
Under review as a conference paper at ICLR 2024

MERINO: ENTROPY-DRIVEN DESIGN FOR MOBILE-
FRIENDLY GENERATIVE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative Large Language Models (LLMs) stand as a revolutionary advance-
ment in the modern era of artificial intelligence (AI). However, deploying LLMs
to resource-constrained devices is difficult due to their high computational cost.
In this paper, we propose a novel information-entropy framework for designing
mobile-friendly generative language models. Our key design paradigm is to max-
imize the entropy of transformer decoders within the given computational bud-
gets. The whole design procedure involves solving a mathematical programming
(MP) problem, which can be done on the CPU within minutes, making it nearly
zero-cost. We evaluate our designed models, termed MeRino, across twelve NLP
downstream tasks, showing their competitive performance against the state-of-the-
art autoregressive transformer models under the mobile setting. Notably, MeRino
achieves similar or better zero and one-shot performance compared to the 350M
parameter OPT while being 4.9× faster on mobile devices with 5.5× reduction in
model size.

1 INTRODUCTION

The Transformer architecture, originally introduced in (Vaswani et al., 2017), has revolutionized
the field of natural language processing (NLP). It has become the de-facto building block in many
large-scale pre-trained language models (LLMs) (Devlin et al., 2019; Liu et al., 2019; Radford et al.,
2019; Brown et al., 2020; Zhang et al., 2022; Touvron et al., 2023). Especially, Generative Large-
scale Language Models (LLMs), exemplified by GPT (Radford et al., 2019; Brown et al., 2020)
and LLaMA (Touvron et al., 2023), have gained considerable popularity in recent studies. Yet,
such models are without a doubt expensive to train and deploy. For instance, GPT-175B contains
over 175 billion parameters, rendering it unsuitable for direct deployment on resource-constrained
devices, such as mobile phones or Internet-of-Things (IoT) hardware. Consequently, there exists
a substantial demand for developing lightweight language models that can be deployed to mobile
systems with small memory footprints and low compute power.

A key challenge of designing mobile-friendly language models is that the hardware configuration
varies from device to device. Therefore, it is difficult to design a one-fits-all model that satisfies
all requirements. To this end, it is critical to customize an optimized language model backbone
under different computational budgets. A conventional approach is to use knowledge distillation
(KD) (Hinton et al., 2015) which distills larger language models into pre-defined smaller back-
bones (Li et al., 2021; Sanh et al., 2019; Sun et al., 2019). However, there is no guarantee that these
pre-defined, fixed-size backbones are optimal on the given device. Another more flexible approach
is to use AutoML (Hutter et al., 2019) or neural architecture search (NAS) (Wang et al., 2020; Xu
et al., 2021; Yin et al., 2021) to optimize the transformer backbone. However, these methods are
usually computationally demanding, which involves super-net (Cai et al., 2019; 2018) training or
even brute-force grid search. Such processes often consume considerable GPU hours and leave
large carbon footprints. Moreover, training super-nets is a non-trivial task as child architectures of-
ten interfere with each other which leads to performance degradation, as reported in (Ning et al.,
2020).

In this paper, we present an entropy-driven framework to design lightweight variants of generative
language models tailored for resource-constrained devices. Our method leverages recent advance-
ments in information theory and theoretical deep learning which formulate autoregressive language

1



Under review as a conference paper at ICLR 2024

models as information processing systems parameterized by structural parameters such as network
widths and depths. Then, the Maximum Entropy Principle (Jaynes, 1957) is applied to optimize
the network architecture design. More specifically, our design aims to find the optimal configura-
tion of network structure parameters, including depths/widths/embedding dimensions, such that the
network entropy is maximized under the given computational budgets, such as parameter size and
FLOPs.

Albeit the Maximum Entropy Principle is conceptually simple, a direct application encounters two
technical challenges. First, the notion of entropy for a transformer backbone is not well-defined
in deep learning literature. To overcome this hurdle, we propose to use subspace entropy spanned
by the network parameters at random initialization as model entropy. The computation of subspace
entropy can be accelerated via table lookup therefore is highly efficient. Second, we find that naively
maximizing the entropy will lead to an over-deep transformer backbone that is difficult to train. To
address this issue, we propose to preserve the model trainability during the architecture design. Then
an Evolutionary Algorithm (EA) is utilized to optimize the structural parameters of the transformer
backbone (e.g., number of heads, channels, embedding dimensions, etc.). Finally, we are able to
design a family of optimized, Mobile-friendly geneRative language models, or MeRino for short,
on various mobile devices at nearly zero cost.

The key contributions of this work are summarized as follows:

• To the best of our knowledge, we first present an entropy-driven framework to address
the challenge of designing efficient generative language models for resource-constrained
devices at nearly zero cost.

• Our framework leverages the Maximum Entropy Principle and considers both the entropy
and trainability of language models to optimize transformer architectures given computa-
tion budgets.

• Experimental results show that MeRino achieve competitive performance against the state-
of-the-art LLMs, including OPT and GPT models. Notably, our models exhibit improved
parameter, computation, and throughput efficiency on mobile devices.

2 RELATED WORK

Generative Large Language Models (LLMs) Generative large language models (LLMs) have
emerged as the standard solution to a wide range of NLP tasks. They are generally pre-trained on
large-scale corpora in self-supervised manners to learn the contextual structure of natural language.
Unlike previous language models, LLMs consist of only transformer decoder layers and exhibit
outstanding ability to scale up and impressive zero-shot generalization performances. GPT-3 (Brown
et al., 2020), in particular, pushed the boundaries of casual language models by scaling up the model
size to 175 billion parameters and pre-training on a large corpus of over 570 GB plain texts. In the
pursuit of democratizing and fostering reproducible research in LLMs, Meta AI recently released
Open Pre-trained Transformers (OPT) (Zhang et al., 2022), a suite of decoder-only models, ranging
from 125 M to 175 B parameters. In this work, our scope is generative, or decoder-only transformer-
based language models and we aim to design such LLMs suitable for mobile devices with limited
memory space and compute power.

