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ABSTRACT

A wide variety of model explanation approaches have been proposed in recent
years, all guided by very different rationales and heuristics. In this paper, we take
a new route and cast interpretability as a statistical inference problem. We propose
a general deep probabilistic model designed to produce interpretable predictions.
The model’s parameters can be learned via maximum likelihood, and the method
can be adapted to any predictor network architecture, and any type of prediction
problem. Our method is a case of amortized interpretability models, where a neu-
ral network is used as a selector to allow for fast interpretation at inference time.
Several popular interpretability methods are shown to be particular cases of regu-
larized maximum likelihood for our general model. We propose new datasets with
ground truth selection which allow for the evaluation of the features importance
map. Using these datasets, we show experimentally that using multiple imputation
provides more reasonable interpretation.

1 INTRODUCTION

Fueled by the recent advances in deep learning, machine learning models are becoming omnipresent
in society. Their widespread use for decision making or predictions in critical fields leads to a
growing need for transparency and interpretability of these methods. While Rudin (2019) argues
that we should always favor interpretable models for high-stake decisions, in practice, black-box
methods are used due to their superior predictive power. Researchers have proposed a variety of
model explanation approaches for black-box models, and we refer to Linardatos et al. (2021) for a
recent survey. Finding interpretable methods is hard. The multiplicity of evaluation methods (Afchar
et al., 2021; Jethani et al., 2021a; Liu et al., 2021; Hooker et al., 2019) makes it difficult to assess
the qualities of the different methods.

In this paper, we will focus on methods that offer an understanding of which features are important
for the prediction of a given instance. These types of methods are called instance-wise feature
selection and quantify how much a prediction change when only a subset of features is shown to the
model. Ribeiro et al. (2016) fit an interpretable linear regression locally around a given instance, and
Seo et al. (2018) create saliency maps by back-propagating gradient through the model. Lundberg &
Lee (2017) approximate Shapley values (Shapley, 1953) for every instance. Fong & Vedaldi (2017),
Slack et al. (2020) propose to create a saliency map by evaluating the change in performance of the
model when exposed to different selections of features. In practice, these methods show very good
results but focus on local explanations for a single instance. An evaluation of the selection for a
single image requires an exponential number of passes through the black-box model.

It is of particular interest to obtain explanations of multiple instances using amortized explanation
methods. The idea of such methods is to train a selector network that will generalize the selection
given for a single instance. While there is a higher cost of entry due to training an extra network,
the interpretation at test time is much faster. Jethani et al. (2021b) proposed to obtain Shapley
values with a selector network. Chen et al. (2018), Yoon et al. (2018) both proposed to train a
selector that selects a minimum subset of features while maximizing an information-theoretical
threshold. Jethani et al. (2021a) showed that the selector in such models was not really constrained
to select the important features, but it would encode target information to facilitate the prediction,
and proposed a method that trains a surrogate predictor to alleviate this issue.

In this paper, we propose LEX (Latent Variable as Explanation) a modular self-interpretable
probabilistic model class that allows for instance-wise feature selection. LEX is composed of three
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Figure 1: The LEX pipeline allows us to transform any prediction model into an explainable one.
In supervised learning, a standard approach uses a function fθ (usually a neural network) to param-
eterize a prediction distribution pθ. In that framework, we would feed the input data directly to the
neural network fθ. Within the LEX pipeline, we obtain a distribution of masks pγ parameterized
by a neural network gγ from the input data. Samples from this mask distribution are applied to the
original image x to produce incomplete samples xz . We implicitly create the missingness by sam-
pling imputed samples x̃ given the masked image using a generative model conditioned on both the
mask and the original image. These samples are then fed to a classifier fθ to obtain a prediction. As
opposed to previous methods, multiple imputation allows us to minimise the encoding happening in
the mask and to get a more faithful selection.

different modules: a predictor, a selector, and an imputation scheme. We show that up to different
optimization procedures, other existing amortized explanation methods (L2X Chen et al. (2018),
Invase Yoon et al. (2018), and REAL-X Jethani et al. (2021a)) optimize an objective that can be
framed as the maximization of a LEX model. LEX can be used either “In-Situ,” where the selector
and predictor are trained jointly, or “Post-Hoc,” to explain an already learned predictor. We propose
two new datasets to evaluate the performance of instance wise feature selection and experimentally
show that using multiple imputation leads to more plausible selection.

Notation Random variables are capitalized, their realizations are not. Exponents correspond to the
index of realisations and indices correspond to the considered feature. For instance, xi

j corresponds
to the ith realization of the random variable Xj , which is the jth feature of the random variable
X . Let i ∈ J0, DK, x−i is defined as the vector (x0, . . . , xi−1, xi+1, . . . , xD), i.e., the vector with
ith dimension removed. Let z ∈ {0, 1}D, then Xz is defined as the vector (xj){j|zj=1} where we
only select the dimensions where z = 1, and x1−z denotes the vector (xj){j|zj=0} where we only
select the dimension where z = 0. In particular, Xz is ∥z∥-dimensional and x1−z is (D − ∥z∥)-
dimensional.

2 CASTING INTERPRETABILITY AS STATISTICAL LEARNING

Let X =
∏D

d=1 Xi be a D-dimensional feature space and Y be the target space. We consider two
random variables X = (X1, . . . , XD) and Y ∈ Y following the true data generating distribution
pdata(x, y). We have access to N i.i.d. realisations of these two random variables, x1, . . . , xN ∈
X and labels y1, . . . , yn ∈ Y . We want to approximate the conditional distribution of the labels
pdata(y|x) and discover which subset of features are useful for every local prediction.

2.1 STARTING WITH A STANDARD PREDICTIVE MODEL

To approximate this conditional distribution, a standard approach would be to consider a predictive
model Φ(y|fθ(x)), where fθ : RD → H is a neural network and (Φ(·|η))η∈H is a parametric family
of densities over the target space, here parameterized by the output of fθ. Usually, Φ is a categorical
distribution for a classification task and a normal distribution for a regression task. The model being
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posited, various approaches exist to find the optimal parameters such as maximum likelihood or
Bayesian inference. This method is just a description of the usual setting in deep learning. This is
the starting point for our models, from which we will derive a latent variable as explanation model.

2.2 LATENT VARIABLE AS EXPLANATION (LEX)
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Figure 2: Left panel: graphical model
of a standard predictive model. We pro-
pose to embed this model in a latent ex-
plainer model using the construction of
the right panel.

As discussed in Section 1, the prediction model
Φ(y|fθ(x)) is not interpretable by itself in general. Our
goal is to embed it within a general interpretable proba-
bilistic model. In addition, we want this explanation to
be easily understandable by a human, thus we propose
to have a score per feature defining the importance of
this feature for prediction. We propose to create a latent
Z ∈ {0, 1}D that corresponds to a subset of selected fea-
tures. The idea is that if Zd = 1, then feature d is used by
the predictor, and conversely.

