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ABSTRACT

Inverse problems underpin many computational imaging systems, yet are ill-posed
due to the nontrivial null-space of the forward operator—signal components that
are invisible to the acquisition. Existing methods typically impose generic im-
age priors to regularize these blind directions, but they do not model the null-
space structure itself. We introduce a Non-Linear Null-space Prior (NLNP) that
jointly learns (i) the image manifold via noise-conditional denoising and (ii) a
low-dimensional representation of selected null-space components. Concretely,
a network predicts a null-space code from a noisy image, while a measurement
encoder predicts the same code from the measurements; at reconstruction time,
we penalize the mismatch of the prior and predictor network. Theoretically, we
show that training the prior yields a projected Tweedie identity, so the network
estimates the projected score of the data distribution, and the resulting regular-
izer injects orthogonal, state-dependent curvature in the null-space of the sensing
matrix, improving conditioning without conflicting with data consistency. We
integrate the prior into plug-and-play and validate the approach on compressed
sensing and image restoration tasks.

1 INTRODUCTION

Inverse problems involve reconstructing an unknown signal from noisy, corrupted, or typically un-
dersampled observations, making the recovery process generally non-invertible and ill-posed. This
work focuses on linear inverse problems, where a sensing matrix represents the forward model
Bertero et al.| (1985). Numerous imaging tasks rely on these principles, including image restora-
tion—such as deblurring, denoising, inpainting, and super-resolution Gunturk & Li|(2018)—as well
as compressed sensing (CS) |Zha et al.| (2023); (Candes & Wakin| (2008)) and medical imaging appli-
cations like magnetic resonance imaging (MRI) [Lustig et al.| (2008)) or computed tomography (CT)
Willemink et al.| (2013). See |Ongie et al.| (2020); Bai et al.| (2020); Bertero et al.| (2021) and refer-
ences therein for more applications of imaging inverse problems. Consider the standard formulation
of an inverse problem y = Hx™* + ¢, where y € R™ denotes the vector of measurements, x* € R™
is the vectorized unknown target signal, € represents measurement noise and H € R™*™ is the
linear sensing matrix associated with the acquisition physics, typically with m < n. Its range-space,
denoted Range(H ), comprises all possible measurement vectors y that can be generated by Hx*,
representing the observable components of the signal captured by the acquisition process. However,
this recovery is inherently ill-posed due to the linear operator nature, such as low-dimensionality,
which may lead to infinite solutions for x* that satisfy the observed measurements. Therefore,
there is a need to promote prior knowledge about x*, which indicates the structural or statistical
properties of the desired signal, enabling recovery for a wider set of measurements by exploiting
task-specific characteristics and enhancing solution performance, convergence, and stability in the
optimization problem. Hence, selecting a prior tailored to the problem is crucial, as it directly shapes
the optimization landscape to yield signal recovery even for components not directly captured by the
measurements. To address this, the recovery task is typically formulated as an optimization problem
by balancing data fidelity with prior knowledge about the target signal, as follows

& = argmin g(x) + A\h(x), (1)
xeR™
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where g(-) is the data fidelity term, generally defined as ||Hz — y||3, h(-) : R® — R is a regu-
larization function that promotes solutions into an image manifold M, with A > 0 controlling the
trade-off between both terms. Common priors for inverse problems may include sparsity, modeled
by the ¢;-norm|Candes & Wakin| (2008), promoting solutions with few non-zero components. Other
typical priors include total variation (TV)|Yuan|(2016)) to encourage piecewise smoothness, favoring
solutions that ensure edge preservation in applications like image deblurring. Further, learning-
based methods aim to implicitly learn signal priors from large datasets, leading to more flexible and
data-driven solutions. For instance, plug-and-play (PnP) framework |Venkatakrishnan et al.| (2013));
Kamilov et al.|(2023) allows the flexible integration of model-based recovery methods with precise
forward modeling of the physical acquisition phenomenon with a wide range of data priors. PnP
traces back its roots to proximal algorithms |Parikh & Boyd (2014), where these operators, usually
defined by analytical models of the underlying signals such as sparsity or low-rank Zha et al.[(2023),
are replaced by a general-purpose image denoiser operator Teodoro et al.| (2019).

However, these learned priors typically promote reconstructions that lie within the subspace spanned
by clean training data, without explicitly accounting for the null space of the sensing matrix H. By
constraining solutions to incorporate the null-space of H through a neural network, these priors
enable image regularization by explicitly injecting information about the components of x* that are
inherently unobservable in the acquisition process. Thus, these networks exploit the decomposition
of a signal into measurement and null-space components, learning a corrective mapping over all null-
space modes to enhance interpretability and accuracy|Schwab et al.|(2019). To improve robustness to
measurement noise, Chen & Davies|(2020) introduced separate range-space and null-space networks
that denoise both components before recombination. Variants of this range-null space decomposition
have been applied in diffusion-based restoration Wang et al. (2022));|Cheng et al.|(2023)); Wang et al.
(2023b)), GAN-prior methods Wang et al.| (2023a), algorithm-unrolling architectures |Chen et al.
(2023), and self-supervised schemes |Chen et al.| (2025 2021), consistently leveraging the full null-
space projector to achieve high-fidelity reconstructions.