Knowledge Distillation (KD) One of the most widely studied techniques in compressing LLMs
is knowledge distillation (KD) (Hinton et al., 2015). BERT-PKD (Sun et al., 2019) distill BERT
into smaller students using knowledge transfer in both final output and hidden states in multiple
intermediate layers. TinyBERT (Jiao et al., 2019) adopts a layer-wise distillation strategy for BERT
at both the pre-training and fine-tuning stages. (Li et al., 2021) investigates numerous KD techniques
to compress GPT-2 models by layer truncation. Despite achieving promising results, the above KD-
based methods can only distill LLMs into a fixed-size model, which is not suitable for deployment on
diverse and heterogeneous devices. In this work, orthogonal to KD, which focuses primarily on the
training and fine-tuning stage, our proposed method emphasizes designing lightweight transformer
architectures with various parameter sizes and FLOPs to meet different hardware constraints.

NAS for NLP Due to its success in computer vision (CV), neural architecture search (NAS) has
recently gained attention in the NLP community. NAS-BERT (Xu et al., 2021) trains a supernet to

2



Under review as a conference paper at ICLR 2024

efficiently search for masked language models which are compressed versions of the standard BERT.
AutoTinyBERT (Yin et al., 2021) further reduces overall computation cost over NAS-BERT by
adopting a linear search space. For encoder-decoder architectures, HAT (Wang et al., 2020) uses the
Once-For-All (Cai et al., 2019) approach and performs a search on sub-samples of the supernet that
inherits weights to estimate downstream task accuracy. LTS (Javaheripi et al., 2022) proposes using
non-embedding parameters in decoders as a proxy score to predict the perplexity performance of
generative LLMs. However, the aforementioned methods are mostly data-dependent and incur heavy
computation costs. Moreover, it is difficult for researchers to understand why specific architectures
are preferred by the algorithm and what theoretical insight we can learn from these results. In this
work, we plan to explore the architecture design of autoregressive language models in a principled
way with clear theoretical motivation and human explainability.

Information Theory in Deep Learning Information theory recently has emerged as a power-
ful tool for studying deep neural networks (Chan et al., 2021; Saxe et al., 2018; Shen et al., 2023;
Sun et al., 2021). Several previous studies (Chan et al., 2021; Saxe et al., 2018) have attempted to
establish a connection between the information entropy and the neural network architectures. For
instance, (Chan et al., 2021) tries to interpret the learning ability of deep neural networks using
subspace entropy reduction. (Saxe et al., 2018) investigates the information bottleneck in deep
architectures and explores the entropy distribution and information flow in deep neural networks.
Additionally, (Shen et al., 2023; Sun et al., 2021) focus on designing high-performance convolu-
tional neural networks (CNNs) via maximizing multi-level entropy. Yet, to the best of our knowl-
edge, there is still no published work using information entropy to design efficient decoder-only
transformer backbones for language models.

3 METHODOLOGY

In this section, we begin by presenting some preliminary details on autoregressive transformer mod-
els. Next, we introduce our novel definition of network entropy for transformer models. Moreover,
we demonstrate that the untrained subspace entropy positively correlates with the model perfor-
mance after training. Finally, we present our entropy-driven design procedure, which solves a con-
strained mathematical programming problem using the Evolutionary Algorithm (EA).

3.1 PRELIMINARIES

Due to the page limit, we present preliminary details of autoregressive transformer models in Ap-
pendix A. For notation purposes, we denote the attention matrices in MHA as WQ,WK ,WV ∈
Rd×d/h for queries Q, keys K, and values V , respectively and output project matrix as WO ∈ Rd×d;
for FFN layers, we denote two linear project matrices as W FFN1 ∈ Rd×rd,W FFN2 ∈ Rrd×d, where
r is the FFN ratio.

3.2 SUBSPACE ENTROPY FOR TRANSFORMERS

Expressiveness in Deep Network From the perspective of information theory (Jaynes, 1957;
Cover & Thomas, 1991), deep neural networks can be regarded as information systems, and their
performance is closely related to the expressive power of such networks. The notion of entropy is
often used to measure such expressiveness through intermediate feature maps (Sun et al., 2021) in
convolutional neural networks (CNNs). In the case of transformers, we propose to define the entropy
of transformers from the perspective of parameter subspaces.

Suppose that Wi ∈ Rc
(i)
in ×c

(i)
out presents a linear mapping with c

(i)
in input channels and c

(i)
out out-

put channels. The elements of Wi are randomly sampled from the standard Gaussian distribution
N (0, 1). According to previous works (Chan et al., 2021), the subspace spanned by the random
linear mapping Wi has entropy defined by

Ĥ(Wi) ≜ E{
ri∑
j=1

log(1 +
s2j
ϵ2

)} (1)

where ri = min(cin, cout), sj is the j-th largest singular value of Wi and ϵ is a small constant.