We endow this latent variable with a distribution pγ(z|x).
This distribution pγ is parametrized by a neural network
gγ : X → [0, 1]D called the selector with weights γ ∈ Γ.
To obtain the importance feature map of an input x, we
look at its average selection Eγ [Z|x] or an estimate if not
readily available (see Fig. 7). A common parametriza-
tion is choosing the latent variable Z to be distributed as
a product of independent Bernoulli variables pγ(z|x) =∏D

d=1 B(zd|gγ(x)d). With that parametrization, the im-
portance feature map of an input x is directly given by the output of the selector gγ . For instance,
Yoon et al. (2018) and Jethani et al. (2021a) use a parametrization with independent Bernoulli vari-
ables and obtain the feature importance map directly from gγ . L2X (Chen et al., 2018) uses a neural
network gγ called the selector but since the parametrization of pγ is not an independent Bernoulli,
they obtain their importance feature map by ranking the features’ importance with the weights of
the output of gγ . FastSHAP (Jethani et al., 2021b) also uses a similar network gγ but this network’s
output holds a different meaning. Indeed, it outputs the Shapley value of the feature for a given
instance, hence framing a different notion of interpretability.

In the next sub-section, we will define how feature turn-off should be incorporated in the model,
i.e., we will define pθ(y|x, z), the predictive distribution given that some features are ignored. With
these model assumptions, the predictive distribution will be the average over likely interpretations,

pθ,γ(y|x) =
∑

z∈{0,1}D

pθ(y|x, z)pγ(z|x) . (1)

2.3 TURNING OFF FEATURES

Turning off features for a given predictor is a very common problem in interpretable AI (Chang
et al., 2019; Frye et al., 2021; Aas et al., 2021; Covert et al., 2021; Rong et al., 2022). We want our
explanation to be model-agnostic to embed any kind of predictor into a latent explainer. To that end,
we want to make use of fθ the same way we would in the setting without selection in Section 2.1,
with the same input dimension. Hence we implicitly turn off features by considering an imputed
vector X̃ . The imputed vector takes the same values as x for z = 1 and follows an imputing scheme
when z = 0. Given x and z, X̃ is defined by the following generative process:

1. We sample the imputation part according to the imputing scheme X̂ ∼ pι(X̂1−z|xz).

2. Then, we define X̃j = xj if zj = 1 and X̂j if zj = 0.

For instance, a simple imputing scheme is constant imputation, i.e., X̃ is put to c ∈ R whenever
zj = 0. Thus, 0-imputation corresponds to replacing the missing features with 0. One could also
use the true conditional imputation pι(X̂1−z|xz) = pdata(X1−z|xz). Note that constant imputation
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is a case of single imputation, meaning that for a given mask z and incomplete instance xz , the
reconstruction x̃ is entirely determined. On the contrary, multiple imputation allows for multiple
options for reconstruction. Denoting the density for the generative process above p(x̃|x, z), we
define predictive distribution given that some features are ignored as

pθ(y|x, z) = EX̃∼p(X̃|x,z)Φ(y|fθ(X̃)) = EX̃∼p(X̃|x,z)pθ(y|X̃) . (2)

Fig. 1 shows how the model unfolds. This construction allows us to define the following
factorisation of the complete model in Fig. 2:

pγ,θ(y, x, x̃, z) = pθ(y|x̃)pι(x̃|z, x)pγ(z|x)p(x) . (3)

2.4 STATISTICAL INFERENCE WITH LEX

Now that LEX is cast as a statistical model, it is natural to infer the parameters using maximum
likelihood estimation. The log-likelihood function is

L(θ, γ) =
N∑

n=1

log pθ,γ(y|x) =
N∑

n=1

log[EZ∼pγ(·|xn)EX̃∼p(·|(xn)Z)pθ(y
n|X̃)] . (4)

Maximizing the previous display is quite challenging since we have to optimize the parameters of
an expectation over a discrete space inside a log. Leveraging discrete latent variable model literature
Appendix E, we are able to formulate good estimates of Eq. equation 4 gradients and optimize the
model using stochastic gradient descent.

If pγ(z|x) can be any conditional distribution, then the model can just refuse to learn something
explainable by setting pγ(z|x) = 1z=1d

. All features are always turned on. Experimentally, it
appears that some implicit regularization or differences the in initialisation of the neural networks
may prevent the model from selecting everything. Yet without any regularization, we leave this
possibility to chance. Note that this regularization problem appears in other model explanation
approaches. For instance, LIME (Ribeiro et al., 2016) fits a linear regression locally around a given
instance we want to explain. For the linear regression to be interpretable, they add a regularization
as a measure of complexity for this model.

The first type of constraint we can add is an explicit function-based regularization R : {0, 1}D → R.
This function is to be strictly increasing with respect to inclusion of the mask so that the model
reaches a trade-off between selection and prediction score. The regularization strength is then con-
trolled by a positive hyperparameter λ. For instance, Yoon et al. (2018) proposed to used an L1-
regularization on the average selection map R(z) = ∥z∥. While this allows for a varying number of
feature selected per instance, the optimal λ is difficult to find in practice. Another method consid-
ered by Chen et al. (2018) is to enforce the selection within the parametrization of pγ . Indeed, they
only consider distributions such that any sampled subset have a fixed number of selected features k,
i.e.,

∑D
d=1 zd = k. This work was extended by Xie & Ermon (2019) who proposed a continuous

relaxation of weighted reservoir sampling.

2.5 LEX IS ALL AROUND

LEX is a modular framework for which we can compare elements for each of the parametrizations:

• the distribution family and parametrization for the predictor pθ;
• the distribution family and parametrization for the selector pγ ;

• the regularization function R : {0, 1}D → R to ensure some selection happens. This
regularization can be implicit in the distribution family of the selector;

• the imputation function pι, probabilistic or deterministic, that handles feature turn-off.

By choosing different combinations, we can obtain a model that fits our framework and express
interpretability as the following maximum likelihood problem:

max
θ,γ

N∑
n=1

[
logEZ∼pγ(·|xn)EX̃∼p(·|xn,Z)pθ(y

n|X̃)− λEZ∼pγ(·|xn)[R(Z)]
]
. (5)
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Table 1: Existing models and their parametrization in the LEX framework.

Model Sampling (pγ) Regularization (R) Imputation (pι) Training regime

L2X Subset sampling Implicit in pγ 0 imputation Surrogate PostHoc

Invase Bernoulli L1-regularization 0 imputation InSitu

REAL-X Bernoulli L1-regularization Surrogate
0 imputation

Fixed θ InSitu /
Surrogate PostHoc

Many models, though starting from different formulations of interpretability, minimize a cost func-
tion that is a hidden maximum likelihood estimation of a parametrization that fits our framework.
Indeed, L2X (Chen et al., 2018) frames their objective from a mutual information point of view,
Invase (Yoon et al., 2018) (and REAL-X (Jethani et al., 2021a) whose objective is derived from
Invase’s objective) frame their objective from a Kullback-Leibler divergence but we can cast the
optimization as the maximization of the log-likelihood of a LEX model. We refer to Table 1 for an
overview, and to Appendix A for more details.

2.6 LEX UNIFIES POST-HOC AND IN-SITU INTERPRETATIONS

While our model can be trained from scratch as a self-interpretable model (we call this setting
In-Situ), we can also use it to explain a given black-box model in the same statistical learning
framework (this setting is called Post-Hoc). In the In-Situ regime, the selection learns the minimum
amount of features to get a prediction closer to the true output of the data while in the Post-hoc
regime, the selection learns the minimum amount of features to recreate the prediction of the fully
observed input of a given classifier pm(y|x) to explain. The distinction between the “In-Situ” regime
and the “Post-hoc” regime is mentioned, for instance, in Watson & Floridi (2021) as crucial. We
distinguish four types of regimes:

Free In-Situ regime training an interpretable model from scratch using the random variable Y ∼
pdata as a target.