Hence, modeling the null-space remains a fundamental challenge: while range-space priors promote
consistency with the measurements, they fail to constrain the unobservable directions in Null(H),
motivating different strategies to regularize these components. In particular, Arguello et al.| (2025)
represents a linear instance of null-space regularization, where a projection matrix S defines a low-
dimensional hyperplane inside Null(H). Yet, hyperplane estimation is challenging and highly re-
strictive, as it enforces an overly restrictive linear constraint that may not align with the non-linear
data manifold of .

We propose a Non-Linear Null-space Prior (NLNP), a generalization of null-space-based regular-
ization by acknowledging that the data distribution of @ typically lies on a non-linear manifold; thus,
the prior is not restricted to a hyperplane but instead adapts to the solution space in which @ resides.
To capture this topology, we introduce a neural network R that learns non-linear projections of Sz,
which (i) relaxes the assumption that Null(H) can be fully captured by a linear hyperplane S (a
constraint that is often too strong and difficult to estimate in practice) and instead replaces it with a
flexible non-linear representation, and (ii) aligns this relaxed representation with the image manifold
M, by using training with denoising objective. To use this prior on the image reconstruction step,
first, a neural network is trained to predict R () using only y. We include the prior and the predictor
network in a /5 regularization. We theoretically analyze that the proposed regularization provides
better conditioning in the data-fidelity update and orthogonal curvature towards the image manifold.
The proposed NLNP is easily incorporated with common image priors [Kamilov et al.| (2023). The
proposed approach was thoroughly evaluated in two linear inverse problems, Compressed Sensing
and image deblurring, showing significant improvements in both convergence and performance.

2 NON-LINEAR NULL-SPACE PRIOR

Our key insight is to model, learn, and use the geometry of the null-space of the sensing matrix, and
to couple it with an image prior learned via denoising. This yields an orthogonal guidance channel in
reconstruction: data consistency acts in Range(H "), while the proposed term acts (approximately)
in Null(H).
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Figure 1: Training scheme for the non-linear null-space prior: noise-conditional image denoising
(left head) and null-space code prediction (right head).

Definition 1 (Null space and projection) The null-space of H € R™*™ is
NulllH)={x €R": Hx=0}={x: = L h;, Vje{l,...,m}}.

Let P, := I — H'H be the orthogonal projector onto Null(H), where (-)' denotes the
Moore—Penrose pseudoinverse.

Note that in general, every inverse problem solver seeks to determine the null-space component of
x only from y. However, this is a challenging task. Thus, our prior promotes a solution, not in the
whole null-space, but rather in low-dimensional projections of it. We select a p-dimensional slice of
Null(H) via

S :=TP, € RP*", row(S) C Null(H), (2)
where the rows of T are orthonormal and constructed from an orthogonal complement of row (H)
(QR; see Appx.[6). Then Sz provides a compact coordinate of the null-space component of .

2.1 NON-LINEAR NULL-SPACE PRIOR VIA DENOISING

We propose the model R(-,0) : R™ x Ry — RP performs a joint image denoising and low-
dimensional null-space learning, see Fig. [T for an illustration. The model needs to be lightweight as
it will be used in the image restoration framework (PnP, DM). The model receives as input a noisy
image u = x + o€, € ~ N (0, I) and the noise variance o. The first block, W : R" x Ry — R",
which adapts a standard adaptive noise-level encoding by concatenating the noisy image with o1,,.
This first part learns image manifold geometry Milanfar & Delbracio| (2025). From the denoised
image, a model P : R” — RP performs the low-dimensional null-space estimation. We construct
P = [(1(2),(2(&), . .., ((&)], where the non-linear operators are (;(xz) = W2p(Wlz + b}) +
b2i=1,....p:

R* = argmin Ego.c| [W(@ + 0€,0) = al} + [R(@ + e, 0) - Saf}]. 3)

image denoising low-dim null-space code

with € ~ A/(0,I) and o > 0 drawn from a noise schedule (e.g., log-uniform). The first term forms a
standard denoiser W the second teaches R to predict the null-space components of the clean image
from a noisy input. The two-term loss in equationmakes R(-, o) a noise-conditional, manifold-
aware null-space encoder. The denoising part learns the local geometry of natural images, while the
null-space anchor ties that geometry to a low-dimensional slice row(S) C Null(H). One of the
main consequences of this prior is that it learns a Projected score of the data. Let u = x 4 o€ with
€~N (0, I). The Bayes-optimal minimizer of the null-space term is the conditional mean

R*(u,0) = E[Sz | u] = Su+ 02 8V, logp, (u), 4)

i.e., the residual (R* — Su)/o? equals the data score projected onto row(S). This is the exact
Tweedie/MMSE identity specialized to Sa. Another important aspect of this model, as it will
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be iteratively used in the reconstruction algorithm, the model requires stable behavior. Following
Lipschitz constrained deep denoising Ryu et al.| (2019), we apply spectral normalization during
training equation[3] i.e.,

w}l w2

W~1<— v , W2<—7z s :1, 5
R v A W M ®
where Anq. (W) denotes the largest eigenvalue of W.