3



Under review as a conference paper at ICLR 2024

For an L-layer network f(·), we define the network entropy Ĥ(f) by accumulating the entropy of
matrices in each layer as the following:

Ĥ(f) =

L∑
i=1

Ĥ(Wi) (2)

Effectiveness in Deep Network The entropy measures the expressiveness of the deep neural net-
work, which is positively correlated with the network performance (Sun et al., 2021). However,
directly maximizing the above-defined entropy leads to the creation of over-deep networks, since
according to Eq. (2), the expressivity (entropy) grows exponentially faster in depth (number of lay-
ers L), than in width (dimension of Wi). For an over-deep network, a small perturbation in low-level
layers of the network will lead to an exponentially large perturbation in the high-level output of the
network (Roberts et al., 2021). During the back-propagation process, the gradient flow often cannot
effectively propagate through the entire network. Though recent works have attempted to alleviate
the trainability issues by revising initialization strategies (Zhang et al., 2019; Huang et al., 2020),
adding skip connections (Nguyen & Salazar, 2019; He et al., 2015), or proposing better architec-
tures (Wang et al., 2019b; Bachlechner et al., 2020), training over-deep networks still remains a
rather challenging problem.

Table 1: Perplexity comparison of two different structures of autoregressive transformer models on
the LM1B dataset.

Model L E Params Entropy Effective γ Entropy w/ γ Validation PPL

‘Wide’ 1 256 40 M 2784 0.008 2243 53.7
‘Deep’ 24 64 40 M 4680 0.25 2042 71.9

To verify the negative impact when the network is over-deep, in Table 1, we conduct experiments
of training two transformer architectures with a similar parameter size of 40 M. One model, referred
to as the ‘Wide’ model, consists of only one layer and an embedding dimension of 256. The other
model, referred to as the ‘Deep’ model, consists of 24 layers but only with an embedding dimension
of 64. Both models are trained under the same setting until convergence. We observe that even
though the ‘deep’ network has much higher entropy, it obtains worse perplexity performance after
training than the ‘wide’ network. This observation aligns with the common belief that over-deep
networks hinder effective information propagation (Roberts et al., 2021) and are difficult to train
and optimize (Rae et al., 2021).

To address the potential trainability issues, we propose adding additional constraints to control
the depth-width ratio of networks. Specifically, we adopt the term effectiveness γ from the
work (Roberts et al., 2021) and define it as follows:

γ = βL/ŵ (3)

Here, ŵ is the effective width of a L-layer network and β is a scaling factor to control γ within the
range of 0 and 1. To enforce the above constraint, we revise Eq. (2) as follows:

Ĥ(f) = (1− γ)

L∑
i=1

H(Wi) (4)

Compared to the previous subspace entropy definition, Eq. (4) penalizes networks with larger depth-
to-width ratios (higher γ). This constraint helps alleviate potential trainability issues by promoting
a more balanced depth-width ratio in the network architecture. By considering both expressiveness
(entropy) and effectiveness (the depth-width ratio), we aim to design more capable and trainable
models.

Entropy of Transformers Consider a L-layer transformer model with embedding dimension E
and FFN dimension F , according to Theorem 1 in (Levine et al., 2020), the depth-width sufficiency
behavior satisfied a logarithmic condition in transformer models. Subsequently, we propose to define

4



Under review as a conference paper at ICLR 2024

the effective width of MHA and FFN and their corresponding entropy as:

ŵMHA = logE, ŵFFN = logF (5)

ĤMHA = (1− βL

ŵMHA
)

L∑
i=1

Ĥ(WQ
i ,WK

i ,WV
i ,WO

i ) (6)

ĤFFN = (1− βL

ŵFFN
)

L∑
i=1

Ĥ(W FFN1
i ,W FFN2

i ) (7)

In practice, we find that using weighted entropy for MHA and FFN gives us a more reliable indicator
for model performance. Therefore, we define the total entropy of the transformer model as linear
combinations of the MHA and FFN entropy:

Ĥ = α1ĤMHA + α2ĤFFN (8)

where α = (α1, α2) are tunable hyperparameters.

Fast Entropy Approximation Given the above definitions, we can easily calculate entropy for
any transformer model. However, performing singular value decomposition (SVD) is a costly op-
eration. For large models, it sometimes requires minutes to run SVD, which inhibits a zero-cost
design. To accelerate the entropy computation, we build an entropy lookup table to approximate the
total entropy of a given transformer model. The lookup table is built through a pre-computation pro-
cess that considers all possible combinations of expected entropy values for different dimensions.
This step incurs only a one-time cost and the resulting lookup table can be shared across multiple
experiments. With the lookup table in place, we can efficiently calculate the entropy of transformer
models and enable a more efficient design process for transformer models.

Evaluating Transformer without Training Recent studies (Jaynes, 1957; Shen et al., 2023) have
demonstrated that entropy, which captures the information capacity of neural network architecture,
can be a reliable indicator for performance and generalization ability (Jaynes, 1957; Shen et al.,
2023) in convolutional neural networks. In this part, we provide experimental results that empirically
establish a strong correlation between our proposed entropy of untrained transformers and their
final performance on the LM1B (Chelba et al., 2013) dataset after training. Figure 2 illustrates the
correlation between the model performance (negative perplexity) and their corresponding entropy
scores. Results indicate strong correlations, as evidenced by Spearman’s Rank Correlation (ρ) and
Kendall Rank Correlation (τ ) scores exceeding 0.8 and 0.6, respectively. This suggests that entropy
can serve as a reliable training-free proxy for evaluating transformer architecture.

We recognize that while our method approach has some connections to zero-shot NAS (Lin et al.,
2021; Sun et al., 2021; Zhou et al., 2022), there are two principal distinctions. First, zero-shot NAS
methods are predominantly data-driven. Our method, on the other hand, is mathematically driven
with clear motivation from the perspective of information theory. Second, zero-shot NAS methods
are inherently data-dependent, requiring forward and backward passes over the architecture. Such
processes often need to store network parameters and feature maps in GPU memory. In contrast,
our methodology is purely analytical and the expensive entropy calculation process is substituted by
table lookup procedure, therefore highly efficient, and truly zero-cost. Our method requires zero
GPU memory and zero GPU core in the design stage. In summary, our method is a much better
approach to designing efficient language models for mobile devices than zero-shot NAS.