Fix-θ In-Situ regime training only the selection part of the interpretable model using a fixed clas-
sifier but still using the random variable Y ∼ pdata(Y |X) as a target. In that setting, we do
not get an explanation of how pθ predict its output but an explanation map for the full LEX
model pθ,γ .

Self Post-Hoc regime training only the selection part of the model using a fixed classifier pθ, but
the target is given by the output of the same fixed classifier when using the full information
Y ∼ Φ(·|fθ(x)). This can be understood as a Fix-θ In-Situ regime where the dataset is
generated from pdata(x)pθ(y|x).

Surrogate Post-Hoc regime training both the selection and the classification part but the target Y
is following the distribution of a given fixed classifier pm(y|x). The full model pθ,γ is
trained to mimic the behaviour of the model pm(y|x). This can be understood as a Free
In-Situ regime where the dataset is generated from pdata(x)pm(y|x).

3 HOW TO TURN OFF FEATURES?

We want to create an interpretable model where an un-selected variable is not “seen” by the classifier
of the model. For instance, for a given selection set z ∈ {0, 1}D and a given predictor pθ, a
variable is not “seen” by the predictor when averaging all the possible outputs by the model over the
unobserved input given the observed part for a given data distribution pι. This allows us to define
the restricted predictor with respect to the distribution pι:

ppι
(y|xz) =

∫
x1−z

p(y|x1−z, xz)pι(x1−z|xz)dx1−z . (6)

Covert et al. (2021) advocates the use of the true conditional imputation pdata(x1−z|xz) for pι. This
motivates the use of a multiple imputation schemes that should mimic the behaviour of the true
conditional imputation pι = pdata for our model.
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Chen et al. (2018) and Yoon et al. (2018) proposed to use 0 imputation in their parametrization as
a very rough approximation of the true conditional imputation. Using such imputation can lead to
issues. Notably, Jethani et al. (2021a) showed that, with such an imputation, training the selector
and predictor jointly can lead to the selector encoding the output target distribution for the classifier
making the interpretation incorrect. Instead of using an imputation scheme that would approximate
the true conditional imputation, Jethani et al. (2021a) proposed to separate the optimization of θ and
γ. pθ is first trained to approximate the restricted predictor pdata(y|xz) for any z ∈ {0, 1}.Then,
the selector part of the model pγ is optimized using a fixed θ. If pθ(y|x, z) approximates correctly
pdata(y|xz), the selector should not encode the output of the prediction.

However, training pθ(y|x, z) to approximate the true conditional imputation for any mask pattern z
is very complicated. Indeed, Le Morvan et al. (2021) showed that the optimal function with single
imputation data suffers from discontinuities which makes it a very difficult estimation problem. If
the model is not correctly approximating pdata(y|xz), there is no guarantee that the selection will be
meaningful. Jethani et al. (2021a) advocates the use of a constant that is outside the support. Yet, all
the experiments are made using 0 imputation which is inside the support of the input distribution.
Having a constant imputation inside the domain of the input distribution may lead to further dis-
crepancy between the surrogate and the restricted predictor. Indeed, Ipsen et al. (2022) showed that
using constant imputation inside the domain to learn a purely discriminative models with missing
data leads to some artefacts in the prediction.

On the other hand, we propose to approximate the true conditional distribution by using a multiple
imputation scheme. This generative model should allow for fast sampling of the quantity pι(x̃|x, z).
Depending on the difficulty of the dataset, obtaining an imputing scheme allowing for fast and effi-
cient masked imputation can be complicated. We show that we can come up with simpler imputing
schemes that perform as well or better than the fixed constant ones. For instance, we propose to train
a mixture of Diagonal Gaussian to sample the missing values or to randomly sample instances from
the validation dataset and replace the missing features with values from the validation sample. We
describe many different methods for imputing with multiple imputation in Appendix B.

4 EXPERIMENTS

There are many different sets of parameters to choose from in the LEX model. In this section, we
want to study the influence of the imputation method in the LEX models as this was the discussion of
previous recent papers (Covert et al., 2021; Jethani et al., 2021a). We show the benefits of multiple
imputation and that surrogate constant imputation can still lead to encode the target output in the
masks.

For all these existing methods, we fix the Monte-Carlo gradient estimator to REBAR Tucker et al.
(2019) as it provides an unbiased and low variance estimation of the gradients. We use an implicit
regularization constraining the distribution pγ to sample a fixed proportion of feature (note that this
is a very similar setting as the one considered in L2X except for the Monte-Carlo gradient estimator).
We call this proportion the selection rate. This choice of regularization allows to compare all sets of
parameters on the same ”credit” for selection (see F.2 for more details)

Evaluation of features’ importance map is hard. These evaluation methods rely very often on syn-
thetic datasets where a ground truth is available (Liu et al., 2021; Afchar et al., 2021) or retrain a
full model using the selected variable (Hooker et al., 2019). We consider more complicated datasets
than these synthetic datasets. We create three datasets using MNIST, FashionMNIST, and CelebA
as starting points. These datasets provide information only on a subset of features that should not
be selected since it is not informative for the prediction task. It allows us to consider any selection
outside this remaining subset as an error in selection. We call this type of selection ground truth the
maximum selection ground truth. Since we want to evaluate the selection on ground truths from the
dataset, all our experiments are made in the In-Situ regime.

To compare our selections to these ground truths, we look at the true positive rate (TPR), false
positive rate (FPR), and false discovery rate (FDR) of the selection map. To that end, we sample at
test time a 100 mask samples from pγ , and we calculate the three measures for each one of the 100
masks. We then show the average of the selection performance over these 100 masks. To compare
the prediction performance, we consider the accuracy of the output averaged over the mask samples.
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S1 S2 S3

Figure 3: Performances of LEX with different imputations. 0 imputation (solid orange line) cor-
responds to the imputation method of Invase/L2X, Surrogate 0 imputation (blue dashed line) is the
imputation method of REAL-X. The standard Gaussian is the true conditional imputation method
from the model (green dotted curve). Columns correspond to the three synthetic datasets (S1, S2,
S3) and lines correspond to the different measure of quality of the model (Accuracy, FDR, TPR).
We report the mean and the standard deviation over 5 folds/generated datasets.

4.1 ARTIFICIAL DATASETS

Datasets We study 3 synthetic datasets (S1, S2, S3) proposed by Chen et al. (2018) where the
features are generated with standard Gaussian. Depending on the sign of the control flow feature
(feature 11), the target will be generated according to a Bernoulli distribution parameterized by
one among the three functions described in Appendix C. These functions use a different number of
features to generate the target. Thus, depending on the sign of the control flow feature, S1 and S2
either need 3 or 5 features to fully generate the target while S3 always requires 5.

For each dataset, we generate 5 different datasets containing each 10,000 train samples and 10, 000
test samples. For every dataset, we train different types of imputation with a selection rate in
[ 2
11 ,

3
11 , . . . ,

9
11 ], i.e., we select 2, . . . , 9 features. We then report the results in Fig. 3 with their

standard deviation across each 5 generated datasets. In the following experiments, we compare
a multiple imputation based on a standard Gaussian and constant imputation with and without
surrogate using a constant (as used by Yoon et al., 2018; Chen et al., 2018; Jethani et al., 2021a).