2.2 MEASUREMENT-CONDITIONED NULL-SPACE PREDICTOR

After pretraining the non-linear prior (Section[2.I), R remains fixed during the subsequent training
of a measurement-conditioned encoder G : R™ — RP, designed to predict the same null-space
code directly from the measurements y. The predictor G bridges the measurement domain and the
non-linear null-space representation learned by R, enabling consistency across both perspectives of
the inverse problem. Formally, G is trained to minimize the discrepancy between its prediction and
the null-space code extracted from the clean ground truth data via R:

G* = argénin Ex y HG(y) - R*(w,a)”i. (6)

This formulation, under Mean Squared Error (MSE), yields G*(y) = E[R(x, 0) | y] = E[Sz | y],
enabling the null-space regularization to adapt to the observed data distribution while maintaining
consistency with the image manifold M induced by R. Since no corrupted image w is leveraged
when training G, the ¢ map, which serves as an indicator of the perturbation in the input of R,
remains with a zero value. For the architecture of G, any differentiable image-to-image network
Eg : R” —R™ that takes the backprojection zo = H "y and outputs an image-shaped tensor can be
used, since the null-space projection is handled by S, i.e., G(y) = S Eq¢(H "y). Thus, G does not
need to be tailored to the task.

3 REGULARIZED SOLVER

We incorporate the proposed prior using the following optimization problem

A . * * 2
& = argmin 3| He - y[3 + \h(@) + 3 |G (y) - R (@), (7
xcR™

with a general image prior h (e.g., sparsity, image denoiser, or diffusion prior). Our framework intro-
duces a novel regularization strategy that embeds data-driven models into inverse-problem solvers
by constraining solutions to the nonlinear low-dimensional manifold induced by R*. Note that solv-
ing for x, the proposed regularization function, requires deriving over the model R. However, due
to the spectral normalization induced equation [5] provides stable gradients.

.{‘m smin g(x)+Ah(z)+7||R* (x)
z

Figure [2] illustrates the geometric interpretation of
the proposed non-linear regularized solution. The
blue line represents solutions in the Range(H "),
the image prior h(x) solution represented by the
(learned) image manifold M promoted by PnP de-
noiser or DM. In the yellow line, the selected null-
space component Sz is orthogonal to the solu-
tion on the Range(H ). The proposed prior (green
line) approximately follows the direction of the
null-space component Sz but curves according to
the image manifold due to the denoising training
scheme. The prior can also be viewed as a relaxation
of the null-space hyperplane constraint towards a
data-adaptive orthogonal regularization. The pro-
Figure 2: Geometry of the proposed solu- posed solution promotes reconstructions that (i) lie
tion. Data-fidelity solution (blue line) The on the image manifold M (via denoising) and (ii)
non-linear null-space {z : R(z) = Gy} agree with a measurement-conditioned non-linear
curves along the image manifold M while re-  pyll-space code. This resolves the Null(H) ambi-

maining (approximately) tangent to Null(H'), guity without fighting data consistency.
due to range-invariance.

.{.r, argmin g(a)+ )\//an}
z
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3.1 PLUG-AND-PLAY METHODS

The PnP methods |Venkatakrishnan et al.| (2013));
Chan et al| (2016); Kamilov et al. (2023) have
gained significant attention due to the flexibility
Requiore: Ll,H a0 . for incorporating physics models and learned im-
; t"f’ :f 1: 5(121(134 +IT(G (y), t =1 age priors. Thus, the term h(x) is implicitly solved

srrk=4,..., 400 using a trained denoiser model. We focus on the

Algorithm 1 NLNP-PnP-FISTA

3 U’Z o Sckheduler;(k) . FISTA-PnP formulation, but it can be easily adapted
L CY(H (Hz" —y)+ to other formulations such as HQS or ADMM. In
5. YV o R (2, 04) — G*(y)H) FISTA-PnP, the first step is gradient descent on

) X X the data fidelity g(x), then apply a denoising step,
g: ? _: Do (x%) and finally, an Nesterov acceleration step is used

’ /iR Beck & Teboulle] (2009a). In Algorithm [I] the
8 = PnP-FISTA with the proposed NLNP regulariza-
9: 2" xF 4 t%l(xlC —x" tion is shown. The prior is adapted for each iter-
10: end for ation via an estimated noise level with pre-defined
11: return x* scheduler.(k) where ¢ controls the decay of oy,

Note that the proposed regularizer is a non-linear and non-convex function; thus, an accurate al-
gorithm initialization is required. Thus, we set z° € R" using the adjoint operator of R. Denote

fix a reference point & € R™. Define © := f(a) = R(u,0) € RP and the corresponding
Jacobian Jg(xg,0) € RP*™.. Thus, a vector—Jacobian product (VJP) at @ provides the adjoint
map JT : RP — R"™. Thus, we compute JT(9) = Jg(@,0)" 0. Then, the initialization is

z' = 2(H "y + JT(G*(y))

3.2 THEORETICAL ANALYSES

FISTA-PnP formulation require gradient steps on data-fidelity and NLNP regularization. Thus, it is
required to ensure that the proposed regularization improves i) conditioning algorithm updates and
ii) orthogonal curvature in the image manifold. First, let’s consider the following assumptions.