3.3 DESIGNING MOBILE LANGUAGE MODELS

Search Space In the design of MeRino, we introduce an adaptive block-wise search space to
construct the backbone architecture. This allows us to determine the architectural parameters on a
per-block basis. Each transformer block consists of numerous transformer layers of the same number
of attention heads, hidden dimensions, and embedding dimensions. Within each transformer block,
in MHA layers, we fix the head dimension and make the attention head number elastic so that each
attention module can decide its necessary number of heads. We also set the Q-K-V dimensions
the same as embedding dimensions; in FFN layers, the hidden dimension is decided by choosing
the FFN ratio to the embedding dimension. To prevent information bottlenecks, we also ensure
that as the network goes deeper, the embedding dimension of each transformer block should be

5



Under review as a conference paper at ICLR 2024

Figure 1: Our proposed adaptive block-wise transformer design. Left is the standard autoregressive
transformer design, which consists of L homogeneous layers, and right is the optimal architecture
design after entropy maximization, where there are N number of transformer blocks and each trans-
former block has adaptive width (Ei, Ri) and depth (Li).

non-decreasing. Moreover, we incorporate parameter sharing technique (Lan et al., 2019) within
each transformer block. This means that all MHA and FFN layers within the block share the same
weights, resulting in transformer models of reduced memory footprint. Illustration can be found in
Figure 1. Details of our search space configuration are provided in Appendix C.1.

Search Process To design a transformer model f(·) with N transformer blocks under a given
computation budget C, we propose to optimize the parameters {Ej , Rj , Lj}j=1,...,N by solving a
mathematical programming (MP) problem. The objective of the MP problem is to maximize a
weighted sum of entropy, representing the expressiveness and effectiveness of the model, while
considering constraints on the computational cost. The MP problem is formulated as follows:

max
Ei,Ri,Li

α1

N∑
j=1

Lj(1−
βLj

logEj
)Ĥ(Ej) + α2

N∑
j=1

Lj(1−
βLj

log(RjEj)
)Ĥ(RjEj)

s.t. ComputeCost[f(·)] ≤ C, E1 ≤ E2 ≤ · · · ≤ EN

(9)

where Ej , Rj , and Lj denote the embedding dimension, FFN ratio, and number of layers in the j-th
transformer block, respectively. To solve this optimization problem, we employ an Evolutionary
Algorithm (Reeves, 2007). Note that Eq. (9) can be solved by any non-linear programming solver in
principle. We choose EA due to its simplicity. Since our formulated problem is purely mathematical,
it can be solved nearly instantly on the CPU. A detailed description of EA and the mutation algorithm
is given in Appendix C.3.

4 EXPERIMENTS

In this section, we first describe experimental settings for search, training, and evaluation. Next, we
report the results of MeRino on various NLP tasks and compare our approach with both existing
pretrained LLMs and zero-shot NAS methods. Finally, we conduct ablation studies of different key
components in MeRino.

4.1 EXPERIMENTAL SETTINGS

Search Settings In searching for MeRino, the number of iterations T is set to 100000, with a
population size M of 512 and the parent size K of 64. We conduct searches for three different FLOP
targets (60/110/160 G). We limit the number of transformer blocks to N = 4 and set α = (0.6, 0.4)
and β = 1/16.

Training Settings We mostly follow settings in (Zhang et al., 2022) and (Biderman et al., 2023)
and pre-train our models on the Pile dataset (Gao et al., 2020) for 600k steps (≈ 314B tokens) with

6



Under review as a conference paper at ICLR 2024

an effective batch size of 512 using AdamW optimizer (Loshchilov & Hutter, 2017), with a starting
learning rate of 6e-4 and warm-up steps of 1000, and linear learning rate decay schedule. We also
enable automatic mixed precision (AMP) for better training efficiency.

Evaluation Settings We evaluate our models for zero and one-shot natural language inference
tasks across twelve different downstream NLP tasks, namely HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2019), OpenBookQA (Mihaylov et al., 2018), ARC-easy, and ARC-
challenge (Clark et al., 2018), PubmedQA (Jin et al., 2019), LogiQA (Liu et al., 2020), and Super-
GLUE (Wang et al., 2019a) benchmark BoolQ, CB, WIC, WSC and RTE. FLOPs are calculated
with a batch size of 1 and sequence length of 1024 and inference throughput is measured at token
per second on NVIDIA Jetson Nano 8GB.

Table 2: Detailed zero-shot downstream task results for MeRino and publicly available pretrained
LLMs.

MeRino OPT Pythia Cerebras-GPT GPT-2

Params (↓) 52 M 61 M 64 M 125 M 350 M 70 M 162 M 111 M 124 M
FLOPs (↓) 60 G 110 G 160 G 210 G 720 G 100 G 270 G 260 G 290 G

Throughput (↑) 36.37 33.85 25.97 23.84 6.38 27.25 14.03 22.49 19.06

HellaSwag 0.267 0.273 0.274 0.267 0.283 0.269 0.292 0.267 0.300
WinoGrande 0.507 0.510 0.528 0.503 0.523 0.529 0.492 0.490 0.516
ARC-Easy 0.327 0.336 0.341 0.386 0.389 0.335 0.373 0.336 0.382

ARC-Challenge 0.212 0.209 0.234 0.223 0.233 0.214 0.231 0.207 0.230
OpenBookQA 0.242 0.248 0.267 0.226 0.286 0.272 0.264 0.256 0.272