Selection evaluation The ground truth selection for S1 and S2 have two different true selection
rates depending on the sign of the 11th feature (shown as two grey lines in Fig. 3). In Fig. 3, for S1,
using multiple imputations outperforms other methods as soon as the number of selected variables
approaches the larger of the two true selection rates. For S2, LEX performs better most of the time
when the selection rate is higher than the larger of the two true selection rates but has a higher
variance in performance. LEX outperforms both a 0-imputation and a surrogate with 0-imputation
on S3 as soon as the selection rate is close to the true selection rate (shown as the grey line) while
still maintaining a better accuracy.
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Figure 4: Performances of LEX with varying constant imputation (orange solid line) and surrogate
constant imputation (blue dashed line) on S3 using the true selection rate for the selection distri-
bution. Though Invase/L2X (resp. REAL-X) uses constant imputation (resp. surrogate constant
imputation), all these methods used only 0 as imputation constant. We report the mean and standard
deviation over 5 folds/generated datasets.

Figure 5: Performances of LEX on the Switching Panel MNIST dataset with different imputations.
Surrogate 0 imputation corresponds to the parametrization of REAL-X, 0 imputation corresponds to
the parametrization of Invase/L2X We report the mean and standard deviation over 5 folds/generated
datasets.

Dependency on the constant of imputation We now focus on S3 and we consider the same
experiment with 5 generated datasets but with a fixed selection rate 5

11 corresponding to the true
number of features, k = 5. We train a single model for both the constant imputation with and
without a surrogate varying the constant from −10 to 9. In Fig. 4, the quality of both the selection
and the accuracy depends on the value of the imputation constant. Both the surrogate constant
imputation and constant imputation perform better when the constant is within the domain of the
input distribution. The performance drops drastically outside the range [−1, 1]. Jethani et al. (2021a)
suggested using a constant outside the domain of imputation which is clearly sub-optimal. Further
results in Fig. 10 explicit this dependency on all three synthetic datasets.

4.2 SWITCHING PANELS DATASETS

Figure 6: Samples from SP-
MNIST and their LEX expla-
nations. The class of the top
sample is 0, the class of the
bottom sample is 4.

We want to use more complex datasets than the synthetic ones
while still keeping some ground truth explanations. To create such
a dataset, we randomly sample a single image from both MNIST
and FashionMNIST (Xiao et al., 2017) and arrange them in a ran-
dom order to create a new image. The target output will be given
by the target of MNIST for Switching panels MNIST (SP-MNIST)
and by the target of FashionMNIST for Switching panels Fashion-
MNIST (SP-FashionMNIST).

Given enough information from the panel from which the target
is generated, the classifier should not need to see any informa-
tion from the second panel. If a selection uses the panel from the
dataset that is not the target dataset, it means that the predictor is leveraging information from the
mask. We consider that the maximum ground truth selection is the panel corresponding to the target
image.

We train every model on 45,000 images randomly selected on the train dataset from MNIST (the
remaining 15,000 images are used in the validation dataset). For each model, we make 5 runs of the
model on 5 generated datasets (i.e. for each generated dataset, the panels are redistributed at random)
and report the evaluation of each model on the same test dataset with their standard deviation over
the 5 folds. All method uses a U-NET (Ronneberger et al., 2015) for the selection and a fully
convolutional neural network for the classification. Note that in practice for MNIST, only 19% of
pixels are lit on average per image. The true minimum effective rate for our image should therefore
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Figure 8: Performances of LEX on the CelebA Smile dataset with different methods of approxima-
tion for the true conditional distribution.

be around 10% of the pixels. We evaluate the results of our model around that reasonable estimate
of the effective rate. The selected pixels around this selection rate should still be within the ground
truth panel.

In Fig. 5, we can see that LEX using multiple imputation with a mixture of logistics to approx-
imate the true conditional imputation outperforms both using a constant imputation (L2X/Invase)
and a surrogate constant imputation (REAL-X). Indeed, around the estimated true selection rate
(10%), less selection occurs in the incorrect panel while still maintaining high predictive perfor-
mance. Fig. 6 shows that LEX uses information from the correct panel of SP-MNIST. We highlight
further results and drawbacks in Appendix F.

4.3 CELEBA SMILE

The CelebA dataset (Liu et al., 2018) is a large-scale face attribute dataset with more than 200, 000
images which provides 40 attributes and landmarks or positions of important features in the dataset.
Using these landmarks, we are able to create a dataset with a minimal ground truth selection. The
assignment associated with the CelebA smile dataset is a classification task to predict whether a
person is smiling. We leverage the use of the landmark mouth associated with the two extremities
of the mouth to create a ground truth selection in a box located around the mouth. We make the
hypothesis that the model should look at this region to correctly classify if the face is smiling or not
in the picture (see Appendix C and Fig. 9 for details and examples).

Figure 7: Samples from
CelebA smile and their LEX
explanations with a 10% rate.
Using constant imputation
leads to less visually com-
pelling results (Appendix F).

In Fig. 8, we evaluate two methods of multiple imputation. The
VAEAC Ivanov et al. (2018) which is a generative model allow-
ing for the generation of imputed samples given any conditional
mask z and a marginal multiple imputation. Both our multiple
imputation methods perform similarly compared to the constant
imputation method both in selection and accuracy. In Fig. 7, we
see that LEX uses the information around the mouth to predict
whether the face is smiling or not which is a sensible selection.
(See Appendix F for further results and samples)

5 CONCLUSION

We proposed a framework, LEX, casting interpretability as a max-
imum likelihood problem. We have shown that LEX encompasses
several existing models. We provided 2 datasets on complex data
with a ground truth to evaluate the feature importance map. Using
these, we compared many imputation methods to remove features
and showed experimentally the advantages of multiple imputation compared to other constant im-
putation methods. These new datasets can be used for other explanation methods than the amortized
ones we focused on here.

The framing of interpretability as a statistical learning problem allowed us to use maximum likeli-
hood to find optimal parameters. One could explore other methods for optimizing the parameters,
such as Bayesian inference. Interpretation maps are more easily readable when they provide smooth
segmentations for images. Another avenue for future work could be to study the use of different
parametrizations or regularization that favors connected masks (in the sense that neighbouring pix-
els have more incentives to share the same selection) to allow for smoother interpretability maps.
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A OTHER METHODS FALLING INTO THE LEX FRAMEWORK

In this section, we show how to cast three existing models in our statistical learning setting. Though
the original papers framed their wanted interpretabiliy through different points of view, we will show
that what they actually optimize can be seen as likelihood lower bounds of specific LEX models.