(A1) (Projected Tweedie target). For u = = + o€, € ~ N(0,I), R*(u,0) = Su +
028V, logp, (u) and Jr+(u,0) = S(I + 02VZ log p,(u)).
(A2) (Score smoothness). ||V log ps(u)|| < L.
(A3) (Approximation). ||Jg — Jr+|| < d, uniformly near x.
(A4) (Range-invariance). || Jr(z,o)H || < n (with 1 small).
(AS) (Local regularity). Jg is Ly-Lipschitz and ||r(x, 0)|| < p near xy.
Theorem 1 (Improved conditioning of linearized z-updates) Ler H € R™*™, and let S €

RP*™ have orthonormal rows with row(S) C Null(H). Define U := row(S) with projector
Py. Consider the regularized objective

F(z) = ;|Hz —yl3 + 3Rz, 0) - G) 3,
and its Gauss—Newton/majorize—minimize x-step at xy with SPD matrix
Qr = H'H + -‘r’YJI;er, Ji = JR(wk,a).

Let cy := 1 — %L, — 8, and suppose c, > 0. Then, restricted to W := Range(H ") @ U,

Amin(Qk‘W) Z min{)\min(HTH)v ’Y(Ci —PLI)} - 77]23

IN

Amax(Qrlw) < Amax(HTH) + 75|,

and the condition number satisfies

Amax(H " H) + 7] J |2
min{ Amin(HTH),y(c2 — pLj)} —vn?

K Qrlw) <
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Remark In particular, compared to any fixed linear surrogate (Ji, = S), the nonlinear R improves
the denominator through the state-dependent curvature c2 —pL j on U, yielding fewer CG iterations

and larger stable step sizes.
The proof of this theorem can be found in the Appendix

Theorem 2 (Orthogonal curvature injection towards the image manifold) Under the assump-
tions of Theorem|[l} let x, be a stationary point with R(x,, o) = G(y), and define the regularizer

field
gr(@) =7 Jr(z,0) " (R(z,0) — G(y)).
Then, in a neighborhood of x.., the following hold.

(a) Orthogonality to data consistency. The component of gg(x) along Range(H ") is small:

||PRdnge(HT)gR || 7”“R 44 o’) (y)Ha

so the regularizer steers x predominantly inside Null( H ) and does not compete with the likelihood
gradient H' (Hx — y) € Range(H ).

(b) Curvature floor in the learned null-space directions. Let T, := row(Jg (z,0)) C Null(H) be
the learned null-space tangent (at x). Then the Hessian of the smooth part of F satisfies

Pr, VQ(%HHSU—’!/H?*'%||7‘($7U)||2) Pr, = ~(c2 —pL;) Pr, — v0*1,

i.e., along the directions selected by Jr the curvature is uniformly positive (up to n?), producing
contractive moves towards the agreement set R(x,0) = G(y) inside Null(H).

(c) Alignment with the image manifold (projected Tweedie). Let V2 logp,(u) have
eigen-decomposition with tangent eigenvalues {\:} (near 0) along the smoothed image manifold
and normal eigenvalues {\,} < —k off-manifold. Then

tangent:  Ouin(Jr+) 2 1 — o max ||,
Jr+(u,0) = S(I + 0*VZ logp,(u = ~
e ) ( gPo )) normal: O’min(JR*) >1— o2k,

Thus J{{* Jr~ is stronger in normal (off-manifold) directions than in tangent ones, so the induced
curvature selectively pulls the iterate towards the image manifold while remaining in Null(H ). The
same conclusions hold for Jgr up to the approximation error d.

The proof of this theorem can be found in the Appendix

4 EXPERIMENTS

We evaluate the proposed NLNP regularizer on two imaging inverse problems: Compressed Sensing
(CS) and deblurring. For the recovery stage, we employ the FISTA solver Beck & Teboulle|(2009b)
within a PnP framework equipped with a deep denoiser Kamilov et al.| (2023)), regularization by de-
noising (RED)Romano et al.|(2017), and a sparsity priorBeck & Teboulle| (2009b). The multi-term
data-fidelity weighting into the FISTA-PnP algorithm includes an acceleration factor that follows
a two-phase, piecewise-constant schedule: denoting by -y, the scaling applied to the NLNP-driven
fidelity term at iteration k, then

ok M ®

Yiow s k Z k*a

with k* = K/2, where K is the total number of iterations. This transition, rather than a grad-
ual decay, emphasizes aggressive enforcement of the non-linear consistency constraints during the
initial phase before reducing their influence to allow the remaining prior terms to refine fine-scale
details with improved stability. The method was implemented using the PyTorch framework. All
experiments were conducted on an NVIDIA TITAN RTX GPU.
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Figure 3: Compressed Sensing (CS) PSNR results. Left: PSNR for sampling ratios m/n = 0.1
and p/n = 0.3. Right: overlay of the best factor among the left-panel settings against two ablation
studies—(i) the noise used during R pretraining and (ii) the denoising loss used in that stage—. The
solver and acquisition operator are kept fixed; only the training configuration and architecture of R
varies.