BoolQ 0.541 0.610 0.621 0.554 0.618 0.589 0.571 0.621 0.554
WIC 0.525 0.502 0.505 0.498 0.500 0.486 0.500 0.500 0.492
CB 0.411 0.375 0.393 0.357 0.464 0.339 0.446 0.411 0.410

WSC 0.413 0.365 0.375 0.365 0.365 0.365 0.365 0.365 0.433
RTE 0.502 0.534 0.545 0.444 0.542 0.523 0.563 0.549 0.531

PubmedQA 0.377 0.484 0.540 0.372 0.414 0.409 0.544 0.552 0.430
LogiQA 0.276 0.255 0.278 0.286 0.280 0.266 0.269 0.266 0.245

Average 0.383 0.392 0.408 0.373 0.408 0.383 0.409 0.402 0.400

4.2 MAIN RESULTS

Comparison with Pre-trained LLMs Since our scope is mobile-friendly language models, we
mainly compare pretrained LLMs that can be run on NVIDIA Jetson Nano 8GB with out-of-memory
(OOM) issues. We compare the average accuracy of our MeRino models with baseline models, such
as GPT-2 (Radford et al., 2019), OPT (Zhang et al., 2022), Pythia (Biderman et al., 2023) and
Cerebras-GPT (Dey et al., 2023).

Table 2 reports the comparisons of MeRino and current state-of-the-art autoregressive transformer-
based language models. Compared to the OPT family, MeRino achieves superior accuracy with
much less parameter size and FLOPs. Specifically, MeRino-64M obtains similar average accuracy
as OPT-350M but with 82% and 78% reduction in model size and computation respectively. For
similar inference throughput performance, MeRino-64M outperforms OPT-125M by 3.5%. Above
all, MeRino achieves an average inference speedup of 2.7× against OPT family models, respectively.

When compared to open-sourced LLMs that are trained on the Pile dataset, MeRino-64M achieves
0.6% higher average zero-shot accuracy than Cerebras-GPT while reducing parameter size and
FLOPs by 1.7× and 1.6×, respectively; MeRino-61M is also 0.8% more accurate than GPT-2 with
1.4× lower latency; our smallest model, MeRino-52M achieves similar performance as Pythia-70M
but with 1.5× faster runtime. Similar trends can be found in the one-shot performance comparison
results in Appendix B.

7



Under review as a conference paper at ICLR 2024

Figure 2: Correlation comparison of training-free predictor and transformer performance (negative
perplexity). ρ is Spearman’s Rank and τ is Kendall Tau. Larger values mean higher correlation.

Comparison with Zero-shot NAS We also compare our methods against two zero-shot NAS ap-
proaches, namely DSS-Score (Zhou et al., 2022) and Decoder-Params (Javaheripi et al., 2022). For
correlation performance, we randomly and uniformly sample 81 unique transformer architectures in
the standard autoregressive transformer search space. Each model is fully trained from scratch on
the One Billion Word (LM1B) Chelba et al. (2013) dataset and the performance is measured using
validation perplexity. According to the results in Figure 2, we can see that our proposed subspace
entropy is more positively correlated with the final model perplexity performance than the other two
training-free metrics.

Additionally, we conduct searches using the same FLOPs constraints (160 G), and report the down-
stream NLP performance of searched architectures at different iterations (0, 12k, 24k, 36k, 48k,
64k). In Figure 3, we can see that under the same computation constraint, our entropy-driven design
can produce much more capable language models.

Figure 3: Avg zero-shot accuracy vs. different training-free proxies during searches. The dotted line
indicates the evolution direction of the search process.

4.3 ABLATION STUDIES

Effectiveness Constraint As shown in Table 3, effectiveness constraint γ plays a key role in
helping our entropy-driven framework design more capable and trainable models. When using ef-
fectiveness constraint γ, the final searched language model obtains +2.4% average accuracy gain. In
terms of correlation experiments on the LM1B dataset shown in Figure 2, entropy with effectiveness
constraint γ can provide a more reliable prediction of the final perplexity performance of trained
transformer models, especially in identifying high-performance architectures.

Table 3: Performance comparison of effectiveness constraint and weighted entropy. Inference
throughput is measured on NVIDIA Jetson Nano 8GB.

Model
Effectiveness

Constraint
Weighted
Entropy

Params
(M)

FLOPs
(G)

Throughput
(token/s)

Avg. Zero-shot
Accuracy

MeRino
✗ ✗ 62

110
33.27 0.360

✓ ✗ 59 37.42 0.384
✓ ✓ 61 33.85 0.392

8



Under review as a conference paper at ICLR 2024

Weighted Entropy We also study the impact of weight α on our entropy-driven approach. As
shown in Figure 4, naively adding MHA and FFN without weights cannot represent the perplexity
performance very well. Weighted entropy, on the other hand, especially when properly tuned, ex-
hibits much better correlation results than unweighted entropy. In Table 3, we further evaluate the
impact of weighted entropy on downstream performance. We can see that using weighted entropy
helps improve the average zero-shot accuracy by 0.8%.

(a) α = (0.5, 0.5) (b) α = (0.4, 0.6) (c) α = (0.6, 0.4)

Figure 4: Correlation results of different weighted entropy scores on LM1B dataset. ρ is Spearman’s
Rank and τ is Kendall Tau.

Parameter Sharing We report the effect of parameter technique on MeRino in Table 4 for three
different FLOPs targets (60/110/160 G). We can see that sharing parameters within the same trans-
former block helps improve parameter efficiency and reduce the model size while having a negli-
gible impact on both the language modeling (see Pile test loss) and downstream zero and one-shot
performance.