A.1 LEARNING TO EXPLAIN (L2X, CHEN ET AL., 2018)

Let us consider a fixed classifier pm. For a fixed number of features k, we want to train a selector pγ
(this corresponds to V (θ, ·) in the original paper) that will allow selection for this exact number of
features (using subset sampling) only and a predictor pθ (this corresponds to gα in the original paper)
such that the full model pθ,γ will mimic the behaviour of pm. We use 0-imputation to parameterize
the imputation distribution. We can rewrite Eq. (6) in Chen et al. (2018) using our notation as

EX∼pdata,z∼pγ

[∑
y

pm(y|x) log pγ(z|x)pθ(y|x, z)

]

= EX∼pdata,z∼pγ

[∑
y

pm(y|x) log pγ(z|x)pθ(y|z · x)

]
= EX∼pdata,Y∼pm,Z∼pγ ,X̃∼pι

[log pθ(Y |X̃)]

≤ EX∼pdata,Y∼pm
[logEZ∼pγ ,X̃∼pι

log pθ(Y |X̃)] ,

(7)

where we used Jensen inequality to obtain this last inequality. Thus the L2X objective is a lower
bound of the likelihood in the post-hoc setting as the target distribution comes from the fixed classi-
fier pm we want to explain. The objective described is shed under the light of the Surrogate Post-Hoc
regime. By considering pm as the true data distribution pdata, this can be extended to the Free In-Situ
regime.

A.2 INVASE (YOON ET AL., 2018)

We consider a selector pγ (this corresponds to πθ(x, s) in the original paper) and a classifier pθ (this
corresponds fϕ in the original paper) using a 0-imputation to parameterise the imputation module.
We consider a regularization function controlled by λ such that R(γ) = Epγ

(∥z∥0). They also train
a baseline classifier, since this classifier is simply used to reduce variance in the estimated gradient
and does not change the objective for the optimization in θ and γ.

We can rewrite Eq. (5) in Yoon et al. (2018) using our notation as

l̂(z, x, y) = −
c∑

i=1

yi log pθ(y|x, z) . (8)

The loss for the selector network is then∫
X,Y

pdata(x, y)
∑

z∈{0,1}D

[pγ(z|x)l̂(z, x, y) + λ∥z∥0]dxdy

= EX,Y∼pdataEZ∼pγ [l̂(z, x, y) + λ∥z∥0]
= EX,Y∼pdataEZ∼pγ

[− log pθ(Y |X,Z) + λ∥z∥0]
= EX,Y∼pdataEZ∼pγ [− log pθ(Y |X · Z) + λ∥z∥0]
= EX,Y∼pdataEZ∼pγ

[− logEX̃pθ(Y |X̃) + λ∥z∥0]
= EX,Y∼pdataEZ∼pγ

[− logEX̃pθ(Y |X̃)] + λEZ∼pγ
[∥z∥0]

= EX,Y∼pdataEZ∼pγ [− logEX̃pθ(Y |X̃)] + λR(γ,X)

≥ EX,Y∼pdata [− logEZ∼pγEX̃pθ(Y |X̃)] + λR(γ,X) .

Though the loss for the optimisation of the selector with γ and the loss for the optimisation in θ
are separated in the original article, they only differ by the regularization EZ∼pγ [λ∥z∥0] which is
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independent of θ. Thus, minimizing both θ and γ using the loss for the selector network is equivalent
to the minimization set up in Invase.

The last equation is exactly the negative log-likelihood of the LEX model with a parametrization
described above. Hence the minimisation target of INVASE is a minimisation of an upper bound of
the negative log-likelihood.

A.3 REAL-X (JETHANI ET AL., 2021A)

Let us consider a fixed classifier pm. Similarly to INVASE, we consider a selector pγ (this corre-
sponds to qsel) and a classifier pθ (which correspond to qpred) and a function controlled regularizer R.

We can rewrite Eq. (3) from Jethani et al. (2021a) in our framework as

Ex∼pdataEy∼pmEz∼pγ [log pθ(y|x · z)] + λR(γ)

≤ Ex∼pdataEy∼pm
[logEz∼pγ

pθ(y|x · z)] + λR(γ)

The last equation is a lower bound on the log-likelihood of a LEX model parametrized as described
above.

As opposed to the previous method, the predictor is trained on a different loss than the selector:
Ex∼pdataEy∼pm

Ez∼B(0.5)[log pθ(y|x · z)] ,
where B(0.5) is a distribution of independent Bernoulli for the mask.

This loss is completely independent of the selector’s parameters. Thus, training first the predictor
network pθ until convergence and then training the selector pγ is equivalent to the alternating training
in Algorithm 1 in Jethani et al. (2021a).

Thus, we can consider that the associated LEX model is always trained with a fixed θ and REAL-X
is maximizing a negative log-likelihood of a LEX parametrization in a fixed θ setting.

B MULTIPLE IMPUTATION SCHEME

B.1 VAEAC

VAEAC (Ivanov et al., 2018) is a arbitrary conditioned variational autoencoder that allows us to
sample from an approximation of the true conditional distribution. To impute a single example, we
first sample a latent h according to pprior using a prior network, then sample the unobserved features
pgen using the generative network

pι(x̃|x, z) =
∫
h

pprior(h|xz, z)pgen(x̃1−z|xz, z, h)1x̃z=xz
. (9)

We only use the VAEAC for the CelebA Smile experiment and leverage the architecture and weights
provided in the paper.

B.2 GAUSSIAN MIXTURE MODEL (GMM)

The Gaussian mixture model allows for fast imputation of masked samples for low to medium size
dataset when using spherical Gaussians. Before training, we fit the mixture model to the fully
observed dataset by maximizing the log likelihood of the model Eq. (10) using the expectation
maximization algorithm. In practice, we use the Gaussian Mixture Model library from Pedregosa
et al. (2011) to obtain the parameters (πk, µk,Σk)K . In the case of spherical Gaussians, Σk is a
diagonal matrix. thus ∀k, µk,Σk are the size of the input dimension D.

LGMM(x) =
∑
k

πkN (x|µk,Σk) . (10)

To obtain a sample imputing the missing variable, we start by calculating p(k|x, z). In the particular
case of spherical Gaussian, this allows us to consider only the unmasked features when calculating
this quantity.
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p(k|x, z) = N (xz|(µk)z, (Σ
k)z)∑

k′ N (xz|(µk′)z, (Σk′)z)
. (11)

Finally, we sample a center k from the previous conditional distribution and a sample from the
associated Gaussian:

pι(x̃|x, z) =
∑
k

p(k|x, z)N (X̃|µk,Σk) . (12)

In practice, to train the Gaussian mixture model on discrete image, we add some uniform noise to
the input data to help the learning of the input data.

B.3 MEANS OF GAUSSIAN MIXTURE MODEL (MEANS OF GMM)

We propose an extension of the previous GMM model to get more in distribution samples from the
dataset. After sampling a center from the conditional distribution Eq. (11), instead of resampling the
imputed values from the Gaussian distribution, we can use directly the means of the centers of the
sampled center as imputed data.

pι(x̃|x, z) =
∑
k

p(k|x, z)1x̃=µk . (13)

B.4 DATASET GAUSSIAN MIXTURE MODEL (GMM DATASET)

In a second extension of the previous GMM imputation we make use of the validation dataset to
create imputations. To that end, we store the quantity presampling(x

i
val|k) for every center k and every

data point xi
val in the validation set, where

presampling(x
i
val|k) =

N (xi
val|µk,Σk)∑

j N (xj
val|µk,Σk)

. (14)

After sampling a center from the conditional distribution, we sample one example according to the
distribution in Eq. (14).

Hence
pι(x̃|x, z) =

∑
k

p(k|x, z)
∑
j

presampling(x
j
val|k)1x̃=xj

val
. (15)

B.5 KMEANS AND VALIDATION DATASET (KMEANS DATASET)

By using the KMeans instead of the GMM for the GMM Dataset, we can obtain a simpler multiple
imputation methods. To that end, we calculate the minimum distance between a masked input xz

and the masked centers of the clusters µk. We select cluster k∗ closest to the input data and we can
sample uniformly any image from the validation dataset belonging to this cluster.

