules. Model: SD 1.5. Prompts: HPS V2. ‡: fixed
λsafe is used in SDPO.

Method PickScore (↑) HPS V2 (↑)
MaPO 0.2124 0.2760
DPOP 0.2144 0.2780
Diff.-DPO+SDPO‡ 0.2158 0.2803
Diff.-DPO+SDPO 0.2174 0.2827

Modular Ablation. Table 5 compares win-
ner–preserving strategies embedded in MaPO,
DPOP, and our SDPO. MaPO introduces a
fixed-weight winner loss but omits the refer-
ence model, undermining calibration of abso-
lute error. DPOP protects the winner via thresh-
olded update filtering, but its design for autore-
gressive LLMs creates a modality gap for dif-
fusion models. SDPO addresses both issues by
preserving the winner through a safeguard that
rescales the loser update by λsafe chosen from the output space based on directional alignment. The
fixed–λsafe variant already improves over MaPO and DPOP, and the dynamic choice yields further
gains. These improvements support the hypothesis that output–space selection of λsafe stabilizes the
winner while maintaining pressure to enlarge the preference margin.

Why does SDPO generalize across DPO variants? Fig. 3 contrasts the training dynamics of
Diff.-DPO, DSPO, and DMPO with or without SDPO. Without SDPO, Lw − Ll decreases as ex-
pected, whereas Lw remains nondecreasing and drifts upward in Diff.-DPO and DMPO, indicating
unstable optimization. With SDPO, Lw drops early and remains low, Ll declines smoothly without
overshoot, and Lw − Ll decreases steadily to a plateau. We observe a shared qualitative profile
across the three SDPO-augmented settings: after basic rescaling, trajectories from different ob-
jectives largely overlap. Lw follows a monotone, fast-then-slow descent, Ll descends smoothly,
and their gap grows in a stable manner across timesteps. This empirical regularity suggests that
SDPO successfully corrects harmful update directions and magnitudes by acting on gradient geom-
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SD 1.5 Diff.-DPO Diff.-DPO + 
SDPO DSPO DSPO + SDPO DMPO DMPO + SDPO

Figure 2: Qualitative comparison of different methods using SD 1.5. Prompt: 1) The Little Prince
and the fox in a Tim Burton style artwork. 2) A futuristic modern house on a floating rock island
surrounded by waterfalls, moons, and stars on an alien planet. See Sec. D for more results.
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Figure 3: Training dynamics across three objectives with and without SDPO on SD 1.5.

etry rather than on a particular objective form, thereby normalizing training dynamics across DPO
variants, preserving the preferred branch, and stabilizing preference alignment.

Sensitivity of Hyperparameters. Fig. 4 shows that both HPS V2 and PickScore vary smoothly
with µ and peak at moderate values, indicating low sensitivity. On SDXL, all SDPO-augmented
objectives achieve near-optimal performance around µ≈ 0.6 with flat neighborhoods. On SD 1.5,
Diffusion-DPO + SDPO and DMPO + SDPO peak near µ ≈ 0.9, while DSPO + SDPO peaks near
µ ≈ 0.2. This aligns with Fig. 3, where DSPO already shows stable decreases in Lw and Ll,
requiring only a small safeguard. Therefore, by default, µ is set to 0.6 on SDXL for all objectives,
while on SD 1.5 it is 0.9 for Diffusion-DPO/DMPO and 0.2 for DSPO.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we presented Diffusion-SDPO, a safeguarded preference optimization scheme that
stabilizes DPO-style diffusion finetuning by preserving the preferred branch while improving pref-
erence matching. The method scales the loser gradient by its alignment with the winner and
guarantees, to first order, that the winner’s reconstruction loss does not increase. Across SD 1.5,
SDXL, and Ovis-U1, our method yields consistent improvements on automated preference, aes-
thetic, and prompt-alignment metrics with negligible computational overhead, while remaining
model-agnostic, straightforward to implement, and applicable to multiple DPO variants. However,
the guarantee holds only at first order, so strong curvature in the loss landscape degrades it. Fu-
ture work includes second-order or trust-region safeguards, automatic or data-driven tuning of µ,
extensions to autoregressive preference settings.
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REPRODUCIBILITY STATEMENT

All datasets and base models used in this work are publicly available except for a small mixed
preference set that we curate from publicly accessible sources and use only for the Ovis-U1 ex-
periments. Sec. 5.1 details the models, datasets, as well as the complete training and evaluation
protocols. Sec. 5.3 reports ablations and sensitivity analyses. Core results on SD 1.5 and SDXL
rely solely on public data and base models. The unified Ovis-U1 model exhibits empirical trends
consistent with results from SD 1.5 and SDXL. With the documented settings, hyperparameters, and
evaluation procedures, independent researchers can reproduce the SD 1.5 and SDXL results using
public resources.