Compressed Sensing. The Single-Pixel Camera (SPC) was used along with the CelebA
dataset |Liu et al.| (2015)), with 16,000 images for training and 4,000 for testing. All images were
resized to 32 x 32. The Adam optimizer Kingma & Ba (2014) was used with a learning rate of
3 x 10~* and a batch size of 256. H is a random binary sensing matrix with m/n = 0.1 and
p/n = 0.3 while S is initialized by QR decomposition, according to Algorithm 1 in Appendix A.1.
Then, G was implemented using a U-Net architecture [Ronneberger et al.|(2015)), and in this setting
S may serve as the fixed null-space projection matrix obtained from the QR decomposition. For the
implementation of the « scheduler, we used Yhigh = {70,100, 130, 150, 180, 200} and ~joy = 70.

4.1 CONVERGENCE AND PERFORMANCE ANALYSIS IN SPC

We begin by assessing convergence speed and stability under SPC via iteration-wise PSNR trajec-
tories across methods and hyperparameters. Specifically, Fig.[3[a) reports the test-set PSNR versus
NPN (linear case) and FISTA-PnP (Base) iteration for the sampling ratios crA = 0.1 and crB = 0.3,
using the same denoiser prior. Across all v cases, the NLNP solver converges in fewer iterations
and exhibits reduced oscillations; the inflection near k* aligns with the scheduled reduction of the
NLNP weight, after which the remaining priors refine fine-scale details with improved stability. The
~ value for the NPN method remains fixed at v = 1 since it was determined to be its optimal value.

Furthermore, to numerically measure the convergence improvement obtained via NLNP, we track
reconstruction quality as a function of solver iterations under the SPC setting. Complementing the
PSNR traces, the convergence plot in Fig. ]reports a normalized one-step contraction metric (values
below 1 indicate contraction and values approaching 1 indicate the asymptotic regime) for NLNP
with multiple factors, the Base FISTA solver, and the linear NPN variant. All NLNP configurations
exhibit two pronounced contraction windows at the initial phase within the first iterations and a sec-
ond phase around the schedule transition at £*, followed by a monotone approach to the fixed point
with minimal oscillations. In contrast, the Base method displays a shallower and slower contraction,
whereas NPN shows a transient overshoot and delayed stabilization near the mid-iteration transi-
tion. The depth of the early contraction and the speed of stabilization are consistently stronger under
NLNP, indicating faster error reduction per iteration.

4.2 ABLATION STUDIES

To further analyze and substantiate the contribution of our pretraining choices to improve the effec-
tiveness of NLNP, we conducted two ablation studies designed to isolate the roles of noise condi-
tioning and the denoising objective in R. The objective is to corroborate that these design elements
improve both reconstruction performance and the convergence behavior of the regularizer. (i) In the
first ablation, we removed the denoising loss used during the pretraining of R (equation [3) while
retaining the addition of Gaussian noise (architecture unchanged). (ii) In the second ablation, we
removed both the noise injection and the denoising loss; to eliminate implicit denoising capacity,
we also modified R by removing the denoising block W, yielding an otherwise comparable archi-
tecture trained on the same data. For each variant, we retrained G and R, while the reconstruction
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Figure 4: Compressed Sensing (CS) convergence results
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Figure 5: Visual reconstructions for image deblurring for baseline FISTA PnP and NLPN

solver, datasets, and all downstream hyperparameters were kept fixed. Both ablations exhibit slower
PSNR ascent and lower terminal PSNR, with the strongest degradation observed when both noise
conditioning and denoising are removed.
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Deblurring. In the deblurring setting, we
applied a 2-D Gaussian kernel with a band-
width of 5.0 . Experiments were conducted
on the CelebA dataset resized to 64 x 64, us-
ing 16,000 images for training and 2,000 for
testing. The measurement-conditioned net-
work G we employed a U-Net architecture
along with the Adam optimizer with a learn-
NLNP + = 0.05 ing rate of 1 x 10~% and a batch size of 32.
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5 LIMITATIONS

While NLNP offers a principled means to inject measurement—conditioned, non-linear null-space
structure into inverse problems, its applicability is limited by its reliance on an accurately specified
linear forward model. In particular, the method requieres a calibrated sensing operator H and
access to a null-space slice row(S) C Null(H) (either fixed from a QR/SVD factorization or
jointly updated via S < S(I — H'H)). The range-invariance used in training/analysis and the
enforcement of null-space consistency depend on the fidelity of H'; consequently, model mismatch,
spatial variation, or miscalibration can degrade performance and weaken the geometric guarantees.
Furthermore, NLNP is highly sensitive to the representation and selection of the projection S, which
encodes a representational choice for the subspace U = row(S) C Null(H). Since R is trained
to predict the projected code Sz, its usability hinges on the design of S. Hence, misalignment
of U with task-relevant null-space modes, perturbations induced by range-domain leakage into S
(i.e. non-orthonormal rows) or poor conditioning can bias the learned null-space code towards
uninformative directions and reduce the benefits of NLNP.