B.6 MIXTURE OF LOGISTICS

We propose to use a mixture of discretized logistic as an approximation for the true conditional
distribution. For each center k of the mixture among K centers, we consider a set of D center µk

d

and scale parameters skd which allows the creation of a discretized logistic distribution for each pixel
similar to the construction in Salimans et al. (2017). We obtain the parameters by maximizing the
log-likelihood of the model Eq. (16):

p(x) =
∑
k

πk

∑
d∈[0,D]

logistic(xd|µk
d, s

k
d) , (16)

where logistic(xd|µk
d, s

k
d) = σ((xd+0.5−µk

d)/s
k
d))−σ((xd−0.5−µk

d)/s
k
d))] and σ is the logistic

sigmoid function. In the edge cases of a pixel value equal to 0, we replace x − 0.5 by −∞ and for
255 we replace x+ 0.5 by +∞.
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We initialise the model means and weights by using the K-Means algorithm from Sklearn (Pe-
dregosa et al., 2011). We then learn the model either by stochastic gradient ascent on the likelihood
or by stochastic EM (both methods leads to similar choice of parameters).

Similarly to the GMM, we sample an imputation by first sampling a center from the mixture using
the distribution p(k|x, z), where

p(k|x, z) =
∑

d∈[0,D] logistic(x|µk
d, s

k
d)∑

k′ πk′
∑

d∈[0,D] logistic(x|µk′
d , sk

′
d )

. (17)

We can then sample the imputed data using the parameters obtained from the subset restricted sam-
ple, that is :

pι(x̃|x, z) =
∑
k

p(k|x, z)
∑

d|zd=1

logistic(xd|µk
d, s

k
d) . (18)

B.7 MEANS OF MIXTURE OF LOGISTICS

Instead of sampling from the logistic distribution, after sampling a center k from the conditional
distribution Eq. (11), we can use directly the means of the sampled centers as imputed data, that is,

pι(x̃|x, z) =
∑
k

p(k|x, z)
∑
d

1x̃d=µk
d
. (19)

B.8 VALIDATION DATASET (MARGINAL)

We can sample randomly from the validation dataset to replace the missing value from the unob-
served dataset. This corresponds to approximating the conditional true imputation pdata(x1−z|xz)
by the unconditional marginal distribution pdata(x1−z). This type of multiple imputation were al-
ready use for

pι(x̃|x, z) = pdata(x̃1−z) . (20)

C DATASET DETAILS

C.1 SYNTHETIC DATASET GENERATION

The input features for the synthetic datasets follow the generation procedure :

{xi}11i=1 ∼ N (0, 1) y ∼ B
(

1

1 + f(x)

)
. (21)

We consider different functions f for different situations:

• fA(x) = exp(x1x2),

• fB(x) = exp(
∑6

i=3 x
2
i − 4),

• fC(x) = exp(−10 sin(0.2x7) + |x8|+ x9 + ex−10 − 2.4).

This leads to the following datasets:

• S1:

f(x) =

{
fA(x) if x11 < 0
fB(x) if x11 ≥ 0.

(22)

• S2:

f(x) =

{
fA(x) if x11 < 0
fC(x) if x11 ≥ 0.

(23)

• S3:

f(x) =

{
fB(x) if x11 < 0
fC(x) if x11 ≥ 0.

(24)
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C.2 PANEL MNIST AND FASHIONMNIST

Both dataset MMNIST and FashionMNIST are transformed in the same fashion as Jethani et al.
(2021a) by dividing the input features by 255. Note that this transformation will affect the choice of
the optimal constant of imputation for LEX. We create the train set and validation set of the panel
dataset by using only images from the train datasets of MNIST and FashionMNIST and the test set
by using only images from the test datasets. The split between train and validation is split randomly
with proportion 80%, 20%. Hence, the train dataset of the switching panels input contain 48,000
images, the validation dataset contains 12,000 images and the test dataset 10,000 images.

C.3 CELEBA SMILE

Figure 9: Two examples from the
CelebA smile dataset associated with
their ground truth selection.

The CelebA dataset consists of 162, 770 train, 19867 val-
idation and 19962 test color images of faces of celebri-
ties of size 178 × 218. Before training any model, we
crop the image to keep a 128 × 128 pixels size square
in the center of the image (using Torchvision’s Center-
Crop function and we normalize the channels in datasets.
Note that we use this center crop to be able to use directly
the weights and parametrization provided by the author
of Ivanov et al. (2018) with CelebA. We define the target
of this dataset using the attribute given for smiling in the
dataset.

We can create the maximum ground truth boxes by using
the landmarks position of the mouth. Given the position
of both extremities of the mouth, we can obtain both the
direction and the lenght of the mouth. Supposing not only
the mouth but also the region around is useful for the clas-
sifier, we create the maximum ground truth boxes using
a rectangle oriented following the direction of the mouth,

centered at the center of both mouth extremities and with height corresponding to two times the
lenght of the mouth and width corresponding to the length of the mouth.

D EXPERIMENT DETAILS

For every experiment, we use an importance weighted lower bound with 10 importance samples for
the mask and a single important sample for the imputed values. We estimate the monte carlo gradient
using REBAR with the weighted reservoir sampling and the relaxed subset sampling distribution as
control variate.

Synthetic Dataset The predictor pθ is parameterized with a fully connected neural network fθ
with 3 hidden layers while the selector pγ is parameterized with a fully connected neural network
gγ with 2 hidden layers. The hidden layers are dimension 200 and use ReLU activations. The
predictor has a softmax activation for classification while the selector uses a sigmoid activation. We
trained all the methods for 1000 epochs using Adam for optimisation with a learning rate 10−4 and
weight decay 10−3 with a batch size of 1000. Both selector and predictor are free during training for
experiment with constant imputation and multiple imputation. When using a surrogate imputation,
the surrogate is trained at the same time as the selector according to the algorithm in Jethani et al.
(2021a).

Switching Panels The predictor is composed by 2 sequential convolution block that outputs re-
spectively 32, 64 filters. Each block is composed with 2 convolutional layers and an average pooling
layer. We fed the output of the last convolutional block to a fully connected layer with a softmax
activation. The selector is a U-Net Ronneberger et al. (2015) with 3 down sampling and up sampling
blocks and a sigmoid activation. The U-Net outputs a 28x56x1 image mask corresponding to the
parameters for each pixel in the image. We trained all the methods for 100 epochs using Adam for
optimisation with a learning rate 10−4 and weight decay 10−3 with a batch size of 64. Both selector
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and predictor are free during training for experiment with constant imputation and multiple impu-
tation. When using a surrogate imputation, the surrogate is trained at the same time as the selector
according to the algorithm in Jethani et al. (2021a).

CelebA the predictor neural network fθ is composed by 4 sequential convolution block that out-
puts respectively 32, 64, 128 and 256 filters. Each block is composed with 2 convolutional layers
and an average pooling layer. We fed the output of the last convolutional block to a fully connected
layer with a softmax activation. The selector is a U-Net (Ronneberger et al., 2015) with 5 down
sampling and up sampling blocks and a softmax activation. We lower the number of possible mask
by creating a 32× 32 grid of 4× 4 pixels over the whole image. The U-Net outputs a 32× 32× 1
image where each feature corresponds to the parametrization of a 4× 4 pixel square in the original
image.