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. Our experiments rely primarily on public datasets and model
releases. For one unified model variant, we curated a small mixed preference set from publicly
accessible sources and applied basic filtering for unsafe content where practicable. No human-
subjects studies were conducted and, to our knowledge, no personally identifiable information was
processed, so institutional review was not required.
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APPENDIX

A JUSTIFICATION OF THE NEAR–ISOMETRY

In this section, we provide a detailed justification of the near-isometry property JwJ l⊤ ≈ I . We
write the model output at diffusion step t as o = ϵθ(xt, c, t). For the winner and loser branches we
denote

ow = ϵθ(x
w
t , c, t), ol = ϵθ(x

l
t, c, t), Jw =

∂ow

∂θ
, J l =

∂ol

∂θ
. (18)

By first–order linearization at the same parameter θ,

∇θLw = Jw⊤∇oLw, ∇θLl = J l⊤∇oLl. (19)

Hence the parameter–space inner product factorizes as

∇θLw⊤∇θLl = ∇oLw⊤ (JwJ l⊤)︸ ︷︷ ︸
geometric term

∇oLl. (20)

We claim that in our setting JwJ l⊤ ≈ I , which makes the parameter–space geometry well approxi-
mated by the Euclidean geometry in output space. Below we state the assumptions and a quantitative
bound that together justify this approximation.

Assumption A (branch proximity). The two branches are evaluated under the same condition
(c, t). For a fixed t, the noised latents xw

t and xl
t lie in a small neighborhood in latent space. The

UNet Ronneberger et al. (2015) is Lipschitz in its input around that neighborhood, therefore the
Jacobians are close:

∥J l − Jw∥ ≤ εbr, εbr ≪ 1. (21)
This follows from sharing the text condition, the timestep, and the architecture, which produce
similar intermediate activations and hence similar sensitivities to parameters.

Assumption B (single–branch near–isometry). Each branch is locally well conditioned. Empir-
ically, modern diffusion UNets use normalization layers, residual connections, and near unit–gain
initializations. Besides, they are trained to predict isotropic Gaussian noise at each step. These
design choices constrain the singular values of J to stay close to one. We model this as

∥JwJw⊤ − I∥ ≤ εiso, ∥J lJ l⊤ − I∥ ≤ εiso, (22)

with εiso ≪ 1. In words, the map θ 7→ o is locally near–isometric.

A perturbation bound. Let Ebr := J l − Jw and Eiso := JwJw⊤ − I . Then

JwJ l⊤ − I = Jw(Jw + Ebr)
⊤ − I = (JwJw⊤ − I)︸ ︷︷ ︸

Eiso

+JwE⊤
br . (23)

Taking operator norms and using ∥AB∥ ≤ ∥A∥ ∥B∥ gives

∥JwJ l⊤ − I∥ ≤ ∥Eiso∥+ ∥Jw∥ ∥Ebr∥ ≤ εiso + (1 + εgain) εbr, (24)

where εgain ≥ 0 is defined by ∥Jw∥ ≤ 1 + εgain. If both branches are individually near–isometric
and their Jacobians are close, then the cross term JwJ l⊤ is close to the identity.

Consequence for gradient geometry. Combining Eq. 20 and 24 yields∥∥∥∇θLw⊤∇θLl −∇oLw⊤∇oLl
∥∥∥ ≤ ∥∇oLw∥ ∥∇oLl∥ · ∥JwJ l⊤ − I∥, (25)

so the inner product between parameter–space gradients is close to the inner product between out-
put–space gradients. Intuitively, in the small neighborhood induced by the shared (c, t), the network
behaves almost angle– and length–preserving along the two branches, which justifies replacing the
parameter–space inner product by the Euclidean dot product in output space.
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Why Assumption B is plausible for diffusion UNets. At a fixed t, the training objective is a
mean–squared error between the model output and an isotropic Gaussian target. This induces a
whitened curvature in output space. Together with normalization layers and residual pathways,
which are known to promote dynamical isometry by controlling singular values Ioffe & Szegedy
(2015); Tarnowski et al. (2019), the per–step Jacobian spectrum concentrates around one. This
effect is stable under small finetuning steps and within the local region defined by xw

t and xl
t.