Moreover, since NLNP constrains reconstructions through a selected low-dimensional subspace
row(S) of Null(H), the selection of the null-space slice dimension p remains a key point in the
learning process. The slice dimension p comprehends a trade-off between the stability and expres-
sivity of Null(H): if p is too small, allowable variability in the null-space may be poorly repre-
sented and subsequently learned by R, leading to a highly constrained solution space imposed by
the learned regularizer GG, which may lead to suboptimal solutions; alternatively, when employing
a large p, the constraint tends to become weak, decreasing optimization performance and reducing
useful residual ambiguity. Hence, developing data- and operator-aware procedures to select or learn
S (including automatic choice of p) is an important direction for future work.

6 CONCLUSIONS AND FUTURE OUTLOOKS

We introduced a Non-Linear Null-space Prior (NLNP) that learns a low-dimensional, measurement-
conditioned representation of Null(H) and couples it with a noise-conditional denoising head. The
resulting regularizer injects orthogonal, state-dependent curvature in directions invisible to the sen-
sor while remaining nearly orthogonal to Range(H ). Theoretically, we proved (i) improved con-
ditioning of Gauss—Newton z-updates through a curvature floor on the learned null-space slice, and
(ii) orthogonal curvature injection towards the image manifold, which together explain the faster
and more stable convergence observed in our experiments. Empirically, integrating NLNP into PnP
solvers yields consistent gains in PSNR and iteration efficiency across compressed sensing and de-
blurring. The prior can also be included in other solvers, such as deep unfolding, diffusion models,
and deep equilibrium models.



Under review as a conference paper at ICLR 2026

REFERENCES

Henry Arguello, Roman Jacome, Romario Gualdrén-Hurtado, and Leon Suarez-Rodriguez. Npn:
Non-linear projections of the null space for imaging inverse problems. In Accepted to the Con-
ference on Neural Information Processing Systems (NeurIPS 2025), 2025.

Yanna Bai, Wei Chen, Jie Chen, and Weisi Guo. Deep learning methods for solving linear inverse
problems: Research directions and paradigms. Signal Processing, 177:107729, 2020.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, 2(1):183-202, 2009a.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, 2(1):183-202, 2009b.

Mario Bertero, Christine De Mol, and Edward Roy Pike. Linear inverse problems with discrete data.
i. general formulation and singular system analysis. Inverse problems, 1(4):301, 1985.

Mario Bertero, Patrizia Boccacci, and Christine De Mol. Introduction to inverse problems in imag-
ing. CRC press, 2021.

E. J. Candes and M. B. Wakin. An introduction to compressive sampling. /EEE Signal Processing
Magazine, 25(2):21-30, 2008. doi: 10.1109/MSP.2007.914731.

Stanley H Chan, Xiran Wang, and Omar A Elgendy. Plug-and-play admm for image restoration:
Fixed-point convergence and applications. IEEE Transactions on Computational Imaging, 3(1):
84-98, 2016.

Bin Chen, Jiechong Song, Jingfen Xie, and Jian Zhang. Deep physics-guided unrolling general-
ization for compressed sensing. International Journal of Computer Vision, 131(11):2864-2887,
2023.

Dongdong Chen and Mike E Davies. Deep decomposition learning for inverse imaging problems. In
Computer Vision—-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part XXVIII 16, pp. 510-526. Springer, 2020.

Dongdong Chen, Julidn Tachella, and Mike E Davies. Equivariant imaging: Learning beyond the
range space. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
4379-4388, 2021.

Yurong Chen, Yaonan Wang, and Hui Zhang. Unsupervised range-nullspace learning prior for
multispectral images reconstruction. /[EEE Transactions on Image Processing, 2025.

Xinhua Cheng, Nan Zhang, Jiwen Yu, Yinhuai Wang, Ge Li, and Jian Zhang. Null-space diffusion
sampling for zero-shot point cloud completion. In IJCAI, pp. 618-626, 2023.

Bahadir Gunturk and Xin Li. Image restoration. CRC Press, 2018.

Kamilov et al. Plug-and-play methods for integrating physical and learned models in computational
imaging: Theory, algorithms, and applications. IEEE Sig. Proc. Mag., 40(1):85-97, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of the IEEE international conference on computer vision, pp. 3730-3738, 2015.

Michael Lustig, David L Donoho, Juan M Santos, and John M Pauly. Compressed sensing mri.
IEEFE signal processing magazine, 25(2):72-82, 2008.