Table 4: Performance comparison of parameter sharing technique under three different FLOPs tar-
get.

Parameter
Sharing

Params
(M)

FLOPs
(G)

Pile
Test Loss

Downstream task performance

Zero-shot One-shot

59
60

2.496 0.381 0.382
✓ 52 2.520 0.383 0.387

79
110

2.492 0.395 0.390
✓ 61 2.517 0.392 0.394

100
160

2.378 0.403 0.402
✓ 64 2.381 0.408 0.403

5 CONCLUSION

In this paper, we present MeRino, a novel design framework aiming to generate efficient autoregres-
sive language models for mobile devices, such as NVIDIA Jetson Nano. By modeling transformer
models as information processing systems, MeRino leverages the Maximum Entropy Principle and
optimizes the network architecture by maximizing the subspace entropy of transformer decoders and
model trainability under given computational budgets. We show that MeRino can achieve compara-
ble performance against state-of-the-art LLMs with significant improvement in model size reduction
and inference runtime speedup on resource-constrained devices.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Thomas C. Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, G. Cottrell, and Julian
McAuley. Rezero is all you need: Fast convergence at large depth. ArXiv, abs/2003.04887, 2020.

Stella Rose Biderman, Hailey Schoelkopf, Quentin G. Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, Usvsn Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
models across training and scaling. 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. ArXiv,
abs/2005.14165, 2020.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. ArXiv, abs/1812.00332, 2018.

Han Cai, Chuang Gan, and Song Han. Once for all: Train one network and specialize it for efficient
deployment. ArXiv, abs/1908.09791, 2019.

Kwan Ho Ryan Chan, Yaodong Yu, Chong You, Haozhi Qi, John Wright, and Yi Ma. Redunet: A
white-box deep network from the principle of maximizing rate reduction. ArXiv, abs/2105.10446,
2021.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, T. Brants, Phillip Todd Koehn, and Tony
Robinson. One billion word benchmark for measuring progress in statistical language modeling.
In Interspeech, 2013.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. ArXiv, abs/1803.05457, 2018. URL https://api.semanticscholar.org/
CorpusID:3922816.

Thomas M. Cover and Joy A. Thomas. Elements of information theory. 1991.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. ArXiv, abs/1810.04805, 2019.

Nolan Dey, Gurpreet Singh Gosal, Zhiming Chen, Hemant Khachane, William Marshall, Ribhu
Pathria, Marvin Tom, and Joel Hestness. Cerebras-gpt: Open compute-optimal language models
trained on the cerebras wafer-scale cluster. 2023.

Leo Gao, Stella Rose Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling. ArXiv, abs/2101.00027, 2020.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
ArXiv, abs/1503.02531, 2015.

Xiaoshan Huang, Felipe Pérez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimiza-
tion through better initialization. In International Conference on Machine Learning, 2020.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: Methods,
systems, challenges. Automated Machine Learning, 2019.

10

https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816


Under review as a conference paper at ICLR 2024

Mojan Javaheripi, S. Shah, Subhabrata Mukherjee, Tomasz L. Religa, Caio Cesar Teodoro Mendes,
Gustavo de Rosa, Sébastien Bubeck, Farinaz Koushanfar, and Debadeepta Dey. Litetransform-
ersearch: Training-free on-device search for efficient autoregressive language models. ArXiv,
abs/2203.02094, 2022.

Edwin T. Jaynes. Information theory and statistical mechanics. Physical Review, 106:620–630,
1957.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. ArXiv, abs/1909.10351, 2019.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W. Cohen, and Xinghua Lu. Pubmedqa: A
dataset for biomedical research question answering. In Conference on Empirical Methods in
Natural Language Processing, 2019.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. ArXiv,
abs/1909.11942, 2019.

Yoav Levine, Noam Wies, Or Sharir, Hofit Bata, and Amnon Shashua. The depth-to-width interplay
in self-attention. arXiv: Learning, 2020.

Tianda Li, Yassir El Mesbahi, Ivan Kobyzev, Ahmad Rashid, Atif Mahmud, Nithin Anchuri, Habib
Hajimolahoseini, Yang Liu, and Mehdi Rezagholizadeh. A short study on compressing decoder-
based language models. ArXiv, abs/2110.08460, 2021.

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong Jin.
Zen-nas: A zero-shot nas for high-performance image recognition. 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 337–346, 2021.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. In International
Joint Conference on Artificial Intelligence, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. ArXiv, abs/1907.11692, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2017.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Conference on Empirical Methods
in Natural Language Processing, 2018.

Toan Q. Nguyen and Julian Salazar. Transformers without tears: Improving the normalization of
self-attention. ArXiv, abs/1910.05895, 2019.

Xuefei Ning, Changcheng Tang, Wenshuo Li, Zixuan Zhou, Shuang Liang, Huazhong Yang, and
Yu Wang. Evaluating efficient performance estimators of neural architectures. In Neural Infor-
mation Processing Systems, 2020.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song,
John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hen-
nigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne
Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri,
Saffron Huang, Jonathan Uesato, John F. J. Mellor, Irina Higgins, Antonia Creswell, Nathan
McAleese, Amy Wu, Erich Elsen, Siddhant M. Jayakumar, Elena Buchatskaya, David Bud-
den, Esme Sutherland, Karen Simonyan, Michela Paganini, L. Sifre, Lena Martens, Xiang Lor-
raine Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki

11



Under review as a conference paper at ICLR 2024

Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, N. K. Grigorev, Doug
Fritz, Thibault Sottiaux, Mantas Pajarskas, Tobias Pohlen, Zhitao Gong, Daniel Toyama, Cyprien
de Masson d’Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark,
Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew G. Johnson, Blake A.
Hechtman, Laura Weidinger, Iason Gabriel, William S. Isaac, Edward Lockhart, Simon Osindero,
Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem W. Ayoub, Jeff Stanway, L. L. Bennett, Demis
Hassabis, Koray Kavukcuoglu, and Geoffrey Irving. Scaling language models: Methods, analysis
& insights from training gopher. ArXiv, abs/2112.11446, 2021.