Empirical diagnostics. We validate the approximation by comparing the cosine between pa-
rameter space gradients ρθ = cos

(
∇θLw,∇θLl

)
with the cosine between output space gradients

ρo = cos
(
∇oLw,∇oLl

)
across timesteps and prompts. Steps with near zero norms are filtered to

avoid numerical artifacts. We summarize the absolute gap ∆ρt =
∣∣ρθ(t)− ρo(t)

∣∣ and observe small

values of ∆ρt for the majority of steps, which supports Eq. 20 with JwJ l⊤ ≈ I .

B SECOND-ORDER CONSIDERATIONS OF SDPO

It is important to note that our guarantee is based on a first-order (linear) approximation of the loss
landscape. In reality, the true change in Lw after an update includes higher-order terms: ∆Lw =
∇θLw⊤∆θ + 1

2∆θ⊤Hw∆θ + O(|∆θ|3), where Hw is the Hessian of Lw. Diffusion-SDPO does
not explicitly account for the 1

2∆θ⊤Hw∆θ term. If the curvature (eigenvalues of Hw) is large or
the step ∆θ is not infinitesimally small, it is conceivable that Lw could increase slightly even when
the first-order term is zero or negative.

To hedge against curvature, we adopt a margin parameter µ ∈ [0, 1] and set λsafe ← (1 − µ)λsafe
(e.g., µ = 0.1 gives 0.9λsafe). This adjustment helps ensure ∆Lw stays negative even when small
second-order effects are present. Empirically, we found that the first-order proxy combined with this
margin was adequate for stability since the second-order error term remained small relative to the
linear term in our experiments.

Another related source of approximation error is the assumption that JwJ l⊤ ≈ I in Eq. 15. In
pathological cases where the model’s parameterization leads to very different Jacobians for xw

0 and
xl
0, the output-space dot product gw⊤gl might not perfectly predict the sign of the parameter-space

dot product. In practice, however, we expect gw⊤gl to be a reliable indicator of gradient alignment,
since gw and gl live in the same output vector space and capture intuitive per-pixel error correlations
between the two samples (see Sec. A for more evidence on this assumption). Our safe update rule can
thus be viewed as a principled, efficient heuristic that steers the optimization to avoid obvious “bad”
directions that would hurt the preferred outcome. By explicitly safeguarding Lw from increases,
Diffusion-SDPO favors a more conservative yet effective alignment, in contrast to methods that risk
overshooting in pursuit of preference satisfaction. Generally, our approach leads to a more stable
training process that maintains or even improves the quality of winner outputs while still driving
down the relative loss of loser outputs, ultimately yielding a well-aligned diffusion model.

C LLM USAGE DISCLOSURE

We used the large language model (LLM) only to aid English writing quality, including grammar
correction, style polishing, and minor rephrasing at the sentence or paragraph level. The LLM did
not generate research ideas, algorithms, proofs, datasets, code, experimental designs, figures, tables,
statistical analyses, or results. All technical content, claims, and conclusions were created and ver-
ified by the authors. To reduce risk of factual errors, every LLM-suggested edit was reviewed by at
least one author and cross-checked against our methods, experiments, and citations. No undisclosed
prompts, hidden instructions, or external links intended to influence the review process were in-
cluded in the submission. The authors take full responsibility for all content in this paper, including
any text edited with LLM assistance, and the LLM is not an author or contributor.
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Table 6: Full results of reward score comparison on Pick-a-Pic V2, HPS V2, and PartiPrompts using
SD 1.5. †: results from our implementation due to the lack of official code.