For experiments with a constant imputation or a multiple imputation, we train the predictor for
10 epochs. We then train the selector using the pre-trained fixed classifier for 10 epochs. For
experiments with a surrogate constant imputation, we train the surrogate for 10 epochs using an
independent Bernoulli distribution to mask every pixel (this corresponds to the objective of EVAL-
X in Eq (5) in Jethani et al. (2021a)). We then train the selector using the pretrained surrogate for 10
epochs. We optimize every neural netowrk using Adam with a learning rate 10−4 and weight decay
10−3 with a batch size of 32

E A DIFFICULT OPTIMIZATION PROBLEM

E.1 AN IMPORTANCE WEIGHTED LOWER BOUND

To maximise Eq. (5), one difficulty resides in the two expectations inside the log. Using Jensen
inequality, we can get a lower bound on this log-likelihood.

L(θ, γ) =
N∑

n=1

log[EZ∼pγ(.|xn)EX̃∼p(.|(xn)Z)pθ(y
n|X̃)]

≥
N∑

n=1

EZ∼pγ(.|xn) log[EX̃∼p(.|(xn)Z)pθ(y
n|X̃)]

≥
N∑

n=1

EZ∼pγ(.|xn)EX̃∼p(.|(xn)Z) log[pθ(y
n|X̃)]

This bound may be too loose and give a poor estimate of the likelihood of the model. Instead, we
propose to use importance weighted variational inference (IWAE) Burda et al. (2015) so we can
have a tighter lower bound than with Jensen inequality. Note that we have to apply two times the
IWAE, for the expectation on masks and on the imputed features. For each data point xn, we sample
L mask importance samples and LK imputations importance samples.

The IWAE lower of the log-likelihood on the mask with L mask samples

L(θ, γ) ≥ LL(θ, γ) , (25)

where

LL(θ, γ) =

N∑
n=1

EZn,1,...,Zn,L∼pγ(.|xn)EX̃n,1,,...,X̃n,L,∼pι(.|Zn,l,xn)
[log

1

L

L∑
l=1

pθ(yn|X̃n,l)] .

For a fixed L mask imputations, the IWAE lower bound with K imputation samples is

LL(θ, γ) ≥ LL,K(θ, γ) , (26)

where

LL,K(θ, γ) =

N∑
n=1

EZn,1,...,Zn,L∼pγ(·|xn)EX̃n,1,1,...,X̃n,L,K∼pι(·|Zn,l,xn)

[
log

1

L

1

K

L∑
l=1

K∑
k=1

pθ(yn|X̃n,l,k)

]
.

18



Under review as a conference paper at ICLR 2023

Theorem 3 of Domke & Sheldon (2018) ensures that when L → +∞,

LL(θ, γ) = L(θ, γ) +O

(
1

L

)
,

and, for a fixed L,

LL,K(θ, γ) = LL(θ, γ) +O

(
1

K

)
.

Thus, using a large number of importance samples for both the mask and the imputation ensures that
we are maximizing a tight lower bound of the log-likelihood of the model.

Note that other models falling into the LEX framework are optimizing a lower bound of the
log-likelihood (see Appendix A for details) with the Jensen inequality. However, casting their
method into the statistical learning framework motivates to choose a tighter lower bound of this
log-likelihood which improves results in classification and selection.

E.2 GRADIENT MONTE CARLO ESTIMATOR

We want to train the maximum likelihood model with stochastic gradient descent. Using Monte
Carlo gradient estimator for θ is straightforward. Finding Monte Carlo Gradient estimator for γ is
more complicated because the expectation on masks depends on γ and we sample from a discrete
space {0, 1}D. A simple way of getting an estimator for this gradient is by using a policy gradient
estimator (Sutton et al., 1999) or Score Function Gradient estimator (Mohamed et al., 2020).

On the other hand, by relaxing the discreteness of the distribution, it is possible to reparametrize
the expectation in γ and use a pathwise monte carlo gradient estimator(Mohamed et al., 2020).
These estimators introduce some bias but lower the variance of the estimation. For instance, Yoon
et al. (2018) proposed to use the concrete distribution (Maddison et al., 2016) which is a continuous
relaxation of the discrete Bernoulli distribution. Similarly, Xie & Ermon (2019), Chen et al. (2018)
used some forms of continuous relaxations of subset sampling distribution.

RealX (Jethani et al., 2021a) proposed to use REBAR (Tucker et al., 2019) to further reduce the
variance of these gradient estimators while still keeping an unbiased estimator thereof by using the
relaxation of the discrete distribution as a control variate for a score function gradient estimator.

When using multiple imputation, there is no possibility to use a continuous mask as the imputa-
tion distribution pι(x̃|z, x) would not be properly defined. To that end, we leverage the allowed
reparametrization of the continuous relaxation of the discrete distribution but still apply a straight-
through estimator Bengio et al. (2013). When using independent Bernoulli for pγ , we consider a
thresholded straight through estimator with threshold t = 0.5. For relaxed subset sampling, we use a
top K function for the straight-through estimator with k being the number of features to be selected.
Using this new straight-through estimator for the different continuously relaxed distribution, we can
either use a pathwise Monte Carlo gradient estimator or a variation of REBAR where the relaxation
is modified by the straight-through function.

F EXTENDED RESULTS

F.1 EXTENDED RESULTS WITH A FIXED SAMPLING RATE

SP-MNIST In Fig. 11, we observe results for different constants of imputation using a surrogate
on SP-MNIST. We see that changing the constant of imputation for the surrogate may drastically
change the performance of the selection.

On Fig. 20, we can observe the average of a 100 samples from a model trained with different constant
imputation and a surrogate function and an average rate of selection of 5%. We can see that the
constant imputation drastically changes the shape of the imputation even though we are using a
surrogate function. When using 0, the selection model seems to try to recreate the full image instead
of selecting the correct panel. Using constant 1 and 3 seems to recreate the negative of the shape
of the two on the correct panel. Finally, when using constant −1, the selection recreates the target
number in both panels to facilitate classification. These samples using a surrogate function can
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S1 S2 S3

Figure 10: Performances of LEX with different imputation constants using a surrogate constant
imputation on the synthetic datasets. This corresponds to the REAL-X parametrization with different
constant imputation. Columns corresponds to the three synthetic datasets (S1, S2, S3) and lines
corresponds to the different measure of quality of the model (Accuracy, FDR, TPR). [mean ± std
over 5 folds/generated dataset]
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be considered cheating as the selection is used to improve the classification results. As opposed,
samples using multiple imputation on Fig. 21 are less dependent on the type of multiple imputation
used.

Figure 11: Performance of LEX using a surrogate constant imputation for different imputation con-
stants on the SP-MNIST dataset.

Figure 12: Performances of the LEX method with different methods of multiple imputation on the
SP-MNIST dataset.

SP-FashionMNIST Following the same procedure as Switching panels MNIST, we consider the
dataset Switching panels FashionMNIST. Since on average 50% of the pixels are lit in FashionM-
NIST, we expect the true selection rate to be around 25 % of the total number of pixels in Switching
Panels FashionMNIST.