Peyman Milanfar and Mauricio Delbracio. Denoising: a powerful building block for imaging, in-
verse problems and machine learning. Philosophical Transactions A, 383(2299):20240326, 2025.

Gregory Ongie, Ajil Jalal, Christopher A Metzler Richard G Baraniuk, Alexandros G Dimakis, and
Rebecca Willett. Deep learning techniques for inverse problems in imaging. IEEE Journal on
Selected Areas in Information Theory, 2020.

10



Under review as a conference paper at ICLR 2026

Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in optimization, 1(3):
127-239, 2014.

Yaniv Romano, Michael Elad, and Peyman Milanfar. The little engine that could: Regularization by
denoising (red). SIAM journal on imaging sciences, 10(4):1804-1844, 2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part Il 18, pp. 234-241. Springer, 2015.

Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. Plug-and-
play methods provably converge with properly trained denoisers. In International Conference on
Machine Learning, pp. 5546-5557. PMLR, 2019.

Johannes Schwab, Stephan Antholzer, and Markus Haltmeier. Deep null space learning for inverse
problems: convergence analysis and rates. Inverse Problems, 35(2):025008, 2019.

Afonso M Teodoro, José M Bioucas-Dias, and Méario AT Figueiredo. Image restoration and recon-
struction using targeted plug-and-play priors. IEEE Transactions on Computational Imaging, 5
(4):675-686, 2019.

Singanallur V. Venkatakrishnan, Charles A. Bouman, and Brendt Wohlberg. Plug-and-play priors
for model based reconstruction. In 2013 IEEE Global Conference on Signal and Information
Processing, pp. 945-948, 2013. doi: 10.1109/GlobalSIP.2013.6737048.

Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
null-space model. arXiv preprint arXiv:2212.00490, 2022.

Yinhuai Wang, Yujie Hu, Jiwen Yu, and Jian Zhang. Gan prior based null-space learning for con-
sistent super-resolution. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 37, pp. 2724-2732, 2023a.

Yinhuai Wang, Jiwen Yu, Runyi Yu, and Jian Zhang. Unlimited-size diffusion restoration. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1160—
1167, 2023b.

Martin J Willemink, Pim A de Jong, Tim Leiner, Linda M de Heer, Rutger AJ Nievelstein, Ri-
cardo PJ Budde, and Arnold MR Schilham. Iterative reconstruction techniques for computed
tomography part 1: technical principles. European radiology, 23:1623-1631, 2013.

X. Yuan. Generalized alternating projection based total variation minimization for compressive
sensing. In 2016 IEEE International Conference on Image Processing (ICIP), pp. 2539-2543,
2016. doi: 10.1109/ICIP.2016.7532817.

Zhiyuan Zha, Bihan Wen, Xin Yuan, Saiprasad Ravishankar, Jiantao Zhou, and Ce Zhu. Learning
nonlocal sparse and low-rank models for image compressive sensing: Nonlocal sparse and low-
rank modeling. IEEE Signal Processing Magazine, 40(1):32—44, 2023.

11



Under review as a conference paper at ICLR 2026

APPENDIX

A.1 ALGORITHMS FOR DESIGNING S

We developed an algorithm for obtaining S from H satisfying that SH " = 0. The algorithm is
based on the QR decomposition, first computing a full QR decomposition of H T € R™*™ yielding
an orthonormal basis Qg € R™*™ for R™. The columns from m + 1 to n of Qg form a basis
for Null(H ), which we denote by N € R™*("=™) To construct a subspace of the null space, the
algorithm samples a random Gaussian matrix P € R(®~™)*?_which is orthonormalized via QR
decomposition to produce U € R(*~")*P_ This ensures that the resulting subspace is both diverse
and well-conditioned. Finally, the matrix .S is obtained as S = U TNT € RP*™ which consists of
p orthonormal vectors that span a random p-dimensional subspace within Null(H).

Algorithm 2 Generate orthonormal rows to H via QR decomposition

Require: Matrix H € R™*"™, desired number of rows p
Ensure: Matrix S € RP*™ whose rows are orthonormal and lie in Null(H)

I: Qnun +— QR(HT)

22 N — Qpul, m+1:n > Nullspace basis, size n X (n —m)
3: Sample P ~ N(0,1) € R(r=m)xp

4: U + QR(P > U € R(»=™)*P with orthonormal columns
5: S+« U'N > Resulting p x n matrix of orthonormal rows
6: return S

A.2 PROOF OF THEOREM 1

Proof Denote the residual r(xz,0) := R(x,0) — G(y) € R? and J(x,0) := Jr(z,0), and
abbreviate rj, := 7(x,0), Jy := J(x),0). Let V := Range(H "), so W =V @ U with V L U.
Under (A1)—(A3), for any u € U we have

[ Tiull = Nreull = e = Jre | ull > (1= 0%Lo = 65) ull = co |lull-
Thus u' J} Jpu = || Jpul|® > c2||ul®.