Dataset Method PickScore(↑) HPS(↑) Aesthetics(↑) CLIP(↑) Image Reward(↑)

Pick V2

SD 1.5 0.2073 0.2651 5.3907 0.3299 -0.1376
SFT 0.2128 0.2765 5.6888 0.3408 0.5767
Diff.-KTO 0.2126 0.2766 5.6288 0.3420 0.5593
MaPO† 0.2097 0.2702 5.5572 0.3365 0.2435
DPOP† 0.2119 0.2726 5.5688 0.3389 0.3259
Diff.-DPO 0.2109 0.2690 5.4958 0.3357 0.1020

+ SDPO 0.2143 0.2772 5.7172 0.3458 0.5546
DSPO 0.2131 0.2769 5.6825 0.3428 0.5642

+ SDPO 0.2135 0.2777 5.6917 0.3441 0.5916
DMPO† 0.2110 0.2710 5.5434 0.3382 0.2813

+ SDPO 0.2144 0.2784 5.7312 0.3469 0.6369

HPS V2

SD 1.5 0.2088 0.2697 5.4933 0.3480 -0.0469
SFT 0.2168 0.2838 5.7851 0.3591 0.6619
Diff.-KTO 0.2164 0.2766 5.6288 0.3420 0.5593
MaPO† 0.2124 0.2760 5.6890 0.3528 0.3308
DPOP† 0.2144 0.2780 5.7071 0.3563 0.3735
Diff.-DPO 0.2131 0.2743 5.6639 0.3552 0.1705

+ SDPO 0.2174 0.2827 5.8744 0.3600 0.6211
DSPO 0.2168 0.2837 5.8346 0.3598 0.6483

+ SDPO 0.2172 0.2847 5.8474 0.3586 0.6578
DMPO† 0.2131 0.2766 5.6538 0.3551 0.3171

+ SDPO 0.2182 0.2848 5.8574 0.3612 0.7061

PartiPrompts

SD 1.5 0.2144 0.2724 5.3466 0.3343 0.0637
SFT 0.2181 0.2821 5.5981 0.3389 0.5830
Diff.-KTO 0.2178 0.2820 5.5630 0.3416 0.5697
MaPO† 0.2152 0.2754 5.4754 0.3366 0.3358
DPOP† 0.2169 0.2782 5.4894 0.3383 0.3644
Diff.-DPO 0.2167 0.2755 5.4045 0.3391 0.2560

+ SDPO 0.2187 0.2815 5.5880 0.3423 0.5425
DSPO 0.2178 0.2819 5.5997 0.3385 0.5640

+ SDPO 0.2185 0.2832 5.5975 0.3405 0.5955
DMPO† 0.2163 0.2775 5.4724 0.3388 0.3653

+ SDPO 0.2190 0.2831 5.5956 0.3430 0.6381

D FULL EXPERIMENTAL RESULTS

We report the full reward score comparisons on Pick-a-Pic V2, HPS V2, and PartiPrompts in Ta-
bles 6 and 7. Figure 4 analyzes the sensitivity of µ, the only hyperparameter introduced by our
method, by plotting HPS V2 and PickScore as functions of µ. We also provide additional qualitative
results in Fig. 5 and 6. Taken together, these quantitative and qualitative results indicate that SDPO
consistently improves preference alignment while maintaining, and in many cases enhancing, visual
quality.
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Table 7: Full results of reward score comparison on Pick-a-Pic V2, HPS V2, and PartiPrompts using
SDXL. †: results from our implementation due to the lack of official code.

Dataset Method PickScore(↑) HPS(↑) Aesthetics(↑) CLIP(↑) Image Reward(↑)

Pick V2

SDXL 0.2242 0.2846 5.9970 0.3684 0.7382
SFT 0.2183 0.2809 5.7922 0.3658 0.5974
MaPO 0.2242 0.2871 6.0979 0.3684 0.8359
Diff.-DPO 0.2251 0.2868 6.0115 0.3732 0.8357

+ SDPO 0.2257 0.2876 5.9812 0.3746 0.8840
DSPO 0.2228 0.2834 5.8797 0.3756 0.8818

+ SDPO 0.2240 0.2871 5.9529 0.3761 0.9238
DMPO† 0.2253 0.2869 6.0119 0.3716 0.8555

+ SDPO 0.2263 0.2882 5.9990 0.3770 0.9548

HPS V2

SDXL 0.2290 0.2900 6.1271 0.3847 0.9047
SFT 0.2228 0.2883 5.9689 0.3806 0.8528
MaPO 0.2293 0.2934 6.1882 0.3840 0.9703
Diff.-DPO 0.2288 0.2927 6.1380 0.3840 1.0159