Colin R. Reeves. Evolutionary computation: a unified approach. Genetic Programming and Evolv-
able Machines, 8:293–295, 2007.

Daniel A. Roberts, Sho Yaida, and Boris Hanin. The principles of deep learning theory. ArXiv,
abs/2106.10165, 2021.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Commun. ACM, 64:99–106, 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108, 2019.

Andrew M. Saxe, Yamini Bansal, Joel Dapello, Madhu S. Advani, Artemy Kolchinsky, Brendan D.
Tracey, and David D. Cox. On the information bottleneck theory of deep learning. Journal of
Statistical Mechanics: Theory and Experiment, 2019, 2018.

Xuan Shen, Yao Wang, Ming Lin, Yi-Li Huang, Hao Tang, Xiuyu Sun, and Yanzhi Wang. Deepmad:
Mathematical architecture design for deep convolutional neural network. ArXiv, abs/2303.02165,
2023.

S. Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model com-
pression. In Conference on Empirical Methods in Natural Language Processing, 2019.

Zhenhong Sun, Ming Lin, Xiuyu Sun, Zhiyu Tan, Hao Li, and Rong Jin. Mae-det: Revisiting maxi-
mum entropy principle in zero-shot nas for efficient object detection. In International Conference
on Machine Learning, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. ArXiv, abs/2302.13971, 2023. URL https://api.semanticscholar.
org/CorpusID:257219404.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. ArXiv, abs/1706.03762, 2017.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. ArXiv, abs/1905.00537, 2019a.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. Hat:
Hardware-aware transformers for efficient natural language processing. ArXiv, abs/2005.14187,
2020.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F. Wong, and Lidia S. Chao.
Learning deep transformer models for machine translation. In Annual Meeting of the Association
for Computational Linguistics, 2019b.

Jin Xu, Xu Tan, Renqian Luo, Kaitao Song, Jian Li, Tao Qin, and Tie-Yan Liu. Nas-bert: Task-
agnostic and adaptive-size bert compression with neural architecture search. Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021.

Yichun Yin, Cheng Chen, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Autotinybert: Auto-
matic hyper-parameter optimization for efficient pre-trained language models. In Annual Meeting
of the Association for Computational Linguistics, 2021.

12

https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404


Under review as a conference paper at ICLR 2024

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Annual Meeting of the Association for Computational
Linguistics, 2019.

Biao Zhang, Ivan Titov, and Rico Sennrich. Improving deep transformer with depth-scaled initial-
ization and merged attention. ArXiv, abs/1908.11365, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models. ArXiv, abs/2205.01068, 2022.

Qinqin Zhou, Kekai Sheng, Xiawu Zheng, Ke Li, Xing Sun, Yonghong Tian, Jie Chen, and Ron-
grong Ji. Training-free transformer architecture search. 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 10884–10893, 2022.

13



Under review as a conference paper at ICLR 2024

APPENDIX

In the appendix, we provide preliminary knowledge of autoregressive transformers (Appendix A),
detailed one-shot learning results (Appendix B), design details of MeRino (Appendix C), including
search space configurations of our entropy-driven design, structural details of MeRino, and detailed
Evolutionary Algorithm (EA) and Mutation algorithm, and limitations (Appendix D).

A PRELIMINARIES

Autoregressive Transformers Decoder-only, or autoregressive transformers, operate by predict-
ing the next element in a sequence based on the preceding elements. A standard autoregressive
transformer comprises an embedding layer to project sequences of tokens to hidden dimensions and
stacks of transformer layers to capture long-term dependencies between input tokens using the self-
attention mechanism. A transformer layer includes two main components: a multi-head attention
(MHA) module and a position-wise feed-forward network (FFN). The MHA module facilitates cap-
turing contextual information by attending to different positions within the input sequence, while the
FFN performs element-wise transformations to introduce non-linearity and improve representational
capacity.

Multi-Head Attention (MHA) Multi-head attention (MHA) is a crucial component within the
transformer architecture that enables the model to selectively attend to different segments of the
input sequence. This mechanism involves projecting the input sequence into multiple attention
heads, each of which calculates an independent attention distribution. In MHA computation, there
are specifically four main matrices involved: attention matrices WQ,WK ,WV ∈ Rdin×din/h and
output project matrix WO ∈ Rdin×dout . Given the output of previous layers X ∈ Rn×din as input,
the attention function is formulated as:

Q,K, V = XWQ, XWK , XWV (10)

Attn(Q,K, V ) = softmax(
QKT√
din/h

)(V ) (11)

where Q, K, and V represent queries, keys, and values, respectively.

MHA is defined by concatenating h attention heads and producing outputs as follows:

MHA(X) = Concat(Attni, ...,Attnh)WO (12)

In addition, the transformer layer adopts residual connection and layer normalization on top of MHA
to compute the final outputs.

XMHA = LayerNorm(X + MHA(X)) (13)

Position-wise Feed-forward Network (FFN) In addition to the MHA, each transformer layer
includes a feed-forward network (FFN). The FFN applies two point-wise fully connected layers fol-
lowed by a non-linear activation function, such as ReLU. Operations within FFN can be formulated
as follows:

XFFN = ReLU(XMHAW FFN1 + b1)W
FFN2 + b2 (14)

Similarly, the FFN also incorporates residual connections and layer normalization to compute the
final outputs:

XFFN = LayerNorm(XMHA +XFFN) (15)

B ONE-SHOT LEARNING RESULTS

We report additional one-shot comparison results in Table 5. We can see that our designed models
still achieve competitive performance against state-of-the-art LLMs with reduced parameters and
computation.