The exact Hessian of the residual penalty satisfies
p
v2(g r(, o) ||2) = yJ(@,0) J(x,0) + 7 ri(x,0) V?Ri(z,0).
i=1

By (AS), |r(z,0)|| < pand J is L;-Lipschitz, so |[V2R,|| < L. Hence, at zy,

VI D= V(3 Ir@e o)) = vpLs L. ©

Assumption (A4) yields ||.J(z,o)H || < n, hence || JyPy| < n with Py the projector onto V.
Using the V' @ U splitting,

| PvJ JePu || = [(JuPy) " (JePo) < 1 JePyll|JkPoll < nllJkPoll.

Since || Ji Py || is uniformly bounded near @, (by (A3) and Step 1), we absorb this harmless constant
into 77 and write ||PVJ,IJ;€PU|| < n?. Therefore, for any unit z = v + u withv € V, v € U,

2V (v Tz > yu' (PuJ) JuPo)u — vn?, (10)
Combining equation[9] Step 1, and equation [I0] gives
2T (I Tz = y(eh = pLa) ull® = o, (1

Then, for any unit z = v+ u € W,
2'Qrz=v H Hv + z' (vJ] Ji)z
> Ain(HTH) [[v]|* + y(c — pLy) [lul* — v7°.
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As ||z||? = ||v||* + ||u]|?> = 1, we obtain

)\min(Qk|W) > min{Amin(HTH)7 +’Y(C§7PLJ)} - 7”2

For any unit z € W,
ZTka < )\max(HTH) + 7”‘]/6”2’
hence
Amax(Qrlw) < Amax(H T H) + || Ji||>.

Combining the bounds yields
H(Qrlw) <

This completes the proof.

Amax (H T H ) + || Ji.||?
min{ Awin (H"H), +7(c2 — pLj)} —vn?

A.3 PROOF OF THEOREM 2

Proof. Setr(xz,0) := R(z,0) — G(y) and J(x,0) := Jr(x,0); abbreviate r := r(x,0), J :=
J(z,0). LetV := Range(H ") and U := row(S) C Null(H) with orthogonal projectors Py, Py.
Define ¢, := 1 — 6?L, — §, > 0 as in Theorem ]

(a) Orthogonality of the regularizer field. By definition, gg (x) =~ J " r. Then
IPvgr(z)ll =~ sup(v,JTr) =~ sup(Ju,r) <y|lJ|v| [r].
veV veEV
flvll=1 lvll=1
Assumption (A4) (“range-invariance™) gives ||J(x,0)H || < 1, which we interpret as a bound

on the restriction of J to V' (absorbing harmless constants into 7). Hence || Py ggr(x)| < vn |7,
proving (a).

(b) Curvature floor along 7, = row(J). We first obtain a singular-value floor for J on its row
space. From (A1)-(A2),
Jr+(x,0) = S(I +02Vv? logpa(:c)) =: SK,;, so Untin(JR*) >1-—0%L,.
By (A3), ||J — Jr+|| < d,; Weyl’s inequality then yields
Thin(T) = opin(Jre) =00 > co

Therefore, for any z € T,, = Range(J "),

2T Tz = |22 > )% (12)
Next, use the Gauss—Newton identity and (AS):

P
v“‘(g ||r||2> =7 T T +7Y 1 VPR, = 4T — ypLy L.
i=1
Projecting onto T, and combining with equation [I2] gives

Pr, V¥(31rI?) Pr. = (¢ = pLy) Pr..

Adding the data Hessian V?(3||[Hz — y||?) = H " H = 0 only helps. Finally, to account for small
range-leakage implied by (A4) when regarding T, as (approximately) contained in Null(H'), we
insert the slack —vyn2I, obtaining the stated bound in (b).

(c) Manifold-aligned anisotropy (projected Tweedie). Let V2 logp,(u) = QAQT with eigen-
values {);} on manifold tangents and {\,,} < —x on normals. From (Al),

Jr+(u,0) = S(I + 0>V logps(u)) = SQ (I +0°N) Q.
Along an eigen-direction v with eigenvalue A, || Jr«v|| = [|S(I + o2 \)v|| = |1 + o2 A| | Pyv|.
Hence, on tangents (A = \; = 0), oin(Jr+) 2 1 — 02 max |\¢|, while on normals (A = \,, < —k),
Omin(Jr+) > 1 — 02k Thus JI—{* Jr+ produces stronger contraction off-manifold than along it,

guiding iterates towards the image manifold while remaining inside Null(H ) due to the projection
S. By (A3), the same holds for J up to the approximation error §,,, which completes (c).

13



Under review as a conference paper at ICLR 2026

A.4 THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs), such as ChatGPT Pro, were used by the authors to receive gram-
mar, style, and clarity suggestions on author-written text, and all edits were reviewed and either
accepted or rejected by the authors. Also, it was used for formalize the proofs of Theorems 1 and
2, which were thoroughly checked by the authors. No LLM-generated text, data, analyses, code, or
references were accepted without human verification, and the authors take full responsibility for the
paper’s content.
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