+ SDPO 0.2308 0.2938 6.1284 0.3879 1.0326
DSPO 0.2273 0.2916 6.0424 0.3894 1.0054

+ SDPO 0.2293 0.2944 6.1040 0.3889 1.0745
DMPO† 0.2302 0.2921 6.1101 0.3875 1.0154

+ SDPO 0.2308 0.2933 6.1113 0.3897 1.0521

PartiPrompts

SDXL 0.2277 0.2880 5.7901 0.3591 0.8573
SFT 0.2221 0.2834 5.6496 0.3559 0.7515
MaPO 0.2278 0.2902 5.8921 0.3580 0.9324
Diff.-DPO 0.2279 0.2900 5.8294 0.3629 1.0638

+ SDPO 0.2290 0.2907 5.7882 0.3645 1.0654
DSPO 0.2261 0.2871 5.6947 0.3664 1.0514

+ SDPO 0.2268 0.2897 5.7931 0.3664 1.1012
DMPO† 0.2286 0.2904 5.8273 0.3610 0.9558

+ SDPO 0.2296 0.2913 5.8103 0.3649 1.0623

0.6 0.8 1.0

0.280

0.281

0.282

H
PS

 V
2

SD 1.5 | Diffusion-DPO + SDPO

HPS V2
PickScore

0.2 0.4

0.2840

0.2842

0.2844

0.2846

H
PS

 V
2

SD 1.5 | DSPO + SDPO

HPS V2
PickScore

0.6 0.8 1.0

0.2835

0.2840

0.2845

H
PS

 V
2

SD 1.5 | DMPO + SDPO

HPS V2
PickScore

0.50 0.75

0.2925

0.2930

0.2935

0.2940

H
PS

 V
2

SDXL  | Diffusion-DPO + SDPO

HPS V2
PickScore

0.25 0.50 0.75
0.291

0.292

0.293

0.294

H
PS

 V
2

SDXL  | DSPO + SDPO

HPS V2
PickScore

0.25 0.50 0.75
0.2924

0.2926

0.2928

0.2930

0.2932

H
PS

 V
2

SDXL  | DMPO + SDPO

HPS V2
PickScore

0.214

0.215

0.216

0.217

Pi
ck

Sc
or

e

0.2168

0.2170

0.2172

0.2174

Pi
ck

Sc
or

e

0.215

0.216

0.217

0.218
Pi

ck
Sc

or
e

0.227

0.228

0.229

0.230

0.231

Pi
ck

Sc
or

e

0.2285

0.2290

0.2295

Pi
ck

Sc
or

e

0.2304

0.2306

0.2308

Pi
ck

Sc
or

e

Figure 4: Sensitivity of SDPO to the hyperparameter µ measured by HPS V2 and PickScore across
SD 1.5 and SDXL on HPS V2 prompt set.
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A cartoon-style 
illustration of a 
fantasy village 
environment.

A photograph of a 
woman from Steven 

Universe with gigantic 
pink ringlets and a 

white dress.

A colorful anime painting 
of a sugar glider with a 

hiphop graffiti theme, by 
several artists, currently 
trending on Artstation.

Convert the image 
style to pixel art.

Extract the red motorcycle 
parked on the concrete 
surface in the image.

Ovis-U1

Ovis-U1 + DPO

Ovis-U1 + SDPO

Figure 5: Qualitative comparison of images generated by Ovis-U1 Wang et al. (2025a) and its fine-
tuned variants. Results are reported for three variants: the base, finetuned with DPO, and finetuned
with our SDPO.

SD 1.5 Diff.-DPO Diff.-DPO + 
SDPO

DSPO DSPO + SDPO DMPO DMPO + SDPO

Figure 6: Qualitative comparison of images generated by different methods using SD 1.5. Prompt:
1) A hyper-realistic landscape from a Neil Blomkamp film featuring a crashed spaceship, detailed
grass, and a photorealistic sky. 2) A landscape featuring mountains, a valley, sunset light, wildlife
and a gorilla, reminiscent of Bob Ross’s artwork. 3) A stylized portrait featuring sliced coconut,
electronics, and AI in a cartoonish cute setting with a dramatic atmosphere. 4) A tonalist painting
of a bipedal pony creature soldier. 5) A praying mantis nun in a grassy field during sunset. 6) A
comic book cover featuring a superhero named ”Eagle Man” with an eagle mask and wing logo,
resembling a traditional comic book cover. 7) Two motorcycles sit on the side of a secluded road. 8)
Yoko Ono flying on a broomstick with lightning in the skies.
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