14



Under review as a conference paper at ICLR 2024

Table 5: Detailed one-shot downstream task results for MeRino and publicly available pretrained
LLMs.

MeRino OPT Pythia Cerebras-GPT GPT-2

Params (↓) 52 M 61 M 64 M 125 M 350 M 70 M 162 M 111 M 124 M
FLOPs (↓) 60 G 110 G 160 G 210 G 720 G 100 G 270 G 260 G 290 G

HellaSwag 0.262 0.260 0.270 0.264 0.279 0.266 0.296 0.265 0.308
WinoGrande 0.517 0.486 0.495 0.504 0.519 0.522 0.506 0.494 0.500
ARC-Easy 0.339 0.351 0.353 0.396 0.413 0.344 0.387 0.348 0.399

ARC-Challenge 0.214 0.208 0.237 0.229 0.238 0.208 0.225 0.218 0.235
OpenBookQA 0.234 0.240 0.262 0.232 0.258 0.238 0.266 0.262 0.266

BoolQ 0.536 0.539 0.570 0.547 0.583 0.521 0.560 0.605 0.526
WIC 0.467 0.489 0.472 0.483 0.506 0.464 0.467 0.475 0.464
CB 0.411 0.482 0.482 0.464 0.429 0.464 0.482 0.464 0.482

WSC 0.423 0.413 0.365 0.365 0.365 0.365 0.365 0.365 0.365
RTE 0.574 0.542 0.549 0.484 0.523 0.538 0.520 0.552 0.549

PubmedQA 0.404 0.466 0.513 0.444 0.462 0.478 0.521 0.463 0.425
LogiQA 0.264 0.256 0.269 0.246 0.252 0.284 0.258 0.255 0.250

Average 0.387 0.394 0.403 0.388 0.402 0.391 0.404 0.397 0.397

C DESIGN DETAILS OF MERINO

C.1 SEARCH SPACE

Table 6 presents details of the search space defined for our entropy-driven design method. In ad-
dition, we set the embedding projection dimension as 768 and the maximum position embedding
dimension as 2048. Our search space encapsulates over 216k different autoregressive transformer
architectures.

Table 6: Search space hyperparameters for MeRino.

Embedding Dimension - Ei [64, 128, 256, 384, 512, 640, 768, 896, 1024]
FFN Ratio - Ri [1, 1.5, 2, 2.5, 3, 3.5, 4]

Number of Layers Per Block - Li [1, 2, 3, 4]

C.2 DETAIL STRUCTURE OF MERINO

The searched network structures of MeRino are listed in Tables 7. We use four blocks for our
entropy-driven design. Ei denotes the embedding dimension for each transformer block, Ri denotes
the FFN ratio, and Li denotes the number of layers (depth) of each transformer block.

Table 7: Structure Configuration of MeRino.

Model Ei Ri Li Params FLOPs

MeRino
[512, 512, 640, 896] [1, 1, 1, 1] [2, 3, 2, 1] 52 M 60 G

[640, 768, 896, 1024] [1, 1.5, 1, 1] [2, 2, 2, 2] 61 M 110 G
[640, 896, 1024, 1024] [1.5, 1.5, 1, 1] [3, 3, 2, 3] 64 M 160 G

15



Under review as a conference paper at ICLR 2024

C.3 EVOLUTIONARY ALGORITHM

We give a detailed description of the Evolutionary Algorithm (EA) and Mutation algorithm in Al-
gorithm 1 and Algorithm 2, respectively.

Algorithm 1 Evolutionary Algorithm

Require: Search space D, number of iterations T , computation budget constraint C, population size
M , parent size K

Ensure: Optimal architecture A∗

Initialize population P
while i ≤ T do

while len(P) < M do
Random select Ai ∈ P as parent.
Mutate Âi = MUTATE(Ai,D)

if ComputeCost(Âi) ≤ C then
Calculate entropy Z = H(Âi)

Add Âi to P
else

Do nothing
end if

end while
Remove (M −K) networks with smallest entropy scores

end while
Return A∗, the architecture with highest entropy in P

Algorithm 2 MUTATE

Require: Search space D, architecture Ai.
Ensure: Mutated architecture Âi

Randomly select a block in Ai

Randomly alternate block depth, embedding dimension, and FFN ratio within a certain range
Return the mutated architecture Âi

D LIMITATIONS

As no research is perfect, MeRino has several limitations as well. First, the design of MeRino ex-
plores entropy only from parameter subspace due to its straightforwardness. Further exploration of
entropy in the feature space could provide a better theoretical understanding of transformer archi-
tecture and potentially lead to improved model designs. Second, our design only focuses on the
”macro-structure” of the LLMs (channels/depths/heads). Other key components, such as residual
connections, layer normalization, and nonlinear activations, are also essential to achieve good per-
formance. However, the theoretical foundation for these components is not well-studied, especially
from an information theory perspective. How to integrate these components in our entropy-based
framework remains an open question and we would leav it for our future research.

16


	Introduction
	Related Work
	Methodology
	Preliminaries
	Subspace Entropy for Transformers
	Designing Mobile Language Models

	Experiments
	Experimental Settings
	Main Results
	Ablation Studies

	Conclusion
	Preliminaries
	One-Shot Learning Results
	Design Details of MeRino
	Search Space
	Detail Structure of MeRino
	Evolutionary Algorithm

	Limitations