In Fig. 13, we compare LEX with two methods of multiple imputation, the Mixture of Logistics and
GMM Dataset. These two multiple imputations outperforms their constant imputation counterparts
with and without surrogate near the expected true rate of selection. Using the mixture of logistics
allows to maintain a strong accuracy, similar to the accuracy of both constant imputation methods.
In Fig. 14, we can observe that the selections obtained with the surrogate constant imputation is
more robust to the change in constant imputation compared to the Switching Panels MNIST dataset
but the variations are still higher that the variations obtain with many different multiple imputation
in Fig. 15.

Figure 13: Performances of LEX on the SP-Fashion dataset with different methods of approximation
for the true conditional imputation.

CelebA Smile On Fig. 16, as opposed to the results on SP-MNIST and the synthetic datasets,
we see that the performance of LEX using a surrogate constant imputation does not depend on the
choice of a constant.
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Figure 14: Performance of LEX using a surrogate constant imputation for different imputation con-
stants on the SP-MNIST dataset.

Figure 15: Performances of the LEX method with different methods of multiple imputation on the
SP-FashionMNIST dataset.

Figure 16: Performances on the CelebA smile dataset with different constant for the surrogate con-
stant imputation.

F.2 EXTENDED RESULTS USING L1-REGULARIZATION

To provide a better analysis of the influence of the imputation method on the performance of LEX,
we fixed all the other parameters hence slightly changing the original methods (Invase and REAL-
X). We differed from the original implementations in two ways, the choice of the regularization
method and sampling distribution pγ as well as the choice of the Monte-Carlo gradient estimator.
Finding an optimal λ with L1-regularization is difficult as different ranges of λ lead to different per-
formances and different rates of selection depending on the datasets, the imputations (see Appendix
F.2.1). While we can estimate an adequate selection rate with intuition from the dataset, no such
intuition is available for λ which requires a long exploration. In that section, we will study how
these choices might affect the performances of LEX and compare to the original implementations
using the SP-MNIST dataset.

F.2.1 ON THE DIFFICULTY OF TUNING λ

We proposed in Section 4 to study LEX with a fixed selection rate because finding an optimal λ
requires an extensive search and makes it difficult to compare the results between sets of parameters.
In this section, we study how different λ lead to very different rates of selection depending on the
sets of parameters considered.

We fix the regularization to L1-Regularization and the distribution pγ to be an independent Bernoulli
(this is the same setting for distribution and regularization as Invase and REAL-X) and fix the Monte-
Carlo gradient estimator to REBAR. We study the evolution of the rate of selection with parameter λ
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Figure 17: Effective selection rate depending on the value of λ of the same LEX model for different
types of imputation trained on the SP-MNIST dataset.

varying in [0.01, 0.05, 0.1, 0.3, 0.5, 1.0, 2.0, 5.0, 10.0, 100.0]. We observe in Fig. 17 that depending
on the imputation, the evolution of the rate of selection is very different. Since we want to compare
different methods on the same ”credit” of selection (ie the same average rate of selection), we have
to search on very large range of λ in practice.

F.2.2 INFLUENCE OF THE MONTE-CARLO GRADIENT ESTIMATION

In their original implementation, L2X, Invase and REAL-X use different Monte-Carlo gradient es-
timators for the optimization. L2X uses Gumbel-Softmax Maddison et al. (2016) a continuous
relaxation of the discrete Bernoulli distribution which is a biased but low variance estimator. Invase
uses the REINFORCE Sutton et al. (1999) estimator, an unbiased but high variance estimator. They
proposed to control the variance using a baseline network, trained without selection, as a control
variate. REAL-X uses the REBAR Tucker et al. (2019) estimator, a REINFORCE estimator using
Gumbel-Softmax as a control variate. We chose to focus on REBAR as it can be considered an
improvement over REINFORCE and Gumbel-Softmax.

Figure 18: Comparison of the performance of LEX models with L1-regularization with
3 different Monte-Carlo gradient estimator on the SP-MNIST dataset.. λ varies in
[0.1, 0.3, 0.5, 1.0, 3.0, 5.0, 10.0, ]. First column corresponds to 0-imputation mimicking the be-
haviour of INVASE for different MC gradient estimator, second column corresponds to surrogate
0-imputation mimicking the behaviour of REAL-X and third column corresponds to multiple impu-
tation with a Mixture of Logistics.

In this section, we fix the regularization to L1-Regularization and the distribution pγ to be an in-
dependent Bernoulli and we compare the difference in performance depending on the Monte-Carlo
gradient estimator (REINFORCE, Gumbel-Softmax, REBAR) for different methods of imputation.
Note that plain REINFORCE slightly differs from Invase (because of the baseline control variate)
but they admitted in the reviews for their paper Yoon et al. (2019) that using the control variate did
not improve the results. In Fig. 18, we observe that changing the Monte-Carlo gradient estimator
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leads to similar results in prediction and selection. However, changing the Monte-Carlo gradient
estimator changes how the choice of λ impact the selection rate.

F.2.3 COMPARISONS WITH THE SET-UPS OF L2X, INVASE AND REAL-X

Here we propose a comparison of the original set-ups of L2X, Invase and REAL-X to two parame-
terisations of LEX models with multiple imputation. The first one is the same set-up as in 4, using
REBAR and an implicit regularization with a fixed rate of selection. For the second set-up, we train
using REBAR but consider an Independent Bernoulli for the selection distribution regularized by an
explicit L1-Regularisation (note that this is the same regularization and distribution of Invase and
REAL-X). λ varies in [0.1, 0.3, 0.5, 1.0, 2.0, 5.0, 10.0] for the method with L1-Regularization.

Figure 19: Performances of LEX trained on the SP-MNIST dataset using the same sets of param-
eters as the original implementation of L2X, Invase, and REAL-X. We compare them to two sets
of parameters with Mixture Of Logistics imputation (denoted as Ours) using two types of regular-
ization: L1-Regularization and implicit regularization with a fixed selection rate. The models with
L1-regularization were trained on the same grid λ ∈ [0.1, 0.3, 0.5, 1.0, 2.0, 5.0, 10.0, ].

On Fig. 19, we see that our method (i.e. using multiple imputation with a Mixture of Logistics)
provides the best performances in the vicinity of the expected selection rate. On the other hand,
even with λ very close to 0, Invase still selects a very small subset of the features making it difficult
to compare to the other methods. Moreover, the accuracy of Invase, REAL-X, and L2X do not
decrease with the effective selection rate which suggests that these methods encode the target output
in the mask selection.
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Figure 20: Each figure corresponds to the average of 100 mask samples from the selector trained
using a surrogate constant of imputation for different constant. From top to bottom, we have the
input data, and constants −3,−1, 0, 1, 3. The selector was parametrized by a subset sampling with
a rate of selection of 5%.

Figure 21: Each figure corresponds to the average of 100 mask samples from the selector trained
using different multiple imputation. From top to bottom, the different multiple imputation are :
KMeans Dataset, Means of GMM, Mixture of Logitics, means of mixture of logistics. The selector
was parametrized by a subset sampling with a rate of selection of 5%.
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Input Image Marginal Imputation Surrogate Constant imputation

Figure 22: Selection obtained averaging over 100 samples from the distribution pγ parametrized by
a subset sampling distribution selecting 10% of the pixels.
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